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Resource

Performance and robustness analysis reveals phenotypic
trade-offs in yeast
Cecilia Trivellin1 , Peter Rugbjerg1,2 , Lisbeth Olsson1

To design strains that can function efficiently in complex industrial
settings, it is crucial to consider their robustness, that is, the
stability of their performance when faced with perturbations. In
the present study, we cultivated 24 Saccharomyces cerevisiae
strains under conditions that simulated perturbations encoun-
tered during lignocellulosic bioethanol production, and assessed
the performance and robustness of multiple phenotypes simul-
taneously. The observed negative correlations confirmed a trade-
off betweenperformance and robustness of ethanol yield, biomass
yield, and cell dry weight. Conversely, the specific growth rate
performance positively correlated with the robustness, presum-
ably because of evolutionary selection for robust, fast-growing
cells. The Ethanol Red strain exhibited both high performance
and robustness, making it a good candidate for bioproduction in
the tested perturbation space. Our results experimentally map
the robustness–performance trade-offs, previously demonstrated
mainly by single-phenotype and computational studies.
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Introduction

To achieve high yields while ensuring reproducibility and high-quality
in bioprocesses, it is essential to address the factors contributing to
process variability. The variable conditions, also referred as pertur-
bations, can be triggered by the bioprocess environment (temperature,
nutrient gradients, changes in raw materials), intracellular factors
(noisy gene expression, genetic mutations) (Olsson et al, 2022), and
different bioprocess steps (cell propagation, fermentation) (Tomás-
Pejó&Olsson, 2015; Keil et al, 2019). The set of all perturbations present
in the bioprocess is referred to as the perturbation space, and can
be both predictable and stochastic. Generally, the bioprocess per-
turbation space has a negative impact on strain performance com-
pared with its ideal and well-controlled lab-scale space, both in terms
of specific growth rates and production of valuable metabolites.
Therefore, industrial strains must exhibit consistent performance, that
is, robustness, to avoid loss of product quantity and quality or larger
costs (Huang et al, 2016; Mohedano et al, 2022).

Microbial robustness refers to the ability of cells to maintain a
stable performance when exposed to a perturbation space (Kitano,
2004; Masel & Siegal, 2009; Levy et al, 2012; Félix & Barkoulas, 2015;
Olsson et al, 2022). Microbial robustness is typically assessed for
phenotypes related to industrial performance (titer, rate, and yield),
but it can be extended to cell volume, cell viability, gene expression
or indirect measurements of cellular parameters such as fluo-
rescence. For simplicity, microbial robustness is referred hereafter
as robustness.

Numerical assessment of robustness can be used to quantify
performance stability (Steensels et al, 2014; da Conceição et al, 2015;
Louis, 2016; Mestek Boukhibar & Barkoulas, 2016). We have previ-
ously proposed and validated a high-throughput methodology to
quantify robustness in multiple phenotypes, resulting in a di-
mensionless negative number, where the theoretical zero repre-
sents a completely robust, non-changing phenotype (Trivellin et al,
2022). Our methodology is built on a subset of phenotypes (cellular
functions) that can be measured experimentally. Using a series of
single experimental perturbations designed to simulate bioprocess
conditions, robustness measures the variation of the performance
of interest with respect to its average acrossmultiple perturbations.
In addition, robustness quantification allows the exploration of a
broad range of physiological phenomena (e.g., trade-offs), which
would otherwise be challenging to investigate using standard
methods (e.g., fermentation profiling in bioreactors).

Microorganisms appear to exhibit trade-offs between perfor-
mance and robustness of one or more phenotypes (Kitano, 2007,
2010), which could be important for improving strain and process
development. For example, in bacteria, antibiotic resistance and
extracellular enzyme production have been shown to trade-off with
the specific growth rate and a similar trade-off has been observed
between melanin production and specific growth rate in fungi
(Andersson, 2006; Ramin & Allison, 2019; Lovero & Treseder, 2021).
To the best of our knowledge, trade-offs between performance and
robustness have been investigated mostly in single-phenotype and
in silico studies (Ibarra et al, 2002; Stelling et al, 2002; Fischer &
Sauer, 2005). Experimental validation of trade-offs could explain
why strains optimized for maximum performance are less capable
of coping with environmental stresses and fluctuations (i.e., present
lower robustness).
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In the present study, we applied our previously developed
robustness quantification method (Trivellin et al, 2022) to a large
dataset of yeast responses to perturbations. The dataset con-
tained more than 10,000 phenotypic data points obtained upon
cultivation of 24 Saccharomyces cerevisiae strains under 29
different growth conditions simulating bioethanol production
from second-generation biomass (perturbation space). A culture
transfer step was included as additional perturbation to explore the
method’s versatility in assessing robustness within different bio-
process steps.

The combination of exploratory data analysis on the large dataset
with quantification of robustness allowed us to map perturbation-
specific influences on performance and robustness, and identify
strains with robust phenotypes. We proved that exposing a cell
culture to a perturbation during pre-cultivation, significantly in-
creased the performance associated with the specific growth rate
during subsequent cultivation. Finally, correlation tests revealed
trade-offs between robustness and performance (measured as
biomass and ethanol yield and cell dry weight.) Although our earlier
work primarily focused on the development and validation of the
robustness quantification method itself, in the current study our aim
was to demonstrate its practical application. Specifically, our study
provides amodel for integrating performance and robustness data to
uncover phenotypic trade-offs in yeast, which is a critical aspect of
strain engineering. Our findings demonstrate that strongly per-
forming cells under one condition may be less robust in others,
underscoring the importance of considering both factors in the
design process.

Results

High-throughput characterization reveals how perturbations in
medium components influence the phenotypes of
S. cerevisiae strains

A total of 24 S. cerevisiae strains were examined in the present study.
They included two well-characterized laboratory strains, four in-
dustrial strains employed in bioethanol production or baking, and 18
LBCM strains isolated from cachaça fermentation plants (see the
Material and Methods section) (De Araújo Vicente et al, 2006). Each
strain was cultivated in microtiter plates containing chemically
defined Delft medium plus a single component simulating pertur-
bations found during industrial lignocellulosic bioethanol fer-
mentations, such as acetic acid released during the hydrolysis of
hemicellulose (Jönsson & Martı́n, 2016). The single conditions were
grouped according to similarity between the physiological responses
they elicited in yeast. Specifically, the acids (lactic, levulinic, acetic,
and formic acid) were grouped together, aswere the pentoses (xylose
and arabinose) and hexoses (galactose, glucose, and mannose).
The aldehydes, including vanillin, 5-hydroxymethylfurfural, and
furfural, were classified together, whereas NaCl and ethanol were
considered single components. For each cultivation, five pheno-
types (specific growth rate, lag phase, final cell dry weight, biomass
yield, and ethanol yield) were calculated for a total of 10,295 data
points.

Although it has been reported that industrial strains grow faster
than laboratory strains (Kong et al, 2018; Yi & Alper, 2022) because of
their ability to handle perturbations in industrial settings, no
significant differences were detected between the two groups.
Overall, Ethanol Red showed the highest mean performance with
respect to all phenotypes except the ethanol yield, in which case
PE2 attained the highest mean value (Fig 1A). The ethanol yield of
the PE2 strain was more than double the average calculated across
all strains. The PE2 strain has been reported to have a high CO2

production, final ethanol production (close to 95% of the theo-
retical yield in E. globulus wood hydrothermal hydrolysate an-
aerobic fermentation), fast sugar utilization and faster degradation
of furfural and 5-hydroxymethyl-2-furaldehyde (Pereira et al, 2010,
2014; Soares-Costa et al, 2014). Furthermore, PE2 has also been
shown to dominate and persist in Brazilian distilleries probably
because of its high viability and high specific growth rate
(Raghavendran et al, 2017; Araújo et al, 2018). In our study, the
specific growth rate of PE2 was 20% lower than the average across
all strains.

To assess for correlations among phenotype performances, we
carried out Spearman correlation tests. The maximum specific
growth rate correlated negatively with lag phase (P < 2.2 × 10−16) (Fig
S1), confirming previous observations (Basan et al, 2020). Instead,
positive significant correlations were observed between specific
growth rate and ethanol yield, biomass yield, and cell dry weight.
However, when splitting the data into groups of conditions, cor-
relations became nonsignificant in the case of hexoses, both for
ethanol and biomass yield, and in the case of pentoses and NaCl for
ethanol yield. The Spearman tests revealed a positive monotonic
relationship between biomass yield and end-of-cultivation cell dry
weight with respect to specific growth rate. Negative correlations
were observed in single strains, such as Ethanol Red and PE2;
although no overall negative relationship between production
(calculated as ethanol yield) and growth (maximum specific growth
rate) was detected in this perturbation space.

Analysis of strain performance revealed a substantial negative
impact of groups of conditions on the different phenotypes,
whereas no such effect was observed in growth medium containing
only hexoses. The only exceptions were biomass yield in the
presence of pentoses or hexoses, and maximum specific growth
rate in the presence of hexoses or acids (Wilcoxon test, P = ns) (Fig
1B). The negative effect of aldehydes, acids, ethanol, and NaCl on
the phenotypes confirmed earlier studies (Adeboye et al, 2014;
Tekarslan-Sahin et al, 2018; Caspeta et al, 2019; Guaragnella &
Bettiga, 2021). Ethanol Red, PE2, and the LBCM strains are highly
tolerant towards ethanol (Demeke et al, 2013) and lignocellulosic
inhibitors (Wallace-Salinas & Gorwa-Grauslund, 2013; Araújo et al,
2018; Cunha et al, 2019). Here, Ethanol Red and some LBCM strains
displayed higher tolerance (higher specific growth rate) towards
aldehydes (Fig 1A).

The presence of acids lowered the yields for all strains; although
no significant difference in specific growth rate was observed
between medium containing acid and not (Fig 1B). Considering
fermentation kinetics, a decreased yield of biomass on substrate
while keeping the specific growth rate constant may suggest an
increase in the specific rate of substrate consumption. Weak acids
are not inhibitory enough to slow down the anabolism; therefore
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growth can proceed at high specific rate. However, ATP is required
for counteracting the effects of the acidification, which diverts the
carbon source from anabolism to catabolism. This decreases the
yield and increases the specific substrate consumption rate, and
the specific production rate of energy-related primary metabolites.
In the presence of up to 7 g/liter lactic acid, all phenotypes dis-
played higher or comparable performance to the control containing
20 g/liter glucose. This was likely because the pKa of lactic acid
is 3.79, and at a pH of 5, most of the acid existed in its dissociated

form, making it less likely to penetrate the cells. Lactic acid is
encountered during bioethanol production because of contami-
nation with Lactobacillus spp. Interestingly, Lactobacillus amylo-
vorus has been shown to be beneficial (3% higher ethanol yields) or
neutral to yeast fermentation (Senne de Oliveira Lino et al, 2021).

A higher average ethanol yield was noted across all strains when
comparing pentoses and hexoses (54% higher, P < 0.001). S288C and
LBCM1008 showed a significantly higher ethanol yield in medium
containing 5 g/liter glucose plus various amounts of xylose or

Figure 1. Yeast phenotypes are impacted significantly by environmental perturbations.
(A) Phenotypic data averaged across groups of perturbations for five phenotypes (μmax, maximum specific growth rate; Yp, ethanol yield; Yx, biomass yield; CDW, cell dry
weight; and lag phase) and 24 S. cerevisiae strains (X-axis). (B) Data distributions of the five measured phenotypes for each group of perturbations and 24 strains (X-axis).
Data information: in panel (A), each colored dot corresponds to themean across triplicates and groups of perturbations. In panel (B), the black line inside the colored area
represents the median of the distribution. Differences between groups and hexoses were assessed with a Wilcox test (n = 10,295; ns, not significant; ****P < 1.4 × 10−5).
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arabinose compared with medium containing only 20 g/liter glu-
cose (Fig 1A). The other phenotypes did not exhibit an increment in
the presence of pentoses (Fig 1B).

Owing to the meticulous evaluations of five different pheno-
types in 24 strains, we were able to point out the best performing
strains and illustrate how their performance was influenced by
different inhibitors with a fast and comprehensive method in
small scale.

Ethanol Red is a unique compromise for high robustness
and performance

In the present study, we applied our previously developed meth-
odology to quantify the robustness of five phenotypes in 24 strains
within a set perturbation space (Equation (1), see the Materials and
Methods section) (Trivellin et al, 2022).

Robustness varied according to phenotype and strain (Fig 2).
LBCM1079 and LBCM1095 displayed constantly higher robustness
compared with other strains; whereas LBCM1001 and LBCM1106
presented overall low robustness values. Red Star exhibited strong
robustness for some phenotypes, but low robustness for others.
LBCM1106 exhibited a significantly lower robustness for the cell
dry weight mainly attributed to its outstanding performance in
the presence of hexoses (Fig 1A). When considering all strains,

robustness was generally higher for lag phase and maximum
specific growth rate (−0.2 and −0.3, respectively) than for other
phenotypes, such as ethanol yield (−0.9), biomass yield (−0.9), and cell
dry weight (−0.9). Larger experimental variation in end-of-cultivation
cell dry weight and yields contributed to the lower robustness.

LBCM1095, LBCM1079, and LBCM97 showed the highest mean
robustness: −0.3, −0.3, and −0.4, respectively. LBCM97 has been
described as highly tolerant towards ethanol, aluminum, and a
broad pH range (da Conceição et al, 2015; van Dijk et al, 2020). The
mean robustness of Ethanol Red was −0.5, mostly because of low
specific growth rate in the presence of ethanol. Ethanol Red is very
robust when fermenting sugars from grain mash at a high tem-
perature (Wallace-Salinas & Gorwa-Grauslund, 2013), and highly
performing in fed-batch fermentation on molasses (Demeke et al,
2013). Owing to the way robustness is quantified (Félix & Barkoulas,
2015; Trivellin et al, 2022), a poorly performing phenotype would
result in elevated robustness values if it behaved consistently
across multiple conditions. To fully understand how a strain re-
sponds to various perturbations, a comprehensive overview of both
its performance and robustness is required. When evaluating ro-
bustness and performance simultaneously, Ethanol Red stood out
as the best compromise. This strain displayed an outstanding
performance in four out of five phenotypes, and ranked among the
highest for robustness. Therefore, even though the perturbation set

Figure 2. Robustness quantification reveals significant differences between strains for five phenotypes.
Data information: the five horizontal plots correspond to the five phenotypes tested in the study. Strains are shown on the x-axis. Each robustness value was calculated
with Equation (1). Error bars denote the standard error of the mean (n = 3).
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chosen for the study was not specific to starch substrates, which are
preferred by Ethanol Red (Cripwell et al, 2019), the genetic and
physiological make-up of this strain allows it to be highly per-
forming even in perturbation spaces other than those associated
with starch fermentation.

The effect of groups of conditions on robustness helps identify
key factors that significantly influence strain performance

The overall performance of some strains (e.g., LBCM37) varied
greatly within the perturbation space, which led to low robustness
compared to other strains (Fig 1A, spread of the data points for each
strain). To better understand such variation, we tested the con-
tribution of each group of conditions (pentoses, hexoses, NaCl,
ethanol, aldehydes, and acids) to the robustness of each pheno-
type. The robustness calculated with Equation (1) was compared
with the robustness obtained with the same equation, but ex-
cluding each group of conditions (Fig S2).

Overall, pentoses, acids, and NaCl had a neutral impact on the
robustness, except for the robustness of the lag phase which was
negatively impacted by the pentoses and the robustness of the
biomass yield, negatively impacted by both NaCl and acids. Ethanol
and aldehydes had a negative impact on the robustness of all
phenotypes, except for some of the strains whose lag phase ro-
bustness was not affected (for example, the laboratory strains).
Ethanol Red and LBCM110 were the only two strains, whose cell dry
weight was not affected by aldehydes.

Calculating the influence of single groups of conditions on the
robustness of a specific strain serves three purposes. First, it re-
veals which conditions cause the largest spread in the distribution
of data (Fig 1A). Second, it suggests which conditions should be
included in the tested perturbation space. Assuming all relevant
stochastic and predictable perturbations (from an extracellular or
intracellular environment) are included in the perturbation space,
testing the influence of certain groups of conditions on robustness
could reduce the number of conditions to assess. The number of
tested perturbations should nevertheless be statistically significant
for the robustness value to have a meaning. Third, if the robustness
of a specific phenotype is not affected only in a few strains, the
latter could reveal metabolic mechanisms responsible for such
observation.

Negative correlations between performance and robustness
confirm presumed trade-offs

Trade-offs between robustness and performance have been hy-
pothesized previously (Kitano, 2007, 2010; Quinton-Tulloch et al,
2013). For example, in-silico studies have suggested that cells
investing resources in anticipation of environmental changes
display suboptimal growth (Fischer & Sauer, 2005). To determine
the trade-offs between performance and robustness, a three-
dimensional matrix of strains, perturbations, and phenotypes
was created. Spearman’s correlation tests were carried out on
robustness and performance to display monotonic relationships
among the measured values (Fig 3). Negative correlations can
provide evidence of phenotypic trade-offs, if the observed phenotypic
response is directly caused by the environmental stimulus received

(Fox & Stevens, 1991). Because complex genetic architecture and
regulatory networks determine a specific phenotype, generalization is
not possible. Here, we observed potential trade-offs connected to the
applied perturbation space.

Negative correlations (−0.8 to −0.6) were identified between
robustness and performance of cell dry weight, biomass yield,
and ethanol yield (P < 0.05) (Fig 3A). This result suggested a
performance–robustness trade-off, whereby low performances
were associated with high robustness and vice versa. The only
positive correlation between performance and robustness was
observed for maximum specific growth rate (Fig 3B). Instead, no
significant correlation was found for the lag phase.

The estimated standard error for the Spearman correlation
between performance and robustness was around 0.1 (see the
Materials and Methods section) for ethanol yield, biomass yield,
and cell dry weight, and around 0.2 for specific growth rate.
The error increases with small sample size and weaker (R < 0.6)
correlation coefficients. Some strains displayed more evident
performance-robustness trade-offs, but only for certain pheno-
types, for example Ethanol Red’s lag phase had the highest per-
formance but the lowest robustness among all the strains (Fig S3).
Ethanol Red low lag phase robustness is attributed to its ability to
grow, after a very long lag phase, in harsh conditions.

Positive significant correlations were observed between ro-
bustness of biomass yield and maximum specific growth rate with
the robustness of cell dry weight (0.8 and 0.7 respectively), and
between the robustness of biomass yield with the robustness of
maximum specific growth rate (0.5) (Fig 3A). Significantly negative
correlations were observed instead between performance and
robustness of various pairs of phenotypes, including robustness of
cell dry weight and lag phase or ethanol yield, robustness of
biomass yield and cell dry weight, robustness of lag phase and
specific growth rate, and robustness of specific growth rate and lag
phase.

Our results point to the phenotype-specific behavior of ro-
bustness (Fig 2), thereby supporting previous evidence (Barkai &
Leibler, 1997; Carlson & Doyle, 2000; Félix & Barkoulas, 2015; Trivellin
et al, 2022). Even though robustness cannot be considered a general
property of a system, the positive correlations observed among
robustness values (Fig 3A) may suggest that biomass yield, specific
growth rate, and cell dry weight are regulated and stabilized by
similar or shared mechanism.

In summary, the observed correlations validated the hypothe-
sized trade-offs between robustness and performance for cell dry
weight, biomass yield, and ethanol yield. Moreover, they provide a
powerful tool for further investigations of possible trade-offs.

95% of the tested strains showed an increased maximum specific
growth rate upon transfer to the same medium

When designing the perturbation space, it is crucial to consider all
the bioprocess steps, including preculture or inoculation, as they
can have a negative impact on the process outcome. In the present
study, we expanded the perturbation space by including a culture
transfer and investigated its impact on the specific growth rate of
each strain. We compared the maximum specific growth rate in the
first cultivation step, with the one in the second cultivation after

Performance and robustness trade-offs Trivellin et al. https://doi.org/10.26508/lsa.202302215 vol 7 | no 1 | e202302215 5 of 13

https://doi.org/10.26508/lsa.202302215


transfer (see the Materials and Methods section). We calculated the
improvement in maximum specific growth rate in terms of per-
formance (Equation (2)). A strong and significant positive corre-
lation between the first and second maximum specific growth rates
was found (Fig 4A). No notable discrepancies among the groups
were detected when dividing the correlations into various per-
turbation categories. The correlation coefficients ranged from 0.6
for ethanol to 0.8 for NaCl. The P-value was > 2.2 × 10−16 for all groups
of conditions, confirming statistically strong correlations. Sugars
exhibited a slightly lower correlation coefficient compared with
other conditions probably because of a weaker influence of sugars
on the pre-cultivation compared with harsher conditions (e.g.,
aldehydes). Fourteen out of 24 strains presented a minimum 20%
increase in the specific growth rate of the second cultivation, with
nine strains boosting performance by more than 50%. The only
strain that did not show mean improvement was S288C (Fig 4B).

The improved maximum specific growth rate in the second
cultivation was strongly influenced by the condition and differed
for each strain. LBCM1001, LBCM1017, and LBCM110 displayed out-
standing improvement in specific growth in the presence of ethanol
and, in the case of LBCM1017 and LBCM110, also in the presence of
acids. CEN.PK113-7D was the only strain that never exhibit a

decrease in its maximum specific growth rate during the second
cultivation (Fig 4B). Interestingly, the higher was the concentration
of certain inhibitors (acids, furfural, 5-hydroxymethylfurfural and
mannose) in the medium, the larger was the percentage of im-
provement of the maximum specific growth rate (Fig S4). A cor-
relation between the percentage of improvement of the maximum
specific growth rate (%P) and the robustness of each of the phe-
notypes was not found. Overall, exposing a strain to the same
stressor prior main cultivation had a positive effect on its tolerance
(increased specific growth rate).

Discussion

In the present study, we investigated a large volume of phenotypic
data from 24 S. cerevisiae strains grown in 29 different conditions,
simulating the lignocellulose biomass fermentation perturbation
space. Phenotypic characterization combined with robustness
quantification allowed us to map the condition-specific influence
on performance and robustness. Accordingly, we demonstrated
the positive influence of the propagation step on performance. We
also discovered and proved experimentally the trade-off between

Figure 3. Spearman correlations between the performance and robustness of five different phenotypes show potential performance–robustness trade-offs.
(A) Spearman correlation matrix between performance and robustness for five phenotypes. (B) Correlations between mean performance and mean robustness of the
five measured phenotypes. Data information: in panel (B), each dot corresponds to a single strain. A linear regression line is plotted in each panel mainly to visualize the
direction and strenght of the relationship. R = Spearman correlation coefficient; P = P-value; n = 24.
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performance and robustness with respect to biomass yield, ethanol
yield, and cell dry weight.

Each group of conditions affected performance in a consistent
manner. Similar phenotypic responses may be linked to shared
metabolic processes, such as the accumulation of reactive oxygen
species under acid and aldehyde stress (Allen et al, 2010; Guaragnella
& Bettiga, 2021). Using biosensors to examine the intracellular state
can be a valuable approach for studying these patterns (Torello
Pianale et al, 2022). By exploring the full range of phenotypes within
the perturbation space, we were able to identify novel behaviors. For

example, the presence of pentoses and low glucose (5 g/liter) led to an
increase in ethanol yield, despite pentoses not being used as carbon
and energy source by S. cerevisiae. We hypothesize that this might be
attributed to an increased efficiency of some hexose transporters
(specifically Hxt2p and Hxt7p [Özcan & Johnston, 1995; Reifenberger
et al, 1997; Subtil & Boles, 2012]), or to the contribution of aldose
reductases (Richard et al, 1999; Träff et al, 2001, 2002; Ford& Ellis, 2002).

A drop in performance is expected when cells are exposed to
perturbations, as they direct nutrients and energy towards main-
tenance rather than growth or production (Stanley et al, 2010; Vos

Figure 4. Exposure to the same media improves the specific growth rate performance of tested strains during cultivation.
(A) Plot of the specific growth rate of the first cultivation and second cultivation for each strain and perturbation. (B) Percentage of improvement of the maximum
specific growth rate calculated using Equation (2). Data information: in panel (A), each color represents a different group of perturbations and includes the corresponding
linear regression line (mainly to check direction and strenght of the relationship). Spearman correlation coefficients are shown in the right part of the graph for each group
of perturbations, together with the P-value denoting the significance of the correlation. P < 0.005 indicates strong statistical significance. In panel (B), the mean
improvement in performance of the maximum specific growth rate (%P) was calculated with Equation (2) across perturbations for each strain (barplots). The SD is shown
for each strain calculated from the triplicates. The colored dots correspond to the %P divided by group of perturbations for each strain.
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et al, 2016). However, our results show that poorly performing strains,
such as LBCM1095 and LBCM1079, maintained a robust behavior in the
tested perturbation space. We speculate that in strains with robust
phenotypes, part of the energy and resourcesmaybedirected towards
additional regulatory and homeostasis-maintenance pathways
even when no environmental perturbations are present, at the
expense of lower overall performance.

Two main mechanisms could explain the strong robustness
exhibited by LCBM strains and Ethanol Red. The first is bet-hedging,
whereby cell-to-cell variation within an isogenic population serves
as a survival strategy under different conditions (Bagamery et al,
2020). Strains from the LBCM collection have been isolated from
cachaça distilleries around Brazil and resulted from hybridization
with Saccharomyces strains of varied origin (da Conceição et al,
2015; Araújo et al, 2018; Jacobus et al, 2021). Because of the intro-
duction of new and diversified genetic material, the LBCM pop-
ulations might have been able to randomly diversify their
phenotypes, compared with, for example, CEN.PK113-7D, thereby
responding more consistently to environmental perturbations. Bet-
hedging implies sometimes a reduced mean fitness (Olofsson et al,
2009), which might explain the low performance of LBCM1079 and
LBCM1095. Analysis of the Ethanol Red phylogeny has revealed its
close relation to S288C, Y22-3, wine strains, and sugarcane strains,
suggesting that its genetic hybridization might also be responsible
for its robustness mechanisms (Gronchi et al, 2022). The second
mechanism is cross-protection (Dhar et al, 2013), which arises when
cells counteract new perturbations based on previous exposure to
the same or different perturbations. Even though the robustness
of Ethanol Red was slightly lower than that of LBCM1079 and
LBCM1095, it nevertheless achieved the highest performance across
strains. In Ethanol Red, robustness could also have developed
because of cross-resistance mechanisms arising from exposure to
different substrates, such as wine, sugarcane or starch.

Earlier investigations have shown that the inoculum might
negatively influence the bioprocess outcome mainly because of
variations in the physiological and metabolic states of the trans-
ferred cells (Keil et al, 2019). We observed a positive correlation
between the specific growth rate in the first and second cultiva-
tions, and an overall increase of the maximum specific growth rate
suggesting that exposing the cells to the same condition before
fermentation had a positive effect on their performance, irre-
spective of perturbation type. Changes in genomic expression
patterns triggered by a certain stressor are not required to survive
exposure the encountered stressors, but they are fundamental to
survive exposure to the same or different stress at a later time
(Święciło, 2016). Furthermore, previous evidence has shown that
short-term adaptation or acclimatization (van Dijk et al, 2019; Bergen
et al, 2022) selects for phenotypes that are more tolerant to previ-
ously faced inhibitors (Nielsen et al, 2015). Even if an overall negative
correlation was not found between the percentage of improvement
of the maximum specific growth rate and the robustness, because of
how robustness is defined, we speculate that an increasedmaximum
specific growth rate in the second cultivationmight be an indicator of
poor robustness of the same phenotype.

The observed significant negative correlations between ro-
bustness and performance confirmed the hypothesized trade-offs
between these two properties. Whereas others have suggested that

robustness and performance always result in a trade-off (Whitacre,
2012), we found that trade-offs applied only to biomass yield,
ethanol yield, and cell dry weight. Instead, specific growth rate
exhibited a positive correlation between performance and ro-
bustness. This can be explained by specific growth rate having been
selected and optimized in many environments through evolution
to allow robust-faster-growing cells to dominate the population
(Dragosits & Mattanovich, 2013). Natural selection could account for
the robust specific growth rate phenotype in our study, and the
observed positive correlation between performance and robust-
ness. In contrast, evolutionary mechanisms do not typically favor
increased yields, and this lack of optimization may explain the
negative correlations we observed between performance and ro-
bustness for ethanol and biomass yields and cell dry weight. Similar
trade-offs between robustness and performance have been dis-
covered before when measuring ATP and biomass yields (Schuetz
et al, 2012). In that study, researchers demonstrated that there is a
greater likelihood of survival for cells that prioritize robustness (can
switch fast between environments) over maximum performance
(highly optimized cells).

Trade-offs appeared in two different forms in our study: first, by
way of negative correlations observed between robustness and
performance; second, as a reduced performance in some conditions.
Yeast cells prioritize different metabolic processes depending on the
environment. Because of physical and thermodynamic limitations
(Niebel et al, 2019), it is impossible to maximize all metabolic pro-
cesses simultaneously, resulting in trade-offs.

In conclusion, the design of microbial cell factories would benefit
from studies that could reveal trade-off among cellular properties
such as in silico objective optimization studies. The methodology
and analysis we just presented could help in validation and in-
tegration of such simulations. Future research should evaluate
more perturbation spaces and different microorganisms, including
bacteria and fungi, to determine whether trade-offs follow a more
general pattern or should be constrained within singular pertur-
bation spaces and organisms. Finally, studies on evolution of
performance and robustness are needed to dig into the possible
molecular and genetic markers associated to the two properties,
specifically highlighting differences when trade-offs are present.

Materials and Methods

Strains

A total of 24 S. cerevisiae strains were used. CEN.PK113-7D (Entian &
Kötter, 2007) (Scientific Research and Development GmbH) and
S288C (University of Milano Bicocca) were two representative
laboratory strains. Four industrial strains included: the PE2 WT
strain isolated during sugarcane-to-ethanol production (Basso
et al, 2008), Ethanol Red (kindly provided by Société Industrielle
Lesaffre, Division Leaf), Thermosacc (Lallemand Ethanol Technol-
ogy), and Red Star (Red Star Yeast, Lesaffre). A set of strains from the
LBCM collection (LBCM, Universitade Federal de Ouro Preto, lab-
oratorio de biologia cellular e molecular) (De Araújo Vicente et al,
2006; Araújo et al, 2018) sampled from cachaça production sites in
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Brazil were selected: LBCM1001, LBCM1003, LBCM1008, LBCM1013,
LBCM1014, LBCM1017, LBCM1030, LBCM1046, LBCM1079, LBCM1095,
LBCM1099, LBCM1106, LBCM37, LBCM67, LBCM97, LBCM103, LBCM109,
and LBCM110. Cachaça strains were chosen because of their ability to
tolerate high concentration of ethanol and perturbations that re-
semble the one found in second generation biomass fermentation.

Performance measurement

Performance and robustness measurements were carried out as
detailed in our previous study (Trivellin et al, 2022). In short, the
yeast strains were grown in Delft chemically defined medium
(Bruinenberg et al, 1983; Verduyn et al, 1992) containing 5 g/liter
(NH4)2SO4, 3 g/liter KH2PO4, 1 g/liter MgSO4∙7H2O, 1 ml trace mineral
solution (per L of medium), and 1 ml vitamin solution (per L of
medium) (Trivellin et al, 2022). The medium was adjusted to pH 5
with KOH and buffered with 250 mM potassium hydrogen phthalate.
Acids, sugars, aldehydes, NaCl, and ethanol were added to the Delft
medium to simulate perturbations common during lignocellulosic
bioethanol production (Table S1) (Olsson & Hahn-Hägerdal, 1996;
Palmqvist et al, 1998; Hohmann, 2002; Koppram et al, 2012; Cavka &
Jönsson, 2013; Favaro et al, 2013; Kim, 2018; van Dijk et al, 2019).
Briefly, 10 μl glycerol stock containing the S. cerevisiae strains were
inoculated in 5 ml Delft medium. Precultures were grown overnight
at 30°C on a orbital shaker (orbit 1.9 cm) at 250 rpm speed.
Screenings were carried out for 48 h, at 30°C, 250 rpm/50 mm
orbital shaking in a growth profiler (960; Enzyscreen) using 96-well
microtiter plates (CR1496dg) covered with a CO2-release cover
(CR1296t), and with a starting OD600 of 0.02 in 250 μl.

The final OD600 of the cultivation was measured in a plate reader
(SPECTROstar nano; BMG LABTECH). The OD values were related to
the cell dry weight through a calibration curve previously built for
each specific strain in Delft medium (Trivellin et al, 2022). After 48 h
of cultivation, the culture broths were filtered, and ethanol and
sugar concentrations were determined by enzymatic assays (K-
ETOH Ethanol Assay Kit, K-GLUHK-220A D-Glucose HK Assay Kit,
K-MANGL D-Mannose/D-Fructose/D-Glucose Assay kit, K-XYLOSE
D-Xylose Assay Kit, and K-ARGA L-Arabinose/D-Galactose Assay Kit;
Megazyme). Sugar and ethanol concentrations were used to cal-
culate ethanol and biomass yields (Trivellin et al, 2022). Data from
the growth profiler (green values) were used to calculate the
maximum specific growth rate and length of the lag phase (see Data
Availability).

Robustness quantification

Robustness of each strain (S) for a defined phenotype (i) across a set
of perturbations (P) was calculated with the following equation:

RS;i;P = − Fano factormean = −σ
2

x ∙
1
m (1)

The Fano Factor (variance (σ2) divided by the mean (x) across
perturbations) was normalized to the mean of the phenotype
across all strains (m).

Investigation of the culture transfer on robustness
and performance

To assess the impact of the culture transfer, at the end of the first
screening (48 h), 5 μl of culture were reinoculated in 250 μl fresh
medium as described above. The plates used in the second
screening were incubated for another 48 h under the same con-
ditions as during the first screening. At the end of the second
screening, green values were used to calculate the maximum
specific growth rate of the second cultivation. The percentage of
improvement in maximum specific growth rate performance was
measured with the following equation (μmax1: maximum specific
growth rate of the first cultivation; μmax2: maximum specific growth
rate of the second cultivation).

%Pµmax = µmax2 −µmax1
µmax1

*100 (2)

When μmax1 was zero and μmax2 was a finite value, the ratio
resulted in an infinite value, which created problems regarding the
interpretation of the results. Therefore, infinite values were set
to the maximum finite improvement value calculated from the
dataset. Spearman correlation tests were performed between the
robustness values of all the strains for each phenotype and
the mean %P of each strain (scripts with in-line description are
available on GitHub [See Data Availability]).

Data analysis

Dataset containing raw values was preprocessed before perfor-
mance and robustness analysis. The dataset was trimmed by taking
in consideration theoretical values of the yields and experimental
errors. The upper boundary for the yields was set at the maximum
theoretical ethanol yield on glucose (0.51 + 0.1 g/g), whereas the
maximum biomass concentration (39.6 g/liter) was calculated
based on the maximum biomass yield measured in chemostat
cultivations (0.1 1/h dilution rate [Verduyn, 1991]) and maximum
substrate used (65 g/liter glucose). A total of 145 values were ex-
cluded from the analysis (out of 10,440) (Fig S5). The Shapiro
normality test revealed that the phenotypes did not follow a normal
distribution (P < 1 × 10−38); instead, distribution was primarily
skewed and multimodal (mostly bimodal) (Figs S6, S7, S8, S9, and
S10). The quantile method (percentiles of 0.1% and 99.9%) was used
to identify outliers on the trimmed dataset. Thirteen outliers were
identified across all the variables corresponding to seven strains
(six LBCM strains) and seven perturbations (Fig S11). The outliers
were not removed from the dataset. Ethanol yields in the presence
of ethanol as a perturbation were excluded from the analysis as we
could not differentiate between its consumption and production
during cultivation. Spearman’s rank-order correlations were per-
formed on the data and associated with their statistical significance
(P-value). The linear regression lines were included in the graphs
mainly to visualize the direction and strenght of the relationships.
The standard error of the correlation based on sample size was
calculated for performance versus robustness correlations (Bonett
& Wright, 2000). Statistical tests and plots were generated in R and
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scripts with line-by-line descriptions are available fromGitHub (See
Data Availability).

Data Availability

The datasets and R code produced in this study are available
on GitHub (https://github.com/cectri/Robustness_Trade-offs/
tree/main). The repository contains: raw and processed data,
scripts to generate phenotypic variables and preprocessing, ex-
ploratory analysis, robustness calculations, correlations, and
percentage of improvement scripts. Scripts were generated using
previously published R packages (Soetaert et al, 2010; Hall et al, 2014;
Giner & Smyth, 2016; Wickham, 2016; McInnes et al, 2018; Bolar, 2019;
Neuwirth, 2022; Schloerke et al, 2022; Wilke, 2022; Yutani, 2022; Erik
Clarke, 2023; Kassambara, 2023a, 2023b; R Core Team, 2023; Tierney &
Cook, 2023; Wickham et al, 2023; Xiao, 2023).

Supplementary Information

Supplementary Information is available at https://doi.org/10.26508/lsa.
202302215.
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DemekeMM, Dietz H, Li Y, Foulquié-MorenoMR, Mutturi S, Deprez S, Den Abt T,
Bonini BM, Liden G, Dumortier F, et al (2013) Development of a D-
xylose fermenting and inhibitor tolerant industrial Saccharomyces
cerevisiae strain with high performance in lignocellulose
hydrolysates using metabolic and evolutionary engineering.
Biotechnol Biofuels 6: 89. doi:10.1186/1754-6834-6-89
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