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We identify the standard weighted Bergman kernels of spaces 
of nearly holomorphic functions, in the sense of Shimura, 
on bounded symmetric domains. This also yields a descrip-
tion of the analogous kernels for spaces of “invariantly-
polyanalytic” functions — a generalization of the ordinary 
polyanalytic functions on the ball which seems to be the most 
appropriate one from the point of view of holomorphic invari-
ance. In both cases, the kernels turn out to be given by certain 
spherical functions, or equivalently Heckman-Opdam hyper-
geometric functions, and a conjecture relating some of these 
to a Faraut-Koranyi hypergeometric function is formulated 
based on the study of low rank situations. Finally, analogous 
results are established also for compact Hermitian symmet-
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ric spaces, where explicit formulas in terms of multivariable 
Jacobi polynomials are given.
© 2023 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY license (http://
creativecommons .org /licenses /by /4 .0/).

1. Introduction

Let Ω be an irreducible bounded symmetric domain in Cd, d ≥ 1, in its Harish-
Chandra realization, and denote by p its genus and by h(z, w) the associated Jordan 
triple determinant, which is a holomorphic polynomial in z and w on Cd. The standard 
weighted Bergman spaces on Ω are the spaces

Aν(Ω) ≡ Aν := L2(Ω, dμν) ∩ O(Ω) (1)

of all holomorphic functions on Ω square-integrable with respect to the measure

dμν(z) := h(z, z)ν−p dz, (2)

where dz stands for the Lebesgue measure. It is well known that Aν is nontrivial if and 
only if ν > p − 1, and in that case Aν possesses a reproducing kernel — the weighted 
Bergman kernel — given by

Kν(z, w) = cνh(z, w)−ν , (3)

where cν = 1/μν(Ω) is a constant which can be evaluated explicitly.
For any φ ∈ Aut(Ω), the group of all biholomorphic self-maps of Ω, the Jordan triple 

determinant satisfies the transformation rule

h(φz, φw) = h(a, a)h(z, w)
h(z, a)h(a,w) , a = φ−10. (4)

(We will mostly write just φz instead of φ(z).) It follows that the Riemannian metric

ds2 = −
d∑

j,k=1

∂2 log h(z, z)
∂zj∂zk

(5)

is invariant under Aut(Ω). Recall now that, quite generally, for an arbitrary Kähler 
manifold Ω with Kähler metric ds2 =

∑
j,k gjk dzj dzk, the invariant Cauchy-Riemann 

operator D, introduced by Peetre [23], is the map from functions into vector fields of 
type (1,0) defined by

Df = (Df)j ∂
, (Df)j = glj∂lf,
∂zj

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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where we have started to employ the Einstein summation convention, and also to write 
for brevity ∂l := ∂/∂zl; namely, it is the ∂ operator combined with the Riesz lemma 
identifying (0,1)-forms with vector fields of type (1,0). Here gkj is the inverse matrix 
to gjk. One can iterate this construction and set, for m = 1, 2, . . . ,

(Dmf)km...k1 = glmkm∂lm . . . gl2k2∂l2g
l1k1∂l1f.

It turns out that the tensor field (Dmf)km...k1 is symmetric in the indices k1, . . . , km
[23], and in fact coincides with the contravariant derivative f/k1...km with respect to the 
Hermitian connection [12]. The m-th Cauchy-Riemann space Nm [13], or the space of 
nearly holomorphic functions of order m, is, by definition, the kernel of Dm:

Nm(Ω) ≡ Nm := {f ∈ C∞(Ω) : Dmf = 0 on Ω}.

An alternative definition is due to Shimura [28]: Nm is the vector space of all functions 
on Ω that can (locally) be written as polynomials of degree < m in the derivatives ∂jΨ, 
with holomorphic coefficients, where Ψ is a (local) potential for the Kähler metric, 
i.e. gjk = ∂k∂jΨ. (This space does not depend on the choice of the local potential Ψ.) 
See e.g. Proposition 7 in [13] for a proof of the equivalence of these two definitions.

The above construction applies, in particular, to our bounded symmetric domain Ω
with the invariant metric (5), possessing a global Kähler potential Ψ(z) = − log h(z, z). 
In analogy with (1), we can consider the weighted Bergman spaces of nearly holomorphic 
functions

Nm
ν := L2(Ω, dμν) ∩Nm. (6)

Of course, if m = 1 then N 1 = O(Ω) and N 1
ν = Aν for any ν.

For the simplest bounded symmetric domain Ω = Bd, the unit ball of Cd, d ≥ 1, the 
Jordan triple determinant is given simply by h(z, w) = 1 − 〈z, w〉, so that Ψj = zj

1−|z|2 . 
Nearly holomorphic functions of order m on Bd are thus precisely the polynomials of 
degree ≤ m − 1 in (1 − |z|2)−1z, with holomorphic coefficients. In other words,

Nm(Bd) = (1 − |z|2)1−mPm(Bd), (7)

where Pm(Bd) consists, by definition, of all linear combinations, with holomorphic co-
efficients, of (1 − |z|2)m−1−|α|zα, where α = (α1, . . . , αd) is a multiindex of length 
|α| := α1 + · · · + αd < m; that is, by a simple check, Pm(Bd) consists of all poly-
nomials of degree ≤ m − 1 in z, with holomorphic coefficients. (Indeed, in one direction, 
(1 − |z|2)m−1−|α|zα is clearly a polynomial in z of degree m − 1 with holomorphic coef-
ficients; while in the other direction,

zα = (|z|2 + (1 − |z|2))m−1−|α|zα
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=
m−1−|α|∑

j=0

(
m− 1 − |α|

j

)
|z|2j(1 − |z|2)m−1−|α|−jzα

=
∑

|β|<m−1−|α|

(
m− 1 − |α|

β

)
zβ(1 − |z|2)m−1−|α+β|zα+β

is a linear combination of (1 − |z|2)m−1−|γ|zγ with holomorphic coefficients.) The space 
Pm(Bd) is thus nothing else than the well-known space of m-analytic functions on the 
ball, as studied by many authors. The reproducing kernel of the space

L2(Bd, (1 − |z|2)s dz) ∩ Pq(Bd), s > −1,

was recently found by the second author [32] to be

P q
s+d+1(z, w) := Γ(q + s + d)

πdΓ(q + s)
(1 − 〈w, z〉)q−1

(1 − 〈z, w〉)q+s+d
P

(d,s)
q−1 (1 − 2|φzw|2), (8)

where P (d,s)
n denotes the Jacobi polynomial of degree n with parameters d, s, and φz ∈

Aut(Bd) is the biholomorphic self-map of Bd interchanging z and the origin. Returning 
to our general bounded symmetric domain Ω, we are thus led to define, by analogy 
with (7), the space of invariantly polyanalytic functions of order m on Ω as

Pm(Ω) ≡ Pm := h(z, z)m−1Nm, (9)

and consider the corresponding weighted Bergman spaces

Pm
ν := L2(Ω, dμν) ∩ Pm. (10)

Our aim in this paper is to find the reproducing kernels Nm
ν and Pm

ν of the spaces Nm
ν

and Pm
ν , respectively, thus generalizing the formulas (3) (which corresponds to m = 1) 

and (8) (which corresponds to Ω = Bd).
On an abstract level, the answer is given by the group representation theory, more 

specifically, by the Plancherel formula for certain representations of the identity con-
nected component G of the automorphism group Aut(Ω) of Ω. Namely, from the fact 
that Dm

f is a tensor, it follows that the action of G by composition preserves the 
space Nm; in other words,

f 	−→ f ◦ φ−1, f ∈ Nm, φ ∈ G,

is a representation of G on Nm. In combination with the transformation rule for μν ,

dμν(φz) =
∣∣∣h(a, a)ν/2

ν

∣∣∣2 dμν(z), a = φ−10, φ ∈ G, (11)

h(z, a)
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which follows from (4), this implies that

f 	−→ h(a, a)ν/2

h(z, a)ν f ◦ φ−1, a = φ0, φ ∈ G, (12)

is a projective unitary representation of G on Nm
ν . It is now a result of the third author 

[35] that for each m = 1, 2, . . . , Nm
ν comes as an orthogonal direct sum of irreducible 

components which can be identified with certain so-called relative discrete series repre-
sentations of G. Finally, a general Plancherel formula of Shimeno [27], applied to these 
representations, implies that the reproducing kernel at the origin of each of these ir-
reducible components must be a constant multiple of φλ,�, the spherical function of G
with parameter � (describing the representation, actually � = ν) and weight λ (uniquely 
associated to each of the irreducible components). In this way, the reproducing kernel 
Nm

ν is thus expressed as a finite sum of terms involving spherical functions. (For the 
particular case of Ω = Bd, this expression was obtained in [33].)

Recoursing to the available theory of multivariable special functions (see e.g. 
Anker [1]), the spherical functions φλ,� can also be expressed as Heckman-Opdam hy-
pergeometric functions, or, if one wishes, as multivariable Jacobi polynomials of Debiard 
[8] (and many other authors). For instance, the result for Bd from [33] just mentioned 
reads

Nm
s+d+1(z, w) = kms+d+1(|φwz|2)

with

kms+d+1(t) :=
m−1∑
l=0

cl(s)2F1

(−l, l − s− 1
d

∣∣∣ t

t− 1

)
, (13)

where

cl(s) = (s− 2l + 1)Γ(s + d + 1 − l)d
πdl!Γ(s− l + 2) ,

and 2F1 is the ordinary (Gauss) hypergeometric function. On the other hand, from (8) one 
can express Pm

s+d+1 and Nm
s+d+1 in terms of a single Jacobi polynomial P (d,s)

m−1 . Comparing 
both expressions leads (after working out the details) to the equality

(1 − t)q−1
q−1∑
l=0

cl(s + 2q − 2)2F1

(−l, l − s− 2q + 1
d

∣∣∣ t

t− 1

)
= Γ(q + s + d)

πdΓ(q + s) P
(d,s)
q−1 (1 − 2t).

(14)
It is amusing to prove this (valid) formula directly (cf. Lemma 33 below); note that

P (d,s)
n (1 − 2t) =

(
n + d

)
2F1

(−n, n + 1 + s + d
d + 1

∣∣∣t). (15)

d
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Performing explicit computer calculations for rank 2 and rank 3 bounded symmetric do-
mains indicates that, analogously to the rank 1 situation just described, even for general 
bounded symmetric domains the kernels Nm

ν and Pm
ν can in some cases be expressed 

not only as a finite sum of terms involving Heckman-Opdam hypergeometric functions, 
but actually as a constant multiple of a single special function, namely a hypergeometric 
function of Faraut and Koranyi [14] with certain parameters. We offer a conjecture to 
this effect, together with some consequences that would follow; the latter include rela-
tions among the two kinds of hypergeometric functions, as well as a generalization of a 
theorem of Helgason [16, Theorem V.4.5] describing, in effect, the reproducing kernel for 
a certain space of radial functions on the complex projective space CP d.

The paper is organized as follows. Section 2 contains the necessary background ma-
terial on bounded symmetric domains. Section 3 lists some elementary facts about the 
kernels Nm

ν and Pm
ν and discusses radial nearly-holomorphic functions, which are relevant 

for the sequel. The expressions for Nm
ν in terms of spherical functions and Heckman-

Opdam hypergeometric functions are presented in Section 4. Section 5 describes the 
computations for particular bounded symmetric domains and the resulting conjectures 
mentioned above. The final section, Section 6, briefly treats also the dual case of compact 
Hermitian symmetric spaces.

2. Prerequisites on bounded symmetric domains

Throughout the rest of this paper, Ω will be an irreducible bounded symmetric domain 
in Cd in its Harish-Chandra realization (i.e. a Cartan domain). We denote by G the 
identity connected component of the group Aut(Ω) of all biholomorphic self-maps of Ω, 
and by K the stabilizer in G of the origin 0 ∈ Ω. Then K consists precisely of the unitary 
maps on Cd that preserve Ω, and Ω is isomorphic to the coset space G/K. We further 
denote by r, a, b and p the rank, the characteristic multiplicities and the genus of Ω, 
respectively, so that

p = (r − 1)a + b + 2, d = r(r − 1)
2 a + rb + r. (16)

If b = 0, Ω is said to be of tube type.
Irreducible bounded symmetric domains were completely classified by E. Cartan. 

There are four infinite series of such domains plus two exceptional domains in C16 and 
C27. For future reference, we include a table with brief descriptions of these domains and 
with the corresponding values of r, a, b, p and d. The symbol O stands for the division 
algebra of octonions.

The unit balls Bd = I1d are the only bounded symmetric domains of rank 1, and the 
only bounded symmetric domain with smooth boundary.

For x ∈ Ω, φx will denote the (unique) geodesic symmetry which interchanges x and 
the origin, i.e.
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Domain Description

Imn Z ∈ Cm×n: ‖Z‖Cn→Cm < 1 n ≥ m ≥ 1
r = m, a = 2, b = n − m, p = n + m, d = mn

IIn Z ∈ Inn, Z = Zt n ≥ 2
r = n, a = 1, b = 0, p = n + 1, d = 1

2n(n + 1)

IIIm Z ∈ Imm, Z = −Zt m ≥ 5
r = [m2 ], a = 4, b = 2(m − 2r), p = 2m − 2, d = 1

2m(m − 1)

IVn Z ∈ Cn×1, |ZtZ| < 1, 1 + |ZtZ|2 − 2Z∗Z > 0 n ≥ 5
r = 2, a = n − 2, b = 0, p = d = n

V Z ∈ O1×2, ‖Z‖ < 1
r = 2, a = 6, b = 4, p = 12, d = 16

VI Z ∈ O3×3, Z = Z∗, ‖Z‖ < 1
r = 3, a = 8, b = 0, p = 18, d = 27

φx ◦ φx = id, φx(0) = x, φx(x) = 0, (17)

and φx has only an isolated fixed-point. (In fact, φx has only one fixed point, namely the 
geodesic mid-point between 0 and x.) Note that from the definition of K it is immediate 
that any φ ∈ G is of the form φ = φxk, where k ∈ K and x ∈ Ω. (In fact x = φ(0).)

It is known that the ambient space Cd =: Z possesses a structure of Jordan-Banach 
∗-triple system (or JB*-triple for short) for which Ω is the open unit ball. That is, there 
exists a Jordan triple product

{·, ·, ·} : Z × Z × Z → Z, x, y, z 	→ {x, y, z},

(linear and symmetric in x, z and anti-linear in y) such that

Ω = {z ∈ Z : ‖{z, z, ·}‖ < 1}.

Moreover, if one uses the notation, for x, y ∈ Z,

D(x, y) = {x, y, ·} : Z → Z,

Q(x) = {x, ·, x} : Z → Z,

then for every x ∈ Ω, D(x, x) is Hermitian and has nonnegative spectrum, and iD(x, x)
is a triple derivation. The linear operator

B(x, y) = I − 2D(x, y) + Q(x)Q(y) (18)

on Z is called the Bergman operator.
Two vectors x, y ∈ Z are said to be orthogonal (in the Jordan-theoretic sense) 

if D(x, y) = 0, and a vector v ∈ Z is called a tripotent if {v, v, v} = v. For any tripotent v, 
the ambient space admits the Peirce decomposition
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Z = Z0(v) ⊕ Z1/2(v) ⊕ Z1(v) (19)

into the orthogonal components

Zj/2(v) := {z ∈ Z : D(v, v)z = j

2z}.

(The orthogonality is only with respect to the inner product in Cd, not in the triple-
product (Jordan-theoretic) sense.) Each Zj/2(v) is a subtriple of Z, and Z1(v) is a JB*-
algebra under the product x ◦ y = {xvy}, with unit v and involution z∗ = {vzv}. 
A tripotent v is called minimal if dimZ1(v) = 1. Any maximal set e1, . . . , er of pairwise 
orthogonal minimal tripotents is called a Jordan frame; its cardinality r is independent 
of the frame and equal to the rank r of Ω. For any Jordan frame e1, . . . , er, we similarly 
as above have the joint Peirce decomposition

Z =
⊕

0≤i≤j≤r

Zij (20)

with

Zij = {z ∈ Z : D(ek, ek)z = δik + δjk
2 ∀k = 1, . . . , r}. (21)

Given any Jordan frame e1, . . . , er — which we choose and fix once and for all from 
now on — any z ∈ Z has a polar decomposition

z = k(t1e1 + · · · + trer) (22)

with k ∈ K and t1 ≥ t2 ≥ · · · ≥ tr ≥ 0; the numbers t1, . . . , tr, called the singular 
numbers of z, are determined uniquely, but k need not be (it is if all the tj are distinct). 
Further, z ∈ Ω if and only if t1 < 1, z ∈ ∂Ω if and only if t1 = 1, and z belongs to the 
Shilov boundary ∂eΩ of Ω if and only if t1 = · · · = tr = 1; that is, if and only if z = ke, 
where e = e1 + · · · + er is a maximal tripotent.

Since the Jordan triple product is invariant under K (i.e. {kx, ky, kx} = k{x, y, z}
∀k ∈ K), it is immediate from (21) that under the decomposition (20), the Bergman 
operator B(z, z) with z as in (22) is given by

B(z, z)|Zij
= (1 − t2i )(1 − t2j )I|Zij

(23)

(where t0 := 0).
There exists a unique polynomial h(x, y) on Cd × Cd, holomorphic in x and anti-

holomorphic in y, which is K-invariant, in the sense that

h(kx, ky) = h(x, y) ∀k ∈ K,
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and satisfies

h(z, z) =
r∏

j=1
(1 − t2j ) for z as in (22).

It is known that h(x, y) is irreducible, of degree r in x as well as in y, and h(x, 0) =
h(0, x) = 1 ∀x ∈ Cd; also, h(x, y)p = detB(x, y). Further, the measure

h(z, z)ν−p dz (24)

is finite if and only if ν > p −1, and the corresponding weighted Bergman kernel — i.e. the 
reproducing kernel of the space of all holomorphic functions on Ω square-integrable with 
respect to (24) — is equal to

Kν(x, y) = cνh(x, y)−ν (25)

where

cν = ΓΩ(ν)
πdΓΩ(ν − d

r )
. (26)

Here ΓΩ is the Gindikin-Koecher Gamma function

ΓΩ(ν) :=
r∏

j=1
Γ
(
ν − j − 1

2 a
)
.

In the polar coordinates (22), the measures (24) assume the form

∫
Ω

f(z)h(z, z)ν dz = cΩ

∫
[0,1]r

∫
K

f(k
r∑

j=1

√
tjej) dk dμb,ν,a(t), (27)

where dμb,ν,a is the Selberg measure

dμb,ν,a(t) :=
r∏

j=1
(1 − tj)ν−p

r∏
j=1

tbj
∏

1≤i<j≤r

|ti − tj |a dt, (28)

where dt ≡ dt1 . . . dtr. Here dk is the normalized Haar measure on the (compact) 
group K, and

cΩ =
πdΓ(a2 + 1)r

ΓΩ( ra2 + 1)ΓΩ(dr )
. (29)

Let P denote the vector space of all (holomorphic) polynomials on Cd. We endow P
with the Fock (or Fischer) inner product
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〈f, g〉F : = π−d

∫
Cd

f(z) g(z) e−|z|2 dz

= (f(∂)g∗)(0) = (g∗(∂)f)(0),

(30)

where

g∗(z) := g(z).

This makes P into a pre-Hilbert space, and the action

f 	→ f ◦ k−1, k ∈ K,

is a unitary representation of K on P. It is a deep result of W. Schmid [26] that this 
representation has a multiplicity-free decomposition into irreducibles

P =
⊕
m

Pm

where m ranges over all signatures, i.e. r-tuples m = (m1, m2, . . . , mr) ∈ Zr satisfying 
m1 ≥ m2 ≥ · · · ≥ mr ≥ 0. Polynomials in Pm are homogeneous of degree |m| :=
m1 +m2 + · · ·+mr; in particular, P(0) are the constants and P(1) the linear polynomials. 
Any holomorphic function on Ω thus has a decomposition f =

∑
m fm, fm ∈ Pm, which 

refines the usual homogeneous expansion.
Since the spaces Pm are finite dimensional, they automatically possess a reproducing 

kernel: there exist polynomials Km(x, y) on Cd×Cd, holomorphic in x and y, such that 
for each f ∈ Pm and y ∈ Cd,

f(y) = 〈f,Km(·, y)〉F . (31)

From the definition of the spaces Pm it also follows that the kernels Km(x, y) are K-
invariant.

It is a consequence of Schur’s lemma from representation theory that for any K-
invariant inner product 〈·, ·〉 on P, Pm and Pn are orthogonal if m �= n, while on 
each Pm, 〈·, ·〉 is proportional to 〈·, ·〉F . In particular, for the inner product

〈f, g〉ν := cν

∫
Ω

f(z) g(z) dμν(z) (ν > p− 1),

(with cν as in (25)) we have, for any fm ∈ Pm and gn ∈ Pn,

〈fm, gn〉ν = 〈fm, gn〉F (32)
(ν)m
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(cf. [14]), where (ν)m is the generalized Pochhammer symbol

(ν)m := (ν)m1(ν − a
2 )m2 . . . (ν − r−1

2 a)mr
;

here

(ν)k := ν(ν + 1) . . . (ν + k − 1)
(

= Γ(ν + k)
Γ(ν) if ν �= 0,−1,−2, . . . ,

)

is the ordinary Pochhammer symbol.
A consequence of the relation (32) is the Faraut-Koranyi formula

h(x, y)−ν =
∑
m

(ν)mKm(x, y) (33)

relating the reproducing kernels Kν from (25) and Km from (31).
As already mentioned, the point e = e1 + · · ·+ er belongs to the Shilov boundary ∂eΩ

of Ω. The group K acts transitively on ∂eΩ, so that ∂eΩ = {ke, k ∈ K} � K/L, where 
L is the stabilizer of e in K. Each Peter-Weyl space Pm contains a unique L-invariant 
polynomial φm satisfying the normalization condition φm(e) = 1. We will sometimes 
write just φm(t1, . . . , tr) instead of φm(t1e1 + · · · + trer). These spherical polynomials
φm satisfy φ(0) ≡ 1,

φ(m1+1,m2+1,...,mr+1)(t1, . . . , tr) = t1 · · · tr φm(t1, . . . , tr), (34)

and are related to the reproducing kernels Km by the formula

Km(x, e) = dm

(d/r)m
φm(x), (35)

where dm := dimPm. It is known that the last dimension is given by the formula ([30], 
Lemmas 2.5 and 2.6)

dm = (d/r)m
(qΩ)m

πm

where

qΩ := r − 1
2 a + 1 (36)

and

πm :=
∏ mi −mj + j−i

2 a
j−ia

( j−i+1
2 a)mi−mj

( j−i−1a + 1)mi−mj

. (37)

1≤i<j≤r 2 2
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Thus we may rewrite (35) as

Km(x, e) = πm

(qΩ)m
φm(x). (38)

Combining the last formula with the fact that [14, Lemma 3.2]

Km(
∑
j

tjej ,
∑
j

sjej) = Km(
∑
j

tjsjej , e),

we thus get

Km(k
∑
j

tjej , k
∑
j

tjej) = πm

(qΩ)m
φm(t21, . . . , t2r). (39)

The polynomials φm have also a combinatorial interpretation in terms of Jack symmetric 
polynomials J

(λ)
m with parameter λ (cf. [20], Section 10 of Chapter VI): namely,

φm(t1, . . . , tr) = j−1
m J (2/a)

m (t1, . . . , tr), (40)

where

jm := J (2/a)
m (1, . . . , 1︸ ︷︷ ︸

r

) =
(2
a

)|m|(ra
2

)
m
. (41)

We will usually suppress the superscripts (2/a) in the sequel.
Recall that in any Jordan algebra J with unit v and product x ◦ y an element x is 

called invertible if it has a (necessarily unique) inverse y =: x−1 satisfying x ◦ y = v

and x2 ◦ y = x. In the special case that the Jordan algebra arises as J = Z1(v) for a 
tripotent v of the JB*-triple Z then invertibility of z ∈ J is equivalent to the invertibility 
of the operator Q(z) on J and z−1 = Q(z)−1Q(v)z. In particular, taking the inverse is 
a rational map on J that can be written (see e.g. [30, Chapter 4]) in exact (i.e. reduced) 
form as z−1 = p(z)/N(z), where p : J → J is a polynomial which generalizes the matrix 
adjoint and N : J → C is a polynomial called the determinant polynomial, or Koecher 
norm, of the Jordan algebra. In particular, fixing a Jordan frame e1, . . . , er of Z the 
above applies to the Jordan algebras Z1(e1 + · · · + ej), 1 ≤ j ≤ r; we denote the 
corresponding determinant polynomials by Nj and extend them to all of Z by defining 
Nj(z) := Nj(P (j)

1 (z)), where P (j)
1 is the canonical projection of Z onto Z1(e1 + · · ·+ ej)

given by the Peirce decomposition (19). For a signature m, the conical polynomial Nm

associated with m is

Nm := Nm1−m2
1 Nm2−m3

2 · · ·Nmr
r . (42)

In particular,
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Nm
( r∑
j=1

tjej

)
=

r∏
j=1

t
mj

j .

Each polynomial space Pm is then spanned by Nm ◦ k, k ∈ K. In particular, the conical 
polynomials are related to the spherical polynomials by

φm(z) =
∫
L

Nm(lz) dl,

where dl stands for the normalized Haar measure on L.
Standard references for the material in this section are [2], [19], [14], or [30].

3. Radial nearly holomorphic functions

The following relation between the nearly-holomorphic reproducing kernels Nm
ν and 

the invariantly-polyanalytic reproducing kernels Pm
ν is elementary.

Proposition 1. Pm
ν (z, w) = h(z, z)m−1h(w, w)m−1Nm

ν+2(m−1)(z, w).

Proof. By their very definition (9), the mapping

T : f(z) 	−→ h(z, z)m−1f(z)

is a bijection of Nm onto Pm. By (2), T clearly acts isometrically from L2(Ω, dμν)
into L2(Ω, dμν−2(m−1)), for any ν ∈ R. Thus if {ej(z)}j is an orthonormal basis for 
Nm

ν+2(m−1), then {h(z, z)m−1ej(z)}j will be an orthonormal basis for Pm
ν . Recalling the 

familiar formula for a reproducing kernel in terms of an orthonormal basis

K(z, w) =
∑
j

ej(z)ej(w), (43)

the assertion follows. �
We also readily get a transformation formula for Nm

ν (z, w).

Proposition 2. For any φ ∈ Aut(Ω),

Nm
ν (z, w) = h(a, a)ν

h(z, a)νh(a,w)ν N
m
ν (φz, φw), a := φ−10. (44)

In particular,

Nm
ν (z, w) = h(z, w)−νNm

ν (φwz, 0). (45)
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Proof. Since Dmf is a tensor and φ is just a coordinate change, the kernel Nm of Dm

is automatically invariant under the composition f 	→ f ◦ φ with φ. As already observed 
in the Introduction, it therefore follows from the transformation formula (11) for the 
measure dμν (which formula is in turn a consequence of the transformation rule (4) for 
the Jordan triple determinant, in combination with the fact that the measure dμ0 is 
Aut(Ω)-invariant) that the operator (12) acts unitarily on Nm

ν . Employing again the 
formula (43), we thus obtain

Nm
ν (z, w) = h(a, a)ν

h(z, a)νh(a,w)ν N
m
ν (φ−1z, φ−1w), a := φ0.

Replacing φ by φ−1 yields (44), and taking φ = φw in (44) yields (45). �
Corollary 3. Pm

ν (z, w) = h(w, z)m−1h(z, w)1−m−νPm
ν (φwz, 0).

Proof. Combine the last two propositions. �
We have thus reduced the identification of both Nm

ν and Pm
ν to finding the reproducing 

kernel Nm
ν (z, 0) at zero. Note that by (44),

Nm
ν (kz, 0) = Nm

ν (z, 0) ∀k ∈ K,

where as before K is the stabilizer of the origin 0 ∈ Ω in G = Aut(Ω)0; in other words, 
Nm

ν (·, 0) is a radial function. We now proceed to identify the radial nearly holomorphic 
functions.

Recall that an element z ∈ Cd is called quasi-invertible with respect to another 
element w ∈ Cd if, by definition, the Bergman operator (18) is invertible on Cd, and the 
quasi-inverse zw is then defined as

zw := B(z, w)−1(z −Q(z)w).

Note that zw is holomorphic in z and anti-holomorphic in w. Since detB(z, w) = h(z, w)p
does not vanish on Ω ×Ω, the quasi-inverse zw is, in particular, defined for all z, w ∈ Ω. 
It is now a result of [35, formula (3.2) and Proposition 3.1], that, first of all, D = B(z, z)∂, 
and furthermore

∂Ψ = zz = B(z, z)−1(z −Q(z)z), (46)

where as before ∂Ψ stands for the vector of derivatives ∂jΨ of the Kähler potential 
Ψ(z) = − log h(z, z).

Proposition 4. Radial functions in Nm consist precisely of functions of the form

p(z, zz), (47)
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where p(z, w) is a polynomial in z, w ∈ Cd of degree < m in each argument which is 
K-invariant in the sense that

p(kz, kw) = p(z, w) ∀k ∈ K. (48)

Consequently, the radial functions in Nm are the linear span of Km(z, zz), with |m| < m.

Proof. By (46) and the very definition of nearly-holomorphic functions, any f ∈ Nm is 
of the form

f(z) = p(z, zz),

with p(z, w) holomorphic in z ∈ Ω and a polynomial of degree < m in w. Since elements 
of K are Jordan triple automorphisms, we have kzkw = k(zw) for any k ∈ K, hence

f(kz) = p(kz, k(zz))

with the same p. Thus f is radial if and only if

p(z, zz) = p(kz, kzkz) ∀z ∈ Ω,∀k ∈ K.

The last equality means that, for any fixed k ∈ K, the two holomorphic functions 
p(z, wz) and p(kz, kwkz) of z, w ∈ Ω coincide on the anti-diagonal z = w. By the well-
known uniqueness principle [7, Proposition II.4.7], they must coincide for all z, w. Since, 
for each fixed z ∈ Ω, the image of Ω under the (non-constant anti-holomorphic) map 
w 	→ wz is a (nonempty) open set and p is a polynomial in the second argument, actually 
p(z, y) = p(kz, ky) for all z ∈ Ω and y ∈ Cd, proving (48). Now it is well known basically 
from Schur’s lemma [3, Proposition 2] that the functions p satisfying (48) are spanned 
by Km(z, w), as m ranges over all signatures. As Km(z, w) is homogeneous of degree 
|m| in both z and w, the proposition follows. �

Thanks to the last proposition, we can reduce the identification of Nm
ν (·, 0) to that of 

the reproducing kernel at 0 of a certain space of symmetric polynomials on Rr (with r, 
as before, denoting the rank of Ω). First of all, denote by Rm

ν the subspace of all radial 
functions in Nm

ν , and let Rm
ν (z, w) be its reproducing kernel. Then

Nm
ν (·, 0) = Rm

ν (·, 0). (49)

Indeed, by the very definition of a reproducing kernel, Rm
ν (·, 0) is the (unique) element 

of Rm
ν which reproduces the value at 0 for all elements of Rm

ν . Now Nm
ν (·, 0) reproduces 

the value at 0 even for all elements of Nm
ν , and belongs to Rm

ν (being radial). So by 
uniqueness, (49) follows.
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Secondly, the space Rm
ν can be described explicitly as follows. For ease of notation, 

let us write for an r-tuple t = (t1, . . . , tr) ∈ Rr
+,

tb :=
r∏

j=1
tbj , (1 − t)ν :=

r∏
j=1

(1 − tj)ν ,
√
t = t1/2,

t

1 − t
:=

( t1
1 − t1

, . . . ,
tr

1 − tr

)
, dt := dt1 . . . dtr,

and so forth, and let dρb,ν,a be the modified Selberg measure

dρb,ν,a(t) := cΩ tb(1 + t)−ν
∏

1≤i<j≤r

|ti − tj |a dt. (50)

Finally, if e1, . . . , er is a fixed Jordan frame, we will write just te for t1e1 + · · · + trer. 
Let Sm be the vector space of all symmetric polynomials of degree < m in r variables, 
denote

Sm
ν := Sm ∩ L2(Rr

+, dρb,ν,a),

and let Sm
ν (x, y) be the reproducing kernel of Sm

ν .

Proposition 5. The mapping V from Sm into functions on Ω given by

V f(k
√
te) := f

( t

1 − t

)
, k ∈ K, t ∈ [0, 1]r, (51)

is a bijection from Sm onto radial functions in Nm. Furthermore, V sends Sm
ν unitarily 

onto Rm
ν , and

Rm
ν (·, 0) = V Sm

ν (·, 0). (52)

Proof. Let z = k
√
te be the polar decomposition of z ∈ Ω. From the formula (23) for 

the action of B(z, z) on the Peirce subspaces (and the similar formula for the action 
of Q(z)), one gets

zz = k

√
t

1 − t
e.

Hence

Km(z, zz) = Km(k
√
te, k

√
t

1−te) = Km( t
1−te, e).

This is, as we have seen in Section 2, up to a constant factor just the Jack symmetric 
polynomial Jm( t

1−t ) in r variables evaluated at t
1−t . Since Jm, |m| < m, span all sym-

metric polynomials of degree < m, by the preceding proposition the radial functions in 
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Nm are precisely those of the form V f , with V as in (51) and f a symmetric polynomial 
of degree < m. This proves the first assertion.

As for the second, we have by (27)

‖V f‖2
L2(dμν) = cΩ

∫
[0,1]r

∣∣∣f( t

1 − t

)∣∣∣2 dμb,ν,a(t). (53)

Making the change of variable tj = xj

1+xj
, x ∈ Rr

+, we have

t

1 − t
= x, dt = (1 + x)−2 dx, tb = xb(1 + x)−b,

(1 − t)ν−p = (1 + x)p−ν , ti − tj = xi − xj

(1 + xi)(1 + xj)
,

implying, by a direct computation using (16), that

cΩ dμb,ν,a(t) = dρb,ν,a(x). (54)

By (53), the second claim follows.
Finally, (52) follows from the general formula (43) (applied to Sm

ν and Rm
ν ), together 

with the fact that under the above change of variables x = t
1−t , the point t = 0 corre-

sponds to x = 0. �
We summarize our findings so far as the main result of this section.

Theorem 6. The reproducing kernels Nm
ν and Pm

ν of the spaces Nm
ν and Pm

ν , respectively, 
are given by

Nm
ν (z, w) = h(z, w)−νNm

ν (φzw, 0),

Pm
ν (z, w) = h(z, z)m−1h(w,w)m−1

h(z, w)ν+2m−2 Nm
ν+2m−2(φwz, 0),

where

Nm
ν (k

√
te, 0) = Sm

ν ( t
1−t , 0),

where Sm
ν is the reproducing kernel of the L2 space of symmetric polynomials of degree 

< m on Rr
+ with respect to the measure (50).

Proof. Combine Propositions 1, 2, 4 and 5, and the formula (49). �
We conclude this section by a simple observation concerning the nontriviality of the 

spaces Nm
ν and Pm

ν .
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Lemma 7. A polynomial P belongs to L2(Rr
+, dρb,ν,a) if and only if its degree in each 

variable is less than (ν − p + 1)/2.

Proof. Let n1 be the degree of P (x) in the variable x1; thus the leading term in the x1
variable is p1(x′)xn1

1 , where the polynomial p1 in the r − 1 variables x′ = (x2, . . . , xr)
is not identically zero. The zero-set of p1 is therefore a variety in Rr−1 of codimension 
at least 1; we can therefore choose a closed ball Q (of positive finite radius) lying wholly 
in {y ∈ Rr−1 : yj �= yk for all j �= k} such that |p1| > 0 on Q. Set R := 1 + sup{‖y‖ :
y ∈ Q}. Then if P ∈ L2(Rr

+, dρb,ν,a), the integral

∞∫
R

∫
Q

|P (x1, x
′)|2 dρb,ν,a(x1, x

′)

has to be finite. However, due to our choice of Q and R, the integrand is � x2n1
1 (uni-

formly in x′), while the measure is � x
b−ν+(r−1)a
1 dx (uniformly in x′). Consequently, 

x
2n1+(r−1)a+b−ν
1 must be integrable at infinity, implying that 2n1 + (r − 1)a + b − ν =

2n1 + p − 2 − ν < −1, or n1 < (ν − p + 1)/2. Similarly, nj < (ν − p + 1)/2 for the degree 
nj of P (x) in the variable xj , j = 1, . . . , r.

Conversely, let P (x) = xn1
1 . . . xnr

r with nj < (ν − p + 1)/2 for all j. Making again the 
change of variable x = t/(1 − t) shows that the L2-norm of P with respect to c−1

Ω dρb,ν,a
equals

∫
[0,1]r

r∏
j=1

(
t
2nj+b
j (1 − tj)ν−p−2nj

) ∏
1≤i<j≤r

|ti − tj |a dt.

The second term in the integrand is bounded (by 1), while the first term yields just the 
product of single-variable integrals

1∫
0

t
2nj+b
j (1 − tj)ν−p−2nj dtj ,

which are finite since 2nj + b > −1 and ν − p − 2nj > −1. �
Proposition 8.

(a) Nm
ν �= {0} if and only if ν > p − 1, and Pm

ν �= {0} if and only if ν > p + 1 − 2m.
(b) Nm

ν \ Nm−1
ν �= {0} if and only if there exists a signature m with |m| = m − 1 and 

m1 < ν−p+1
2 .

(c) In fact, Km(z, zz) ∈ Nm
ν if and only if |m| < m and m1 < ν−p+1

2 .

Proof. (a) If Nm
ν �= {0} then its reproducing kernel is not identically zero; by the last 

theorem, this is equivalent, in turn, to Nm
ν (·, 0) �≡ 0 and Sm

ν (·, 0) �≡ 0. Thus Sm
ν contains 
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a nonzero polynomial p(x) (even one that does not vanish at the origin). By the last 
lemma, necessarily ν − p + 1 > 0, or ν > p − 1.

Conversely, if ν > p − 1, then N 1
ν = Aν is nontrivial (it contains all bounded holo-

morphic functions on Ω), hence so is Nm
ν ⊃ N 1

ν .
This settles the assertion for Nm

ν ; the one for Pm
ν then follows from Proposition 1.

(b) By the same argument as in the proof of part (a), Nm
ν \ Nm−1

ν �= {0} if and 
only if Sm

ν contains a polynomial P whose total degree is m − 1 and whose degree in 
each variable is < ν−p+1

2 . If xα, with α a multiindex, is any monomial in the top degree 
homogeneous component of P , then the nonincreasing rearrangement of α yields the 
desired signature m.

(c) This follows in the same way as for part (b) from the fact that V maps Km(z, zz)
into a (nonzero) constant multiple of the Jack polynomial Jm(x), and Jm(x) is equal to 
the symmetrization of (writing xm := xm1

1 . . . xmr
r )

xm +
∑
n<m

cmnx
n (55)

where the sum is over (some) signatures n smaller than m with respect to the lexico-
graphic order; cf. Mcdonald [20, formula (10.13)]. �
Corollary 9. Rm

ν = span{Km(z, zz) : |m| < m, m1 < ν−p+1
2 }.

In particular, if q denotes the nonnegative integer such that

q <
ν − p + 1

2 ≤ q + 1,

then

Rm
ν = span{Km(z, zz) : |m| < m} if m ≤ q + 1, (56)

Rm
ν = span{Km(z, zz) : m1 ≤ q} if m ≥ rq + 1. (57)

This means that for m ≥ rq + 1, Rm
ν and, hence, Nm

ν equals N rq+1
ν — i.e. the spaces 

Nm
ν “stabilize” and stop growing with m (for fixed ν). Likewise, Nm

ν (z, w) = Nrq+1
ν (z, w)

for all m ≥ rq + 1 if 2q − 1 < ν − p ≤ 2q + 1.

Remark 10. We pause to note that while, clearly,

N 1 ⊂ N 2 ⊂ N 2 ⊂ . . . ,

no such inclusions hold for Pm, except when the rank r = 1. More specifically, for 
r > 1, the function 1 (constant one) belongs to P1, but not to any Pm, m ≥ 2. Indeed, 
1 ∈ Pm ⇐⇒ h(z, z)1−m ∈ Nm, by (9); and by Proposition 4, the latter is equivalent to

(1 − t)1−m =
∑

cmφm( t
1−t )
|m|<m
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with some coefficients cm. Passing again to x = t
1−t , this translates into

(1 + x)m−1 =
∑

|m|<m

cmφm(x). (58)

But by the Faraut-Koranyi formula (33), the left-hand side equals

∑
n

(1 −m)n
πn(−1)|n|

(qΩ)n
φn(x).

Since the φm are linearly independent, (58) can hold only if

(1 −m)n = 0 whenever |n| ≥ m.

However, for n = (m − 1, 1) one has (1 − m)n = (−1)m(m − 1)!(m − 1 + a
2 ) which is 

nonzero. So 1 /∈ Pm for m ≥ 2 if r > 1. �
4. Spherical functions

Any g ∈ G can be uniquely written in the form g = kφw, with w = g−10 ∈ Ω, k ∈ K

and φw the geodesic reflection (17) interchanging 0 and w. This yields the formula for 
the complex Jacobian

Jg(z) = det k · (−1)dh(w,w)p/2

h(z, w)p , (59)

which shows that the projective representation (12) is actually nothing else than

f 	−→ J
ν/p
φ−1 · f ◦ φ−1, φ ∈ G.

In order to make this not only projective but genuine representation if ν/p is not an 
integer, one needs to pass from G to its universal cover G̃. The elements of G̃ can be 
thought of as elements g of G together with a consistent choice of log Jg. The operators

U (ν)
g : f 	−→ J

ν/p
g−1 · f ◦ g−1, g ∈ G̃, (60)

then define a (honest, not only projective) unitary representation of G̃ on L2(Ω, dμν); 
and one has Ω = G̃/K̃, where K̃, the preimage of K under the covering map G̃ → G, 
is the universal cover of K and the stabilizer of 0 ∈ Ω in G̃. (Actually one has K̃ ∼= K×R, 
but we will not need this fact.)

Using (60), one can identify L2(Ω, dμν) with a subspace of L2(G̃/Z(G̃)), the L2 space 
on the quotient of G̃ modulo its center Z(G̃) with respect to a suitably normalized Haar 
measure on G̃. Namely, for f ∈ L2(Ω, dμν), the function f# on G̃ defined by
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f#(g) := f(g0)Jg(0)−ν/p, g ∈ G̃, (61)

satisfies

(U (ν)
g f)# = f# ◦ g−1 (62)

(i.e. the map f 	→ f# intertwines the representation (60) with the left regular represen-
tation of G̃ on L2(G̃)) and

f#(gk) = f#(g)J−ν/p
k , g ∈ G̃, k ∈ K̃. (63)

(Note that Jk ≡ Jk(0) is a constant function, so we will write just Jk instead of Jk(0)
or Jk(z).) Furthermore, f 	→ f# is a unitary isomorphism of L2(Ω, dμν) onto the sub-
space L2(G̃, ν) of all functions in L2(G̃/Z(G̃)) satisfying the transformation rule (63); 
the inverse of the map f 	→ f# is given by F 	→ F 	, where

F 	(g0) := F (g)Jg(0)ν/p (64)

(the right-hand side depends only on g0, thanks to (63)). See Proposition 2.1 in [11] for 
the proof of all these facts. (Note: there is a misprint in the first formula of Section 2 
in [11], the τν there should be τ−ν .)

Using the above identification, one can view also Nm
ν as a subspace of L2(G̃, ν) invari-

ant under the left regular representation (62). Note that radial functions on Ω, i.e. those 
satisfying f(kz) = f(z) for all z ∈ Ω and k ∈ K, correspond to functions f# on G̃
satisfying

f#(k′gk) = J
−ν/p
k′ f#(g)J−ν/p

k , g ∈ G̃, k, k′ ∈ K̃. (65)

Such functions on G̃ are called ν-spherical.
The representation theory for the space L2(G̃, ν) has been developed by Shimeno [27]

(his notation τ−�(k) corresponds to our J−ν/p
k ). (Note that there is a G̃-equivariant 

isomorphism between L2(G̃, ν) and L2(G̃, −ν), so we can always assume that ν > 0 as 
we have started with.) Namely, let G̃ = K̃AN be the Iwasawa decomposition of G̃ and 
let g, k, p and a be the Lie algebras of G (and G̃), K (and K̃), AN and A, respectively, 
so that g = k + p is the Cartan decomposition of g and a ⊂ p is a maximal Abelian 
subspace of p. For g ∈ G̃ let H(g) be the element in the Lie algebra a of A uniquely 
determined by g ∈ K̃ expH(g)N . Similarly, let κ(g) ∈ K̃ be uniquely determined by 
g ∈ κ(g)AN . For λ ∈ a∗C, the complexification of the dual a∗ of a, one defines the 
spherical function φλ,ν of type ν by

φλ,ν(g) :=
∫

˜ ˜
e−(λ+ρ)H(g−1k)J

ν/p
k−1κ(g−1k) dk, (66)
K/Z(G)
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where Z(G̃) denotes the center of G̃, dk is the invariant measure on the quotient K̃/Z(G̃)
with total mass 1, and ρ ∈ a∗ is the half-sum of positive roots (see (72) below). Then 
φλ,ν is a ν-spherical function on G̃, and one defines the spherical Fourier transform f̂ of 
a ν-spherical function f on G̃ by

f̂(λ) :=
∫

G̃/Z(G̃)

f(g)φ−λ,−ν(g) dg, λ ∈ a∗C. (67)

This definition makes sense e.g. whenever f is compactly supported modulo Z(G̃). 
The main result of [27] then states that there is an inversion formula

f(g) =
∫

⋃r
j=0 Dν,j+ia∗

Θj

f̂(λ)φλ,ν(g) dγ(λ)

where Dν,j and a∗Θj
are certain systems of hyperplanes in a∗ and dγ is a certain measure 

on them; and there is also a corresponding Plancherel theorem. See Theorems 6.7 and 6.8 
in [27] for the details. Both Dν,j and a∗Θj

have codimension j in a∗; in particular, for 
j = r, a∗Θr

= {0} and

Dν,r = {λm : m is a signature with m1 < ν−p+1
2 } (68)

where

λm := 1
2

r∑
j=1

λjβj , λr+1−j = p− 1 − ν − (j − 1)a + 2mj . (69)

(Here β1, . . . , βr ∈ a∗ are the long roots of the root system of Ω; see below.) Thus Dν,r is a 
finite discrete set in a∗. Furthermore, the Plancherel measure dγ on Dν,r+ia∗Θr

= Dν,r re-
duces just to a multiple dr(λ, ν)δλ of the Dirac mass at each λ = λm. Here dr(λ, ν) is given 
by an explicit expression involving Γ-functions; see (4.18), (4.19), (4.21) and (6.18) in [27]. 
Altogether, it thus follows that the space Am

ν (G̃) spanned in L2(G̃) by G̃-translates of 
φλm,ν , for each signature m, is an irreducible direct summand of L2(G̃), and as m varies 
these summands are mutually orthogonal. Such summands are called relative discrete 
series representations of G̃. Note that by (68), only signatures m with m1 < ν−p+1

2
occur (in particular, there are no relative discrete series representations if ν ≤ p − 1).

Let

Am
ν (Ω) := {F 	 : F ∈ Am

ν (G̃)}

be the space of functions on Ω corresponding to Am
ν (G̃) via (64). It is then, next, the cen-

tral result of [35] that Am
ν (Ω) is actually a space of nearly holomorphic functions of 

order |m|, and that, as m varies, these spaces exhaust all nearly holomorphic functions. 
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Namely, let Nm be the conical polynomial on Ω from (42); one can then form the compo-
sition Nm(zz) with the quasi-inverse (46), which gives a function on Ω. By Theorem 4.7 
in [35], the space spanned by U (ν)

g Nm(zz), g ∈ G̃, coincides with Am
ν (Ω).

Finally, arguing as in the beginning of Section 3 in [33], it follows from Shimeno’s 
Plancherel formula that the reproducing kernel Am

ν (z, w) of the space Am
ν (Ω) is given 

for w = 0 (i.e. at the origin) simply by the appropriate multiple of the spherical function:

Am
ν (z, 0) = dr(λm, ν)φ	

λm,ν(z). (70)

Summarizing the discussion so far, we have thus arrived at the following result.

Theorem 11. The nearly-holomorphic reproducing kernel Nm
ν at the origin is given by

Nm
ν (z, 0) =

∑
|m|<m

m1<
ν−p+1

2

dr(λm, ν)φ	
λm,ν(z), (71)

with dr(λ, ν), φλ,ν and λm as above.

We pause to note that actually dr(λ, ν) = ‖φλ,ν‖−2
L2(G̃)

, cf. Remark 6.9 in [27].
We conclude by recalling the relation between the spherical functions φλ,ν and the 

hypergeometric functions of Heckman and Opdam [15, Part I]. With our notation g for 
the Lie algebra of G, let Σ be the restricted root system of the pair (g, a). Then Σ is a 
root system of type BC, i.e. has the form

Σ = {±1
2βj ,±βj ,±1

2 (βj ± βk), 1 ≤ j, k ≤ r, j �= k},

where {βj}j is a certain basis of a∗. Here the short roots ±1
2βj have multiplicity mS = 2b, 

the long roots ±βj have multiplicity mL = 1, and the middle roots 1
2 (±βj ± βk) have 

multiplicity mM = a; if b = 0, then the short roots are actually absent (and if r = 1, 
then the middle roots are actually absent). The positive roots are 1

2βj , βj , j = 1, . . . , r, 
and 1

2 (βj ± βk), 1 ≤ k < j ≤ r; the half-sum of positive roots is thus given by

ρ =
r∑

j=1

b + 1 + (j − 1)a
2 βj . (72)

Let now F (λ, kν , ·) be the Heckman-Opdam hypergeometric function with parameter 
λ ∈ a∗C corresponding to the root system 2Σ with multiplicities kν given by

kν,S = mS

2 − ν = b− ν, kν,L = mL

2 + ν = 1
2 + ν, kν,M = mM

2 = a

2 , (73)

for the “doubles” of the short, long and middle roots of Σ, respectively. Then for any 
g ∈ A ⊂ G̃ we have
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φλ,ν(g) = h(g0, g0)−ν/2F (λ,kν , g). (74)

See [15, Theorem 5.2.2] (cf. also Remark 3.8 in [27]). Note further that by [15, (4.4.10)]
(cf. also Remark 5.12 in [27]), if λ is a dominant weight (i.e. 〈λ,α〉

〈α,α〉 ∈ N for all positive 
roots α of Σ), then

F (λ, ρν ,kν , ·) = c(λ + ρν ,kν)P (λ,kν , ·), (75)

where ρν is given by (72) with b replaced by b + ν, and P (λ, kν , ·) are the multivariable 
Jacobi polynomials (cf. Debiard [8], [9]). Here c(λ, k) is the generalized c-function of 
Harish-Chandra with line bundle parameter ν (cf. (3.15) in [27] or (3.4.3) in [15]).

Combining (71), (74) and (72) with Theorem 6, we can express also the invariantly-
polyanalytic reproducing kernels Pm

ν and the reproducing kernels Sm
ν of the spaces Sm

ν

of symmetric polynomials on Rr
+ in terms of spherical functions, or Heckman-Opdam 

hypergeometric functions, or multivariable Jacobi polynomials. We omit the details.

Example 12. For Ω = Bd, the unit ball of Cd, we have r = 1, b = d − 1, a is not defined, 
p = d + 1 and h(z, w) = 1 − 〈z, w〉. The elements of the group G = SU(1, n) can be 
identified with (n + 1) × (n + 1) complex matrices 

(
A B
Ct D

)
, with A ∈ C, B, C ∈ C1×n

and D ∈ Cn×n, acting by z 	→ (Az +B)(Cz +D)−1, with z ∈ Bd written as row vector. 
The Lie algebra a equals RH, where

H =

⎛
⎝ 1 01×(n−1) 0

0(n−1)×1 0(n−1)×(n−1) 0(n−1)×1

0 01×(n−1) 1

⎞
⎠ ,

and defining β ∈ a∗ by β(H) = 2 the root system is given by Σ = {±1
2β, ±β}. We have

exp(tH) =

⎛
⎝ cosh t 01×(n−1) sinh t

0(n−1)×1 I(n−1)×(n−1) 0(n−1)×1

sinh t 01×(n−1) cosh t

⎞
⎠ ,

hence | exp(tH)0| = | tanh t| and

cosh t = h(exp(tH)0, exp(tH)0)−1/2. (76)

The spherical functions φλ,ν are given by ([27, (8.2) and (8.3)])

φλ,ν(exp tH) = (cosh t)−ν
2F1

( d−ν+λ
2 , d−ν−λ

2
d

∣∣∣− sinh2 t
)

= (cosh t)ν2F1

( d+ν+λ
2 , d+ν−λ

2
d

∣∣∣− sinh2 t
)
, (77)

that is, by (64) and (76), and since Jexp tH(0) = cosh−p t,
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φ	
λ,ν(z) = (1 − |z|2)ν2F1

( d−ν+λ
2 , d−ν−λ

2
d

∣∣∣ |z|2
|z|2 − 1

)

= 2F1

( d+ν+λ
2 , d+ν−λ

2
d

∣∣∣ |z|2
|z|2 − 1

)
,

where 2F1 is the Gauss hypergeometric function and on the right-hand sides, we write 
just λ for λ(H). Using the standard transformation formula for 2F1 [4, §2.1 (22)]

2F1

(
a, b
c

∣∣∣z) = (1 − z)−a
2F1

(
a, c− b

c

∣∣∣ z

z − 1

)
= (1 − z)−b

2F1

(
c− a, b

c

∣∣∣ z

z − 1

)
, (78)

this can also be written as

φ	
λ,ν(z) = (1 − |z|2) d+λ+ν

2 2F1

( d+λ+ν
2 , d+λ−ν

2
d

∣∣∣|z|2)

= (1 − |z|2) d−λ+ν
2 2F1

( d−λ+ν
2 , d−λ−ν

2
d

∣∣∣|z|2).
The elements λm ∈ a∗, m = (m1), are given by λm = λ1

β
2 with λ1 = 2m1 + d − ν, 

m1 ∈ Z, 0 ≤ m1 < ν−d
2 . The corresponding space Am

ν (Bd) is spanned by G-translates 
of the function zm1

1 (1 −|z|2)−m1 under the action (12) [35, Section 5] and coincides with 
the orthogonal complement Nm1+1

ν �Nm1
ν [33, pp. 116-117]. The reproducing kernel of 

Am
ν (Bd) at the origin is given by (71) with

d1(λm, ν) = (ν − d− 2m1)π−dΓ(d + m1)Γ(ν −m1)
m1!Γ(d)Γ(ν − d + 1 −m1)

,

in complete agreement with [33, Section 3, bottom of p. 116]. (Note that there is a 
misprint in the formula (1.5) in [33]: the Γ(α + 1 + d) in the numerator should be 
Γ(α + 1 + d − l). Also the labeling of spherical functions is different there: our φλ,ν

corresponds to φiλ,ν in [33].)
By [22, p. 90], the Heckman-Opdam hypergeometric function for root system BC1 is 

given by

F (λ,k, exp tH) = 2F1

( d+ν+λ
2 , d+ν−λ

2
d

∣∣∣− sinh2 t
)
,

in full accordance with (74) and (77) in view of (76).
Finally, for rank one (75) reduces just to (15), and thus for m − 1 < ν−p+1

2

Nm
ν (z, 0) =

m−1∑
m1=0

d1(λm, ν)2F1

(−m1, d− ν + m1
d

∣∣∣ |z|2
|z|2 − 1

)

=
m−1∑

d1(λm, ν)(1 − |z|2)−m12F1

(−m1, ν −m1
d

∣∣∣|z|2) by (78)

m1=0



26 M. Engliš et al. / Journal of Functional Analysis 286 (2024) 110213
=
m−1∑
m1=0

d1(λm, ν) (1 − |z|2)−m1(
m1+d−1

d−1
) P (d−1,ν−d−2m1)

m1
(1 − 2|z|2),

recovering (13) and its reformulation in terms of Jacobi polynomials.
From Theorem 6 we see that the reproducing kernel at the origin for the subspace of 

all polynomials of degree < m in L2(R+, cBdtd−1(1 + t)−ν dt) equals

Sm
ν (x, 0) =

∑
0≤m1<min(m, ν−d

2 )

d1(λ(m1), ν) 2F1

(−m1, d− ν + m1
d

∣∣∣− x
)
, (79)

the summands being actually mutually orthogonal. �
5. Faraut-Koranyi hypergeometric functions

With Theorem 6 in mind, let us return to the reproducing kernels Sm
ν (x, y) of the sub-

spaces Sm
ν of symmetric polynomials of degree < m in L2(Rr

+, dρb,ν,a). By Propositions 4
and 5, the functions

Km(xe, e), |m| < m, m1 < ν−p+1
2 , (80)

span Sm
ν . The following easy fact — capturing, in effect, the standard Gram-Schmidt 

orthogonalization process — describes how to extract the reproducing kernel from an 
arbitrary basis.

Proposition 13. Let H be a finite-dimensional Hilbert space of functions with (not nec-
essarily orthogonal) basis {fj}. Denote by U(x) the column vector (fj(x))j. Then the 
reproducing kernel of H is given by

KH(x, y) = U(y)∗G−1U(x), (81)

where G = (〈fj , fk〉H)dimH
j,k=1 is the Grammian matrix of the basis {fj}j.

Proof. Let {el}l be an orthonormal basis of H and let el =
∑

j cljfj be the expressions 
of el as linear combinations of the fj . Let C denote the matrix (clj)dimH

l,j=1 . From

δlm = 〈el, em〉H =
∑
j,k

cljcmk〈fj , fk〉H = (CGC∗)lm

we see that CGC∗ is the identity matrix; that is, G = (C∗C)−1. Hence by (43)

KH(x, y) =
∑
l

el(x)el(y) =
∑
l,j,k

cljfj(x)clkfk(y)

= U(y)C∗CU(x) = U(y)G−1U(x),
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proving the claim. �
For the basis (80), the Grammian matrix G is in principle easy to compute explicitly 

for low values of m and r. For instance, for r = 2, starting from

(1 − t)n = h(te, e)n =
∑

m:m1≤n

(−n)mKm(te, e), n = 0, 1, 2, . . . ,

one recursively reads off (−n)(n,m2)K(n,m2)(te, e) as the homogeneous component of de-
gree n + m2 in (1 − t)n:

K(0) = 1, K(1) = t1 + t2, K(1,1) = 2t1t2
a + 2 ,

K(2,0) = t21 + t22
2 + at1t2

a + 2 , K(2,1) = 2t1t2(t1 + t2)
a + 4 ,

K(2,2) = 2t21t22
(a + 2)(a + 4) , . . . .

(For brevity, we have omitted the arguments (te, e).) This reduces the computation of 
G to evaluation of the integrals

∞∫
0

∞∫
0

xq1
1 xq2

2 (1 + x1)−ν(1 + x2)−ν |x1 − x2|a dx1 dx2. (82)

For a an even nonnegative integer, the last integral can be evaluated by expanding 
(x1 − x2)a via the binomial theorem and integrating term by term using the standard 
formula

∞∫
0

xq

(1 + x)ν dx = Γ(q + 1)Γ(ν − q − 1)
Γ(ν) ≡ B(q + 1, ν − q − 1), −1 < q < ν − 1,

for the Beta integral. The outcome is that (82) equals

a∑
j=0

(−a)j
j! B(q1 + j + 1, ν − q1 − a− 1)B(q2 + a− j + 1, ν − q2 − a− 1), a ∈ 2N.

Taking for U(x) the column vector (Km(xe, e))|m|<m,m1<(ν−p+1)/2, one can then use 
(81) to obtain a formula for Sm

ν (x, 0).
For a /∈ 2N, a possible way of evaluating (82) is first making the change of variable 

x = t , which transforms (82) into
1−t
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1∫
0

1∫
0

tq11 tq22 (1 − t1)ν−a−2−q1(1 − t2)ν−a−2−q2 |t1 − t2|a dt1 dt2

=
1∫

0

1∫
0

(1 − t1)q1(1 − t2)q2tν−a−2−q1
1 tν−a−2−q2

2 |t1 − t2|a dt1 dt2.

(83)

Introducing temporarily the notation

I(α, β, γ, δ) :=
1∫

0

t1∫
0

(1 − t1)α(1 − t2)βtγ1 tδ2|t1 − t2|a dt2 dt1,

(83) thus equals

I(q1, q2, ν − a− 2 − q1, ν − a− 2 − q2) + I(q2, q1, ν − a− 2 − q2, ν − a− 2 − q1).

Now making the change of variable t2 = yt1 yields

I(α, β, γ, δ) =
1∫

0

1∫
0

(1 − t1)α(1 − yt1)βtγ1(yt1)δta1(1 − y)a t1 dy dt1

=
∞∑
j=0

(−β)j
j!

1∫
0

1∫
0

(1 − t1)α(yt1)jtγ1(yt1)δta1(1 − y)a t1 dy dt1

=
∞∑
j=0

(−β)j
j! B(α + 1, j + γ + δ + a + 2)B(a + 1, j + δ + 1). (84)

For β ∈ N — which is our case in (83) — the series terminates, and one thus has an 
expression for (82), albeit the formula is a bit more unwieldy than the one from the 
previous paragraph.

Similarly, for rank 3, recall that

Km(te, e) = πm

(qΩ)m
φm(te),

with πm and qΩ given by (37) and (36), respectively, and φm the spherical polynomial 
corresponding to the signature m. Using the formula (34), one can again successively 
read off Km(te, e) as the term of the appropriate homogeneity degree in

(1 − t)n = h(te, e)n =
∑

m:m1≤n

(−n)m
πm

(qΩ)m
φm(te), n = 0, 1, 2, . . . .

This yields (omitting again the argument te)
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φ(0) = 1, φ(1) = t1 + t2 + t3
3 , φ(1,1) = t1t2 + t1t3 + t2t3

3 ,

φ(1,1,1) = t1t2t3, φ(2) = (a + 2)(t21 + t22 + t23)
3(3a + 2) + 2a(t1t2 + t1t3 + t2t3)

3(3a + 2) ,

φ(2,1) = (a + 1)(t21t2 + t21t3 + t22t1 + t22t3 + t23t1 + t23t2)
3(3a + 2) + 3at1t2t3

3(3a + 2) ,

φ(2,1,1) = (t1 + t2 + t3)t1t2t3
3 ,

φ(2,2) = (a + 2)(t21t22 + t21t
2
3 + t22t

2
3)

3(3a + 2) + 2a(t1 + t2 + t3)t1t2t3
3(3a + 2) ,

φ(2,2,1) = (t1t2 + t1t3 + t2t3)t1t2t3
3 , φ(2,2,2) = t21t

2
2t

2
3, . . . .

This once more reduces the computation of G to the evaluation of the three-variable 
analogue of (82), which for a ∈ 2N is again by the same “bare hands” method seen to 
be equal to

a∑
j,k,l=0

(−a)j(−a)k(−a)l
j!k!l! B(q1 + 1 + j + k, ν − 2a− 1 − q1)

×B(q2 + 1 + a− j + l, ν − 2a− 1 − q2)

×B(q3 + 1 + 2a− k − l, ν − 2a− 1 − q3), a ∈ 2N.

For a /∈ 2N, one can again proceed as for (84), but the outcome is quite cumbersome.
Carrying out all these calculations leads to the following conjecture.
Recall that for α, β, γ ∈ C, the Faraut-Koranyi hypergeometric function on Ω with 

parameters α, β, γ is defined by [14]

2FΩ
1

(
α, β
γ

∣∣∣z) :=
∑
m

(α)m(β)m
(γ)m

Km(z, z). (85)

Here γ is assumed to be such that (γ)m �= 0 ∀m. Alternatively, one sometimes views 
these just as symmetric functions on Rr

+ [31]:

2F1

(
α, β
γ

∣∣∣t) :=
∑
m

(α)m(β)m
(γ)m

Km(te, e), (86)

the two variants being related simply by 2FΩ
1 (z) = 2F1(t) for z = k

√
te.

Conjecture 14. Assume that m ≥ rq + 1 where q is the nonnegative integer such that 
q < ν−p+1

2 ≤ q + 1. Then the reproducing kernel Sm
ν on Rr

+ at the origin is given by

Sm
ν (x, 0) = cqν2F1

(−q,−b− ν + 2p + q − 2r ∣∣∣− x
)
, (87)
p
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where

cqν = ΓΩ(ν − p− q + 2r + b)ΓΩ(qΩ)ΓΩ(p + q)
πdΓΩ(ν − p− q + 2r − qΩ)ΓΩ(qΩ + q)ΓΩ(p) . (88)

The last conjecture holds for r = 1, by (8), (15), Theorem 6 and (78). It has also been 
verified by computer for

r = 2, q ∈ {0, 1, 2}, a ∈ {1, 2, 3, 4, 5, 6, 7, 8}, b ∈ {0, 1, 2, 3}, ν arbitrary,

r = 2, q = 3, a ∈ {1, 2, 3, 4}, b ∈ {0, 1, 2, 3}, ν arbitrary,

r = 3, q ∈ {0, 1, 2}, a ∈ {2, 4}, b ∈ {0, 1, 2, 3}, ν arbitrary,

r = 3, q ∈ {0, 1, 2}, a = 8, b = 0, ν arbitrary,

and a couple more values of a, b and ν for r ∈ {2, 3} and q ∈ {0, 1, 2}. (Note that 
the above values of r, a, b include, in particular, both exceptional bounded symmetric 
domains of dimensions 16 and 27.)

Note that the hypothesis of the conjecture, that is,

q − 1 <
ν − p− 1

2 ≤ q ≤ m− 1
r

, (89)

corresponds precisely to the case (57) of the “stabilized” kernels from Corollary 9. With-
out this hypothesis, the conjecture fails, as the following example shows.

Example 15. Let r = 2, m = 2 and ν−p > 1 (note that this corresponds to the case (56) in 
Corollary 9). The space Sm

ν is thus spanned by K(0)(xe, e) = 1 and K(1)(xe, e) = x1+x2. 
Performing the calculations outlined above yields

1
CSm

ν (x, 0) = K(0) + (b− ν + a + 3)(2b− 2ν + a + 4)
a2 + (7 + 4b− 2ν)a + (4b2 − 4bν + 16b− 6ν + 14)K(1)

with some constant C. (We have omitted the arguments (xe, e) at K(0) and K(1).) Plainly, 
the right-hand side is not of the form 2F1. �

In the remaining case from Corollary 9 (i.e. q + 1 < m < rq + 1), the kernels can be 
expected to be even more “ugly” than in the last example.

By the results of the preceding sections, the validity of the conjecture would have the 
following consequences.

Corollary 16. (Subject to Conjecture 14) Assume that m ≥ rq + 1 where q is the non-
negative integer such that q < ν−p+1

2 ≤ q + 1. Then the nearly-holomorphic reproducing 
kernel Nm

ν at the origin is given by

Nm
ν (k

√
te, 0) = cqν2F1

(−q,−b− ν + 2p + q − 2r ∣∣∣ t )
,

p t− 1
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or

Nm
ν (z, 0) = cqνh(z, z)−q

2FΩ
1

(−q, b + ν − p− q + 2r
p

∣∣∣z).
Proof. By Theorem 6,

Nm
ν (k

√
te, 0) = Sm

ν ( t
1−t , 0),

and (87) gives the first formula. The second formula then follows from the Kummer 
relation (a counterpart of (78) for the ordinary 2F1)

2F1

(
α, β
γ

∣∣∣t) = (1 − t)−α
2F1

(
α, γ − β

γ

∣∣∣ t

t− 1

)
, (90)

see [31, formula (35)]. �
Theorem 17. (Subject to Conjecture 14) Assume that m ≥ rq+1 where q is the nonneg-
ative integer such that q < ν−p+1

2 ≤ q + 1. Then with the notation (73), (69) and (85),

∑
|m|: m1≤q

dr(λm, ν)F (λm,kν , g) =

h(z, z)−qcqν2FΩ
1

(−q, b + ν − p− q + 2r
p

∣∣∣z)
(91)

for z = g0 with g ∈ A.

Proof. Since Jg(0) = g(g0, g0)p/2 for g ∈ A, (64) and (74) yield

φ	
λ,ν(g0) = F (λ,kν , g0).

Thus by (71), the left-hand side of (91) equals Nm
ν (g0, 0). By Corollary 16, the latter is 

precisely the right-hand side of (91). �
Note that for r = 1, (91) recovers the formula (14) from the Introduction.

Remark 18. By Theorem 4.2 of Beerends and Opdam [6], F (λ, kν , ·) for the special value

λ = −α
∑
j

βj + ρν , α ∈ C,

can be expressed in terms of

2F1

(
α, d/r + ν − α

d/r

∣∣∣ · );

however the 2F1 in (91) does not seem reducible to this form. �
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Using again Theorem 6, the conjecture also implies a formula for the invariantly-
polyanalytic kernel Sm

ν (x, 0).

Corollary 19. (Subject to Conjecture 14) Assume that m ≥ rq + 1 where q is the non-
negative integer such that q < ν−p−1

2 + m ≤ q + 1. Then the reproducing kernel Pm
ν at 

the origin is given by

Pm
ν (z, 0) = cmν+2m−2h(z, z)m−1−q

2F1

(−q, b + ν + 2m− 2 − p− q + 2r
p

∣∣∣z).
Proof. By Theorem 6, Pm

ν (z, 0) = h(z, z)m−1Nm
ν+2m−2(z, 0), and the claim follows by 

Corollary 16. �
Example 20. Continuing our example of Ω = Bd from the previous section, for rank 1 
the Faraut-Koranyi hypergeometric function coincides with the ordinary Gauss hyper-
geometric function

2FBd

1

(
α, β
γ

∣∣∣z) = 2F1

(
α, β
γ

∣∣∣|z|2).
By (79) and (87) we therefore get, for 0 ≤ q < ν−d

2 ≤ q + 1 ≤ m,

q∑
j=0

d1(λ(j), ν)2F1

(−j, d− ν + j
d

∣∣∣− x
)

= cqν2F1

(−q, d + q + 1 − ν
d + 1

∣∣∣− x
)
.

This is, of course, just (14) in disguise. �
Remark 21. The formula (79) actually shows that d1(λ(j), ν)2F1

(−j, d− ν + j
d

∣∣∣ − x
)

is 

the reproducing kernel of the orthogonal complement Sj
ν � Sj−1

ν , 0 ≤ j < ν−d
2 (with 

S−1
ν := {0}). Theorem V.4.5 in Helgason [16] identifies the last 2F1 as the spherical 

function for the compact dual SU(d + 1)/SU(d) = CP d of Bd. �
By the reproducing property, Conjecture 14 is equivalent to

∫
Rr

+

Km(xe, e) 2F1

(−q,−b− ν + 2p + q − 2r
p

∣∣∣− x
)
dρb,ν,a(x)

= 1
cqν

δm,(0), ∀m with m1 ≤ q,

(92)

where q is the nonnegative integer such that q < ν−p+1
2 ≤ q + 1 and m ≥ rq + 1. Taking 

in particular m = (0) yields



M. Engliš et al. / Journal of Functional Analysis 286 (2024) 110213 33
1
cqν

=
∫

Rr
+

2F1

(−q,−b− ν + 2p + q − 2r
p

∣∣∣− x
)
dρb,ν,a(x)

(subject to the validity of Conjecture 14). The last integral can be evaluated explicitly.

Proposition 22.

∫
Rr

+

2F1

(−q,−b− ν + 2p + q − 2r
p

∣∣∣− x
)
dρb,ν,a(x)

= 1
cν−q

3FΩ
2

(−q, b + ν − p− q + 2r, d/r
p, ν − q

∣∣∣e),
where the Faraut-Koranyi function 3FΩ

2 is defined analogously as in (85).

Proof. Making again the change of variable x = t
1−t , we get from (54) and (86)

∫
Rr

+

2F1

(−q,−b− ν + 2p + q − 2r
p

∣∣∣− x
)
dρb,ν,a(x)

= cΩ

∫
[0,1]r

2F1

(−q,−b− ν + 2p + q − 2r
p

∣∣∣ t

t− 1

)
dμb,ν,a(t)

= cΩ

∫
[0,1]r

(1 − t)−q
2F1

(−q, b + ν − p− q + 2r
p

∣∣∣t) dμb,ν,a(t)

= cΩ

∫
[0,1]r

2F1

(−q, b + ν − p− q + 2r
p

∣∣∣t) dμb,ν−q,a(t)

= cΩ
∑

|m|<m

(−q)m(b + ν − p− q + 2r)m
(p)m

∫
[0,1]r

Km(te, e) dμb,ν−q,a(t).

If {ψj}dm

j=1 is an orthonormal basis of Pm with respect to the Fock norm, the last integral 
equals, by (43),

∫
[0,1]r

Km(
√
te,

√
te) dμb,ν−q,a(t) =

∫
K

∫
[0,1]r

Km(k
√
te, k

√
te) dμb,ν−q,a(t) dk

= 1
cΩ

∫
Ω

Km(z, z) dμν−q(z) by (27)

= 1
cΩ

∫ ∑
j

|ψj(z)|2 dμν−q(z)

Ω
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= 1
cΩ

∑
j

‖ψj‖2
ν−q

= 1
cΩ

∑
j

‖ψj‖2
F

(ν − q)mcν−q
by (32)

= dm

cΩ(ν − q)mcν−q
.

Consequently,

∫
Rr

+

2F1

(−q,−b− ν + 2p + q − 2r
p

∣∣∣− x
)
dρb,ν,a(x)

=
∑

|m|<m

(−q)m(b + ν − p− q + 2r)m
(p)m

dm

(ν − q)mcν−q

=
∑

|m|<m

(−q)m(b + ν − p− q + 2r)m
(p)m

(d/r)m
(ν − q)mcν−q

Km(e, e)

= 1
cν−q

3FΩ
2

(−q, b + ν − p− q + 2r, d/r
p, ν − q

∣∣∣e),
as claimed. Here the second equality is due to (35). �

The formula (88) thus gives a conjectured value for this 3F2 function.
For rank 1, we have b +ν−p − q+2r = ν− q, so the 3F2 becomes 2F1 and (88) follows 

by the standard formula for 2F1

(
a, b
c

∣∣∣1).

6. Compact Hermitian symmetric spaces

We now consider also the compact duals of Hermitian symmetric spaces Ω̂, the simplest 
examples of these being the complex projective space CP d as the compact dual of the 
unit ball Bd (including, in particular, the Riemann sphere CP 1 as the compact dual 
of the unit disc). Most results are obtained by formally replacing ν by −ν, h(z, z) by 
h(z, −z), and Ω ⊂ Cd by the open chart Cd ⊂ Ω̂. We shall be rather brief.

The symmetric space Ω = G/K has its compact dual Ω̂ = Ĝ/K where Ĝ is a simply 
connected compact Lie group with Lie algebra ĝ = k + ip. There is a dense open subset 
of Ω̂ that is biholomorphic to Cd, and we shall simply identify this local chart with Cd

throughout. The stabilizer subgroup K of the origin in Ĝ is the same as in the bounded 
case. For x ∈ Ω̂, there is again a unique geodesic symmetry φ̂x ∈ Ĝ which interchanges 
x and the origin, i.e. φ̂x ◦ φ̂x = id, φ̂x(0) = x, φ̂x(x) = 0, and φ̂x has only isolated 
fixed points. Any g ∈ Ĝ can be uniquely written in the form g = φ̂xk with k ∈ K and 
x = g0 ∈ Ω̂. The measure
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dμ̂ν(z) := h(z,−z)−ν−p dz

on Cd ⊂ Ω̂ is finite if and only if ν > −1, and one can again consider the spaces

Âν := L2(Ω̂, dμ̂ν) ∩ O(Cd).

The elements of Âν extend to holomorphic sections on all of Ω̂ if and only if ν is an 
integer, which we will assume from now on throughout the rest of this section. In that 
case,

Âν =
⊕

m:m1≤ν

Pm,

and Âν possesses a reproducing kernel, given by

K̂ν(z, w) = ĉν h(z,−w)ν , z, w ∈ Cd ⊂ Ω̂, ν ∈ N,

where

ĉν = ΓΩ(ν + p)
πdΓΩ(ν + p− d

r )
.

(Here, as before, p, r, a and b denote the genus, the rank, and the characteristic multi-
plicities of Ω̂, which are all the same as for Ω.) From the transformation rule

h(φ̂z,−φ̂w) = h(a,−a)h(z,−w)
h(z,−a)h(a,−w) , a = φ̂−10, z, w ∈ Cd, φ̂ ∈ Ĝ,

it again follows that the measure dμ̂0 is Ĝ-invariant and that Ψ̂(z) := − log h(z, −z) is 
the Kähler potential for a Ĝ-invariant Riemannian metric on Ω̂. We thus again have the 
associated Cauchy-Riemann operator D, and the corresponding spaces N̂m := KerDm

of nearly holomorphic functions on Ω̂ of order m, as well as their Bergman-type subspaces

N̂m
ν := L2(Ω̂, dμ̂ν) ∩ KerDm.

One can also proceed to define the invariantly polyanalytic functions P̂m and their 
Bergman-type subspaces P̂m

ν as in the bounded case.
In the polar coordinates (22), the measures dμ̂ν assume the form

∫
Ω̂

f(z) dμ̂ν(z) = cΩ

∫
Rr

+

∫
K

f(k
√
te) dk dμ̂b,ν,a(t), (93)

where
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dμ̂b,ν,a(t) := tb(1 + t)−ν−p
∏

1≤i<j≤r

|ti − tj |a dt (94)

and cΩ is given by (29).
By the above transformation rule for h(z, −w), it again also follows that

f 	−→ h(a,−a)−ν/2

h(z,−a)−ν
f ◦ φ̂−1, a = φ̂0, φ̂ ∈ Ĝ, ν ∈ N,

is a projective unitary representation of Ĝ on N̂m
ν . Let Ŝm be the vector space of all 

symmetric polynomials of degree < m in r variables, denote

Ŝm
ν := Ŝm ∩ L2([0, 1]r, dρ̂b,ν,a),

where

dρ̂b,ν,a(t) := cΩ tb(1 − t)ν
∏

1≤i<j≤r

|ti − tj |a dt,

and let Ŝm
ν (x, y) be the reproducing kernel of Ŝm

ν . Proceeding as in Section 3 above, 
we then obtain the following analogue of Theorem 6.

Theorem 23.

(a) For any φ̂ ∈ Ĝ, the reproducing kernel N̂m
ν of N̂m

ν satisfies

N̂m
ν (z, w) = h(z,−a)νh(a,−w)ν

h(a,−a)ν N̂m
ν (φ̂z, φ̂w), a := φ̂−10;

in particular,

N̂m
ν (z, w) = h(z,−w)νN̂m

ν (φ̂wz, 0).

(b) Radial functions in N̂m consist precisely of functions of the form

p(z, (−z)z),

where p(z, w) is a polynomial in z, w ∈ Cd of degree < m in each argument which is 
K-invariant in the sense of (48).
Consequently, the radial functions in N̂m coincide with the linear span of Km(z,
(−z)z), |m| < m.

(c) The mapping V̂ from Ŝm into functions on Ω̂ given by

V̂ f(k
√
xe) := f

( x )
, k ∈ K, x ∈ Rr

+,
1 + x
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is a bijection from Ŝm onto radial functions in N̂m. Furthermore, V̂ sends Ŝm
ν

unitarily onto the subspace R̂m
ν of radial function in N̂m

ν , and

N̂m
ν (·, 0) = V Ŝm

ν (·, 0).

Proof. The proof is the same as for Propositions 2, 4 and 5, hence omitted. �
Unlike the bounded case, for the compact dual we can give an explicit formula for the 

kernel N̂m
ν in terms of multivariable Jacobi polynomials P (α,β,a/2)

m (also called Heckman-
Opdam polynomials; see [15, Section 1.3]). Recall from [10, Section 4.b] that P (α,β,a/2)

m (t)
are symmetric polynomials on Rr such that

(i) P
(α,β,a/2)
m (t) is the symmetrization of

tm +
∑
n<m

cmnt
n (95)

where the sum is over (some) signatures n smaller than m with respect to the 
lexicographic order; and

(ii) P
(α,β,a/2)
m (t), |m| ≥ 0, are orthogonal on [−1, +1]r with respect to the measure

(1 − t)α(1 + t)β
∏

1≤i<j≤r

|ti − tj |a dt.

By change of variable, it follows that P (α,β,a/2)
m (1 − 2t) are orthogonal on [0, 1]r with 

respect to the measure tα(1 −t)β
∏

1≤i<j≤r |ti−tj |a dt, with the norm-square on [−1, +1]r
given by 2r(r−1)a/2+rα+rβ+r times the norm-square on [0, 1]r. Setting in particular α = b, 
β = ν we get an orthogonal basis for symmetric polynomials with respect to dρ̂b,ν,a
on [0, 1]r. By (43), we thus arrive at the following theorem.

Theorem 24. For ν ∈ N, the reproducing kernel Ŝm
ν at the origin is given by

Ŝm
ν (t, 0) =

∑
|m|<m

2d+rνP
(b,ν,a/2)
m (1)

‖P (b,ν,a/2)
m ‖2

P (b,ν,a/2)
m (1 − 2t). (96)

Here the norm-square is understood on [−1, +1]r.

We remark that explicit formulas both for P (b,ν,a/2)
m (1) and for ‖P (b,ν,a/2)

m ‖2 are avail-
able, see Theorems 3.5.5 and 3.6.6 in [15].

Example 25. For rank r = 1, P (b,ν,a/2)
m are up to a constant factor just the ordinary 

Jacobi polynomials P (b,ν)
n of degree n on [−1, +1]:
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P
(b,ν,a/2)
(n) (t) = 2n(2n+b+ν

n

)P (b,ν)
n (t).

From the formulas [5, Section 10.8]

P (b,ν)
n (1) =

(
n + b

n

)
, ‖P (b,ν)

n ‖2 = 2b+ν+1Γ(n + b + 1)Γ(n + ν + 1)
n!(2n + b + ν + 1)Γ(n + b + ν + 1) ,

we therefore get

Ŝm
ν (t, 0) =

m−1∑
j=0

Γ(j + ν + 1)
(d− 1)!j!2(d + 2j + ν)Γ(d + j + ν) P

(d−1,ν)
j (1 − 2t). �

Using Theorem 23, we can also obtain from (96) a formula for the nearly-holomorphic 
reproducing kernel N̂m

ν (z, w) on Ω̂ in terms of multivariable Jacobi polynomials.

Corollary 26. For ν ∈ N, the nearly-holomorphic reproducing kernel N̂m
ν is given by 

N̂m
ν (z, w) = h(z, −w)νN̂m

ν (φ̂wz, 0), where

N̂m
ν (k

√
xe, 0) =

∑
|m|<m

2d+rνP
(b,ν,a/2)
m (1)

‖P (b,ν,a/2)
m ‖2

P (b,ν,a/2)
m

(1 − x

1 + x

)
.

Proof. Straightforward from Theorem 23 and (96). �
One can also get the invariantly-polyanalytic kernels P̂m

ν . We leave the details (which 
are utterly routine) to the interested reader.

Remark 27. Note that in (96) there is no restriction on m1 in the sum, in contrast to 
Corollary 9 or (71); the reason being, of course, that dρ̂b,ν,a is a finite measure on [0, 1]r for 
ν ∈ N, so that the corresponding L2 space contains all polynomials. Still, proceeding as 
in Section 5, one can get the following analogue of Conjecture 14 for the compact case. For 
q, ν ∈ N, let Qq

ν be the subspace of L2([0, 1]r, dρ̂b,ν,a) spanned by {Km(te, e) : m1 ≤ q}, 
and let Qq

ν be its reproducing kernel. Then it seems that

Qq
ν(t, 0) = ĉqν 2F1

(−q, ν + p + q
p

∣∣∣t), (97)

where

ĉqν = ΓΩ(p + q)ΓΩ(p + q + ν)ΓΩ(qΩ)
πdΓΩ(p)ΓΩ(q + qΩ)ΓΩ(q + qΩ + ν) .

This has been checked for the same set of values of r, q, a, b as for Conjecture 14.
Note that in view of (55) and (95), the Jacobi polynomials P (b,ν,a/2)

m (1 − 2t) with 
m1 ≤ q form an orthogonal basis for Qq

ν , thus again by (43)
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Qq
ν(t, 0) =

∑
|m|:m1≤q

2d+rνP
(b,ν,a/2)
m (1)

‖P (b,ν,a/2)
m ‖2

P (b,ν,a/2)
m (1 − 2t).

Hence (97) gives a conjectured value for this sum. �
We conclude this section by deriving the counterpart of Section 4, i.e. the representa-

tion theory of for the L2 spaces of sections of line bundles — especially the results of [35]
— for the compact case. We give a representation theoretic proof of Corollary 26.

We follow the presentation as in [19]. We consider the holomorphic line bundle L over 
Ĝ/K,

Ĝ×K,τ C → Ω̂ = Ĝ/K, (98)

where τ(k) = (detAd(k)|p+)1/p, k ∈ K. This is the holomorphic line bundle such that 
Lp = K−1 and it generates the Picard group of Ω̂; see [19, 7.1-7.11]. Here K−1 is the 
dual of the canonical line bundle. Let τν = τν for any fixed integer ν, where as before 
we assume that ν ≥ 0.

Let L2(Ω̂; ν) be the L2-space of sections of the line bundle Lν . We normalize the 
measure so that the realization of sections f ∈ L2(Ω̂; ν) as functions on L2(Ĝ) is an 
isometry. More precisely L2(Ω̂; ν) consists of f ∈ L2(Ĝ) such that

τν(k)f(gk) = f(g), k ∈ K,

and

‖f‖2
ν =

∫
Ĝ

|f(g)|2 dg < ∞,

where dg is the Haar measure on Ĝ normalized so that 
∫
Ĝ
dg = 1.

The space V := Cd can be realized as an open subset in Ω̂ and we shall realize the 
space L2(Ω̂; ν) as point-wise functions on V . Under our assumption ν ≥ 0 the space of 
holomorphic sections of the line bundle (98) is non-zero, and there exists a global frame 
eν(z) with point-wise norm

‖eν(z)‖2
z = h(z,−z)−ν .

Then a section f ∈ L2(Ω̂; ν) will be written as f = f(z)eν(z) for a point-wise function 
on V such that

‖f‖2
ν = ĉν

∫
V

|f(z)|2h(z,−z)−νdμ0(z), f = f(z)eν(z),

where
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dμ0(z) = dz

h(z,−z)p

is the Ĝ-invariant (Kähler) measure on Ω̂. To avoid confusion we write L2(V, ν) for the 
space of L2-functions f(z) with the above norm. As an L2-space and unitary represen-
tation of Ĝ, L2(Ω̂; ν) = L2(V, ν) via this identification.

Let gC = p+ + kC + p− be the Harish-Chandra decomposition of gC. We use the 
same complex structure for Ω as for Ω̂, so that p+ = T

(1,0)
0 (Ω̂) ≡ V is the holomorphic 

tangent space at 0 ∈ V ⊂ Ω̂. Let t ⊂ kC be a Cartan subalgebra, and let γ1 > · · · > γr
be the Harish-Chandra strongly orthogonal roots so that γ1 is the highest root for p+

as representation of kC. In particular γ1 is the highest root of gC as representation of 
gC. Let t− be the span of the co-roots of γ1, · · · , γr and let t = t− + t+ with γ1, · · · , γr
vanishing on t+. The root space decomposition of gC = p+ + kC + p− is refined as 
gC = (p+ + k+) + t + (k− + p−) with k− + p− the space of negative root vectors, and 
k+ + k− ⊂ [kC, kC].

The L2-space L2(Ω̂, ν) is decomposed as

L2(Ω̂, ν) =
∑
m

Vν,m (99)

where each Vν,m is of highest weight whose restriction on t− is

ν

2 + m1γ1 + · · · + mrγr,
ν

2 := 1
2ν(γ1 + · · · + γr),

where mj are nonnegative integers subject to the condition

m1 ≥ · · · ≥ mr ≥ 0. (100)

When Ω = G/K is not of tube type this does not define completely the highest weights 
and it requires some extra specifications; however the highest weights of these represen-
tations that appear in L2(Ω̂, ν) are uniquely determined by the condition above, see [25], 
[27], [34].

Recall the τν-spherical functions on Ĝ

τ(k1)ντ(k2)νf(k1gk2) = f(g), g ∈ Ĝ, k1, k2 ∈ K.

As functions on Ĝ each space Vν,m contains a unique τν-spherical function Ψν,m normal-
ized by Ψν,m(e) = 1. We set

φν,m(z) = Jg(0)−
ν
p Ψν,m(g), g · 0 = z,

as a trivialization of the τν-spherical function Ψν,m. In particular φν,m(z) is now both 
left and K-invariant, and thus can be realized as a left K-invariant function on V ⊂ Ω̂, 
φν,m(kz) = φν,m(z), φν,m(0) = 1, and
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φν,m(z) = h(z,−z)− ν
2 Ψν,m(φ̂z).

In the notation above φm(z) is the coefficient of the section Ψν,m with respect to the 
frame eν(z). The orthogonality relations for φν,m read now

ĉν

∫
V

φν,m(z)φν,m′(z)h(z,−z)−νdμ0(z)

= ĉνcΩ2r
∫

Rr
+

φν,m(x)φν,m′(x)
r∏

j=1
(1 + x2

j)ν−p
∏

1≤j<k≤r

(x2
j − x2

k)a
r∏

j=1
x2b+1
j dxj

= 1
dν,m

δm,m′ ,

where dν,m = dimVν,m is the dimension of Vν,m (which can be computed using the Weyl 
dimension formula). These are the Jacobi polynomials of Heckman and Opdam. (The 
functions Ψν,m are the spherical functions φλ,ν studied by Shimeno for specific discrete 
values of the parameter λ; see [27, Remark 5.12].)

In particular, for m = (0), Vν,(0) is the Bergman space of holomorphic sections of 
the line bundle defined by ν in L2(Ω̂, ν). It can be realized as the space of holomorphic 
polynomials of degree ≤ ν and has reproducing kernel ĉνh(z, −w)ν . The corresponding 
Heckman-Opdam polynomial is the constant function φν,(0)(z) = 1.

We equip Ω̂ with the Ĝ-invariant (Kähler) metric and let D be the associated invariant 
Cauchy-Riemann operator. We describe the decomposition (99) using the kernels of Dm. 
We shall need some results on the vanishing properties of Shimura operators on the 
spaces Vν,m obtained in [24]. First we recall the Shimura operators using our present 
formulation. Recall from Section 2 the Hua-Schmid decomposition

⊗mV =
∑

|m|=m

SmV

of the symmetric tensor product ⊗mV under K. Let Pm be the corresponding projection. 
It is a general fact that D̄m : C∞(G, K; τν) → C∞(G, K; τν⊗⊗mV ), where as before V is 
identified as the holomorphic tangent space T (1,0)

0 (Ω̂) of Ω̂ at 0, and C∞(G, K; τν⊗⊗mV )
is the space of smooth sections of the line bundle Lν ⊗⊗mT (1,0) realized as functions on 
Ĝ transforming under K as

τν(k) ⊗m Ad(k)f(gk) = f(g), g ∈ Ĝ.

The Shimura operators are defined by

Lm = (D̄|m|)∗PmD̄|m|.

We have then
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(D̄m+1)∗D̄m+1 =
∑

|m|=m+1

Lm.

Theorem 28. The kernel Ker D̄m+1 in L2(Ω̂, ν) is precisely the direct sum

Ker D̄m+1 =
⊕∑

|m|≤m

Vν,m.

In particular the reproducing kernel at the origin for the space of nearly holomorphic 
sections of order m + 1 in L2(Ω̂, ν) is given by

N̂m+1
ν (z, 0) =

∑
|m|≤m

dmφν,m(z).

Proof. The operator Lm acts on each irreducible component Vν,n in (99) as a non-
negative scalar multiple of the identity, by Schur’s lemma, and their eigenvalues are 
shown in [24] to be given by Okounkov polynomials. More precisely, the eigenvalue of 
Lm on Vν,n is a symmetric polynomial L̃m(ν2 + n + ρ) of ν2 + n + ρ, where ρ is the half-
sum of positive roots of t in gC. (One may also take ν2 into the definition of ρ as above.) 
It follows from [24, Theorem 5.1] that L̃m(ν2 + n + ρ) = 0 unless m ⊆ n (i.e. mj ≤ nj

for all j = 1, . . . , r). This implies that

⊕∑
|n|≤m

Vν,n ⊆ Ker(D̄m+1)∗D̄m+1 = Ker D̄m+1. (101)

Now we prove the reverse inclusion, namely that if |n| > m then D̄m+1 on Vν,n is 
non-zero. Suppose to the contrary that D̄m+1 : Vν,n → 0. We use the formulation as in 
[24, Section 3.4] for the realization of Vν,n to compute the action of D̄m+1. As a unitary 
representation (Vν,n, Ĝ, πn) of Ĝ, the space Vν,n contains a unique non-zero vector vν
such that

πn(k)vν = τν(k)vν

where τν is the one-dimensional representation defined as above. Moreover both represen-
tations τ−ν and τν appear in Vν,n. As functions on G, the space Vν,n ⊂ L2(Ω̂, ν) ⊂ L2(Ĝ)
is obtained as

v ∈ Vν,n 	→ fv(g) = 〈πn(g−1)v, v−ν〉, fv ∈ Vν,n ⊂ L2(Ĝ),

where with some abuse of notation we have used the same notation Vν,n both as Ĝ-
representation and as a space of functions. The assumption D̄m+1 : Vν,n → 0 implies in 
particular that D̄m+1fv−ν

= 0, and its evaluation at g = e implies further that
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πn(X)v−ν = 0

for all X ∈ Sm+1(p−). Let X = X1Y where X1 ∈ p− is an arbitrary negative root 
vector and Y ∈ Sm(p−) is a k+-lowest weight vector in Sm(p−) with lowest weight 
−(m1γ1 + · · · + mrγr) with m1 ≥ · · · ≥ mr ≥ 0. (A construction of all lowest 
weight vectors is found in [29] but we shall not need the explicit form.) We have then 
πn(X1)πn(Y )v−ν = 0. Since v−ν defines a one-dimensional representation of kC we have 
always πn(X)πn(Y )v−ν = 0, for X ∈ k− ⊂ [kC, kC]. In other words, πn(Y )v−ν is a lowest 
weight vector for the gC-representation unless it vanishes. However by the Hua-Schmid 
decomposition the element πn(Y )v−ν has lowest weight −ν

2 − (m1γ1 + · · · + mrγr), 
m1 + · · ·+mr = m < |n|. But the space Vν,n has lowest weight −ν

2 − (n1γ1 + · · ·+nrγr)
and thus πn(Y )v−ν = 0. Acting by k ∈ K we find πn(Ad(k)Y )πn(k)v−ν = 0. Again 
v−ν defines a one-dimensional representation of K, πn(k)v−ν = τ−ν(k)v−ν with scalar 
character τ−ν(k). Thus πn(Ad(k)Y )v−ν = 0. Furthermore {Ad(k)Y, k ∈ K} generates 
the irreducible the representation Sm(p−) so we get πn(X)v−ν = 0 for all X ∈ Sm(p−), 
and further πn(X)v−ν = 0 for all X ∈ Sm(p−). Continuing this procedure we get that 
v−ν = 0, a contradiction. This proves our claim on Ker D̄m+1 and then on the reproduc-
ing kernel. �
Remark 29. As noted in [27, Remark 5.12] the spherical functions φν,m(z) here are 
precisely the Heckman-Opdam polynomials in Corollary 26 under proper coordinate 
change. Thus Theorem 28 is just an abstract restatement and a different proof of the 
expansion in Corollary 26 (with m + 1 replacing m for notational convenience) with 
interpretation of the coefficients using the dimension dν,m. �
Remark 30. The subspace Vν,m can also be described using, as in Section 3, the quasi-
inverse ∂ log h(z, −z). In the local coordinates z ∈ V ⊂ Ω̂ the space Vν,m consists of 
functions

f(z) = ⊗m(∂ log h(z,−z))(F (z))

where F is a holomorphic section of the bundle Lν ⊗ ⊗mT (1,0) in the highest weight 
representation above. �
Remark 31. It follows from the proof above that for any n there exists an n′, |n′| ≤ |n|
such that the eigenvalue L̃n′(ν2 +n+ρ) of the Shimura operator on Vν,n is nonvanishing, 
L̃n′(ν2 +n+ρ) �= 0. This might be a known fact or can be proved by using Koornwinder’s 
formula (see [18], [21] and [24, Theorem 5.5]) for L̃n′ , which in turn can give a different 
proof of the reverse inclusion of (101). �
Example 32. Let us again make everything more specific for the rank one case, i.e. when 
Ĝ/K = CP d is the complex projective space. In this case it is more convenient to use the 
realization of CP d as CP d = U(d + 1)/U(d) × U(1). We choose the Cartan subalgebra 
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of U(d + 1) as diagonal matrices identified as Rd+1, with the Harish-Chandra root 
β = (1, 0, · · · , 0, −1). The highest weights above are now (ν+m, 0, · · · , −m). The sections 
of the line bundle with parameter ν on CP d = U(d + 1)/U(d) ×U(1) can be realized as 
functions on the sphere S2d+1 = U(d + 1)/U(d) and the representation space with the 
highest weight (ν +m, 0, · · · , −m) is the space of (p, q) = (ν +m, m)-spherical harmonic 
polynomials. We write φν,(m) = φν,m.

When ν = 0, i.e. the spherical case, the highest weight is of the form m = mβ with 
spherical polynomial

φ0,m(exp(H)) = 2F1

(−m, d + m
d

∣∣∣ sin2 β(H)
2

)
;

see [16, Theorem V.4.5] and Remark 21 above. For general ν ≥ 0,

φν,m(exp(tH)) = 2F1

(
d + m + ν,−m

d

∣∣∣ sin2 t
)
.

See [24], [17].
By the Schur orthogonality we have

〈φν,m, φν,m′〉 = 1
dν,m

δm,m′ ,

where dν,m is the dimension of the representation space Vν,m. Here the inner product is 
given by

〈φ, ψ〉 = ĉν

π
2∫

0

φ(sin2 t)ψ(sin2 t) sin2ν+1(2t) sin2(d−1)−2ν(t)dt

= ĉν

π
2∫

0

φ(sin2 t)ψ(sin2 t) sin2ν(2t) sin2(d−1)−2ν(t)d sin2 t

= ĉν

1∫
0

φ(x)ψ(x)(1 − x)νxd−1dx.

The τν-spherical function above is

φν,m(x) = 2F1

(−m,m + d + ν
d

∣∣∣x).
The dimension of the representation space Vν,m can be easily found using the Weyl 
dimension formula and equals
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dν,m = (2m + ν + d)(m + ν + 1)d−1(m + 1)d−1

d!(d− 1)! .

In particular,

dν,0 = (ν + d)(ν + 1)d−1

d! = (ν + 1)d
d! =

(
ν + d

d

)

which is precisely the dimension of the space of polynomials P≤ν(Cd) on Cd of degree 
≤ ν realized as the holomorphic sections in L2(Ω̂, ν).

So we are computing the sum

∑
m≤n

dν,mφν,m(x) =

∑
m≤n

(2m + ν + d)(m + ν + 1)d−1(m + 1)d−1

d!(d− 1)! 2F1

(−m,m + d + ν
d

∣∣∣x).
To carry out the summation we use the following elementary observation.

Lemma 33. Let dμ(x) be a finite Borel measure on R+ such that all polynomials are 
dense in L2(R+, dμ). Let {pm}∞m=0 be the orthonormal basis obtained from the Gram-
Schmidt orthogonalization of the polynomials {xm}∞m=0. Then the reproducing kernel ∑n

m=0 pm(x)pm(0) evaluated at 0 is

n∑
m=0

pm(x)pm(0) = Anqn(x)

for some constant An, where {qn(x)}∞n=0 is the orthonormal basis obtained from {xn}∞n=0
for the space L2(R+, dμ̃), where dμ̃ = x dμ(x).

Proof. Write Pn(x) =
∑n

m=0 pm(x)pm(0). We prove that Pn(x) is orthogonal to all 
polynomials xm, 0 ≤ m ≤ n − 1, in the space L2(R+, dμ̃). Indeed the inner product of 
xn and Pm in L2(R+, dμ̃) is

∞∫
0

xmPn(x)x dμ(x) =
∞∫
0

xm+1Pn(x) dμ(x) = xm+1|x=0 = 0,

since Pn(x) is the reproducing kernel at 0 in L2(R+, dμ) for the polynomials of degree 
≤ n and 0 < m + 1 ≤ n. Thus Pn is proportional to qn. This proves the lemma. �
Theorem 34. The reproducing kernel N̂n

ν (z, 0) at the origin for the space N̂n
ν (CP d), 

under the local trivialization above using the local frame eν on Cd ⊂ CP d, is
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N̂n
ν (z, 0) =

∑
m≤n

dν,mφν,m(x) = An 2F1

(−n, n + d + ν + 2
d + 1

∣∣∣x), x = |z|2
1 + |z|2 ,

where the positive constant An is given by (103) below.

Proof. We use Lemma 33. The polynomials {φν,m(x)} form an orthogonal basis for the 
space L2((0, 1), dμ(x)), dμ(x) = (1 −x)νxd−1 dx, and they are the same orthogonal basis 
as obtained from the Gram-Schmidt process from the measure dμ(x). The orthogonal 
basis for the measure dμ̃(x) = x dμ(x) = (1 − x)νxd+1 is 2F1

(−m,m + d + ν + 2
d + 1

∣∣∣x). 
Thus

∑
m≤n

dν,mφν,m(x) =
∑
m≤n

dν,mφν,m(x)

= An 2F1

(−n, n + d + ν + 2
d + 1

∣∣∣x)
(102)

for some constant An. To find An, we view (102) as an identity of two polynomials of 
x ∈ R. The leading coefficients of xn in (102) are

dn,ν
(−n)n(n + d + ν)n

(d)nn! = An
(−n)n(n + d + ν + 2)n

(d + 1)nn! .

Thus

An = dn,ν
(n + d + ν)n(d + 1)n
(n + d + ν + 2)n(d)n

= dn,ν
(n + d + ν)n(d + n)
(n + d + ν + 2)nd

= (2n + ν + d)(n + ν + 1)d−1(n + 1)d−1

d!(d− 1)!
(n + d + ν)n(d + n)
(n + d + ν + 2)nd

= (n + ν + 1)d+1(n + 1)n+d−1

(2n + d + ν + 1)d!2 . �
(103)
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