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Polymer thin films with thickness below 100 nm are a fascinating class of 2D materials with
commercial and research applications in many branches ranging from coatings to
photoresists and insulating materials, to mention just a few uses. Biopolymers have
extended the scope of polymer thin films with unique materials such as cellulose,
cellulose nanocrystals, cellulose nanofibrils with tunable water uptake, crystallinity and
optical properties. The key information needed in thin biopolymer film use and research is
film thickness. It is often challenging to determine precisely and hence several techniques
and their combinations are used. Additional challenges with hydrophilic biopolymers such
as cellulose are the presence of humidity and the soft and often heterogenous structure of
the films. This minireview summarizes currently used methods and techniques for
biopolymer thin film thickness analysis and outlines challenges for accurate and
reproducible characterization. Cellulose is chosen as the representative biopolymer.
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INTRODUCTION

The most relevant biopolymer used in thin film preparation is probably cellulose. Cellulose can be
manufactured into thin films from solutions either by direct dissolution (Fält et al., 2004; Kargl et al.,
2015; Lu et al., 2020) or by the use of soluble cellulose derivatives that are converted to cellulose after
processing (Schaub et al., 1993; Kontturi et al., 2003; Kontturi et al., 2007) as well as from particle
suspensions (Edgar and Gray, 2003; Kontturi et al., 2007; Ahola et al., 2008; Aulin et al., 2009;
Niinivaara et al., 2016). While preparative aspects are still under scientific research (Kontturi et al.,
2006; Kargl et al., 2015; Weißl et al., 2018; Weißl et al., 2019a), the past years were dominated by a
quest for applications of these films in optics, catalysis, photoresists and as biosensors (Kontturi and
Spirk, 2019; Raghuwanshi and Garnier, 2019). The main advantage of cellulose thin films compared
to 3D materials is that the chemistry, morphology, and optical properties can be tuned by the
preparation conditions and choice of cellulose materials. As cellulose thin films are among the most
used biopolymer thin films, they are employed as the demonstrator of thickness analysis in this
Minireview. However, the analytical techniques and the challenges involved are applicable to many
other biopolymer films such as chitin (Kittle et al., 2012), chitosan (Spirk et al., 2013), lignin
(Norgren et al., 2006; Tammelin et al., 2006), and the vastly growing field of thin films targeted for
creating model biointerfaces (Raghuwanshi and Garnier, 2019) for protein cell interaction studies
(Manini et al., 2020) and properties of DNA (Sun et al., 2014).
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The film thickness of thin films is often decisive for their
properties. It is also required for deriving many of the essential
other properties of thin films such as quantitative comparative
analysis of adsorption on and swelling of the films. An inaccurate
thickness value leads to discrepancy in the further calculated
parameters and hence, film thickness requires accurate
determination. This minireview presents the currently employed
methods for polymer thin film thickness determination with focus
on biopolymer thin films with thickness less than 100 nm.

BIOPOLYMER THIN FILM THICKNESS
DETERMINATION

What should be kept in mind with control and determination of
thickness is that almost always it is accompanied by visualization
of the film structure to judge film evenness. In addition to
establishing how the appearance of the film is, indeed,
knowledge of either intentional or unintentional contours and
roughness on film surface is essential to accompany film thickness
determination since conformation in larger length scale than the
film thickness reflects on the thickness values retrieved.

Visualization and Tracking of Topography
on a Substrate
Oftentimes, a high resolution electron microscope and imaging of a
film cross-section can be adequate to retrieve a thickness value as
demonstrated for 150 nm thick cellulose films (Puspasari et al., 2015).
However, only a few examples are available for cross-sectional
analysis of thinner biopolymer films for mere film thickness
determination due to laborious sample preparation (Weißl et al.,
2019b), low contrast of most of organic matter in electron
microscopy, and its tendency to decompose in an electron beam.
Indeed, the most used tool for a thin film thickness measurement is a
stylus profilometer that tracks the surface conformation by
mechanically moving a stylus across the film substrate and
monitoring the force applied (Niegelhell et al., 2016b; Niegelhell
et al., 2017; Weißl et al., 2018). For recording film thickness,
scratching of the film on the substrate allows creation of a
contour of the substrate, and the film and the height difference
between the substrate and the film surface ismonitored (Siderov et al.,
2013). The force andmaterial applied to scratch the film is important,
as it is crucial not to indent the substrate. Another known challenge is
that when the contour is analyzed by recording the morphology,
contact is required with the surface in the measurement and it can
destruct a soft film and alter the recorded value of thickness.

Similar to the profilometry, atomic force microscopy (AFM) is
used for thickness determination by analysis of height profiles as
shown for dry and for wet cellulose films (Fält et al., 2004; Ganner
et al., 2015; Reid et al., 2016). Disadvantage of the scratch method
here as well is the potential damaging of the substrate and hence
affecting the thickness value. Indeed, when using razor blade for
scratching, a 1–2 nm penetration also to the substrate when
determining thickness of cellulose films, has been found (Fält
et al., 2004). To circumvent this, polymer film thickness can be
determined by controlling the loading force of the AFM tip on

film surfaces, scratching the film with the tip and recording the
height profile (Ton-That et al., 2000). Prior to extraction of the
height profile from AFM analysis, it is vital to apply corrections to
the image to account for the plane tilt and scanner movements
(Canale et al., 2011).

Sarfus Technique
Sarfus is a setup where an optical microscope in cross-
polarization mode is used in conjunction with specific
substrates, so called surfs. The surfs consist of a silicon
substrate with a top coating that does not polarize light on
reflection and therefore leads to a signal enhancement of the
film attached to that layer (Chiang and Yang, 2011). In
combination with the use of a calibration standard, layer
thicknesses down to 0.3 nm can be determined. The method
can also be used in combination with scratching the surface, to
further reduce potential experimental errors. An example where
the method has been used to visualize biopolymer samples are
chitosan—silane hybrid thin films (Figure 1) (Spirk et al., 2013).
Layer thicknesses in the range between 8 and 100 nm were
analyzed with this fast technique with high throughput.

Quartz Crystal Microbalance with
Dissipation Monitoring
QCM-D is a gravimetric method to determine deposited mass on
a substrate. The detection is based on a change in the resonance
frequency of the sensor when its mass changes by deposition of a
thin film. Furthermore, the adsorption and desorption of
molecules on such films can be studied (Reviakine et al.,
2011). The Sauerbrey equation (1959) (Equation 1) is used for
mass (Δm) determination for rigid films and requires input of
change in frequency Δf, overtone number n, crystal sensor
specific constant C (ng cm−2 Hz−1).

Δm � −CΔf
n

(1)

QCM-D has been utilized to determine thickness of cellulose
thin films by calculating the mass of the film via Eq. 1 using the
changes in frequency response before and after deposition of a
cellulose layer on the QCM-D sensor (Peresin et al., 2012;
Tammelin et al., 2015; Palasingh et al., 2021). This mass
together with an input value of (assumed) density, ρ, is then
used to extract film thickness (d) according to Eq. 2:

d � Δm
ρ

(2)

Mohan et al. (2012) used the QCM-D thickness determination
method for trimethylsilyl cellulose and cellulose films
accompanied by density values that were determined by X-ray
reflectivity (XRR) to 1.0 and 1.5 g cm−3, respectively.

The challenge of the thickness determination using the
resonance frequency before and after the film deposition is
that it is sensitive to contamination that may take place when
the sensor is removed, coated, and inserted again into the surface
sensitive device. Another advantage of the QCM-D method is
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that also changes of layer thickness by swelling either via gas
phase (humidity) or liquid water can be tracked (Niinivaara et al.,
2016).

However, soft systems with dissipation >0 are sensitive to
viscoelastic properties and the Sauerbrey equation is inadequate
to represent the film mass. The Voigt model is a viscoelastic
model applied for analysis of viscoelastic systems in QCM-D
(Reviakine et al., 2011). The model accounts for viscosity and
elasticity of the film through complex shear modulus (Voinova
et al., 1999), which has been used in analysis of biopolymer films,
for instance, xyloglucan and gums (Eronen et al., 2011),
carboxymethyl cellulose (Eronen et al., 2011; Orelma et al.,
2011) and chitosan (Orelma et al., 2011) on cellulose films.
Further models and guideline for choosing and interpreting
the data can be found in Reviakine et al. (2011) However,
analysis of soft and hydrated biopolymer films using Voigt
model has been shown to deviate from values from surface
plasmon resonance (SPR) (Mohan et al., 2014) that is
considered to be a direct analysis to gain value for film mass.
Hence, the latter is often the method of choice over QCM-Dwhen
it comes to determination of thickness.

Surface Plasmon Resonance Spectroscopy
SPR is an optical technique that relies on the interaction of light
with surface plasmons that are present on metal surfaces. In a
typical setup, the incident light beam’s angle is varied, and the

intensity of the reflected light is recorded. At a specific angle, the
intensity of the reflected light has a minimum as the plasmons
resonate. Under resonance conditions, the surface plasmons react
sensitive towards changes of their environment, i.e., permittivity
of the surrounding media (e.g., solvent, film). This also applies
when additional layers or molecules are added via adsorption
measurements in situ as they trigger changes in the permittivity of
the entire thin film assembly (Jung et al., 1998). However, as it is a
surface sensitive phenomenon, typically films with layer
thicknesses larger than one micron cannot be analyzed. The
phenomenon can be explained by classic physics as shown in
Eq. 3 where w is the angular frequency, c is the speed of light in
vacuum, εo is the permittivity of refractive element (prism), θc is
the incident angle and ε1 and ε2 are the permittivity of the
ambient medium and the metal surface.

ω

c

��
ε0

√
sin(θc) � ω

c

������
ε1ε2

ε1 + ε2

√
(3)

The main information that can be extracted from such SPR
curves is the refractive index and the layer thickness, with
resolution limits in the submonolayer regime (Niegelhell et al.,
2016a) by employing multi-layer fitting on the basis of the Fresnel
equations. These fitting procedures yield a set of continuous layer
thickness-refractive index pairs, whose unique solution requires
either the use of a multi wavelength setup (multi-color method)

FIGURE 1 | Left: microscope images (20× magnification, 200 × 200 μm) of chitosan–silane hybrids prepared by spin-coating. The scratch in the middle of the
images has beenmade using a cannula.Right: height profiles (nm) of these layers determined by Sarfus. Reprinted from Spirk et al. (2013), with permission from Elsevier.
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or to investigate the film in different media [two media approach
(Peterlinz and Georgiadis, 1996)]. In adsorption conditions, also
the kinetics of layer growth/molecules adsorption can be observed
in situ using SPR, with the advantage that the layer thickness
determination is not influenced by the softness of the films. If the
refractive index increment dn/dc is known, the de Fejter equation
Eq. 4 can be directly used to determine the amount of adsorbed
materials (Γ) from the shift in the surface plasmon resonance
angle (Δθ) without applying multi-layer fitting procedure (k and
dp are instrument constants) (De Feijter et al., 1978).

Γ � ΔΘ × k × dp

dn/dc
(4)

Via the density of the adsorbed compounds, the layer
thickness can then be easily evaluated. In principle also the
density can be determined at the interfaces. Sampl et al.
(2019) showed that the outermost layer of cellulose thin films
(3 nm) has a different refractive index and density than the bulk
film. Combining SPR with QCM-D, swelling studies can be
performed that allow the monitoring of water uptake inside
different biopolymer thin films (Kontturi et al., 2013).

Ellipsometry
Ellipsometry is used to determine optical constants and thickness
of a material (Azzam et al., 1978). It measures change in
polarization of reflected or transmitted light. Upon reflection
at a plane surface, linearly polarized radiation generally becomes
elliptically polarized. Its polarization state can be described by
two ellipsometry parameters: amplitude ratio (Ψ) and phase shift
difference (Δ) of two mutually orthogonal polarized components
of the reflected waves. The change in polarization is the
ellipsometry measurement, commonly written as:

ρ � tan(ψ)eiΔ (5)

The measured Ψ and Δ cannot be converted directly into the
optical constants of the material but requires modeling.
Description of some models for thin biological films can be
found in Arwin (2000). When a suitable model is chosen, the
ellipsometry data are fitted to the model. The optical models give
then the complex refractive indices ñ (Eq. 5) that is expressed as
the sum of n and extinction coefficient (k), and finally film
thickness.

ñ � n + ik (6)

Typically, for enabling the measurement the surfaces must be
light reflecting, and the film has no (or low) light absorption or
the complex refractive index of the film is known (Tengvall et al.,
1998). When the refractive index of the material is known, the
determination of thickness is simple (Tengvall et al., 1998; Höök
et al., 2002). In some cases, when refractive index is unknown,
measuring at multiple wavelengths (spectroscopic ellipsometry)
can provide both refractive index and thickness. The thickness
determination of thin films requires building a multilayer model
that includes the substrate, e.g., silicon, silicon dioxide,
biopolymer layer and air and is often performed using
commercial software with embedded models and for example,

using refractive indices of the known layer materials and iterative
fitting [e.g., (Eriksson et al., 2007)].

Reflectometry
Reflectance using X-rays (XXR) (Foster et al., 1990; Kontturi and
Lankinen, 2010), neutrons (Thomas and Penfold, 1996) and light
(Buron et al., 2006; Cranston and Gray, 2008) have been used for
thin film characterization, among them thickness or change in
thickness. The analysis of thin films is based on an incident beam
that penetrates to the sample reaching to regions that have
different refractive indices, e.g., at a film-substrate interface.
The beam is reflected from the interfaces and interference
produces a Fresnel reflectance pattern. The ratios of heights of
the maxima in the pattern relate to film thickness and interface
width and hence lead to possibility to resolve film thicknesses.
(Foster et al., 1990). The periodicity of the oscillation is inversely
proportional to the film thickness. Lu et al. (2020) have analyzed
cellulose thin films (8–88 nm) using XRR. X-ray reflectivity can
be also assessed to observe a response of cellulose thin films upon
humidity variations. In such experiments, the films are placed in
humidity chambers that have windows for the X-ray beams.
Figure 2 shows such results of cellulose thin films whose
thickness increased from 45 to 52 nm when humidity
increased from 0 to 70% (Figure 2A). Figure 2B shows that
XRR yields also different densities for the bulk layer and the layer
that is exposed to the air interface.

DISCUSSION

Film Thickness Value is Essential for
Determining Other Properties
An estimation of film thickness is valuable for many purposes
but an utmost necessity for some analyses. Hydration and
swelling of hydrophilic biopolymers direct many of their
properties and already in ambient conditions they interact
with humidity. Craig and Plunkett (2003) pioneered a solvent
exchange method to determine water in polyelectrolyte thin
films. Kittle et al. (2011) applied the method to determine
amount of water (Γwater) in cellulose thin films (Eq. 7) by
exchange of water to heavy water (D2O) and utilizing the
density difference for determining the amount of water in a
layer, according to Eq. 8.

Γwater � − C(Δf
n
)

water

(7)

(Δf
n
)

water

�
(Δfn )film − (Δfn )bare(ρD2O

ρH2O
) − 1

(8)

Where ρD2O
and ρH2O

are the densities of D2O and H2O,
respectively. The (Δf/n) water is then be used to determine the
water concentration in the film. The method has recently been
used for determination of water content in polyelectrolyte
multilayers (Kittle et al., 2021). The film thickness affects the
amount of bound water and needs to be known to enable
direct quantitative comparison. Furthermore, the film
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thickness has been shown to affect, e.g., adsorption of
xyloglucan on cellulose films (Kittle et al., 2018). Also SPR
has been used for swelling determination by utilizing the
inverse proportionality of volume and optical intensity
(Erdoğan et al., 2008). However, also in this case, the film
thickness was determined independently using ellipsometry.
The power of combined methods.

The mostly used methods for determining thin film thickness are
tracking conformation (profilometry, AFM), XRR, SPR, QCM-D
and ellipsometry (Figure 3). Each of the method have their benefit
but also a challenge. AFM and profilometry thickness determination
requires scratching of the film that may lead to an artifact of also
changing the substrate. The measurement itself may also be affected
if the film is deformed by the stylus or AFM tip. Thickness analysis of
films with QCM-D is non-destructive, however a challenge is that
often the film is formed in a spin coating or other device that requires
measurement of the sensor before deposition and after and is a
source for an artifact for this gravimetric method. Another challenge
arises from that a density value is needed for calculating thickness
and in the case only an estimate is available, decreases accuracy. SPR,
ellipsometry and XRR are non-destructive methods which allow for

extremely precise film thickness determination (±0.1 nm). They also
provide additional information on film structure (XRR: roughness,
density) and optical constants (SPR, ellipsometry: refractive indices).
Their drawback is that the required modelling procedures are more
laborious than, e.g., measuring a step height of a scratched surface
using AFM.

The coupling of methods may give rise to additional
information, particularly if, e.g., QCM-D and SPR are coupled,
when exploring swollen films. This allows to determine the water
content of the films. Another example was described by Gesang
et al. (1995) who compared AFM and ellipsometry analysis of
synthetic organic films. They pointed out that the areas
investigated by ellipsometry and AFM are very different, the
ellipsometry reaching about 2–3 mm2 (the exact value depending
on the angle and focus of incident light), and the AFM thickness
determination being local with the step height assigned to smaller
areas, such as in hundreds of nanometers up to microns in frame
dimensions. Discrepancy was detected above film thicknesses of
10 nm between ellipsometry and AFM analysis (smaller values
with AFM), likely to be due to the restriction of AFM to measure
large steps in height. The study used a scratched square to reveal
the substrate and identified two sources of potential error: the
square created by AFM tip can be that the tip cannot penetrate the
film fully during scanning square formation. Other artifact can be
that the tip cannot reach the bottom of the scanning square
during imaging (Gesang et al., 1995). However, the AFM was
rewarded to be potentially very accurate technique that does not
rely on models and hence valuable for further development of
models for ellipsometry. Also Mykhaylyk et al. (2007) suggest
AFM techniques valuable for thickness determination, for cross-
checking an ellipsometric thickness obtained from an assumed
value of the thin-film refractive index, or for determination of
unknown thin-film optical parameters when combined with
ellipsometry measurements. They investigated polystyrene
films on silicon substrates and found good agreement between
AFM and ellipsometry in the 80–130 nm thickness range. The
complementarity of ellipsometry and AFM has also been pointed
out in that AFM provides the topographical details that are
challenging to access with ellipsometry (Siqueira et al., 1995;
Kosaka et al., 2005). Cranston and Gray (2008) compared
cellulose nanocrystal film thicknesses using scratch-height
analysis with AFM, ellipsometry, wavelength-dependent optical
reflectometry and angle-dependent optical reflectometry and
recorded 191 ± 4, 184 ± 2, 195, and 174 ± 11 nm, respectively
for 10 bilayers. The wavelength-dependent optical reflectometry
values for film thickness were consistently larger than the other
methods and was denoted to be due to the homogeneous film
model that may not represent the real film configuration.

The Soft and Heterogenous Biopolymer
Films—An Added Challenge
It seems that the often present structure, configuration, and
roughness that lead to heterogeneous films are generally
sources of uncertainty in the film thickness analysis. Some
techniques are facile to identify surface roughness and
thickness, e.g., AFM. While in other techniques, the film is

FIGURE 2 | (A) XRR curves of a cellulose thin film on a silicon water at
different humidities and (B) the resulting density profiles at 0% relative
humidity. Reproduced with permission (CC BY) from Sampl et al. (2019).
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modeled as a homogeneous structure and lead to discrepancy with the
reality. The ability to swell and film porosity as well require attention
when embarking in biopolymer thin film thickness determination.
Error from swelling and change in free volume is challenging to
account for. For example, on the case of the methods requiring a
density input, this becomes a variable. Similarly, with changing
volume fraction, the refractive index is modulated. Humidity is a
challenge in layer thickness determination of biopolymer thin films in
general. Care needs to be taken so that values are given either at a
specific humidity or over a wide range of humidity levels to provide
reproducible thin film data.

CONCLUSION

Profilometry and AFM are direct methods relying on analysis of the
height difference between film and substrate surface that is defined to
be the film thickness. The methods are commonly applied to study
dry films but can also probe wet films. Ellipsometry is the most
common non-destructive method for film thickness determination
and does not suffer from the threat of damaging surface as is possible
when preparing an intend or scratch for the AFM and profilometry.
However, ellipsometry requires information about refractive index
to aid easy determination of film thickness or use of spectroscopic
ellipsometry to measure on multiple wavelengths and then use of
iterative fitting to output both refractive index and film thickness.
The exact refractive index of many biopolymers is not available, or
the literature values may be inaccurate due to variation in the

compound structure and composition batch to batch and choice
of liberation method. It seems that use of either ellipsometry or
AFM/profilometry alone, leaves room for significant error and hence
using several methods instead of relying on one should be
considered. The surface sensitive analytics QCM-D and SPR are
also rather simple techniques for thickness determination. However,
it should be kept in mind that unless the values for density and
refractive index increment, are known, the calculated values are
estimations. The most accurate technique is probably XRR as it
enables resolution in the sub-nm regime. It yields density and
thickness of the layers and does not require extensive modelling
of the thin films. A disadvantage, however, is the cost of an XRR
system that exceeds those of, e.g., profilometry.
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