
Fault localization for intelligent automation systems

Downloaded from: https://research.chalmers.se, 2025-04-02 20:48 UTC

Citation for the original published paper (version of record):
Erös, E., Bengtsson, K., Åkesson, K. (2023). Fault localization for intelligent automation systems.
IEEE International Conference on Emerging Technologies and Factory Automation, ETFA,
2023-September. http://dx.doi.org/10.1109/ETFA54631.2023.10275551

N.B. When citing this work, cite the original published paper.

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained
for all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, or reuse of any copyrighted component of this work in other
works.

(article starts on next page)

Fault localization for intelligent automation systems
Endre Erős1, Kristofer Bengtsson2, and Knut Åkesson1

Abstract—Conventional programming of explicit control code
is unsuitable for flexible and collaborative production systems. A
model-based approach, which focuses on defining capabilities of
a system, instead of specifying how to achieve them, provides an
alternative for creating complex, scalable, and reliable systems.
This is accomplished through the use of behavior models,
and tools such as planning, synthesis, verification, and testing.
However, developing such models is not without challenges,
as it is possible to overlook or incorrectly specify potential
behavior and constraints. This can result in unsolvable planning
problems or plans that are invalid for other reasons. When
plans are unobtainable, developers receive no feedback, which
makes model adjustments a difficult and time-intensive task. This
paper recognizes these challenges as crucial barriers for adopting
model-based development of intelligent automation systems. To
facilitate the development of such systems, an approach for
detecting and localizing faults in behavior models is presented.
Drawing inspiration from software fault localization techniques,
the proposed method involves identifying suspicious resources,
variables, and operations. The effectiveness of this approach is
illustrated with an example use case.

I. INTRODUCTION
The aim of this paper is to explore a fault localization

support system for the development of intelligent automation
systems [1]. Such systems are based on automated planning [2]
which enables them to plan, act, re-plan, and safely recover
from undesired states when necessary. By adopting a planning
approach to automation as described in [3], the behavior of the
system can be modeled through variables, states, transitions,
and operations. This enables the use of verification, synthesis,
and testing tools, which can assist creating automation systems
that are safe, flexible, and robust.

However, such an approach comes with its own set of chal-
lenges. While modeling a system, developers may introduce
faulty behavior and constraints, or simply forget to specify
certain behavior, resulting in unsolvable planning problems or
anomalous planning results. Even with a test-driven develop-
ment approach [4], where developers iteratively test the model,
it is often hard to identify the root cause of why a test failed.

Automated planning and synthesis can be achieved using
various approaches. For example, a commonly used method
is the planning-as-model-checking approach [5] where the
planning problem is transformed into a verification problem.
In this approach, the negation of the planning problem’s goal is

1Endre Erős and Knut Åkesson are with Chalmers University of Tech-
nology, Electrical Engineering, Systems and Control Department, Automa-
tion Research Group, Gothenburg, Sweden. endree@chalmers.se,
knut@chalmers.se

2Kristofer Bengtsson is with Volvo Group as Senior Researcher for Smart
and Connected Operations, Research and Technology Development, Gothen-
burg, Sweden. kristofer.bengtsson@volvo.com

This work has been supported by AIHURO (Vinnova) and the Swedish
Research Council (VR) project SyTeC 2016-06204.

established as a safety property to be verified. If it is possible
to violate the safety property, the model-checker will generate
a counter-example that can be used as the plan to reach
the goal. Otherwise, if the model-checker determines that no
counter-example exists, it serves as evidence that no feasible
plan can be found. However, explaining the unsolvability
of a planning problem is a challenging task even with this
approach, since there is no usable counter-example that can
explain why no plan exists.

Related work for explaining that no plan exists includes
detecting the unsolvability of a plan [6], [7], generating
certificates or proofs of unsolvability [8], [9], and identifying
adjustments to the planning problem that could render the
problem solvable [10]. In that work, the focus is on investigat-
ing the initial state as the reason behind the inability to find
a plan. This approach assumes the correctness of the models,
thereby making the modification of the initial state a feasible
option. In [11], the authors address this issue by capturing
the user’s expectations through considering abstractions of
the given problem. More specifically, the authors use state
abstractions to produce potential solutions and subgoals at
higher levels of abstraction.

However, none of the aforementioned research considers the
inability to find plans due to modeling mistakes introduced
by the model developers themselves. Such faults are inadver-
tently incorporated during model development. The purpose
of iterative testing is to catch and correct such mistakes as
early as possible, which can be done by unit testing the
model, i.e. evaluating different initial and goal states with a
planning algorithm. Such evaluations might reveal that a plan
is valid, anomalous, or unsolvable. Passing a test allows the
developer to continue refining the model. Anomalous results
are not desirable, however they still offer developers valuable
feedback. Sometimes, a test can quickly demonstrate that a
goal state has been achieved in a manner that violates certain
user-defined specifications. This allows a developer to identify
potential flaws or shortcomings of the model.

The problem addressed in this paper, is to enhance the
feedback provided to the developer after failing to generate
a plan. This situation typically arises when the developer has
inaccurately modeled the system’s behavior. Such mistakes are
typically easier to detect and handle in the early design phases.

In this paper, we are inspired by software fault localization
techniques [12], which have been extensively studied and
applied in the field of software engineering. For example,
a technique based on combinatorial testing separates input
parameters into faulty-possible and healthy-possible to identify
minimal failure-inducing combinations of parameters [13],
[14]. Moreover, predicate switching [15] is a program fault

localization technique that involves altering program states
to force execution along different branches during a failed
run. If switching a predicate results in a successful program
execution, such predicate is identified as critical. Finally,
model-checking approaches to fault localization also exist
[16], [17], where a model checker can provide a counter-
example if a program fails to meet its specification.

More specifically, this paper draws inspiration from delta
debugging techniques [18] [19] which identify the cause of
software failures by comparing the program states between
successful and failed tests. Suspicious variables are identified
by replacing their values from the successful test with their
corresponding values from the same point in the failed test and
then executing the program again. If the same failure occurs,
the variable is considered suspicious, otherwise, it is no longer
considered as a potential cause of the failure.

However, we do not directly apply such techniques to
behavior models of intelligent automation systems. Instead, we
define modeling abstractions called operations and resources,
and test them for suspiciousness in a three-step approach.
Firstly, we test the failed problems with relaxed versions of
the model, where we remove complete resources in an effort
to isolate potentially problematic ones. Depending on the
outcome of the test, this might give an indication of which
resources are incorrectly modeled. Next, we iteratively test
the relaxed versions of the model by removing and adding
back variables from suspicious resources, which provides us
with a list of suspicious variables. However, this does not
indicate where the problem in the model might be, so in the
next step we identify operations that update the suspicious
variables. Finally, we provide a list of achievable initial-goal
state combinations to iteratively reduce the list of operations
that were not triggered during random testing [20].

The main contribution of this paper is a fault localization
method for aiding the development of intelligent automation
systems. This method can be used to identify certain faults
in the behavior model during testing and test-driven devel-
opment. This paper is based on our previous work from [1],
which relies on Robot Operating System 2 (ROS2) [21]. The
effectiveness of this approach is exemplified by a use-case
consisting of a robotic manipulator, a gantry, a structured light
scanner, and a gripper.

II. PRELIMINARIES
In this work, we represent the behavior of intelligent

automation systems with variables, states, transitions, and
operations. With such a model in place, a planning algorithm
can be employed to determine plans, considering defined
objectives and the current state of the system. Such plans
are then executed by a runner which communicates with the
resources using messages. The descriptions below outline the
components of modeling and execution:

- Variable: A variable v is a named unit of data that can
be assigned a value x from a finite domain V .

- State: A state S is a set of tuples S = {⟨vi, xi⟩}, where
vi is a variable with domain Vi and xi ∈ Vi is a value.

Fig. 1. A model of an operation.

- Predicate: A predicate is an equality logic formula F that
evaluates to either true or false.

- Equality logic formula: An equality logic formula F is
defined with the following grammar:

F : F ∧ F | F ∨ F | ¬F | atom
atom : term == term | true | false
term : variable | value

- Planning transition: A planning transition t contains a
guard predicate g : S → {false, true}, and a set of action
functions A, where ∀a ∈ A, a : S → S models the updates of
the state variables. If the guard predicate evaluates to true, the
transition can occur, after which the actions of the transition
describe how the variables are updated. The notation we use
to represent a planning transition is t : g/A.

- Running transition: A running transition tr extends the
planning transition with an additional running guard gr and
additional running action Ar. We write running transitions as
tr : g/gr/A/Ar, where g and gr are both guard predicates
g ∧ gr : S → {false, true}, and A and Ar are both action
functions, where ∀a ∈ A∪Ar, a : S → S models the updates
of the values of the state variables. While planning, only g
and A are considered, i.e. the running transition is evaluated
and taken as a planning transition. When the execution engine
is running the plan, it is considering all components of tr, i.e.
the running transition guard becomes g ∧ gr and the set of
transition actions becomes A ∪Ar.

- Operation: An operation O captures the behavior of tasks
that can take some time to complete, and it is a convenient
modeling abstraction for both planning and plan execution. A
model of an operation can be in its initial (init) or executing
(exec) state, see Fig. 1. The precondition is a running transition
associated with the start of the operation, switching it to
the executing state. The operation will be in its executing
state until the guard of the postcondition running transition
is satisfied. The satisfaction of the postcondition implies that
the operation is completed and can return to the initial state.

- Behavior model: A behavior model M is a collection of
variables, operations, and automatic transitions that model the
behavior of that system.

- Planning problem: A planning problem Ψ is a 4-tuple
Ψ = ⟨S, g,M, pmax⟩ where S is the current state of the
system, g is the goal predicate, M is the behavior model of
the system, and pmax is a limit on the plan length.

- Operation planner: An operation planner is an algorithm
which given a planning problem Ψ, returns a sequence of
operations that takes the system from its current state to a
state where the goal predicate is satisfied. While planning,
the operation planner is avoiding the running guards gr and
the running actions Ar, treating operation preconditions and
postconditions as planning transitions.

- Plan: A plan P is a sequence of operations. The operation
planner can return a plan which is unsolvable, anomalous, or
valid. An unsolvable plan means that the planner was not able
to find a plan to a state where the goal predicate is satisfied. An
anomalous plan means that a plan was found to a state where
the goal predicate is satisfied, but in a way where the safety
specifications are violated. A valid plan means that the planner
was able to find a plan to a state where the goal predicate is
satisfied without violating the safety specifications.

III. EXAMPLE

We investigate using a collaborative robot on a gantry
to support the operators that use a pick-to-light system to
assemble kits onto a trolley, see Fig. 2. The robot can mount a
battery-powered structured light scanner from a toolbox, which
is used to detect and localize items that are to be picked from
the blue boxes, see Fig 3. The toolbox also contains other
tools which enable the robot to choose the appropriate tool
to perform various operations. The system should allow the
operators and robots to work in a shared zone, pick the ordered
material together, and put it on an autonomous platform which
will bring the material to an assembly station. Controlling
such a system involves various challenges, including but not
limited to ensuring the precision and reliability of scanning
and localization of items, preventing collisions between the
robot and operators or surrounding equipment, quickly and
adequately responding to failures, and achieving a balance
between execution speed to meet assembly cycle deadlines
and ensuring operator safety and equipment protection.

Fig. 2. Robot in the Air: An intelligent automation system.

IV. OPERATIONS

To identify faults that can occur while planning and execut-
ing operations, let us consider the following:

operation: scan_box_a
pre: start_scan_box_a

g: scan_req_state == initial &&
scan_req_trigger == false &&
item_a_scanned == false &&
robot_mounted == scanner &&
robot_position == box_a &&
gantry_position == box_a

gr: true
a: [scan_req_trigger <- true]
ar: []

post: complete_scan_box_a
g: true
gr: scan_req_state == succeeded
a: [scan_req_state <- initial,

scan_req_trigger <- false,
item_a_scanned <- true]

ar: []

The operation scan_box_a models when and how the
box containing some items should be scanned, and as shown
in Fig. 1, it has an initial and an executing state. Exe-
cuting the scan_box_a operation triggers a request/response
mechanism that will issue a command to the scanner and await
a response. To do this efficiently, we keep track of the request
state with the scan_req_state variable, and we enable the
request to be issued with the scan_req_trigger variable.
To keep track if the item in the box has been scanned, we use
the item_a_scanned variable.

Assume that the planning algorithm has calculated the
following plan:

robot_mount_scanner
gantry_move_to_box_a
robot_move_to_box_a
scan_box_a

The runner will now take this plan and try to execute
it, which in the context of this work, means executing the
operations in the order of the plan, one at a time. Continuing
with the scanning example, the procedure of executing the
scan_box_a operation is as follows. If the operation is the
next one in the plan to be executed, the runner evaluates the
precondition guard g ∧ gr. If this precondition guard is false,
the operation will be disabled until the guard becomes true.
Otherwise, the runner will take all precondition actions from
a ∪ ar, and put the operation in its executing state.

Finally, the operation can be completed if it is executing
and if the postcondition guard g ∧ gr evaluates to true. The
runner will then take all postcondition actions from a ∪ ar,
and put the operation back to it its initial state.

Fig. 3. A detail of scanning boxes for items in a simulation.

V. FAULT LOCALIZATION

Developing a behavior model for an intelligent automation
system is often an iterative process where the model is de-
veloped incrementally. Modeling the behavior in incremental
steps makes it possible to catch and correct mistakes early
on, and might reduce the total time to develop a full model.
However, sometimes it is not easy to anticipate how adding
additional variables, adding new or changing transitions and
operations will affect the model. Often, the developer has no
knowledge if the model is broken until it is tested again for
some provided initial state and goal predicate.

We identify different outcomes when testing an intelligent
automation system, and separate the testing process into two
parts. Initially, only the planning part of the model is tested,
by manually supplying the initial and goal states, which are
then provided to a planning algorithm. At this point, we are
only using the operation planner which is avoiding the running
guards gr and the running actions Ar, treating operation
preconditions and postconditions as planning transitions. This
can return a plan that is:

• Valid - Verifies that the model does what it is supposed
to do, namely that the plan can be used to reach the goal
state without breaking some user-defined specifications.

• Anomalous - This result is unfavourable, however it
still provides some feedback to the developers as it can
sometimes quickly show that the goal state was reached in
a way that breaks some user-defined specifications. For
example, it might show that an item was moved to its
goal destination before it was even picked up, indicating
an incomplete guard condition for the move operation.

• Unsolvable - This is the most unfavourable result as it
gives no feedback to the developers other than that the
goal state can not be reached. Assuming that the planning
algorithm is correct and that the developer has provided
initial and goal states which should be solvable, this
indicates that the mistake is located in the model. We
are addressing this case in this paper.

After the initial testing of the planning part of the model,
the complete model is verified using a simulation (and later a
real) environment by executing plans which also include the
running guards gr and the running actions Ar. The model
and the goal are provided by the developer, while the initial
state can be observed from the environment. This can result
in executions which are:

• Valid - A plan was found and its execution (using a
simulation or a real environment) verifies that it is correct.

• Anomalous - A plan is found, however a previously un-
known mistake in the model results in an anomalous plan.
Executing this plan shows irregular behavior indicating
that there is a mistake in the model.

• Blocked - A plan is found, however its execution only
proceeds until a certain state where the next operation is
blocked due to a runner guard predicate gr forbidding the
operation to be taken.

• Unsolvable I - A plan is not found because it can not be
calculated from the currently observed initial state. For
example, this can happen if a robot has to unlock a door
to be able to open it and go into the other room, however
in the initial state, the door is locked and the key is behind
the door, making the problem unsolvable.

• Unsolvable II - A plan is not found because the model
contains a previously unknown fault. We are addressing
this case in this paper.

In this paper, we address the Unsolvable and Unsolvable
II cases from the previous classifications, and the first step
towards doing so is to collect variables in certain groups.
A natural way to do that is to use resources, however, the
presented algorithms do not require a very specific variable
grouping. This is mostly only necessary to enable a hierar-
chical search for faults, which means that certain product,
memory, and other variables can also be grouped.

Algorithm 1: identify suspicious resources
Input: M, resources, goal, dmax, pmax

Output: resources
1 d← 1
2 Rsus ← ∅
3 while d ≤ dmax do
4 let combinations = resources.combinations(d)
5 for comb in combinations do
6 let relaxed m = model.relax(comb)
7 let relaxed g = goal.relax(comb)
8 let result = plan(relaxed m, relaxed g, pmax)
9 if result.found and result.len() != 0 then

10 Rsus .push(comb)
11 return Rsus

12 end
13 end
14 d = d + 1
15 end
16 return Rsus

In automation systems, a resource refers to any physical
or virtual component that is used to carry out a specific
task or function. This can include hardware components such
as sensors, actuators, and controllers, as well as software
components such as algorithms, programs, and databases.
During the development phase of an automation system, such
resources can be simulated to allow developers to test and
validate the implemented behavior model before deploying it
in a real-world environment.

Algorithm 1 abstracts the model and the goal by removing
such variable groups (resources) and solving relaxed version
of the problem, where M is the model, dmax is the maximum
number of resources to be removed, and pmax is the plan length
limit. If a solution exists, the removed resources are marked
as suspicious and the algorithm terminates.

Now that the suspicious resources have been identified, we
would ideally like to determine which variables are the cause
of the fault. To do so, Algorithm 2 takes a list of suspicious
resources which the previous algorithm has identified, and
collects all the variables that model those resources. Algorithm
2 now abstracts the original model and the goal by removing
such variables and solving a relaxed version of the problem,
where M is the model, dmax is the maximum number of
variables to be removed, and pmax is the plan length limit. If a
solution exists, the removed variables are marked as suspicious
and the algorithm terminates.

Algorithm 2 returns a set of suspicious variables, which
means that their values are either incorrectly updated some-
where in the model, or that a guard predicate containing
the variable is too restrictive or incorrect. Such variables are
identified as suspicious based on the fact that when removed
from an operation, the planner is able to use that operation to
determine a plan.

Algorithm 2: identify suspicious variables
Input: M, resources, goal, dmax, pmax

Output: variables
1 d← 1
2 Vsus ← ∅
3 let variables = resources.collect variables()
4 while d ≤ dmax do
5 let combinations = variables.combinations(d)
6 for comb in combinations do
7 let relaxed m = model.relax(comb)
8 let relaxed g = goal.relax(comb)
9 let result = plan(relaxed m, relaxed g, pmax)

10 if result.found and result.len() != 0 then
11 Vsus .push(comb)
12 return Vsus
13 end
14 end
15 d = d + 1
16 end
17 return Vsus

Algorithm 3: identify suspicious operations
Input: M, variables
Output: operations

1 Osus ← ∅
2 for op in M.operaions do
3 for var in variables do
4 if op.contains(var) then
5 Osus .push(op)
6 end
7 end
8 end
9 return Osus

However, this does not indicate where the problem in the
model might be, so in the next algorithm identifies operations
which update the suspicious variables. Algorithm 3 is a proce-
dure that filters out and returns a set of operations that contain
suspicious variables, either in the guard predicate or the action
function of the planning preconditions and postconditions.
Quite often, this step can clearly identify which operations
are problematic and correctly localize the faults. However, let’s
assume that a suspicious variable is contained in all operations
and that it is incorrectly updated only in one operation. In this
case, Algorithm 3 will return the set of all operations as all of
them contain the suspicious variable, which gives no indication
of where the mistake might originate.

To handle such situations and to possibly further reduce
the set of suspicious operations, Algorithm 4 can be used.
Algorithm 4 takes a set of tuples which are pairs of user-
defined initial state and goal predicate combinations. The
purpose of this is to test the model for all such provided
combinations and track which operations have been taken.
Ideally, the provided initial-goal combinations should cover a
large section of the model, and at the same time not produce
very long plans. The reasoning behind this is to try to cover
as much of the model possible with shorter plans, and take as
many operations as possible.

Some of these provided combinations will be solvable,
eliminating the operations contained in the calculated plan,
and making the set of suspicious operations smaller, as seen in
Fig. 4. Finally, operations that were missed by not providing
enough initial-goal combinations and which do not contain
suspicious variables are filtered out. What we are left with is
a set of operations that are incorrectly modeled and a set of
variables that indicate what is wrong in such operations.

Sometimes though, another approach might seem more nat-
ural and it doesn’t involve using Algorithm 4. Instead, specific
operations (from the resulting set returned by Algorithm 3)
can be targeted with regular unit testing, by providing initial
states and goal predicates that will ideally only need that single
operation in the plan to reach the goal. If such a plan doesn’t
exist, the fault is found. Ultimately, it is the developer’s choice
and expert knowledge that will determine how a certain system
will be modeled, developed, and tested.

Algorithm 4: localize suspicious operations

Input: M, variables, [⟨initial, goal⟩], pmax
Output: operations

1 Osus ← ∅
2 Odiff ← ∅
3 Otaken ← ∅
4 for ⟨initial, goal⟩ in [⟨initial, goal⟩] do
5 let result = plan(M, initial, goal, pmax)
6 if result.found and result.len() != 0 then
7 for op in result.plan do
8 Otaken .push(op)
9 end

10 end
11 end
12 Odiff ← M.operations.diff(Otaken)
13 for op in Odiff do
14 for var in variables do
15 if op.contains(var) then
16 Osus .push(op)
17 end
18 end
19 end
20 return Osus

VI. EVALUATION

To limit the example from Section 3, we consider the
following objective: An order arrives which consists of only
one item from the material facade, item_a. The robot should
use the scanner to scan a box box_a for items, after which it
should be able to pick one of them using a gripper and place
it on the autonomous platform, AGV.

Fig. 4. Localizing a faulty operation with Algorithm 4 by removing taken
operations. Four initial state and goal predicate combinations were provided,
I0..3/G0..3, where I0/G0 was unsolvable because of a faulty operation. After
solving I1/G1, I2/G2, I0/G3, and I4/G0, the taken operations marked with ok
are removed. What is left is the faulty operation f0.

As the robot can only carry one tool at a time, either the
gripper or the scanner can be mounted and unmounted as
required. Meanwhile, the gantry has to move as well to allow
the robot to reach the boxes and the AGV. The behavior model
of the system is modeled with the following eighteen variables
grouped in five resources:

robot: request_trigger, command,
position, request_state,
actual_state, mounted

gantry: request_trigger, command,
request_state, actual_state

gripper: request_trigger, command,
request_state, actual_state

scanner: request_trigger, request_state
item_a: scanned, position

Such variables are used to model the following operations:

robot_move_to: home, toolbox_gripper,
toolbox_scanner,
box_a, agv

robot_mount: scanner, gripper
robot_unmount: scanner, gripper
scanner: scan_item_a
gantry_move_to: box_a, agv
gripper: open, close
pick: item_a
place: item_a

Let us assume that we have modeled the previous operations
and that we would like to test our model for the following
initial state and goal predicate:

init: item_a_position == box_a,
robot_position == home,
robot_mounted == none,
...

goal: item_a_position == agv

If the model were correct, the planner would produce the
following sequence of operations: gantry move to box a, robot
move to toolbox scanner, robot mount scanner, robot move
to box a, scan box a, robot move to toolbox scanner, robot
unmount scanner, robot move to toolbox gripper, robot mount
gripper, open gripper, robot move to box a, pick a, gantry
move to agv, robot move to agv, place a.

However, since there is a fault somewhere in the model, the
only feedback that is provided for the developers is:

found: false
length: 0
plan: []

The model of the presented system is relatively small,
however, manually finding the cause of this unsolvability is
still an involved task.

Instead, we can utilize algorithms 1, 2, and 3, and get:

Suspicious resources: [scanner, gripper]
Suspicious variables:

Variable 1: scanner_request_state
Variable 2: gripper_request_state

Suspicious operations:
Operation 1: scan_box_a
Operation 2: open_gripper
Operation 3: close_gripper

After a closer look at these operations, it turns out that the
guard predicates in operations scan box a and open gripper
were incorrectly modeled, expecting the variables scan-
ner request state and gripper request state to have the values
initial instead of enabled. Correcting such mistakes makes the
tests pass with no suspicious resources.

However, what if the mistake was hidden in an action
which incorrectly updates some variables? Let’s assume that,
by accident, we have not updated the next value of the
robot position in the move operations correctly, and that we
have left the previous value as the next state update. We get:

Suspicious resources: [robot]
Suspicious variables:

Variable 1: robot_position
Suspicious operations:

Operation 1: scan_box_a
Operation 2: robot_move_to_home
Operation 3: robot_move_to_tb_gripper
Operation 4: robot_move_to_tb_scanner
Operation 5: robot_move_to_box_a
Operation 6: robot_move_to_agv
Operation 7: robot_mount_scanner
Operation 8: robot_mount_gripper
Operation 9: robot_unmount_scanner
Operation 10: robot_unmount_gripper
Operation 11: pick_a
Operation 12: place_a

From this result it is quite clear that the problem is with the
robot resource, specifically how the robot position variable is
being updated. However, the robot position variable models
twelve operations, which even in this small example makes
it inefficient to manually search for the mistake. One way to
localize this fault would be to provide a set of simpler achiev-
able initial-goal state combinations and utilize Algorithm 4 to
reduce the number of suspicious operations.

However, as the only suspicious variable that has been
identified is the robot position, it might be faster to just test a
some of these operations and see if the planner can use them
to solve the following trivial problem:

initial: robot_position <- home, ...
goal: robot_position == box_a

Immediately, we get a no plan found, which is a clear
indication that the robot position is incorrectly updated in the
move operations.

A situation that can benefit from Algorithm 4 is when
Algorithm 3 returns a large number of suspicious variables
or operations, or when it is not quickly clear which operation
might be the cause of the issue. To keep the example small
and clear, we continue with the previous example and define
two init-goal combinations which should force the gripper to
open and close. As algorithm 4 keeps track of taken opera-
tions during this testing, we get a smaller set of suspicious
operations:

Suspicious resources: [scanner, gripper]
Suspicious variables:
Variable 1: scanner_request_state
Variable 2: gripper_request_state

Suspicious operations:
Operation 1: scan_box_a
Operation 2: open_gripper
Operation 3: close_gripper

Suspicious locations:
Operation 1: op_scan_box_a
Operation 2: op_open_gripper

The effectiveness and reliability of this approach were tested
with modeling ROS2 based intelligent automation systems
within the framework of our previously published work from
[1]. Thus, even if shown effective when modeling an industrial
use-case presented in this paper, using this approach with other
modeling frameworks might have some limitations.

VII. CONCLUSION

A fault localization approach for developing behavior mod-
els for intelligent automation systems was introduced, with
the aim to assist model developers in creating and testing
such models. This approach can identify suspicious resources,
variables, and operations, and assist the developers in the
iterative test-driven model development process. In this work,
we have used the presented algorithms to localize potential
faults in the model, but the long-term goal is to try to
automatically synthesize suggestions in the form of operations
and show how to improve the model.

REFERENCES

[1] M. Dahl, E. Erős, K. Bengtsson, M. Fabian, and P. Falkman, “Sequence
planner: A framework for control of intelligent automation systems,”
Applied Sciences, vol. 12, no. 11, 2022.

[2] M. Ghallab, D. Nau, and P. Traverso, Automated Planning and Acting,
1st ed. USA: Cambridge University Press, 2016.

[3] M. Dahl, Preparation and control of intelligent automation systems.
Gothenburg: Chalmers tekniska högskola, 2021.

[4] D. Astels, Test Driven Development: A Practical Guide. Prentice Hall
Professional Technical Reference, 2003.

[5] F. Giunchiglia and P. Traverso, “Planning as model checking,” in
Recent Advances in AI Planning: 5th European Conference on Planning,
ECP’99, Durham, UK, September 8-10, 1999. Proceedings 5. Springer,
2000, pp. 1–20.

[6] C. Bäckström, P. Jonsson, and S. Ståhlberg, “Fast detection of unsolvable
planning instances using local consistency,” in Proceedings of the
International Symposium on Combinatorial Search, vol. 4, no. 1, 2013,
pp. 29–37.

[7] J. Hoffmann, P. Kissmann, and A. Torralba, “” distance”? who cares?
tailoring merge-and-shrink heuristics to detect unsolvability.” in ECAI,
2014, pp. 441–446.

[8] S. Eriksson, G. Röger, and M. Helmert, “Unsolvability
certificates for classical planning,” Proceedings of the Inter-
national Conference on Automated Planning and Scheduling,
vol. 27, no. 1, pp. 88–97, Jun. 2017. [Online]. Available:
https://ojs.aaai.org/index.php/ICAPS/article/view/13818

[9] ——, “A proof system for unsolvable planning tasks,” Proceedings
of the International Conference on Automated Planning and
Scheduling, vol. 28, no. 1, pp. 65–73, Jun. 2018. [Online].
Available: https://ojs.aaai.org/index.php/ICAPS/article/view/13899

[10] M. Göbelbecker, T. Keller, P. Eyerich, M. Brenner, and B. Nebel,
“Coming up with good excuses: What to do when no plan can be
found,” Proceedings of the International Conference on Automated
Planning and Scheduling, vol. 20, no. 1, pp. 81–88, May 2021. [Online].
Available: https://ojs.aaai.org/index.php/ICAPS/article/view/13421

[11] S. Sreedharan, S. Srivastava, D. Smith, and S. Kambhampati, “Why
can’t you do that hal? explaining unsolvability of planning tasks,” in
International Joint Conference on Artificial Intelligence, 2019.

[12] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa, “A survey on
software fault localization,” IEEE Transactions on Software Engineering,
vol. 42, no. 8, pp. 707–740, 2016.

[13] C. Nie and H. Leung, “The minimal failure-causing schema of
combinatorial testing,” ACM Trans. Softw. Eng. Methodol., vol. 20, no. 4,
sep 2011. [Online]. Available: https://doi.org/10.1145/2000799.2000801

[14] X. Niu, C. Nie, Y. Lei, and A. T. Chan, “Identifying failure-inducing
combinations using tuple relationship,” in 2013 IEEE Sixth International
Conference on Software Testing, Verification and Validation Workshops,
2013, pp. 271–280.

[15] X. Zhang, N. Gupta, and R. Gupta, “Locating faults through automated
predicate switching,” in Proceedings of the 28th International
Conference on Software Engineering, ser. ICSE ’06. New York,
NY, USA: Association for Computing Machinery, 2006, p. 272–281.
[Online]. Available: https://doi.org/10.1145/1134285.1134324

[16] A. Griesmayer, S. Staber, and R. Bloem, “Fault localization using a
model checker,” Softw. Test. Verif. Reliab., vol. 20, no. 2, p. 149–173,
jun 2010.

[17] ——, “Automated fault localization for c programs,” Electronic Notes
in Theoretical Computer Science, vol. 174, no. 4, pp. 95–111, 2007,
proceedings of the Workshop on Verification and Debugging (V&D
2006).

[18] A. Zeller, “Isolating cause-effect chains from computer programs,” in
Proceedings of the 10th ACM SIGSOFT Symposium on Foundations
of Software Engineering, ser. SIGSOFT ’02/FSE-10. New York, NY,
USA: Association for Computing Machinery, 2002, p. 1–10. [Online].
Available: https://doi.org/10.1145/587051.587053

[19] A. Zeller and R. Hildebrandt, “Simplifying and isolating failure-inducing
input,” IEEE Transactions on Software Engineering, vol. 28, no. 2, pp.
183–200, 2002.

[20] G. J. Myers, C. Sandler, and T. Badgett, The art of software testing.
John Wiley & Sons, 2011.

[21] S. Macenski, T. Foote, B. Gerkey, C. Lalancette, and W. Woodall, “Robot
operating system 2: Design, architecture, and uses in the wild,” Science
Robotics, vol. 7, no. 66, may 2022.

