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Abstract: Increasing the interaction between light and mechanical resonators is an ongoing
endeavor in the field of cavity optomechanics. Optical microcavities allow for boosting the
interaction strength through their strong spatial confinement of the optical field. In this work, we
follow this approach by realizing a sub-wavelength-long, free-space optomechanical microcavity
on-chip fabricated from an (Al,Ga)As heterostructure. A suspended GaAs photonic crystal
mirror is acting as a highly reflective mechanical resonator, which together with a distributed
Bragg (DBR) reflector forms an optomechanical microcavity. We demonstrate precise control
over the microcavity resonance by change of the photonic crystal parameters. We find that the
microcavity mode can strongly couple to the transmissive modes of the DBR. The interplay
between the microcavity mode and a guided resonance of the photonic crystal modifies the cavity
response and results in a stronger dynamical backaction on the mechanical resonator compared
to conventional optomechanical dynamics.

Published by Optica Publishing Group under the terms of the Creative Commons Attribution 4.0 License.
Further distribution of this work must maintain attribution to the author(s) and the published article’s title,
journal citation, and DOI.

1. Introduction

Optical microcavities [1] confine light to small mode volumes leading to stronger light-matter
interactions. As a consequence, microcavities have been used in various fields, including cavity
QED [2–4], nonlinear optics [5,6], or vertical-cavity surface-emitting lasers [7,8]. Microcavities
also find applications in the field of cavity optomechanics [9], which explores the interaction
between a cavity mode and a mechanical resonator. Optomechanical microcavities have
enabled demonstrations such as ground-state cooling of mechanical motion [10,11], coherent
optomechanical coupling [12,13], and thermally driven nonlinear optomechanics [14].

Optomechanical microcavities can be categorized into two different topologies. Firstly, light
can be confined fully within the material, i.e., in the plane of the device layer, as is the case with
optomechanical crystals [15,16], whispering gallery mode resonators [17,18], or photonic crystal
defect cavities [19]. Alternatively, light can be confined in free space, i.e., out-of-plane, by use of
highly reflecting mirrors such as in Fabry-Perot-type microcavities [20–22]. While the former
implementations allow for on-chip integration, inherent mechanical stability, and microfabrication
flexibility, they may suffer from optical absorption [23]. The latter implementations circumvent
this caveat but lack microfabrication flexibility and intrinsic mechanical stability.

In our work, we realize a high-quality optomechanical microcavity by combining in-plane and
out-of-plane light propagation. We confine light to a sub-µm microcavity mode formed between
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a distributed Bragg reflector (DBR) and a suspended photonic crystal (PhC) mirror. Our PhC-
DBR microcavity combines the advantages of inherent mechanical stability realized through a
single-lithography microfabrication process from an (Al,Ga)As heterostructure [24] with on-chip
scalability and flexibility over design parameters. The reflection of the PhC mirror is determined
by the Fano interference between out-of-plane and in-plane light modes and can be engineered to
obtain a reflectivity approaching unity [25]. At the same time, the suspended PhC mirror acts
as the mechanical resonator [24,26–28] of the optomechanical cavity. Suspended PhC mirrors
have been used in cavity optomechanical systems, such as for an optomechanical microcavity
exhibiting both photothermal and optomechanical effects [29,30], as membrane-in-the-middle
cavity optomechanical systems [31,32], as photonic crystal cavities [33,34] or defect cavities
[19]. Furthermore, suspended PhC mirrors exhibit features for cavity optomechanical systems,
which are not accessible by conventional mirrors, such as focusing capability [35], linewidth
narrowing [36], or realization of photonic bound states in the continuum [37]. Interestingly, we
find that the optical mode of the microcavity and transmission modes of the DBR couple strongly
with each other, which may find new applications in cavity optomechanics.

In our PhC-based optomechanical microcavity, we observe a stronger dynamical backaction
compared to canonical cavity optomechanics. This stronger interaction originates from the
interplay between the microcavity mode and a guided resonance of the photonic crystal [25],
which was analyzed in Refs. [36,38]. We extend that analysis by incorporating dispersive
coupling of the guided resonance of the suspended PhC to its mechanical motion. Moreover, we
also account for dissipative coupling of the optical modes to the motion of the suspended PhC
[19,39,40].

In the following, we present the fabrication of the optomechanical microcavity from an
(Al,Ga)As heterostructure. We summarize the theory required to describe the optical and
optomechanical properties of our microcavity. We then characterize the optical reflectivity of
the microcavity and demonstrate the tunability of the cavity resonance wavelength by variation
of the PhC hole radius. Finally, we characterize the mechanical properties of the suspended
PhC reflector and their tunability through the use of cavity optomechanical effects, which
deviate considerably from the expected optical spring effect in non-sideband resolved canonical
optomechanics [9].

2. Experimental methods

2.1. Device fabrication

The optomechanical microcavity is fabricated from an (Al,Ga)As heterostructure, which is
grown on a GaAs substrate using molecular beam epitaxy. Note that the GaAs substrate is not
back-polished, which prevents us from measuring transmission through the entire device. This
monolithic assembly avoids post-alignment of optical mirrors forming a microcavity and also
active cavity length stabilization, which is required, for instance, in fiber-based microcavities
[41,42]. The as-grown heterostructure [Fig. 1(a)] consists of a DBR mirror with 30 alternating
layers of 106 nm-thick GaAs and 130 nm-thick Al0.92Ga0.08As with a targeted reflectivity of
99.999% at 1480 nm. The DBR is followed by a 750 nm-thick Al0.67Ga0.33As sacrificial layer,
which determines the geometric length Lg of the microcavity. On top of this sacrificial layer,
a 95 nm-thick GaAs layer is grown as the device layer (thicknesses of the as-grown structure
are inferred from transmission electron microscopy, see Supplement 1). The device layer is
patterned with a PhC to increase its out-of-plane reflectivity in the telecom wavelength regime
[24–26]. Standard microfabrication techniques were used to pattern the PhC into the GaAs
device layer and to release it [24]. A scanning electron microscope (SEM) image of a fabricated
device is shown in Fig. 1(b). The suspended PhC membrane together with the DBR mirror form
a microcavity with a length ≈ λ/2. Figure 1(c,d) present the electric field distribution of the

https://doi.org/10.6084/m9.figshare.23800620
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microcavity eigenmode obtained from a finite element method (FEM) simulation that clearly
shows the field concentration between the PhC and DBR mirrors.
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Fig. 1. (a) Schematic of a microcavity formed by a suspended photonic crystal (PhC)
mirror and a distributed Bragg reflector (DBR) mirror monolithically fabricated from an
(Al,Ga)As heterostructure. (b) SEM image of a suspended PhC membrane with a diameter of
70 µm. (c,d) FEM simulation of the electric field |E | of the microcavity mode at a resonant
wavelength of 1497 nm assuming linear input polarization. Note that due to the 4-fold
rotational symmetry of the microcavity in the xy plane, the electric field for the orthogonal
input polarization would be rotated by 90◦ around the z-axis. (e) Experimental setup
used for characterizing the optomechanical properties of the microcavity. Red solid lines
represent fiber beam paths and red dashed lines free-space beam paths. Dashed rectangle:
optional reflection measurement setup, BS: beam splitter, PBS: polarizing beam splitter,
PM: fiber-based phase modulator, SA: spectrum analyzer, PDRef(Det): photodiode in the
reference (detection) arm, RT: room temperature, HV: high vacuum of 5 · 10−5 mbar.

2.2. Experimental setup

The characterization of the microcavity is performed with a tunable diode laser in the telecom
wavelength regime (1480 nm to 1620 nm) using the setup shown in Fig. 1(e). We use a standard
optical homodyne detection scheme [43] at room temperature to characterize the (opto)mechanical
properties of the suspended PhC membrane placed in a vacuum chamber (5 · 10−5 mbar). The
output of the laser is split into a signal and a local oscillator (LO) arm. The signal arm is
collimated to a free-space beam path and focused onto the microcavity that is placed inside a
vacuum chamber on a xyz-translation stage. The focal waist is 10 µm, when not stated otherwise.
The mechanical displacement of the suspended PhC membrane is mapped onto the quadratures
of the reflected light beam. The reflected beam is mixed with the LO beam in a tunable fiber
beam splitter, whose output is sent to a balanced photodiode (BPD). The electronic signal from
the BPD is passed through a high-pass filter and sent to a spectrum analyzer for evaluating the
mechanical properties of the PhC membrane. The low-pass filtered BPD signal is used to lock the
interferometer by applying feedback to a fiber-based phase modulator. The reference photodiode
PDRef is used to maintain a constant power reaching the sample when tuning the laser wavelength.
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For characterizing the optical reflectance of the microcavity, additional components can be
introduced into the free-space beam path of the signal arm (marked by the dashed box in Fig. 1(e)).
The circularly polarized input beam acquires a π-phase shift upon reflection on the microcavity
and, thus, will be directed to PDDet after passing through a quarter-wave plate and polarizing
beam splitter. To account for the optical response of the utilized components, we perform an
independent calibration measurement with a mirror of known reflectivity that is used to normalize
the obtained optical reflectance spectra of the microcavity [24].

3. Theory

We briefly present the theoretical description of the optomechanical microcavity via coupled
mode theory, which allows us to describe its optical and optomechanical properties. More details
are found in the Supplement 1 and in Ref. [44].

The system, depicted in Fig. 2, consists of a suspended PhC mirror and a DBR mirror that
form an optical microcavity. The DBR can be treated as a highly reflective mirror in the telecom
range. Conversely, the optical response of a PhC mirror is generally highly wavelength dependent
[25,36], which we capture by accounting for a PhC guided resonance. Therefore, we model
the microcavity with two coupled optical modes [38]: a Fabry-Perot cavity mode of frequency
ωa with photon annihilation operator â and an internal PhC optical mode of frequency ωd with
photon annihilation operator d̂. The Hamiltonian for the optical part of the setup reads

Ĥopt = ℏωaâ†â + ℏωdd̂†d̂ + ℏΛ(â†d̂ + âd̂†), (1)

where Λ is the coupling strength between the modes and where we made the rotating wave
approximation and neglected the two-mode squeezing terms [38]. In addition, the cavity mode
couples to the environments above (denoted with subscript 1) and below (denoted with subscript
2) the cavity, giving rise to the respective loss rates κ1 and κ2. The mirror mode also couples to
environment 1 with loss rate γd [38].

Fig. 2. Schematic of the optomechanical microcavity consisting of a suspended PhC mirror
above a DBR. Symbols are explained in the main text.

The suspended PhC membrane acts as a mechanical resonator of frequency Ωm and position
and momentum quadratures q̂ and p̂. The displacement of the suspended PhC membrane
impacts the optical microcavity in various ways, resulting in different kinds of optomechanical
couplings. First, the modulation of the Fabry-Perot cavity resonance frequency by the out-of-plane
displacement of the PhC mirror creates the standard dispersive coupling, g0

ω,a. Second, we expect
a dissipative coupling g0

κ,a of the Fabry-Perot mode. This dissipative coupling is specific to our
microcavity implementation and its origin comes from the strong evanescent coupling between
the optical modes â and d̂ due to the short cavity length. When the cavity length changes due to
the out-of-plane displacement of the PhC mirror, the evanescent coupling is modified, which
affects the resonance frequency and optical loss rate of the microcavity, the latter resulting in
dissipative coupling. Furthermore, we also take into account optomechanical couplings from the

https://doi.org/10.6084/m9.figshare.23800620
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interaction of the mechanical mode of the PhC with its guided optical mode d̂. The out-of-plane
displacement of the PhC results in an induced in-plane mechanical strain and displacement field
impacting the PhC properties. As a result, the PhC mode d̂ will have an altered frequency ωd
and linewidth γd. We model this by adding dispersive and dissipative optomechanical couplings
between the PhC mode and the mechanics, respectively denoted g0

ω,d and g0
κ,d. We note that we

do not model quadratic coupling of the mechanical quadratures to the light field as we do not
observe a mechanical signal at twice the frequency in the measured mechanical noise power
spectra.

As a result, the total Hamiltonian of the system is given by

Ĥ = Ĥopt +
ℏΩm

2
(q̂2 + p̂2) − ℏg0

ω,a
√

2â†âq̂ − ℏg0
ω,d

√
2d̂†d̂q̂. (2)

Furthermore, the cavity is driven by a laser of frequency ωlas and amplitude αlas, and the
mechanical resonator is coupled to a phonon bath, giving rise to the damping rate γm, so the
dynamics of the whole system can be described, in the frame rotating at the laser frequency, by
the following set of Langevin equations [38,44,45],

̇̂a = − (i∆a + κ)â +
√

2(ig0
ω,a − g0

κ,a)q̂â − Gd̂ −
√

2g0,+
a,d q̂d̂

+

(︄√︁
2κ1 +

g0
κ,a

√
κ1

q̂

)︄
(αlas + âin,1) +

√︁
2κ2âin,2,

(3)

̇̂d = − (i∆d + γd)d̂ +
√

2(ig0
ω,d − g0

κ,d)q̂d̂ − Gâ −
√

2g0,+
a,d q̂â +

(︄√︁
2γd +

g0
κ,d

√
γd

q̂

)︄
(αlas + âin,1),

̇̂q =Ωmp̂,
̇̂p = −Ωmq̂ − γmp̂ + i

√
2g0,−

a,d (â
†d̂ − d̂†â) +

√
2g0

ω,aâ†â +
√

2g0
ω,dd̂†d̂ +

√
γmξ̂

− i
g0
κ,a

√
κ1
(â†(αlas + âin,1) − (α∗las + â†in,1)â) − i

g0
κ,d

√
γd

(d̂†(αlas + âin,1) − (α∗las + â†in,1)d̂).

We have defined the detunings ∆a = ωa − ωlas and ∆d = ωd − ωlas, the generalized coupling
G = iΛ+√κ1γd, the total cavity loss rate κ = κ1 + κ2 and the effective optomechanical couplings

g0,±
a,d =

√
κ1γd

2

(︄
g0
κ,a

κ1
±

g0
κ,d

γd

)︄
. (4)

At room temperature, we can neglect the thermal fluctuations in the optical environments,
therefore âin,µ corresponds to the vacuum input noise from environment µ = 1, 2 and its only
non-zero correlation function is ⟨âin,µ(t)â

†

in,µ(t
′)⟩ = δ(t − t′). Conversely, for the mechanical

environment, this temperature is high, and the correlation function of the input mechanical noise
ξ̂ can be approximated by ⟨ξ̂(t)ξ̂(t′)⟩ = (2n̄m + 1)δ(t − t′), where n̄m = (exp(ℏΩm/kBT) − 1)−1 is
the average phonon number in the mechanical environment.

Our microcavity is in the regime g0
ω,a, g0

ω,d, g0
κ,a, g0

κ,d ≪ κ, γd,Λ (see results section), so we
can neglect the optomechanical effects when modeling the optical response of the cavity and,
like in Ref. [38], we obtain the transmission coefficient of the cavity

t =

√
2κ2

(︂√︁
2γdG −

√
2κ1(γd + i∆d)

)︂
(κ + i∆a)(γd + i∆d) − G2 . (5)

Furthermore, the cavity and PhC modes are in the strong coupling regime, Λ>γd, κ. We can
thus estimate the effective optical resonances by diagonalizing the Langevin equations for the
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average optical modes, in the absence of the mechanical resonator,

⎛⎜⎝
⟨ ̇̂a⟩

⟨
̇̂d⟩

⎞⎟⎠ = −i ⎛⎜⎝
ωa − iκ −iG

−iG ωd − iγd

⎞⎟⎠ ⎛⎜⎝
⟨â⟩

⟨d̂⟩
⎞⎟⎠ + ⎛⎜⎝

√
2κ1αlas√︁
2γdαlas

⎞⎟⎠ . (6)

We obtain the complex eigenvalues

ω̃±=
ωa + ωd

2
− i
κ + γd

2
±

√︃(︂ωa − ωd

2
− i
κ − γd

2

)︂2
− G2, (7)

which correspond to the effective resonance frequenciesω± = ℜ(ω̃±) and loss rates κ± = −ℑ(ω̃±).
Since the optomechanical effects can be treated as a perturbation, we can simply introduce
the mechanical position dependency of ωa, ωd, κ1 and γd in Eq. (7) and estimate the effective
dispersive and dissipative couplings

g0
ω,± = −

1
√

2
∂ω±∂q[q = 0], g0

κ,± =
1
√

2
∂κ±∂q[q = 0]. (8)

Finally, given our laser power, the set of Eqs. (3) can be linearized around a semiclassical
steady-state, allowing us to solve them and derive the mechanical frequency shift due to the
optomechanical interactions, see Supplement 1 and Ref. [44].

4. Results

4.1. Optical properties of the microcavity

The optomechanical microcavity is formed by the PhC and DBR mirrors. While the stop-band of
the DBR is determined by the heterostructure growth, the reflectance of the membrane can be
engineered by the pattern of the PhC [25,26]. We use this flexibility to demonstrate the tunability
of the microcavity resonance wavelength by only varying the radius of the PhC holes, without
having to adjust the geometric length of the microcavity, i.e., the gap between the PhC and DBR
mirrors. A change of the PhC parameters changes the effective length of the microcavity, Leff,
which is given by the geometric cavity length, Lg, and an additional length originating from the
phase acquired by the light in the PhC and DBR mirrors [46]. We simulate the PhC membrane’s
reflectance using rigorous coupled wave analysis (RCWA) [24,47] to obtain the PhC parameters,
i.e., PhC hole radius, rPhC, and PhC lattice constant, aPhC, such that the PhC yields its highest
reflectance between 1480 nm to 1520 nm, which coincides with the reflectance band of the DBR.

Figure 3(a) shows the measured reflectance spectra of three fabricated microcavities with
varied PhC hole radius and aPhC = 1081 nm. We observe three distinct features in these spectra,
which we exemplarily discuss for the microcavity with a PhC hole radius of 367 nm. The
microcavity resonance at 1508 nm appears as a pronounced minimum in the reflectance spectrum.
It exhibits an optical quality factor of about 3 · 102 (corresponding to a Finesse of 3 · 102 as we
work with the first half-wavelength mode in the microcavity). Its lineshape is slightly asymmetric
due to the wavelength-dependent reflectance of the PhC slab [25,36]. Further, we observe a
shallow reflectance dip at 1573 nm. This dip originates from light coupling to a parasitic guided
resonance of the PhC membrane due to the finite waist of the laser beam [24,27]. Finally, two
local minima at 1560 nm and 1600 nm are the first two transmission minima of the DBR mirror
as confirmed by an independent measurement on a bare DBR (see Supplement 1).

In Fig. 3(c) we present simulation results of the optical response for microcavities with
parameters as in Fig. 3(a). We obtain a good agreement between measurement and simulation
for the features discussed above. However, we also observe discrepancies, such as a deviation
in the depth of the microcavity resonance and DBR minima. We attribute these differences

https://doi.org/10.6084/m9.figshare.23800620
https://doi.org/10.6084/m9.figshare.23800620
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Fig. 3. Optical properties of the microcavity. (a) Reflectance spectra of a microcavity
with PhC parameters: aPhC = 1081 nm, rPhC = 351, 367 and 381 nm. (b) Reflectance
map of the microcavity for varying PhC radii. (c) Simulation of reflectance spectra of a
microcavity with parameters as in (a). (d) Simulation of a reflectance map of the microcavity
for various PhC radii. The dashed, dotted, and dotted-dashed lines represent the DBR
minima, microcavity resonance, and parasitic PhC-guided resonances, respectively. (e) The
electric field distribution |E | in the microcavity and DBR at the points marked in (d).

to assumptions made in the RCWA simulation and approximations we make to simplify our
model. The RCWA simulations assume a PhC that is in-plane infinitely periodic, while in the
experiment, its size is given by the suspended area of the PhC membrane. Such finite-sized PhC
structure reduces its absolute reflectance [48]. This reduced reflectance of the PhC membrane
does not alter the cavity resonance wavelength but affects the reflectivity mismatch between
the PhC and DBR mirrors, which determines the microcavity dip depth. Another difference
stems from fabrication imperfections of the PhC pattern, where the PhC parameters slightly
vary over the exposed area and the profile of the sidewall of the PhC hole slightly deviates from
being perfectly vertical. The variation of the PhC hole radii on the same device will reduce the
absolute reflectance and, thus, add another contribution to a reflectivity mismatch between the
PhC and DBR mirror affecting the depth of the microcavity resonance. The deviation from the
ideal vertical hole profile leads to an increase in the loss of the PhC guided resonance due to
coupling between TE and TM modes inside the PhC slab [49,50], resulting in a change of the
PhC reflectance. Note that absorption in the PhC or DBR would also impact the reflectivity
match between the mirrors. We excite the microcavity below the bandgap of (Al,Ga)As and, thus,
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exclude direct absorption. However, photons may still be absorbed through mid-gap states [51] or
via two-photon processes [52]. In our case, we do not observe any nonlinear or thermally-induced
optical lineshape change (see Supplement 1) and, thus, exclude a clear effect of absorption on the
reflectivity mismatch. Finally, we attribute the discrepancy between the simulated and measured
depth of the DBR minima to the non-uniform thickness of the grown GaAs and (Al,Ga)As layers
of the DBR, which we assume to be perfectly uniform in the simulation. The non-uniform layer
thickness will reduce the overall reflectivity of the DBR reflection band and will also result in an
increase of the reflectance at the DBR minima outside of the reflection band (see Supplement 1).

To showcase the precise control over the microcavity resonance wavelength, we fabricated 14
devices with PhC hole radius varied from 351 nm to 420 nm and aPhC = 1081 nm on a single
chip, whose measured and simulated reflectance spectra are shown in Fig. 3(b) and Fig. 3(d),
respectively. We observe a clear trend of the microcavity resonance wavelength that increases at
a rate of 0.49 nm per 1 nm decrease in PhC hole radius with a similar value of 0.45 nm per 1 nm
for the simulated case. Note that we attribute the slight fluctuation in the microcavity position
[see Fig. 3(b)] around the expected behavior [see Fig. 3(d)] to a fabrication-related uncertainty in
the exact geometric length of the microcavity. We further observe that the wavelength of the
parasitic guided resonance shifts to larger wavelengths with a decrease in PhC hole radius, as
observed in Refs. [24,27,53,54], and captured in the simulation [see Fig. 3(d)].

Up until rPhC = 310 nm, the position of the two DBR minima is independent of the PhC hole
radius. Upon further reduction of the PhC hole radius, the microcavity resonance approaches
the first transmission minimum of the DBR mirror and an avoided crossing between the DBR
minimum and the microcavity is observed. In general, the DBR reflection minima are eigenmodes
of the DBR structure and have applications, for example, in distributed feedback lasers [55].
These reflection minima are a result of destructive interference of the electric field in the DBR
layers such that light is perfectly transmitted. In the presence of the microcavity field, the
interference effect is disturbed, leading to the formation of new eigenmodes. To examine these
new eigenmodes, we simulated the electric field distribution for a PhC hole radius of 275 nm at the
two branches of the avoided crossing, see Fig. 3(e). Similarly, the electric field distribution of the
microcavity mode and the eigenmode of the DBR far away from the avoided crossing for a PhC
hole radius of 350 nm is simulated for comparison. At the PhC hole radius of 350 nm and at the
microcavity resonance (i), the electric field is predominantly concentrated in the PhC membrane
and vacuum gap. The DBR eigenmode at a PhC hole radius of 350 nm (ii) is mostly contained in
the DBR. At the avoided crossing (iii-iv), we observe that the microcavity and DBR eigenmode
couple, and the energy is distributed between (i) and (ii) modes. This mode coupling is very
similar to a system analyzed in Ref. [56], which studied the coupling between an out-of-plane
microcavity and an in-plane distributed feedback laser. The observed avoided crossing could have
interesting applications in optomechanics. For example, one could functionalize the DBR layers
by using lasing-active materials such that the optomechanical microcavity could be internally
optically pumped [57,58].

4.2. Mechanical properties of the suspended PhC membrane

We now turn to the characterization of the mechanical properties of the suspended PhC membrane.
Figure 4(a) shows a representative displacement noise power spectrum of a circular PhC membrane
with a diameter of 100 µm. The fundamental mechanical mode is observed at 528 kHz and
the first higher order mode at 834 kHz. We attribute the modes through measurements of
the spatially-dependent mode displacement recorded via mechanical mode tomography [24],
shown in the insets of Fig. 4(a). The observed mode shapes reflect the expected behavior of a
circular membrane and, thus, prove a complete and clean release of the PhC membrane on top of
the 750 nm air gap over the DBR mirror. When decreasing the diameter of the released PhC
membrane, we observe an increase in the mechanical resonance frequency, see Fig. 4(b). While
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the variation of the PhC hole radius has a large impact on the optical resonance wavelength of
the microcavity, we observe in Fig. 4(b) that the mechanical frequency of the fundamental mode
only slightly decreases with an increase in PhC hole radius. This behavior is anticipated as the
mechanical frequency is proportional to the ratio of the stiffness and mass of the PhC membrane,
which both increase with a decrease in PhC hole radius, thus, leading to only a slight change in
mechanical frequency. To confirm this observation, we performed FEM simulations of the PhC
membranes [dashed line in Fig. 4(b)], whose results reflect the experimental measurements when
assuming an initial tensile stress of 45 MPa in the device layer [24] (see Supplement 1).
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Fig. 4. Mechanical eigenfrequencies of the suspended PhC membrane. (a) Displacement
noise power spectrum (NPS) of the thermally driven mechanical motion of a membrane
of diameter 100 µm (SEM image in the top right corner). The insets show the recorded
mechanical mode tomography of the first two mechanical eigenmodes. (b) Measured
frequencies of the fundamental mode of PhC membranes of two different diameters, where
rPhC is varied. The triangles (circles) represent PhC mirrors with a diameter of 70 µm
(100 µm). The red star marks the device whose NPS is presented in (a). The black triangles
(circles) show the frequencies of the fundamental mode of 70 µm (100 µm) PhC mirrors
simulated via FEM. Lines are a guide to the eye.

We also measured the mechanical quality factor Qm via ringdown measurements and obtain
values of ≤ 3 · 104. Note that Qm can be vastly increased by substituting GaAs with tensile-
strained InGaP [59–61], which is fully compatible with the presented monolithic (Al,Ga)As
heterostructure growth and microfabrication process. High tensile stress in high aspect ratio
nanomechanical resonators gives rise to large dissipation dilution (e.g. via the use of thin
millimeter-sized trampoline-shaped resonators [61–64]) that can drastically increase Qm, which
can be further increased by mode-shape engineering, i.e., soft-clamping and strain engineering
[62,65,66]. Furthermore, the use of tensile-strained materials would allow the fabrication of a
PhC with a larger area, which would eliminate diffraction loss.

4.3. Microcavity optomechanics

The mechanical properties of the suspended PhC mirror can be altered by the interaction of
its motion with the microcavity field. Figure 5 shows the displacement noise power spectrum
(NPS) of the fundamental mode of the suspended PhC mirror in dependence on the wavelength
of the incident laser light. We clearly observe a non-symmetric mechanical frequency shift with
respect to the microcavity resonance, which is predominantly to smaller frequencies. These
features are also present in other devices, where we vary the PhC hole radius. In the presented
device, the maximal shift of about −400 Hz occurs at a pump wavelength of 1505 nm, which
is 3 nm red-detuned with respect to the microcavity resonance. Such characteristics are not
expected from the optical spring effect in non-sideband resolved canonical optomechanics [9].
When increasing the input power to the microcavity, we observe that the mechanical frequency
shift increases accordingly (see Supplement 1). We verified that the optical reflectivity of the
microcavity is not dependent on the optical input power (see Supplement 1), which allows us
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to exclude nonlinear optical effects [67,68]. Heating of the PhC membrane through absorption
would lead to a change of the optical lineshape, which we do not observe, and also to a shift
of the mechanical frequency. The latter we can rule out for another sample (see Supplement
1), where the mechanical frequency far off-resonant of the microcavity is largely unaffected by
optical power.
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Fig. 5. Microcavity optomechanics. The thermally driven noise power spectrum of the
fundamental mode of the suspended PhC membrane shows a pronounced frequency shift for
laser detunings that are red-detuned with respect to the microcavity resonance. The panel
on the right shows the optical reflectance of the microcavity and the extracted mechanical
frequency shift of the mechanical mode. The horizontal lines indicate the optical cavity
resonance and the wavelength of the maximal mechanical frequency shift.

As outlined in the theory section, we account for dispersive and dissipative couplings of the
mechanical mode of the suspended PhC to the Fabry-Perot-type mode of the microcavity and to
the guided mode of the PhC. Figure 6(a) shows a combined fit of our model to the data of the
optical reflectivity and of the mechanical frequency shift. We observe that we can reproduce the
asymmetric optical lineshape and the off-resonant frequency shift of the mechanics. Figure 6(b)
shows the mechanical frequency shift, when we switch off all but one coupling. We observe that
the shifts from individual couplings alone do not add up to the full mechanical frequency shift
from panel (a) because of the presence of cross-terms involving different kinds of optomechanical
couplings (see Supplement 1) and none of the individual couplings can capture well the observed
frequency shift. Fig. 6(c) presents the mechanical frequency shift, when we switch off either
the dissipative or the dispersive couplings, but leave the other ones on. We observe that the
dispersive coupling captures the experimental behavior to a great extent, while the dissipative
coupling yields a small correction. The major contribution comes from g0

ω,d while the one from
g0
κ,a is negligible.
Importantly, we find that the optical coupling Λ between the cavity mode â and PhC mode d̂ is

in the strong coupling regime, Λ>κ, γd, while the optomechanical couplings g0
i can be treated as

a perturbation. We attribute this strong optical coupling to the hybridization of the PhC-guided
resonance and the Fabry-Perot-type mode [see the electric field in Fig. 1(d)]. Therefore, using
Eq. (7), we determine that the effective resonances of the microcavity are at wavelengths
λ+ = 1444 nm and λ− = 1503 nm and the corresponding loss rates are κ+/2π = 6.01 THz
and κ−/2π = 277 GHz, respectively. The values of λ− and κ− are in good agreement with the
experimental results shown in Fig. 6(a) and are associated with the effective optomechanical
couplings g0

ω,−/2π = −496 kHz and g0
κ,−/2π = 33.3 kHz, see Eq. (8). Note that the mode at λ+

is extremely lossy and, thus, will be difficult to be observed experimentally.
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Fig. 6. (a) Microcavity reflectance (top panel) and frequency shift (bottom panel). The-
oretical values are presented in solid lines and experimental ones in dots. For this plot
γd/2π = 3.8 THz, λd = 1473 nm, Ωm/2π = 514 kHz, λa/2π = 1473.3 nm, κ1/2π =
2.12 THz, κ2/2π = 366 GHz, Λ/2π = 4.09 THz. Coupling strengths g0

κ,a/2π = 775 kHz,
g0
κ,d/2π = 3.21 MHz, g0

ω,a/2π = 845 kHz, g0
ω,d/2π = −1.82 MHz. (b),(c) Comparison

of coupling strength contributions to the frequency shift: (b) contribution of individual
coupling (no cross-terms are taken into account), (c) only dissipative (g0

κ,a and g0
κ,d) or

dispersive (g0
ω,a and g0

ω,d) coupling are considered. The vertical dashed lines denote the
microcavity resonance (red) and wavelength of maximal mechanical frequency shift (blue).

Importantly, we can connect the fitted parameters from Fig. 6 to parameters that are accessible
from the experiment or simulations. We outline this procedure in the Supplement 1. We find
reasonable experimental values for most of these parameters. An important quantity is the
dominating coupling strength, g0

ω,−/2π, which we determine as a moving boundary coupling of
the mechanical motion of the PhC to the microcavity optical field by FEM simulations [69,70]
(see Supplement 1, Table S2). We obtain a simulated value that is wavelength-dependent and
that is maximally ∼ −2π · 240 kHz. This value is only about a factor of two smaller than the
value we obtain from the fit.

To further characterize the microcavity, a desired feature would be to tune the vacuum gap
between the PhC and DBR mirrors. This gap impacts the optomechanical coupling strength
and character as it will modify the coupling strength between the PhC guided mode and the
Fabry-Perot mode. This gap could be tuned in-situ in a monolithic structure by using electrostatic
tuning as is done, for example, in VCSELs [71–73], or could be realized by the growth of wafers
with varying sacrificial layer thickness. Alternatively, a change of the parameters of the PhC
pattern will impact the strength of the couplings as well and could be used for a systematic study
thereof.

5. Conclusions and outlook

We demonstrated an on-chip free-space optomechanical microcavity of sub-wavelength length
monolithically fabricated from an (Al,Ga)As heterostructure. We showed the tunability of the
cavity resonance wavelength by a simple change of the radius of the PhC holes. We found that
the microcavity mode and transmissive modes of the DBR can strongly couple, which may
offer new applications in the field of optomechancis, for example, by incorporating active lasing
materials within the DBR. The interplay between the Fabry-Perot mode and the guided resonance
of the suspended PhC resulted in a modified optomechanical response, which we modeled by
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accounting for dispersive and dissipative optomechanical couplings. Future studies with variable
gaps are required to separate these couplings clearly from each other.

The presented optomechanical microcavity is amenable for optomechanical state preparation
protocols, such as efficient cooling [38] or squeezed mechanical state generation [74]. The latter
protocol exploits the ultrastrong coupling regime [75], which our microcavity accesses, but any
effects of that regime are currently masked by the large optical decay rate. Our approach allows for
a smooth integration of multiple suspended PhC slabs and, thus, the realization of multi-element
optomechanics [76] on chip, which has been proposed to achieve the elusive single-photon strong
coupling regime [77,78]. Additionally, our approach would enable the realization of arrays of
optomechanical microcavities on a single chip with applications in sensing and optical networks
[20]. Finally, by use of the concept of bound states in the continuum realized with multiple
PhC slabs [37], it is possible to drastically reduce optical loss, which is the current roadblock in
achieving strong optomechanical coupling physics.
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