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ARTICLE INFO ABSTRACT

Keywords: Motion prediction systems play a crucial role in enabling autonomous vehicles to navigate safely
Autonomous vehicles and efficiently in complex traffic scenarios. Graph Neural Network (GNN)-based approaches
Explainable artificial intelligence have emerged as a promising solution for capturing interactions among dynamic agents and

Heterogeneous graph neural networks

5 : S static objects. However, they often lack transparency, interpretability and explainability —
Multi-modal motion prediction

qualities that are essential for building trust in autonomous driving systems. In this work, we
address this challenge by presenting a comprehensive approach to enhance the explainability
of graph-based motion prediction systems. We introduce the Explainable Heterogeneous Graph-
based Policy (XHGP) model based on an heterogeneous graph representation of the traffic scene
and lane-graph traversals. Distinct from other graph-based models, XHGP leverages object-
level and type-level attention mechanisms to learn interaction behaviors, providing information
about the importance of agents and interactions in the scene. In addition, capitalizing on
XHGP’s architecture, we investigate the explanations provided by the GNNExplainer and apply
counterfactual reasoning to analyze the sensitivity of the model to modifications of the input
data. This includes masking scene elements, altering trajectories, and adding or removing
dynamic agents. Our proposal advances towards achieving reliable and explainable motion
prediction systems, addressing the concerns of users, developers and regulatory agencies alike.
The insights gained from our explainability analysis contribute to a better understanding of
the relationships between dynamic and static elements in traffic scenarios, facilitating the
interpretation of the results, as well as the correction of possible errors in motion prediction
models, and thus contributing to the development of trustworthy motion prediction systems.

The code to reproduce this work is publicly available at https://github.com/sancarlim/
Explainable-MP/tree/v1.1.

1. Introduction

Autonomous vehicles (AVs) must perform trajectory planning based on the global route and the local context. Accurate and
safe trajectory planning depends on the system’s ability to anticipate the future motions of surrounding agents, a key challenge in
achieving full self-driving autonomy (Bahari et al., 2021).
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Fig. 1. Explainable Heterogeneous Graph-based Policy (XHGP). Explainable motion prediction is approached from three points of view: by visualizing the
attention learned by the model, by using the GNNExplainer method, and by exploring counterfactual reasoning.

Graph-based approaches are gaining traction, as traffic scenarios can be naturally represented as graphs. Recent studies have
extended deep learning techniques to graph data, such as Graph Convolutional Networks (GCNs) (Kipf and Welling, 2017) and
Graph Attention Networks (GATs) (Velikovic et al., 2018). These approaches incorporate information from node characteristics in
a graph, such as position or velocity, as well as information on road structure. By transmitting messages across graph edges, these
models can address complex and highly interactive scenarios with diverse road topologies and multiple types of agents (Carrasco
et al., 2021; Deo et al., 2021; Gu et al., 2021).

Multi-modal motion prediction captures the underlying distribution of future motions, handling multiple predictions with asso-
ciated probabilities. This approach produces more balanced and robust performance, improving interpretability when accompanied
by intent detection systems and appropriate visualization (Carrasco Limeros et al., 2023).

Despite the successes of graph-based models, a significant challenge is their inherent complexity, making them opaque and
often difficult to interpret. Regulators are increasingly demanding transparency requirements for artificial intelligence (EC, 2021;
Office of U.S. Senator Ron Wyden, 2022; European Commission and Directorate-General for Communications Networks, Content and
Technology, 2019), including traceability, data logging and explainability. In the context of autonomous driving, these requirements
can benefit various stakeholders, such as internal and external users, testing and certification bodies and developers (Gonzalo et al.,
2022; Fernandez Llorca and Gémez, 2023). Recognizing this challenge, our work emphasizes not just accurate motion prediction
but more crucially, the explainability of these predictions.

In this paper, we address the challenge of explainability in motion prediction systems by proposing an Explainable Heterogeneous
Graph-based Policy (XHGP) model that is designed to improve the explainability of the motion prediction task (see Fig. 1). Our
contributions are three-fold:

» We introduce the Explainable Heterogeneous Graph-based Policy (XHGP) model, an approach that distinctively combines the
graph-traversals method from Deo et al. (2021) with the strengths of heterogeneous graph representation and attention (Yang
et al., 2021), specifically architected to enhance explainability in motion prediction. Our method jointly models road and
dynamic agents in a heterogeneous graph, offering increased transparency in motion prediction. We evaluate the performance
of our model on the challenging large-scale nuScenes dataset, achieving competitive results compared to prior works.

We analyze various explainability methods applied to Graph Neural Networks (GNNs) in the context of multi-modal
motion prediction, examining two types of attention mechanisms, GNNExplainer, and counterfactual reasoning, providing
a comprehensive assessment of explainability in graph-based motion prediction models.

We conducted a qualitative and quantitative evaluation of the explanations provided using the diverse and challenging
nuScenes dataset, demonstrating the effectiveness and potential of our approach in improving the transparency of motion
prediction systems in autonomous driving.

By incorporating explainability into motion prediction systems, our work takes a significant step towards more transparent and
reliable autonomous vehicles. This is crucial for user confidence, developer understanding, and regulatory compliance (Ferndn-
dez Llorca and Gémez Gutierrez, 2021).

The remaining of this paper is structured as follows: Section 2 provides a comprehensive overview of related works, covering
GNN-based motion prediction, explainability with Graph Neural Networks, and interpretable and explainable motion prediction. In
Section 3, we introduce our methodology, starting with the problem formulation, then detailing our multi-modal motion prediction
model, and finally elaborate on the applied explainability techniques. Explainable motion prediction is the core aspect of our work
— we explore attention visualization, post-hoc explainability methods using GNNExplainer, and counterfactual reasoning. Section 4
presents the evaluation framework, including the dataset, and evaluation metrics used for our experiments. In Section 5, we discuss
our results. Finally, Section 6 provides a discussion and conclusion of our work, summarizing our findings and outlining potential
future research directions.
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2. Related works

Deep neural networks have been successful in a wide range of tasks, including motion prediction (Huang et al., 2022). However,
a well-known drawback with deep neural networks is that it is difficult to explain their predictions. Without reasoning about the
underlying mechanisms behind the predictions, deep models cannot be fully trusted, which precludes their use in critical applications
due to fairness, privacy, and safety concerns. The Defence Advanced Research Project Agency (DARPA) coined the term Explainable
Al (XAI) as a new research direction to address this weakness (Gunning, 2016).

The terms of interpretability and explainability are usually interchangeably used. However, although closely related, some works
try to clarify the difference between these concepts, Doshi-Velez and Kim (2017), Rudin (2019), Gilpin et al. (2018), but none of
them provide a rigorous formal mathematical definition. Interpretability is defined by Doshi-Velez and Kim (2017) as “the ability
to explain or to present in understandable terms to a human” meaning that the cause and effect can be determined. In this work,
we follow (Rudin, 2019) and consider a model to be interpretable if the model itself can provide understandable interpretations
of its predictions, such as a decision tree model. However, most machine learning models are designed with specific accuracy as
a goal and do not have interpretability constraints. In contrast, explainable models are those that are still a black box and require
post hoc techniques to explain its predictions. According to Doshi-Velez et al. (2017), an explanation must provide at least one of
the following: the main factors in the decision process; whether the decision would have changed if the factors had been modified;
whether two similar cases result in different decisions, or vice versa.

In this section, we first review recent advances in graph-based motion prediction. Next, we review explainability in GNNs. Finally,
we identify previous attempts to deal with interpretable and explainable motion prediction.

2.1. GNN-based motion prediction

Graph Neural Networks (GNNs) have been widely used to capture and model the underlying spatial and temporal relationships
of the agents in a traffic scene. Some approaches propose the use of the GNN model to encode the spatial interactions between
traffic agents and then attaching some recurrent (Li et al., 2019; Zhou et al., 2021; Mo et al., 2021; Tang et al., 2023; Zhang et al.,
2023) or attention-based (Zhang et al., 2022a) system to model the temporal relationships and generate the predicted trajectories.
However, the temporal information can be intrinsically captured by the graph model by adding self-connections to the nodes as
temporal edges (Carrasco et al., 2021).

Apart from the spatial and temporal information of the agents, prior knowledge of the road structure plays a fundamental role.
Most self-driving cars have access to high definition (HD) vector maps, which contain detailed geometric information, such as
roads, lanes, intersections, crossings, traffic signs, and traffic lights. The simplistic way to encode road and motion information is
rasterization (Casas et al., 2020). In such a representation, different semantics are encoded in separate channels, which facilitates
the learning of the convolutional neural network (CNN). However, rasterization may lose useful information like lane topologies
and has difficulty to capture long range interactions. A more efficient solution is to represent structured HD maps and agents using
polylines. Gao et al. (2020) treat a map as a collection of polylines and use self attention-subgraphs to encode them. Discretization
of the scene context in form of vectors was adopted in subsequent works (Zhao et al., 2020; Gu et al., 2021; Zhao et al., 2022)
because it provides a uniform representation with a lower computational cost. In addition, it allows interpretable analysis of the
model’s behavior and enables counterfactual predictions that condition hypothetical “what-if” polylines (Khandelwal et al., 2020).

Other ideas involve building additional structures. For example, LaneGCN (Liang et al., 2020) particularly emphasizes a graph
of lanes and conducts convolutions over the graph. LaneGCN’s architecture is deep and complex with multiple fusion modules and
spatial attention layers, each targeting specific interactions. LaneRCNN (Zeng et al., 2021) encodes both actors and maps in an
unified graph representation, which is even more structured. Both methods encode the input context into a single context vector. It
is then used by the multi-modal prediction header to derive multiple likely future trajectories. The predictive header therefore has
to learn a complex mapping, which often leads to predictions that get out of the way or violate traffic rules.

Recently introduced Prediction via Graph-based Policy (PGP) model (Deo et al., 2021) achieves great scene compliance due to
the use of a lane-graph traversals approach. It selectively aggregates scene context based on path traversals sampled from a learned
behavior cloning policy, capturing the lateral variability of the output distribution. To model longitudinal variability, a sampled
latent variable was added, enabling prediction of different trajectories for a same traversal.

In contrast to the aforementioned models, our proposed XHGP adopts a heterogeneous graph representation, capturing a
broader and richer context of the scene. This not only allows for comprehensive motion predictions but also facilitates enhanced
explainability, as we will discuss in subsequent sections.

2.2. Explainability with graph neural networks

Explainability in GNNs can be taxonomized in instance-level and model-level methods. The former provide input-dependent
explanations, while the latter explain the general behavior of a GNN at a higher level. XGNN (Yuan et al., 2020) proposes to
explain GNNs by learning to generate graphs that achieve optimal prediction scores according to the GNN model to be explained.
Instance-level methods have been studied much more extensively and can be divided into four categories:

» Gradient-based methods use gradient or hidden features as proxies for input importance to explain the predictions through
back-propagation. (Pope et al., 2019; Baldassarre and Azizpour, 2019)
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» Perturbation-based methods study the change of output variations for different input perturbations. (Ying et al., 2019; Luo
et al., 2020a; Schlichtkrull et al., 2021; Lin et al., 2021; Lucic et al., 2021)

» Decomposition-based methods track the contribution of individual graph components to the final prediction by decomposing
the original model predictions into different terms that are considered as importance scores of the input features. (Schnake
et al., 2022; Schwarzenberg et al., 2019; Pope et al., 2019)

» Surrogate methods use a simpler and more interpretable surrogate model to approximate the underlying GNN predictions as
accurately as possible. (Vu and Thai, 2020; Huang et al., 2020)

While there are several tools for GNN explainability, not all are directly applicable to every GNN-based model. The architecture
of XHGP is distinct in its support for generic GNN explainability methods, thanks to its graph architecture from the input. This
differentiates it from models like LaneGCN and PGP, which, being lane-centered, do not inherently represent agents as graph nodes
from the outset, limiting the straightforward application of such tools.

2.3. Interpretable and explainable motion prediction

The need to understand the importance of road users’ interactions was previously highlighted by the authors of the Socially-
COnsistent and UndersTandable (SCOUT) Graph Attention Network (GAT) (Carrasco et al., 2021). This was investigated using the
Integrated Gradients (Sundararajan et al., 2017) technique and visualization of learned attention. The illustrations provided for four
carefully selected scenarios showed the importance of spatial representation of the nearest traffic participants. The use of the learned
attention as a mechanism to generate explainable motion predictions was also proposed for transformer-based models (Zhang and
Li, 2022).

The explainability of motion prediction was recently explored by use of conditional forecasting (Khandelwal et al., 2020). The
authors of What if Motion Prediction (WIMP) model (Khandelwal et al., 2020) developed an iterative, graphical attention approach
with interpretable geometric (actor-lane) and social (actor-actor) relationships that support the injection of counterfactual geometric
targets and social contexts. In this way, the model can make different predictions based on injected/removed lanes and actors. The
proposed method supports the study of hypothetical or unlikely scenarios, so-called counterfactuals. This capability can be further
used in the planning process to include only relevant features in the calculations or to examine and evaluate the model’s predictions.

In Zhang et al. (2022b), the authors investigated the robustness of motion prediction for AV by proposing a new adversarial attack
that disrupts normal vehicle trajectories to maximize prediction error. This study focuses on 3 predictive models and 3 trajectory
datasets. The evaluation showed that the prediction models are generally susceptible to perturbation by adversaries and can result
in unsafe AV behavior, such as harsh braking. The authors highlighted the need to evaluate the scenario of traffic prediction models.
Data augmentation and trajectory smoothing were proposed as mitigation methods. This reduced the prediction error under attacks
by 28%.

Bahari et al. (2022) conducted an analysis of off-road predictions using state-of-the-art models. Their study demonstrated that
four selected multi-modal motion prediction approaches fail to generalize to new scenes. The authors generated realistic adversarial
examples that caused the models to predict off-road scenarios. This analysis was performed on the Argoverse Dataset (Chang et al.,
2019). The findings underscore the significance of explainability and interpretability of the predictions to enhance model robustness
and generalizability. However, we posit that Argoverse dataset, with its limited variability in scenes and road topologies, as well
as minimal interactions among agents, may not be the most suitable choice for thoroughly examining explainability of motion
prediction systems, especially in the context of real-world urban scenarios.

To our knowledge, while there have been efforts to understand motion prediction in autonomous driving, a comprehensive
approach towards explainable graph-based motion prediction, especially for highly interactive and challenging datasets like
nuScenes (Caesar et al., 2020), has been limited. XHGP, as presented in this work, bridges this gap by not just offering accurate
motion predictions but also ensuring these predictions are interpretable and explainable, distinguishing it from others in the domain.

3. Methodology

We propose a novel approach for motion prediction named Explainable Heterogeneous Graph-based Policy (XHGP). This model
extends the lane-graph traversals idea presented in Deo et al. (2021) to jointly model lanes and different types of dynamic agents
in a heterogeneous graph (Yang et al., 2021). In addition, we leveraged the interpretability features of the XHGP model to analyze
predicted trajectories. To this end, we applied multiple explainable techniques, including learnt attention visualization, learnt
GNNExplainer masks, and counterfactual reasoning. We thoroughly evaluated each of these approaches in the context of multi-modal
motion prediction.

3.1. Problem formulation

The goal is to estimate future trajectories of vehicles of interest from their past trajectories and scene context. Input features
describe the past trajectory of the vehicle of interest as well as the scene context.

One the one hand, let sf. € RO be the state of agent i at time ¢, including its two-dimensional position in the BEV-plane, r,? = [x;, yil,
as well as the velocity v;, acceleration «;, yaw rate w;, and a flag I, indicating the type of agent — pedestrian (f; = 1) or vehicle

(I; = 0). Therefore s} = [x;, y;,v;, a;, ;, 1;] (see Fig. 2(a)). On the other hand, lane centerlines are represented by a segment of fixed
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Fig. 2. Illustration of the state variables (a) of an agent and (b) of a lane centerline point.
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Fig. 3. Example of building a heterogeneous graph from a traffic scene. Nodes include vehicles, pedestrians and lanes. Directed and undirected edges include
multiple types of interactions.

length, each segment consisting of a sequence of N points. Each lane point n is defined by a vector ¢, € R’ which includes its
two-dimensional position in the BEV-plane [x,,y,], the yaw 6,, and a semantic 4D binary vector I, indicating whether the point
belongs to a stop line, turn stop, crosswalk, or traffic light. That is, ¢, = [x,,, y,,,0,, I,,] (see Fig. 2(b)).

The aim is to predict 7 for future time steps Ty, < 7 < Tpreqs being Tyreq = 6 at 2 Hz.

3.2. Multi-modal motion prediction model

Future behaviors of road agents are inherently uncertain and conditioned on the scene context, including road topology and
social interactions with other road agents. According to this idea, we explored different model architectures to explicitly capture
these two interactions with respect to the agent of interest.

We extend (Carrasco et al., 2021), an attention-based GNN that uses a flexible and generic representation of the scene as a
graph for modeling interactions predicting socially-consistent trajectories by adding the scene context as a rasterized HD Map
and a multimodal prediction header. However, rasterization has proven to be inefficient and somewhat prone to information loss.
Recently, lane-graph based methods have shown better performance and efficiency. On the other hand, our experiments with multi-
modal autoencoders based on mixture density networks and on variational autoencoders showed to be prone to mode collapse,
with different modes being different in speed profile, landing on a single path. The approach taken in Deo et al. (2021), based on
lane-graph traversals conditioning, has shown promising results. They leverage the strong inductive bias that lanes provides to the
network, which capture both the direction of traffic flow and the legal routes for each agent in the scene.

In our approach, we model traffic scenarios as heterogeneous graphs, with nodes representing the different agents and static
objects in the scene, and edges representing their interactions. This is a more natural and flexible way of encoding the scene
context than rasterization, since it can handle different input sizes and achieve invariance to input ordering. Using a generic
representation of the scene as a graph allows the model to be flexible to different environments and road topologies and to harness
the expressive power of GNNs. Additionally, graph-based representations contain important topology information, which makes them
more interpretable than other DL approaches in this scenario, being able to directly retrieve the importance of each interaction in
the graph.

Graph definition. We propose to model the whole scene as an heterogeneous graph including both scene and agent context
information (see Fig. 3). As stated in Zhang and Li (2022), the use of heterogeneous graphs makes it possible to merge information
on road topology and traffic rules, as well as to rationalize the implicit interactive information of the agents. Hence, we define
the whole scene context as a directed heterogeneous graph ¢ = {V,€,7,R}. This heterogeneous graph representation is central to
XHGP’s design, allowing us to capture interactions and entities in a unified framework. It differentiates XHGP from state-of-the-art
graph-based prediction models, which do not capture the full breadth and depth of scenarios in such an integrated manner.
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is the attention mechanism for type-level aggregation.

In this graph, each node v € V has a type, denoted by a mapping function z(v) : ¥V — 7, and each edge e € £ has a type,
represented by a mapping function ¢(e) : £ — R. The sets 7 and R represent node types and relation types, respectively. The set
of node type 2 € T is given by V¥, while the neighborhood of (2 is denoted as N'? = {I'|I',2 € T,(I', 2) € R}, with I' € N'? as
a neighbor type of Q. The interaction from I to Q is represented as (I, ).

In our work, 7 = {lane, vehicle, pedestrian}, and R = {succ, prox, v2l, v2v, p2v}. These node types represent lanes, vehicles, and
pedestrians, and the edge types define successor, proximal, vehicle-to-lane, vehicle-to-vehicle, and pedestrian-to-vehicle interactions,
respectively. We follow the approach described in Deo et al. (2021) to define each lane node, v € V", as a lane centerline segment
of 20 m length. Each node is defined by a sequence of points with its feature vectors ¢/ = [ci, ,cjv] as described in 3.1.

Successor edges connect lane nodes along the lane, while proximal edges connect neighboring lane nodes that are within a
distance threshold of each other and have a yaw angle difference within a threshold. We consider all agents and lanes within a
specific area around the focal agent. Concretely, 50 m laterally, 20 m behind and 80 m in front of the agent. For E*?, we consider
all lane nodes within 10 m around the particular vehicle. The focal agent is connected to all lanes within the predefined region. For
EY?* and EP?", we define an interaction when the euclidean distance between two agents is lower than 20 m.

We construct an adjacency matrix for each relation to represent the connections between nodes of different types. For example,
the adjacency matrix for vehicle-to-lane edges would be a matrix of size |VVehicle| x |ylane| ‘where the element at row i and column
j represents whether the vehicle node i and the lane node j are connected. Fig. 3 provides an illustrative representation of the
structure of the graph.

Scene and agent context encoding. Each object type is first encoded using a gated recurrent unit (GRU). We use a separate
encoder for the focal agent, surrounding agents — where the type of agent (vehicle or pedestrian) is indicated in the input features
—, and lanes nodes. Then, we obtain the encoding Z', ZP, and Z!.

After encoding and projecting all the hidden representations of neighbor objects into a common semantic space, we employ an
attention-based object-level aggregation similar to that in Carrasco et al. (2021), Velikovi¢ et al. (2018), instead of the statistically
row-normalized convolution operation. For each canonical edge type in &, a subgraph is considered for the aggregation, with source
V9, destination V! and relation R?~I. We then compute a pair-wise un-normalized attention score between each two neighbors in
the form of additive attention, and normalize them across all the neighborhood of 2 using the softmax function,

a;; = Softmax;(a” - LeakyReLU([W z; || Wz,])) . (€h)

where z is the node encoding, W is the weight matrix that parametrizes a shared linear transformation applied to every node, a
defines the self-attention mechanism, T represents transposition, and || is the concatenation operation (see Fig. 4).

The attention score indicates the importance of node j features to node i, which allows each node to attend every other node
in its neighborhood. This score is later visualized to understand which interactions are most important. The aggregation of the
neighbors embeddings is similar to GCN (Kipf and Welling, 2017), where all the neighbors in the subgraph are aggregated together
scaled by the attention score.

To learn more powerful representations for each node type, Yang et al. (2021) proposes type-level attention to fuse represen-
tations from different types of neighbor objects. The intuition is that for each type of object, the information coming for different
types of neighbor objects could not have the same importance. For example, for objects of type lane, the relation vehicle-to-lane
could be more relevant for the final prediction than the relation proximal. For objects of type vehicle, the relation vehicle-to-vehicle
in general should be more relevant than pedestrian-to-vehicle. Hence, before aggregating the representations from the object-level
attention aggregation, we first learn the importance for the different types of neighbors using scaled dot product attention (Vaswani
et al., 2017). In order to compute the importance of the representations of neighbor types, including the self representation, for
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VI, we linearly project the hidden representation from the previous step, {H?~"} u {H''}, into keys, and {H''} into the query. The
values will be the output from the previous step.
Then, the type-level attention is computed as follows:

el =ELU(H" - W || Hf-wijf) 2

M =ELUH?™" - W[ | H" - W] wh), 2eNT ©)

Finally, a softmax function is applied to get the normalized attention coefficients, a,.r and a;Q’r . These attention scores are then used
to compute the higher level representation of V'. For each element i in V',

0/ =ELU@ -H/ + ) o7 .02 “
QeNT
We apply two layers of the defined GNN to aggregate the two-hop neighborhood information. The node encoding size and the
attention size is 32.
Graph traversal and decoding. The final representation for the focal agent, ﬁS’ is concatenated with its encoding previous the
aggregation, Z;. This output, together with the representation for the lane nodes, I:Ié, is used to learn a policy for graph traversal
using behavior cloning. The final decoding is conditioned on path traversals, following Deo et al. (2021).

3.3. Towards explainable motion prediction

Our main objective is to integrate explainability techniques on the XHGP model, to implicitly reflect the influence of the different
agents and the topology of the road on the multimodal predicted trajectories, without negatively impacting the performance of the
system. More specifically, we integrate three different explainability techniques in the graph-based model: analysis of attention,
post-hoc explainability (GNNExplainer) and counterfactual reasoning.

3.3.1. Attention visualization

According to previous research (Jain and Wallace, 2019), attention should not be seen as a direct indicator of meaningful
explanations, but rather as a proxy for explainability. However, in the context of GNNs used to model road scenarios, attention
can implicitly capture explicit interactions between agents and road topology. This representation is pivotal for XHGP, enabling it
to differentiate interactions more comprehensively than other graph-based architectures, making it particularly suited for our use
case.

As explained in Section 3, the scene context encoding is performed using two types of attention: object-level and type-level
attention. The former reflects the importance of each neighboring node in the aggregation, i.e., how each interaction affects the
prediction. The latter represents the importance of each type of interaction. We aggregate both attention scores and visualize them
to understand which interactions in the scene are most relevant for the final prediction. The ability to visualize and understand the
importance of interactions, especially with dynamic agents, is an example of the explanatory power of the XHGP design. State-of-
the-art models, while effective for motion prediction, do not natively offer this level of granularity in explaining the influence of
individual interactions on the predicted outcomes.

3.3.2. Post-hoc explainability methods: GNNExplainer

Existing methods adapting or specifically designing the explanation methods for GNNs have shown promising explanations on
multiple types of graph-structured data (Jaume et al., 2020; Rao et al., 2022; Jaume et al., 2021; Zhdanov et al., 2022). In particular,
perturbation methods involve learning or optimization (Ying et al., 2019; Luo et al., 2020a; Schlichtkrull et al., 2021; Lin et al.,
2021; Lucic et al., 2021). While they come with higher computational costs, they generally achieve state-of-the-art performance
in terms of explanation quality. The XHGP architecture allows us to leverage these methods more effectively, particularly in the
context of heterogeneous graphs representing intricate driving scenarios. These methods train local post-hoc interpretable models
on top of the explained predictive model. One of the most interesting approaches is GNNExplainer (Ying et al., 2019) which requires
training or optimizing an individual explainer for each data instance, i.e., a graph or a node to be explained.

GNNExplainer is a graph pruning based explainability technique, which can be used with any type of GNN. The explainer tries to
find the minimum sub-graph G, € G such that the model prediction is retained. The task is formulated as an optimization problem
that learns a mask to activate or deactivate parts of the graph. The initial formulation (Ying et al., 2019) was developed for explaining
node classification tasks and is based on edge masking. However, other works (Jaume et al., 2020) utilized the technique also to
learn a mask over the nodes instead of edges.

Formally, GNNExplainer aims to maximize mutual information between a compact sub-graph G, and a base graph G by learning
an edge mask and a feature mask in an optimization process (Ying et al., 2019). The undoubted advantage of the methodology is its
versatility, that is, its adaptability to problems other than graph or node classification or link prediction, for which it has been used
in previous studies. We adapt the approach to work on heterogeneous graphs and learn the importance mask of its edges (traffic
agents interactions) for the prediction of the focal agent trajectory for each timestamp in the given scenario. Our objective is to
provide a comprehensive explanation of the modeled traffic scene graph. To achieve this, we employ GNNExplainer masking during
the stage of encoding scene and agent context information. Subsequently, we proceed with the remaining stages of the model to
compute the trajectory for the selected mode. This integration facilitated the extraction of detailed explanations from the GNN-based
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model’s behavior, providing a sound understanding of the reasoning behind predicted trajectories. We intend the explanations to
be as compact as possible, while providing the same prediction as the original graph. Heuristically, we enforce these constraints by
optimizing the following objective function (Ying et al., 2019):

L=Lyi9)+a|IMI|ly + ey H(M)

(5)
+ BillFlly + BHE),

where L is the loss function measuring distance between original and predicted trajectory of interest (usually the most probable
first mode), j is the original model prediction, y is the model prediction with the edge (M) and feature (F) mask applied. In
GNNExplainer (Ying et al., 2019), an entropy-like metric H is applied by transforming the M and F matrices into a probability-like
distribution and then calculating a heuristic measure of information content. The importance masks for edge and node features,
denoted as M and F respectively, are continuous and range between 0 and 1. The magnitude of these masks indicates the degree
of importance, with larger values indicating higher importance. These masks are associated with the canonical types of edges and
nodes in the computation graph. To measure the distance between different predicted trajectories we use the same metric as for
the predictive model (Deo et al.,, 2021; Zhao et al., 2020). In the end we obtained the edge weights, which we were able to
compare with the attention learned by the GNN encoder of the XHGP model. Moreover, unlike existing open implementations
designed for homograph data, our approach addressed the challenges posed by the diverse nature of the input data in form
of a heterogeneous graph representing interactions between both static and dynamic objects in autonomous driving scenes. To
further enhance interpretability of the explanations, we developed visualization techniques that showcase the most influential
edges (indicating interaction between dynamic objects) within the heterogeneous graph, thereby enabling a clear and intuitive
understanding of the GNN-based model’s prediction process. In this way, our work pioneers the adaptation, integration, and
applicability of GNNExplainer in the context of GNN-based motion prediction for autonomous driving scenarios. Our approach
showcases how GNNExplainer can be successfully applied to this domain.

3.3.3. Counterfactuals

Mentioned above methods are not counterfactual by their nature, meaning that they do not explain how to achieve an alternative
outcome from the predictive model. Counterfactuals about hypothetical occurrences are increasingly used in different explainable Al
applications. A counterfactual explanation describes a cause and effect situation in the form If X had not occurred, Y would not have
occurred. The name counterfactual comes from imagining a hypothetical reality that contradicts the reality. Counterfactual reasoning
can be used to explain the predictions of individual instances made by a model by modifying the cause (input features) of that
prediction. This makes counterfactuals one of the most intuitive explanation for humans since, first, reasoning about cause and
effect in a situation comes very natural to humans, and, second, they focus on a specific instance and a small input change. In our
study we presented how changing different part of the modeled traffic scenario can affect the final prediction.

Our method models the entire scene as a heterogeneous graph, including interactions between the road network and dynamic
agents. This modeling approach naturally enhances XHGP’s capability for counterfactual reasoning. By capturing geometric and
social relationships, our model facilitates a more nuanced exploration of hypothetical scenarios. The surrounding context of the
focal agent can be manipulated to ablate specific social or road influences, as well as to condition upon unobserved hypothetical
agents.

These counterfactual explanations can be used not only to explain, but also to evaluate predictive models that rely on their scene
context. Furthermore, they can be seen as a measure of robustness and generalizability. We want our model to produce sensible
predictions when conditioned on unlikely extreme inputs, demonstrating that the model has learned a powerful causal representation
of driving behavior. This capability is not only useful for explainability, but could also be exploited by a subsequent decision making
system or subsequent planner to reason about social influences from occluded regions.

4. Evaluation framework
4.1. Dataset

In our experiments, the reference dataset is the public, large-scale nuScenes dataset (Caesar et al., 2020) for autonomous driving
developed by the Motional team. The primary objective behind the creation of this dataset was to enhance the safety, reliability,
and accessibility of self-driving cars in everyday life. To achieve this goal, the dataset encompasses a diverse range of scenarios
involving interactions between various traffic participants, making it the most suitable choice for our analysis on explainability
among other public benchmarks (Chang et al., 2019; Ettinger et al., 2021; Mandal et al., 2020; Zhan et al., 2019; Caesar et al.,
2020). The nuScenes dataset consist of 1000 scenes of 20 s each, with ground-truth annotations and HD maps, which were collected
in Boston and Singapore, where right-hand and left-hand traffic rules apply respectively. In our prediction scenario, we rely on 2 s of
dynamic agents’ history and the map features to predict the next 6 s. Given the geographic diversity of the data and comprehensive
representation of complex scenarios such as turns and intersections, nuScenes presents one of the most challenging prediction
benchmarks, which enables us to thoroughly evaluate the performance and robustness of the model in a multitude of real-world
situations, furthering the understanding of its capabilities and limitations. For presented results, the challenge split from the nuScenes
motion prediction benchmark (Caesar et al., 2020) was used.
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4.2. Evaluation metrics

4.2.1. Quantitative metrics for motion prediction

first, we perform a quantitative evaluation of the motion prediction model using nuScenes motion prediction benchmark. We
output 10 predictions for the focal agent, 6 s into the future at 2 Hz, along with the probability that the agent follows that
trajectory. The metrics used in the nuScenes benchmark to measure the degree to which this proposed set of trajectories matches
the ground-truth are as follows:

+ Best-of-K Average Displacement Error (minADE): The minimum point-wise L2 distance to the ground-truth trajectory over all
predicted trajectories.

* Best-of-K Miss Rate (MR): percentage of predictions whose maximum pointwise L2 distance between the prediction and
ground-truth is greater than 2.0 m.

+ Off-road rate: computes the fraction of trajectories that are off-road, outside the drivable area.

4.2.2. Quantitative metrics for graph explainability

In order to evaluate the GNN explanation method, it is necessary to qualitatively examine the results for each input example. This
would be extremely time-consuming with only visualizations. In addition, this type of evaluation is highly dependent on people’s
subjective understanding, resulting in a biased and unfair evaluation. Evaluation metrics are a good alternative to study these
explanation methods. In this section, we introduce several recently proposed evaluation metrics (Yuan et al., 2022).

Sparsity. Good explanations should capture the most important input features and ignore the irrelevant ones. The metric Sparsity
measures the fraction of features selected as important by the explanation method (Pope et al., 2019). Formally, for given ith input
of the graph G; and its importance weights m;, the Sparsity metric can be computed as

|m;|

_ mil 6
I, ©

N
Sparsity = % Z 1
i=1

where N is the number of graphs, |m;| denotes the number of important features (i.e., nodes, edges, node features) identified as m;,
and |M;| — the total number of features in G;. Higher values of the metric indicate that explanations are more sparse and tend to
capture only the most important input information.

Fidelity. The explanations provided should be faithful to the model, meaning that they should identify input features that are
important to the model, not (only) to the human. To evaluate this, the Fidelity+ (Pope et al., 2019) and Fidelity— (Yuan et al.,
2022) scores were introduced. The Fidelity+ is defined as the difference of accuracy (or predicted probability) between the original
predictions and the new predictions after masking out important input features. For the given i — th input graph G;, the score can
be computed as

N
Fidelity+ = % > (=10 =), %)
i=1
where y; is the original prediction of graph i. 1 — m; means the complementary mask that removes the important input features,
and yl.l_m" is the prediction when feeding the new graph into the trained GNN-based f(-). The indicator function ]l(yl.l_'"" ~y,) returns
1 if yil_'"” and y; are with an Euclidean distance lower than 2 m, and returns O otherwise. For GNNExplainer (Ying et al., 2019),
the importance scores are continuous values, and hence the importance map m; can be obtained by normalization and thresholding
or ranking (Yuan et al., 2022). For Fidelity+ higher values indicate better explanation results and more discriminative features are
identified.
In contrast, the metric Fidelity— studies prediction change by keeping important input features and removing unimportant
features, and is defined as

N
R 1 :
Fidelity-= — > (1-101 =), ®
i=1
where yl'."’ is a new predicate based on the explanation of m; for G:"’ being a new graph by preserving only the important features
of G;. For Fidelity—, lower values indicate less importance information are removed so that the explanations results are better.
Note that, when the explanation results are soft values (i.e., m; € [0, 1]), as it is in our case, the Sparsity is determined by a threshold
value. Intuitively, larger threshold values tend to identify fewer features as relevant and, hence, increase the Sparsity score and decrease the
Fidelity+ score.

5. Results
5.1. Quantitative evaluation of multi-modal motion prediction
We compare our method against state-of-the-art models on nuScenes benchmark. Results are shown in Table 1. This method

achieves similar results as the original PGP. The results described for PGP are obtained by reproducing their work, which improve
on those presented in the original paper. In the table, we detailed both the results presented in their work and those obtained
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Table 1
Comparison to the state-of-the-art on nuScenes benchmark. We change the PGP encoding, modeling the entire scene as a
heterograph, to make it compatible with GNN explanability methods without any loss of performance.

Method MinADE Miss rate Off-road
K=5 K =10 K=5 K =10
Trajectron++ (Salzmann et al., 2020) 1.88 1.51 0.70 0.57 0.25
WIMP (Khandelwal et al., 2020) 1.84 1.11 0.55 0.43 0.04
CXX (Luo et al., 2020b) 1.63 1.29 0.69 0.60 0.08
P2T (Deo and Trivedi, 2020) 1.45 1.16 0.64 0.46 0.03
THOMAS (Gilles et al., 2022) 1.33 1.04 0.55 0.42 0.03
1.30 1.00 0.61 0.37 0.03
PGP (Deo et al, 2021) 1.281 0.95' 0.521 0.341 0.031
XHGP 1.27 0.94 0.53 0.34 0.03

with the new implementation (-7). Both these models achieve best results in nuScenes motion prediction leaderboard (Caesar et al.,
2020). While the performance metrics are comparable, it is important to note that XHGP’s architecture is inherently designed for
explainability. The true strength of XHGP lies in its ability to provide meaningful, interpretable insights into its predictions, a feature
that distinguishes it from other models like PGP.

Fig. 5 shows an example predicted scene. Two seconds of history are represented by a dashed black line. Six seconds of future
by a white dashed line. The AV is shown in red and the focal agent in dark blue. Surrounded vehicles are represented in light blue,
bicycles and motorcycles in green dots, and pedestrians in blue dots. Movable objects, such as traffic cones, are painted in yellow.
Ten different predictions — modes — are visible in the scene. The probability of each prediction is assigned to the color bar on the
right. Therefore, each prediction is represented with a color and a line width describing its probability. In this sample scene, the
most probable prediction goes straight forward. Two less likely modes turn right. The rest of the variability lies in the velocity
profile.

5.2. Evaluation of the influence of interactions

The black-box nature of neural networks raises many concerns, as the predictions they provide are difficult for humans to fully
understand. The need of the explanations in autonomous driving stems from existing problems, established regulations and standards,
along with opinions of the public. The XHGP model, with its heterogeneous graph representation, is specifically designed to tackle
this challenge. By being able to pinpoint influential interactions and provide an understanding of the graph’s temporal evolution,
it offers a level of transparency and insight not commonly found in other state-of-the-art models.

Since our graphs modeling the scene context are not very large and contain up to 100 nodes, we did not limit ourselves to just the
neighborhood of the focal agent. Analysis conducted for the validation subset of the nuScenes dataset identified lanes nodes as the
most influential. On the other hand, the most influential type of edges for predicting the most probable trajectory appears to be the
ones connecting pedestrian-to-vehicle, and vehicle-to-vehicle. This finding is consistent with one would expect from a human driver,
as the ability to perform most maneuvers on the road depends on the geometry of the scenario (lanes, traffic lights, signs, etc.), and
their exact performance is based on interactions between dynamic objects (pedestrians, cyclists, and other vehicles). However, we
also detected a strong focus on vehicles and pedestrians who do not fully participate in the driven scenario, but merely indicate the
limits of the road (sidewalk). This attention may be associated with the fact that, in our graphical representation of the scene, the
lanes of the road are defined only by the centerlines.

The influence of interactions was first visualized for the most likely trajectory predicted by our model. To do so, we focus on
selected scenes, trying to understand the basic rules for these predictions. Given the findings stated in the previous paragraph, we
focus on the interactions with dynamic agents. Fig. 6 depicts explanations, i.e., interaction importance, for a city center scenario
with a large number of pedestrians and vehicles — both parked and in movement. The focal agent continues its trajectory in a
straight line entering an intersection with the intention of turning right, stopping at the pedestrian crossing. The Figure presents the
most important vehicle-to-vehicle and pedestrian-to-vehicle interactions for the focal agent. Top row indicates the most probable
predicted trajectory, while the followings rows show the masks learnt by GNNExplainer and the learnt attention weight (marked in
red — interactions with vehicles, and in yellow — interactions with pedestrians) between each node connected with the focal agent.
Each column represents a different timestamp for the given scenario, moving from left to right. The thickness of the edges represents
the importance level of each interaction, which changes for each frame. Overall, GNNExplainer and the visualized attention indicate
similar interactions as the important ones, however GNNExplainer appears to be more sensitive for all interactions with the focal
agent.

The results, explained in terms of interaction importance, can be produced for different modalities, not only the most probable
trajectory. Fig. 7 shows a scenario with the focal agent on a T-junction, attempting to turn right. The first image shows the ten
possible modalities predicted by the model, the next images show the importance of interactions between agents for the selected
predicted trajectory. We can observe two different behaviors: turning right (most likely prediction, coinciding with the ground-truth),
and continuing straight (lower probability). In the former, the interaction between the central agent and pedestrians crossing the
road was identified as the most important interaction. In this situation, the car slowly entered the intersection and turned right. For
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Fig. 5. Multi-modal motion prediction output representation with visual components and legend applied to all presented visualizations.

Table 2

Performance evaluation of GNNExplainer and attention baseline explainability approaches.
Method Fidelity+ Fidelity— Sparsity
GNNExplainer 0.47 0.97 0.81
Attention 0.57 0.96 0.64

the other mode, a straight trajectory is observed with an increase in the importance of the interactions with surrounding cars. In
this case, the interaction with pedestrians on the sidewalk — which indicates the roadway boundary — was of less importance.

To provide a quantitative validation of the trained explainers for the most probable trajectory, we further calculated metrics
described in Section 4.2.2. The Table 2 presents results for GNNExplainer and learnt attentions for m; > 0.8 threshold. The scores
obtained are similar for both methods, which can also be observed in the qualitative analyses presented above. The higher Sparsity
value for GNNExplainer indicates that the explanations provided by this method are more sparse — i.e., it tends to give higher
importance for fewer input features. This is also related to the main idea of this approach of finding the minimum sub-graph.

5.3. Counterfactual explanations

In this section we explore a series of counterfactual experiments to explain challenging scenarios and demonstrate how the output
distribution is highly influenced by the scene context.

Agent insertion. Fig. 9 shows three scenarios where fictitious agents are inserted in the scene or behaviors of current agents

are modified.
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Fig. 6. Qualitative results: importance of interactions for vehicle-to-vehicle (red) and pedestrian-to-vehicle (yellow) with the focal agent based on GNNExplainer
(second row) and learned attention (third row). First row depicts the most probable trajectories, which are explained.
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Fig. 7. Qualitative results: importance of interactions for vehicle-to-vehicle (red) and pedestrian-to-vehicle (yellow) with the focal agent based on GNNExplainer
for different modalities. The first image shows the 10 possible modes predicted by the model indicating 2 different maneuvers — turning right and going straight
— explained in the next images.

Table 3
Ablation of lanes and dynamic agents. Results for K = 10 simulating different recall levels for lane and dynamic agent detection.
Object Experiment minADE_5 minADE_10 miss rate_5 miss rate_10 BC
Baseline recall 100%, K = 10 1.27 0.94 0.53 0.34 1.85
Recall 95% 1.36 1.00 0.54 0.36 2.18
Recall 90% 1.44 1.05 0.57 0.39 2.47
Lanes Recall 80% 1.61 1.16 0.61 0.43 3.08
Recall 50% 2.11 1.51 0.70 0.55 3.98
Recall 20% 2.49 1.83 0.76 0.62 4.07
Recall 0% 2.72 211 0.80 0.64 3.86
Recall 95% 1.30 0.97 0.52 0.34 1.93
Recall 90% 1.31 0.97 0.53 0.35 1.93
Dynamic agents Recall 80% 1.32 0.97 0.53 0.34 1.94
Recall 50% 1.34 0.98 0.54 0.36 1.96
Recall 20% 1.38 0.99 0.57 0.37 1.91
Recall 0% 1.38 0.99 0.58 0.37 1.96

In the first scene, the trajectory of the bicycle is modified so that it intersects with the focal agent ground-truth trajectory. The
vehicle in front of the focal agent is removed. Three predictions appear turning right, whereas the other seven predictions reduce
drastically their velocity to allow the bicycle to safely cross the intersection. If the vehicle in front is not removed from the scene, the
predictions appear to be less conservative and follow the vehicle trajectory. However, velocity of the predictions are still reduced
and two modes appear turning right.

In the second scenario, we insert a fictitious vehicle stopped in front of the focal agent. In this case, most of the predictions
change, turning right instead of following a straight path. However, one prediction with low probability go off the road. The most
probable prediction continues straight with a highly reduced speed. We believe that this mode attempts to cover the scenario in
which the stopped vehicle continues its trajectory at some point within the six-second window. The two low probability predictions
that continue straight should be taken into account with caution in order to plan a safe maneuver.

In the last scenario, a vehicle is inserted into the center of the roundabout. The speed of the most probable mode is significantly
reduced to accomodate this vehicle. Yet, some low-probability modes appear to attempt overtaking manouvers. The mode that
initially turned left in the roundabout vanishes, which is a reasonable response considering there is no space to turn left due to
presence of the counterfactual agent. Conversely, a new mode emerges that opts for a right turn, indicating the model’s adaptability
in responding to the altered scene.

In conclusion, our counterfactual analysis demonstrates that the model is capable of generating reasonable predictions when
faced with unexpected scenarios, thus highlighting its adaptability and usefulness. However, it is crucial to consider that the model
is optimized to seek diversity in its output distribution and, as such, may yield low-probability modes that exhibit less cautious or
even reckless behaviors, encountering some predictions that may not align well with the altered scenarios. As such, it is imperative
for the decision-making system within autonomous vehicles to carefully weigh the likelihood of all predicted scenarios in order to
plan trajectories that optimize safety and efficiency. Additionally, it underscores the importance of training models on more complex
datasets that cover a wide range of corner-cases to improve their robustness and reliability. By incorporating this understanding of
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Fig. 8. Relative drop in minADE; under different recall levels for lane and dynamic agents detection.

the model’s strengths and limitations, we can further advance the development of autonomous driving systems that are well-equipped
to navigate complex real-world environments.

Object ablation. In addition, we perform a qualitative and quantitative evaluation of the effect of lanes and dynamic agents
on the output. Lanes insert important inductive biases in the model and are, hence, crucial for its performance. On the other hand,
the ability to capture interactions is essential for a safe and efficient planning. We perform an ablation in an independent manner
for lanes and dynamic agents, simulating noise in the perception system. Table 3 shows the performance of the model as having an
object detector with a recall from 95% — which is close to the demand for self-driving cars — to 0%, i.e. no lanes or dynamic agents
detected at all. Fig. 8 shows the relative evolution of minADEs in a graphical manner.

When the recall is 0% for lane detection, the system can only rely on the focal agent’s past trajectory and other dynamic agents,
with no information about the road topology. In case of masking all agents in the scene, we evaluate the impact on performance
when interactions are not taken into account for the prediction. For the ablation of dynamic agents, the noise is introduced in the
temporal dimension, meaning that we mask random frames of the agents that interact with the focal agent.

Performance is noticeably reduced as the recall of the object detector decreases. The most detrimental effect is shown for lane
masking. These results suggest that the model relies heavily on lane information to make its predictions given the significant
inductive biases they introduce. However, the results are still sensible when no lanes are detected. Interactions also prove to be an
important factor in model performance, albeit in a much lower scale. This is probably due to the fact that most driving trajectories
can be inferred solely from the agent’s past trajectory and road topology. In addition, the data do not include enough scenes in
which interactions are crucial for the behavior of the focal agent. Nevertheless, information from other dynamic agents in the scene
is essential to produce more sensible predictions, avoiding collisions and dangerous behaviors that are not consistent with the traffic
scene.

In order to gain a deeper understanding of the system’s behavior under noisy conditions, we conducted a qualitative evaluation by
ablating specific, important lanes. More concretely, we masked lanes traversed by the ground-truth trajectory. For all experiments,
we assessed the system’s behavior when only some lane segments in the trajectory were masked, as well as when masking the entire
ground-truth path. When only one lane segment was removed from the input, the model’s behavior remained virtually unchanged.
However, when multiple lane segments were masked, the predictions adapted to identify alternative plausible routes.

Fig. 10 presents four sample scenes, with masked lanes indicated by faded red circles. In the first scenario, the probability of
the alternative path - continuing straight — increases, with all modes going in that direction. In the second scenario, when the
entire ground-truth path is masked, the speed in most predictions is drastically reduced. It appears that the predictions struggle to
capture the turn, as they lack the necessary information about the road topology. In the third scenario, there is no other plausible
path apart from the ground-truth. Although the predictions change slightly, they still comply to the traffic rules despite the missing
information. Finally, in more complex scenarios, like the fourth one, where multiple plausible paths have masked lanes, the model
tends to choose a more conservative approach, such as turning right at the intersection. However, when the model does attempt to
follow the merging lane, it fails to accurately capture the curvature of the lane.

Overall, these observations demonstrate the model’s ability to adapt to various situations, even when faced with incomplete
information about the environment. However, the results also emphasize the importance of accurate and comprehensive road
topology data for generating more reliable and sensible predictions. As such, future research should continue to focus on improving
the model’s robustness and performance, particularly under conditions with varying levels of road topology data availability, to
ensure the safe and efficient operation of autonomous vehicles in real-world scenarios.

These ablation studies further showcase the power of XHGP’s explainability features. The model’s ability to adapt to missing or
altered information is not just about performance metrics but also about understanding the underlying reasons for the changes in
predictions. This level of insight is a distinctive feature of XHGP, setting it apart from other models in the field.
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Fig. 9. Qualitative results of counterfactual insertion. Top row shows the real scene with ten predicted modes. Bottom row shows same scene with the
counterfactual and the modified predictions. In the first scenario, velocity is highly reduced to avoid the collision with the bicycle, which now intersects
the ground-truth trajectory. In the second scenario, the most likely predictions turn right to avoid the vehicle stopped in front. In the last scenario, the velocity
of the main mode is highly reduced, the mode turning left disappears due to space constraints, and a new mode opting for a right turn emerges.

6. Discussion and conclusions

In this work, we advance toward explainable motion prediction by proposing a novel approach — Explainable Heterogeneous
Graph-based Policy (XHGP). XHGP builds upon previous works by incorporating an heterogeneous graph representation, object-level
and type-level attention mechanisms, and lane-graph traversals (Deo et al., 2021). Our model explicitly captures the interactions
among all agents and objects in the scene, a key aspect that has not been fully explored in prior works, and enhances the
explainability of motion predictions. These unique features of XHGP set it apart from existing approaches and contribute to the
advancement of the field.

While state-of-the-art models excel in motion prediction, XHGP’s architecture inherently supports a broader spectrum of
explainability techniques. We harness tools like GNNExplainer (Ying et al., 2019) and employ counterfactual reasoning, due to
its inherent graph architecture from the input, allowing for deeper insights into node and edge interactions.

Our contribution extends beyond merely building on existing methods; we specially tailored the integration and applicability
of explainability techniques for multimodal motion prediction in autonomous driving. These adaptations allowed us to interpret
the GNN-based model’s predictions effectively, shedding light on the decision-making process and fostering trust in the model’s
capabilities. Visual representations further amplify its interpretability, instilling confidence in safety-critical applications. The
combination of these approaches in our analysis serves as a foundation for more transparent and trustworthy motion prediction
systems. This is crucial not only for end-users, but also for developers troubleshooting the system, and for type approval and auditing
procedures.
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Fig. 10. Qualitative assessment of lane ablation. Top row shows the predictions for 100% recall. Bottom row shows the same scene where some critical lanes
have been masked. Masked lanes are represented with faded red circles. In the first scene, all predictions take the alternative path. In the second scenario,
predictions fail to capture the turn since the system cannot rely on lane information. In the third scenario, as there is no alternative route, predictions stay
robust with slight changes. In the last scenario, most predictions change trajectory, turning right.

As the use of GNNs expands across various fields, the development of explainability techniques continues to grow. Future research
aims to leverage these emerging techniques to further improve the explainability of GNN-based motion prediction systems, fostering
greater trust and transparency in human-vehicle interactions.
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