
Thesis for The Degree of Licentiate of Engineering

Towards Automated Support for the Co-Evolution of
Meta-Models and Grammars

Weixing Zhang

Division of Interaction Design & Software Engineering
Department of Computer Science & Engineering

Chalmers University of Technology and University of Gothenburg
Gothenburg, Sweden, 2023

Towards Automated Support for the Co-Evolution of Meta-Models
and Grammars

Weixing Zhang

Copyright ©2023 Weixing Zhang
except where otherwise stated.
All rights reserved.

Department of Computer Science & Engineering
Division of Interaction Design & Software Engineering
Chalmers University of Technology and University of Gothenburg
Gothenburg, Sweden

This thesis has been prepared using LATEX.
Printed by Chalmers Reproservice,
Gothenburg, Sweden 2023.

ii

“What is life? Life is a process of continuous self-improvement
through perception.”

- Kazuo Inamori (Renowned Japanese Entrepreneur)

iv

Abstract
Blended modeling is an emerging paradigm involving seamless interaction
between multiple notations for the same underlying modeling language. We
focus on a model-driven engineering (MDE) approach based on meta-models
to develop textual languages to improve the blended modeling capabilities of
modeling tools. In this thesis, we propose an approach that can support the co-
evolution of meta-models and grammars as language engineers develop textual
languages in a meta-model-based MDE setting. Firstly, we comprehensively
report on the challenges and limitations of modeling tools that support blended
modeling, as well as opportunities to improve them. Second, we demonstrate
how language engineers can extend Xtext’s generator capabilities according
to their needs. Third, we propose a semi-automatic method to transform a
language with a generated grammar into a Python-style language. Finally, we
provide a solution (i.e., GrammarOptimizer) that can support rapid prototyp-
ing of languages in different styles and the co-evolution of meta-models and
grammars of evolving languages.

Keywords

Blended Modeling, Systematic Literature Review, Xtext, Grammar Optimiza-
tion, Co-Evolution

Acknowledgment

I want to express my sincere gratitude to my three supervisors: Dr. Jan-Philipp
Steghöfer, Dr. Regina Hebig, and Dr. Daniel Strüber (in the order by time).
They provided me with ample assistance, support, enthusiasm, patience, and
tolerance. They guided me with their extensive expertise and rigorous scholarly
attitude, helping me acquire knowledge, skills, and methodology in my research
field, and successfully transitioning my mindset from an almost rigid engineer
to a researcher. I have also learned an important thing from them: Do things in
the right way. All of those have laid a solid foundation for my future academic
career. I would also like to thank my former colleague, independent researcher
Dr. Jörg Holtmann. During his time in the CSE department, he offered me a
lot of help, both in research and engineering.

Furthermore, I want to express my gratitude to my examiner, Prof. Johan
Karlsson, and other members of the doctoral school for their constructive
feedback and administrative assistance. Special thanks to the post-doc Dr.
Shiliang Zhang at the University of Oslo, senior researcher Dr. Yemao Man
at ABB company, and my colleague Wardah Mahmood. Shiliang and Yemao
have answered many of my questions and provided valuable and helpful advice.
In the second year of my Ph.D., I felt a lot of pressure and lacked confidence
during a certain period, and Wardah provided many effective suggestions on
how to adjust my mentality, and that helped me get through the hard times.
Additionally, I would like to thank all my colleagues in the IDSE division and
the wonderful atmosphere they collectively created. Working and studying
in the IDSE division is the luckiest thing. In addition, I would also like to
thank Dawen Liang, a senior software engineer from the United States, and
Jiawen Wu, a doctoral student at the University of Jyväskylä, who have always
supported me with their best wishes and encouragement.

Finally, I am deeply thankful to my wife Jinying Li, and my whole family.
Without their support and blessings, I would not have been able to study
abroad, let alone live abroad for my doctoral studies. In particular, I would
like to express my gratitude to my wife for her incredible and endless love,
support, and patience. Without her sacrifices and positive energy, I would not
have been able to come this far.

vii

List of Publications

Appended publications
This thesis is based on the following publications:

[A] I. David, M. Latifaj, J. Pietron, W. Zhang, F. Ciccozzi, I. Malavolta,
A. Raschke, J. Steghöfer, R. Hebig
“Blended Modeling in Commercial and Open-source Model-Driven Soft-
ware Engineering Tools: A Systematic Study”
Software and Systems Modeling (SoSyM), 2023, 22(1), pp. 415-447.

[B] J. Holtmann, J. Steghöfer, W. Zhang
“Exploiting Meta-Model Structures in the Generation of Xtext Editors”
11th International Conference on Model-Based Software and Systems
Engineering, SciTePress, 2023, pp. 218-225.

[C] W. Zhang, R. Hebig, J. Steghöfer, J. Holtmann
“Creating Python-style Domain Specific Languages: A Semi-automated
Approach and Intermediate Results”
11th International Conference on Model-Based Software and Systems
Engineering, SciTePress, 2023, pp. 210-217.

[D] W. Zhang, J. Holtmann, D. Strüber, R. Hebig, J. Steghöfer
“Supporting Meta-model-based Language Evolution and Rapid Prototyp-
ing with Automated Grammar Optimization”
Revised and Re-submitted to Journal of Systems and Software, 2023

ix

x

Other publications
The following publications were published during my PhD studies. However,
they are not appended to this thesis, due to contents overlapping that of
appended publications or contents not related to this licentiate thesis.

[a] Wenli Zhang, Weixing Zhang, D. Strüber, R. Hebig
“Manual Abstraction in the Wild: A Multiple-Case Study on OSS Systems’
Class Diagrams and Implementations”
Accepted in 26th International Conference on Model Driven Engineering
Languages and Systems (MODELS). ACM. 2023.

[b] W. Zhang, R. Hebig, D. Strüber, J. Steghöfer
“Automated Extraction of Grammar Optimization Rule Configurations
for Metamodel-Grammar Co-evolution”
16th ACM SIGPLAN International Conference on Software Language
Engineering (SLE). ACM. 2023, pp. 84–96.

Research Contribution

I was the main driver and contributor of papers C and D. Also, I have significant
contributions to papers A and B. My contributions in these papers are classified
according to the Contributor Roles Taxonomy (CRediT).

In Paper A, I did an entire gray literature review with Dr. Steghöfer and
Dr. Hebig. I participated in developing the methodological design of the gray
literature review and jointly performed the investigation of about 1,500 web
pages. I jointly identified modeling tools in the gray literature and participated
in data collection based on the identified tools. This data collection requires
downloading and trying out the tool and completing the data collection by
verifying the functionality and features of the tool. I reported the results of
the gray literature review to the paper team and participated in writing the
content of the gray literature.

In paper B, I worked with Dr. Steghöfer and Dr. Holtmann on the
implementation of the project involved in the paper. To address the four
technical challenges in this paper, I investigated technical manuals and open-
source web pages. I provided technical solutions for two of the four challenges,
i.e. “content-assist for new model elements with unique names” and “scoping for
cross-references”. I also investigated materials for the writing in this paper, i.e.,
finding related work. I also participated in the validation work of the paper,
i.e., validating whether the engineering implementation we have completed
conforms to the design of the technical solutions for solving the four technical
challenges. I once provided a presentation on the academic work of the EATXT
editor at the SE division seminar, which included the research content of paper
B.

In paper C, I completed the conceptualization of engineering. During the
engineering, I developed a script to automate grammar modification work and
applied this script to multiple languages as a validation. I wrote the initial
full draft of this paper and then combined it with the review comments of
Dr. Hebig and Dr. Steghöfer to make it perfect. Dr. Hebig suggested I add
the validation part which is one of the key steps to make the paper perfect.
Before this paper, Dr. Holtmann, Dr. Steghöfer, and I jointly implemented
the development of the EATXT editor which the content is involved in paper
B. The concept of paper C originally originated from the EATXT technical
discussion, but it was not implemented in EATXT in the end. Therefore, I
extracted the concept separately and searched for the language background of
the case to complete paper C.

The concept of paper D was first proposed by my co-author Dr. Hebig,
while the concept originated from a script I developed, so I further refined
and determined the concept. I, together with Dr. Holtmann and Dr. Hebig,
performed a large number of systematic analyses in this paper, most of which
were performed by me, resulting in many documents and data. The development
of the paper also involved a significant amount of Java programming, most
of which was performed by me. The model-driven architecture idea of the
software developed in this paper came from Dr. Holtmann. Dr. Steghöfer
implemented the initial steps, and I fully developed the architecture. Early
in the paper, I made contributions to the investigation by checking whether
initial sample languages identified by Dr. Steghöfer were appropriate for our

xii

research context and purpose. The entire process of the paper was managed as
a project, and the initial administration plan was developed by Dr. Steghöfer,
later, the plan was maintained by me, in particular, during the revision in
the journal revision process. Supported by Dr. Holtmann and Dr. Hebig, I
performed the validation of the research results of the paper (i.e., the software
we developed), taking on the majority of the effort. I made major contributions
to the manuscript in both its initial and the revised version. For the revised
version, I addressed the majority of the reviewer comments, supported by Dr.
Strüber, who joined the team of authors for the revision. Additionally, I gave
presentations on the paper on several occasions.

Role Paper A Paper B Paper C Paper D

Conceptualization X X
Data curation X X X X
Formal analysis
Funding acquisition
Investigation X X X X
Methodology X X
Project administration X X
Resources
Software X X X
Supervision
Validation X X X
Visualization X X X
Writing – original draft X X X X
Writing – Review and Editing X X

Contents

Abstract v

Acknowledgement vii

List of Publications ix

Personal Contribution xi

1 Introduction 1
1.1 Background and Related Work 4

1.1.1 Blended Modeling . 4
1.1.2 EAST-ADL . 4
1.1.3 Xtext and Meta-Model-Based DSL Engineering 4
1.1.4 Co-Evolution in MDE Contexts 5

1.2 Methodology . 6
1.2.1 Stage 1: Multi-Vocal Literature Review 6
1.2.2 Stage 2: Extending Xtext’s Generator Capabilities . . . 8
1.2.3 Stage 3: Python-Style Prototyping 9
1.2.4 Stage 4: Generalize Grammar Optimization Approach . 10

1.3 Results and Evaluation . 11
1.3.1 Results and Evaluation in Stage 1 12
1.3.2 Results and Evaluation in Stage 2 13
1.3.3 Results and Evaluation in Stage 3 13
1.3.4 Results and Evaluation in Stage 4 14

1.4 Answers to the RQs . 15
1.5 Threats to Validity . 16

1.5.1 External Validity . 16
1.5.2 Internal Validity . 17

1.6 Summary of Contributions . 17
1.7 Conclusion and Future Work 19

2 Paper A 21
2.1 Introduction . 22

2.1.1 What is blended modeling? 22
2.1.2 What is not blended modeling? 23
2.1.3 Motivation and aim . 23
2.1.4 Structure . 24

2.2 Background . 25

xiii

xiv CONTENTS

2.2.1 Multiple notations . 25
2.2.1.1 Multi-view modeling 25
2.2.1.2 Multi-Paradigm Modeling 25

2.2.2 Seamless interaction . 26
2.2.2.1 Text-based modeling with graphical visualizations 26
2.2.2.2 Mixed textual and graphical modeling 27
2.2.2.3 Projectional editing 28

2.2.3 Inconsistency management 28
2.2.4 Related secondary literature 29

2.3 Study design . 33
2.3.1 Process . 34

2.3.1.1 Planning . 34
2.3.1.2 Conducting . 35
2.3.1.3 Documenting 36

2.3.2 Research questions . 36
2.3.3 Search and selection . 37

2.3.3.1 Systematic Reviews 37
2.3.3.2 Tool identification 41

2.3.4 Classification framework definition 43
2.3.5 Data extraction . 44
2.3.6 Data validation . 44
2.3.7 Data analysis . 44

2.3.7.1 Vertical analysis 45
2.3.7.2 Horizontal analysis 45

2.4 Results . 45
2.4.1 Overview . 48
2.4.2 User-oriented characteristics (RQ1) 50

2.4.2.1 Notations . 50
2.4.2.2 Visualization and navigation 52
2.4.2.3 Flexibility . 54

2.4.3 Realization-oriented characteristics (RQ2) 55
2.4.3.1 Mapping and platforms 55
2.4.3.2 Change propagation and traceability 56
2.4.3.3 Inconsistency management 57

2.5 Orthogonal findings . 58
2.5.1 Number of notation types and Overlap of notations . . 58
2.5.2 Seamless interaction . 59
2.5.3 Flexibility and inconsistency management 60
2.5.4 Technological trends . 60

2.6 Discussion . 61
2.6.1 Takeaways . 61
2.6.2 Challenges and opportunities 62

2.7 Threats to validity . 65
2.7.1 External validity . 65
2.7.2 Internal validity . 65
2.7.3 Construct validity . 66
2.7.4 Conclusion validity . 66

2.8 Conclusions . 66

CONTENTS xv

3 Paper B 71
3.1 Introduction . 72
3.2 Related Work . 72
3.3 Background . 73

3.3.1 Xtext . 73
3.3.2 East-Adl and Eatxt 74

3.4 Challenges and Solutions . 75
3.4.1 Template Proposals . 76
3.4.2 Content-assist for new Model Elements with Unique Names 78
3.4.3 Formatters . 79
3.4.4 Scoping for Cross-references 80

3.5 Conclusion and Outlook . 82

4 Paper C 83
4.1 Introduction . 84
4.2 Background . 84
4.3 Methodology . 85
4.4 Results . 86

4.4.1 Analysis . 86
4.4.2 The Semi-automated Approach 88
4.4.3 Evaluation . 89

4.5 Discussion . 92
4.5.1 Threats to Validity and Limitations 92
4.5.2 Future Work . 93

4.6 Related Work . 94
4.7 Conclusion . 95

5 Paper D 97
5.1 Introduction . 98
5.2 Background: Textual DSL Engineering based on Meta-models . 101
5.3 Related Work . 102
5.4 Methodology . 105

5.4.1 Selection of Sample DSLs 105
5.4.2 Exclusion of Language Parts for Low-level Expressions . 107
5.4.3 Meta-model Preparations and Generating an Xtext Gram-

mar . 107
5.4.4 Comparing EBNF and Xtext grammars 109
5.4.5 Analysis of Grammars 110

5.4.5.1 First Iteration: Identify Optimization Rules . . 111
5.4.5.2 Second iteration: Validate Optimization Rules 113

5.5 Identified Optimization Rules 114
5.6 Solution: Design and Implementation 116

5.6.1 Grammar Representation 116
5.6.2 Optimization Rule Design 116
5.6.3 Configuration . 117
5.6.4 Execution . 118
5.6.5 Post-Processing vs. Changing Grammar Generation . . 120
5.6.6 Limitations and Caveats 120

5.7 Evaluation . 121

xvi CONTENTS

5.7.1 Grammar Adaptation (RQ1) 121
5.7.1.1 Cases . 122
5.7.1.2 Method . 122
5.7.1.3 Metrics . 122
5.7.1.4 Results . 123

5.7.2 Supporting Evolution (RQ2) 126
5.7.2.1 Cases . 126
5.7.2.2 Preparation of the QVTo Case 127
5.7.2.3 Method . 128
5.7.2.4 Metrics . 129
5.7.2.5 Results . 129

5.8 Discussion . 132
5.8.1 Threats to Validity . 132

5.8.1.1 Construct Validity 132
5.8.1.2 Internal Validity 133
5.8.1.3 External Validity 133
5.8.1.4 Reliability . 133

5.8.2 The Effort of Creating and Evolving a Language with
the GrammarOptimizer 134

5.8.3 Implications for Practitioners and Researchers 134
5.8.4 Future Work . 135

5.9 Conclusion . 137

Bibliography 139

Chapter 1

Introduction

Blended modeling is a rapidly emerging modeling technology that involves
seamless interactions between multiple notations (i.e., concrete syntax) and a
single model (i.e., abstract syntax), allowing for a certain degree of temporary
inconsistency [1]. Different modeling notations have their respective advantages.
For example, the visual connections between elements representing domain
concepts in graphical notations make it easier for users to understand the
relationships between concepts, the tree-based notation of the model makes
its hierarchical structure clearer for users, and textual notations have unique
advantages in fast editing and global replacement. By blending different
modeling notations in the same modeling tool and making them adhere to the
same abstract syntax, respective advantages of different modeling notations
will be available at the same time. Modifications made to the model in
one notation can be synchronized to the other notations. Blended modeling
increases modeling flexibility and efficiency as well as productivity. Additionally,
engineers can choose their preferred notation for modeling based on their
preferences.

Adding textual notations to a language through development is a way to
improve a language’s blended modeling capability. There are many existing
tools for developing textual domain-specific languages (DSLs), and Xtext [2]
is one of the popular textual DSL development tools [3]. Xtext replies on the
Eclipse Modeling Framework (EMF) [4] and uses its Ecore (meta-)modeling
facilities as a basis. Developing a textual DSL in Xtext involves two main
artifacts: a grammar, which defines the concrete syntax of the language,
and a meta-model, which defines the abstract syntax. Xtext allows either
the grammar or the meta-model to be created first, and then automatically
generates the one from the other (or alternatively, writing both manually and
aligning them). We use the term “model-driven engineering (MDE) approach”
to refer to the strategy of first creating a meta-model and then generating
a grammar from that meta-model. Applying the MDE approach, language
engineers can generate a textual grammar from the meta-model instead of
designing the grammar from scratch. Additionally, the MDE approach is most
suited for the scenario where multiple concrete syntaxes adhere to a single
abstract syntax, which coincides with the goal of blended modeling.

However, in the MDE approach, grammars generated from metamodels

1

2 CHAPTER 1. INTRODUCTION

Metamodel
(Version a)

Metamodel
(Version b)

Optimized
Grammar

(Version a)

Optimized
Grammar

(Version b)

Generated
grammar

(Version a)

Generated
grammar

(Version b)

Generate Generate

Evolves to

Evolves to

Concurrent

Adapt to Adapt to

Replay?

Figure 1.1: In a MDE approach, the grammar is adapted before being put into
use, and when the language evolves, the grammar generated from the evolved
meta-model needs to be adapted again.

(hereinafter referred to as generated grammars) often require adaptation
before being put into use. The grammar generated by Xtext from the meta-
model is composed of grammar rules. These grammar rules and their contained
attributes, keywords, and other elements always follow a fixed format. In
a real DSL application, some of these elements may be unnecessary or not
expressive enough. For example, to express the semantics of “assign 0 to the
variable value”, the default output generated by Xtext “value 0” does not
agree with how variable assignment is typically represented. One solution is for
the language engineer to modify the grammar definition, i.e., add an equal sign
“=” after the keyword “value”. Moreover, the curly braces included by default
in the generated grammar often lead to deep nesting in the program, which
makes the grammar cumbersome to use.

Because of that generated grammars require manual adaptation before the
can be used. However, a further problem faced when adapting grammar is
related to the workload of adaptation. When manually adapting a generated
grammar, language engineers are faced with repeating the same operation
across many grammar rules. For example, moving an attribute to the outside
of the container braces in many grammar rules would be time-consuming.
Another problem of grammar adaptation comes from the evolution of language.
There is a practical scenario showing the evolution of a language (as shown
in Figure 1.1). When the meta-model evolves, the original grammar would be
out of date, so then the grammar needs to be regenerated from the evolved
meta-model. However, the grammar generated from the evolved version of the
meta-model does not contain the manual improvements in the previous version.
In this case, language engineers have to manually adapt the newly generated
grammar once again and thus leading to repetitive work. Note that this is an
issue of the MDE approach to language development. We will later discuss
an alternative, specifically, a grammar-driven approach, and the respective
advantages and benefits.

Finally, after the grammar is ready, a complete infrastructure including
a parser, compiler, etc. can be obtained based on the grammar using Xtext.
However, some comment features of modern editors, such as template proposals,
are still not supported in the editor composed of this infrastructure which is
based on Xtext out-of-the-box. We identified here another issue that needed to
be addressed, i.e., the default Xtext’s generator capabilities are limited.

3

In this thesis, we propose an approach that can support the co-evolution of
meta-models and grammars as language engineers develop textual languages
in a meta-model-based MDE setting. To this end, first, we studied the state-
of-the-art and practice of modeling tools that support blended modeling by
conducting a systematic literature review. After studying the limitations and
opportunities of existing modeling tools that support blended modeling, we
decided to explore and improve blended modeling technologies on a specific
case language. As a start, we developed a textual language (i.e., EATXT)
for EAST-ADL based on the MDE approach. In this process, to address the
limitations of the default Xtext generators’ capability and its implementation,
we proposed ways in which language engineers can extend the Xtext generators’
capability and its implementation according to their own needs. Meanwhile,
to solve the inherent problems of grammars generated from meta-models, we
first proposed a semi-automatic method that can change the language with
the generated grammar to a Python-style language. To solve the problem
that manual improvements to the generated grammar cannot be replayed in
evolved versions, we proposed a more general grammar adaptation method, i.e.,
GrammarOptimizer (we name grammar adaptation grammar optimization),
which can optimize the generated grammar of languages in different styles.
Moreover, its optimization on the generated grammar of the previous version is
saved in the form of configurations. These configurations can be reused in the
generated grammar of the evolved version, thereby supporting the co-evolution
of meta-model and grammar.

To guide our research, we address the following research questions in this
thesis:

RQ1: What are the user-oriented characteristics of modeling tools most
suitable for supporting blended modeling?

By answering this research question, we aim to identify the external charac-
teristics of modeling tools that are relevant to their adoption and use, e.g., the
notations (types) they support, etc.

RQ2: What are the realization-oriented characteristics of modeling tools
most suitable for supporting blended modeling?

By answering this research question, we aim to identify the internal charac-
teristics of modeling tools, as well as the technologies used to implement these
characteristics, such as the implementation platforms they use, etc. Answering
the above two questions is crucial because practitioners can learn from the
answers about the limitations of current blended modeling tools and how they
can improve the tools, and researchers, including us, can learn from the answers
the state of the practice in blended modeling tools, including the gaps that
need to be filled.

RQ3: How can we build a solution to adapt generated grammars to produce
the same language as available expert-created grammars?

We developed a textual language for EAST-ADL to explore and improve
blended modeling technologies after studying the state-of-the-art and practice of
blended modeling tools and we proposed a method that optimizes the generated
grammar and we propose a generalized grammar optimization method. By
answering this research question, we aimed to evaluate the generalizability of
this optimization method, i.e. whether it can adapt the generated grammar to
languages to produce the same language as available expert-created grammars.

4 CHAPTER 1. INTRODUCTION

RQ4: Can our solution support the co-evolution of generated grammars
when the meta-model evolves?

By answering this research question, we aim to evaluate whether the pro-
posed grammar optimization method supports the co-evolution of meta-models
and grammars as the language evolves.

1.1 Background and Related Work
In this section, I will first introduce the background and related work such as
blended modeling, Xtext, and metamodel-based DSL engineering, co-evolution
in MDE contexts, and then other concepts such as EAST-ADL will be intro-
duced in subsequent chapters.

1.1.1 Blended Modeling

The integration of graphical modeling and textual modeling was not a new
thing [5, 6, 7, 8, 9, 10], however, Ciccozzi et al. formally conceptualized
blended modeling for the first time in [11], defining it as follows:

“Blended modeling is the activity of interacting seamlessly with a single
model (i.e., abstract syntax) through multiple notations (i.e., concrete syntaxes),
allowing a certain degree of temporary inconsistencies.”

It distinguishes itself from Multi-View Modeling (MVM) [12] and Multi-
Paradigm Modeling (MPM) [13] by possessing the following three characteristics:
Multiple notations, Seamless interaction, and Flexible consistency management.

There are existing many modeling tools, e.g., SequenceDiagramOrg [14]
which blends both graphical and textual notations. However, which tools
support blended modeling and how they support it remains largely unknown.

1.1.2 EAST-ADL

EAST-ADL [15] is an architectural description language used in the domain of
automotive embedded systems and is based on a metamodel with approximately
300 meta-classes and a hierarchy in which nested elements describe different
aspects of the electronic vehicle system. As mentioned before, we use EAST-
ADL as a case language to explore and improve blended modeling technology.
EAST-ADL can be edited by EATOP [16] which is an eclipse-based modeling
tool specifically for EAST-ADL, which provides tree-based and table-based
editing capabilities but does not provide text symbol-based editing capabilities.

1.1.3 Xtext and Meta-Model-Based DSL Engineering

Eclipse Xtext is a framework used for the development of programming lan-
guages and domain-specific languages (DSLs) [17]. It is one of the many popular
DSL development tools [3]. Xtext supports both grammar-based and meta-
model-based DSL development approaches. In the grammar-based approach,
users directly define the grammar of the DSL, and the meta-model can be
generated from this grammar. Xtext artifacts are then generated from the
grammar, providing the foundation for textual editor infrastructure. Xtext also
supports the meta-model-based approach, where users first represent domain

1.1. BACKGROUND AND RELATED WORK 5

concepts and their relationships by creating a meta-model. From this meta-
model, grammar is generated, and subsequently, a textual editor is generated
from this grammar. The generation process is controlled by the Modeling
Workflow Engine (MWE2). Running MWE2 allows for the generation of a full
infrastructure, including a parser, linker, type checker, compiler, and editing
support for Eclipse, any editor that supports the Language Server Protocol,
and web browsers [2].

At the beginning of the language creation process, it does not need to
be clear whether the new language is text-based, graphical, or both [18]. In
fact, following the philosophy of blended modeling [11], there are good reasons
to support multiple syntaxes, as different developers are likely to benefit
from different syntax paradigms. The MDE approach is most suited for this
philosophy. Additionally, generating grammar directly from the meta-model
avoids designing grammar from scratch. Therefore, in this thesis, we adopted
the MDE approach for developing the DSL.

The full infrastructure used for generating text editors, known as the
language generator (in the form of Java code), is available out of the box and
can be extended or replaced as needed. For large languages such as EAST-ADL,
the default content assistant features may be insufficient, allowing users to
modify and extend the existing generator. Furthermore, when Xtext generates
grammar from the meta-model, it generates a grammar rule for each meta-class
and also generates an attribute in the grammar rule for each attribute in a
meta-class, resulting in grammar closely adhering to the meta-model. The
generated grammar has a default format, where each grammar rule includes
a keyword with the same name as the rule and is enclosed in curly braces,
containing multiple attributes. Each attribute includes a keyword followed by
an attribute string. This inherent format introduces certain challenges, e.g.,
redundant keywords and curly braces, or the default keywords not effectively
conveying semantics, etc. These are inherent characteristics and limitations of
grammar generated from the meta-model.

1.1.4 Co-Evolution in MDE Contexts

In model-driven engineering, it is well-known that evolutionary changes to an
artifact may affect other artifacts, which leads to several co-evolution scenarios.
The most prominent one is meta-model/model co-evolution, in which a meta-
model is evolved and corresponding instances have to be updated to stay in sync
with the meta-model. This scenario has inspired a substantial body of work.
Hebig et al. [19] survey 31 relevant approaches, classifying them according to
their support for change collection, change identification, and model resolution.
Beyond meta-model/model co-evolution, co-evolution between meta-models
and other MDE artifacts have received attention as well, including associated
OCL constraints [20], model transformations [21, 22], code generators [23], and
graphical editor models [24]. Inconsistencies between evolved meta-models and
general MDE artifacts have also been addressed in the context of technical
debt management, with an approach that assists the modeler with the aid of
interactive visualization tools [25]. However, except for GrammarOptimizer
described in Chapter 5, on which we build and improve with our contribution,
we are not aware of previous work on meta-model/grammar co-evolution.

6 CHAPTER 1. INTRODUCTION

Model federation [26, 27, 28] deals with the challenges of keeping several
models synchronized, which is related to our addressed co-evolution scenario.
However, to the best of our knowledge, there is no previous work that applies
model federation techniques to grammars. Previous work is often focused
on establishing links between the different involved artifacts, which, in our
scenario, is a non-issue. However, the actual modification for keeping several
artifacts synchronized is often simpler if only models are involved, than in our
case deals with concrete textual syntaxes. For example, the order of attributes
in the grammar does not have to be consistent with the corresponding meta-
model attributes but can be changed freely according to the developer’s design
intention. In fact, the approach enabled by our contribution could be used to
augment available model federation frameworks to make them applicable to
grammars as well.

1.2 Methodology
Figure 1.2 depicts all the studies included in this thesis and the problems and
methodologies involved. We went through four stages to complete these studies.
In Stage 1, to understand the potential of current commercial and open-source
modeling tools to support blended modeling, we have designed and carried
out a systematic literature review. Through this study, we discovered the
shortcomings of existing blended modeling technology and the opportunities
of improving blended modeling technologies, which motivated us to explore
and improve blended modeling technology. In Stage 2, we developed a textual
language for EAST-ADL as a starting point for exploring and improving blended
modeling technologies. We introduced ways to extend the Xtext’s generator
capabilities. In Stage 3, we proposed a semi-automated method for turning
a language with generated grammar into a Python-style language, thereby
making the language more concise and user-friendly. In Stage 4, we extracted
grammar optimization rules from the analysis on seven case languages, and
developed a grammar optimization tool GrammarOptimizer to include these
general optimization rules, and finally evaluated our approach through multiple
exemplar languages. The above methodologies aimed to address the identified
problems described in Section 1, and will be introduced in detail in the following
subsections.

1.2.1 Stage 1: Multi-Vocal Literature Review
To understand the state-of-the-art and practice of modeling tools that support
blended modeling, we conducted a Multi-vocal Literature Review (MLR) in this
stage. An MLR is a form of Systematic Literature Review (SLR) encompassing
formally published literature (e.g., journal and conference papers) and Gray
Literature (GL), such as blog posts and whitepapers [29]. The specific focus
of the MLR in this thesis is blended modeling, making the SLR an academic
synthesis of evidence of blended modeling. As a supplement, we also conduct a
Grey Literature Review (GLR).

Software engineering practitioners typically lack the time, channels, or
expertise to review formally peer-reviewed papers. They are more likely to
turn to sources like online blogs, technical reports, and other GL. Furthermore,

1.2. METHODOLOGY 7

SendSignalAction1

SendSignalAction1

SendSignalAction1

SendSignalAction1
Exploit approach for

extending Xtext's
generator capabilities

As a start, develop a
textual gram

m
ar for

EAST-AD
L

Propose an approach
for creating a Python-
style D

SL via adapting
its gram

m
ar

The state of the
art/practice of

blended m
odeling

tools are unsure

Survey existing
m

odeling tools that
support blended

m
odeling

Existing blended
m

odeling technolgies
are lim

ited (m
any

opportunities)

Extending Xtext
generator capabilities

and their
im

plem
entation is

som
etim

es difficult

Paper B
:

Explore extending the
Xtext generator

Paper A
: A m

ulti-
vocal study on

blended m
odeling

tools

G
enerated gram

m
ar

is ugly and user-
unfriendly

M
anually adapting

gram
m

ar is
inconvenient,

especially as the
language evolves.

Paper C
:

Approach for C
reating

Python-style D
SL

Extract general
optim

ization rules and
develop

G
ram

m
arO

ptim
izer

Paper D
: Supporting

rapid prototyping/co-
evolution -

G
ram

m
arO

ptim
izer

found
found

found

found

Problem
:

Solution:

R
esearch

O
utcom

e:

H
ow

 to extend Xtext's
generator

capabilitiesand their
im

plem
entation?

H
ow

 to explore
blended m

odeling
technologies on

specific languages?

H
ow

 to transfer a
language w

ith a
generated gram

m
ar to

a Python-style one?

W
hat is the state-of-

the-art/practice of
blended m

odeling
tools?

H
ow

 to autom
atically

adapt gram
m

ar and
support co-evolution
of m

etam
odel and

gram
m

ar?

R
esearch

Q
uestion

/or G
oal:

Stage 1
Stage 2

Stage 4
Stage 3

Figure 1.2: The research included in this thesis involves multiple problems.
We have implemented different research activities and obtained some research
results for these different problems.

8 CHAPTER 1. INTRODUCTION

they are willing to contribute their thoughts and experiences in the form of GL,
which can serve as a valuable source of data for research [30]. Moreover, the
research objective of the investigation was modeling tools, which often provide
specific information about the tools in their user manuals, such as whether
they support textual modeling notations. Based on the above advantages of
GL, we conducted GLR as the supplement for this investigation.

At the same time, GL also have their inherent limitations. I.e., GL have
not gone through conventional publication channels, which means that they
do not undergo rigorous and formal peer review [31], and gray literature can
be difficult to search and retrieve for evidence synthesis. Therefore, in this
investigation, we combine SLR with GLR instead of adopting one of them
alone.

We followed the common process for conducting a GLR, which involves the
following steps [32]: 1) Select where to search, such as Google. 2) Set search
strings. The search engine will search based on them. 3) Source selection.
There may be many search results, so it is necessary to set a selection criterion,
such as what sources should be excluded, and perform the selection according
to this criterion. 4) Data extraction. Each source may provide a variety of
different information, so in this step, it is needed to set the extraction goal,
i.e., what data to extract. 5) Data synthesis. This step is for summarizing and
analyzing the extracted data to draw meaningful insights and conclusions.

MLR, which combines SLR and GLR, provides several advantages for our
investigation in this thesis. SLR ensures rigorous analysis of published academic
literature to provide a solid foundation for existing research. On the other
hand, GLR expands the scope and captures information lacking in research
papers, such as descriptions of product features in user manuals in modeling
tools. This combination allows our investigation to access a wider range of data
sources, resulting in a more comprehensive investigation of blended modeling
tools and reducing publication bias. Practitioners and researchers, including
ourselves, can benefit from such a comprehensive investigation to enhance
decision-making and facilitate the identification of gaps and future research
directions in academic and practical contexts.

1.2.2 Stage 2: Extending Xtext’s Generator Capabilities

The results of MLR in Stage 1 showed that textual notation is a popular type
of notation. However, there are still modeling tools that do not support textual
notations, including EAST-ADL. We used EAST-ADL as a case language and
improved its blended modeling capabilities by developing textual notations for
it. EAST-ADL is a language based on a large meta-model. The ground fact
that Xtext can generate a textual grammar directly from the meta-model allows
us to avoid designing a grammar from scratch that involves a large number
of domain concepts. However, due to limitations of Xtext’s default generator
capabilities, part of the common features of modern editors (e.g., template
proposals) are not supported by DSLs based on Xtext out-of-the-box. Therefore
in this stage, we take EATXT as an example to describe how language engineers
can extend Xtext’s generator capabilities according to their own needs.

Our research methodology was based on design science [33] and consisted
of four iterations. We extended one capability of the Xtext generator in each of

1.2. METHODOLOGY 9

the first three iterations and improved the scoping feature in the last iteration.
We added new features incrementally, i.e., for each iteration, we provide the
editor with added features from that iteration to our industrial partners and
receive feedback from them.

The work is limited in the scope of using Xtext to create textual languages
for DSLs. Xtext generates Xtext artifacts such as parser from the grammar to
build the editor. The generation process is controlled by a workflow for the
Modeling Workflow Engine (MWE2) [34]. Xtext provides a language generator
that can be customized and extended with custom fragments. A fragment
generates code based on the generator’s configuration, the grammar, and the
corresponding meta-model. Xtext out-of-the-box provides a number of such
fragments, which can be extended or replaced. These fragments add a number
of features to the generated editors. We use Xtext’s ability to change the
standard configuration to add custom fragments that provide better formatting,
content-assist, and template proposals. These custom fragments are written in
Xtend [35].

For the scoping feature, our approach is to generate a cross-reference lookup
map from the plug-in’s activator. This generation traverses the metamodel
exactly once with a complexity of O(n). This lookup map contains the corre-
sponding type of the cross-reference target for any source context type, and
we compute it by iterating over all cross-references in the metamodel. We
generate the lookup map during the first activation of the plugin. After that,
the scoping/(language name)ScopeProvider.java accesses it via an interface
but does not need to perform the same computation on every cross-reference
content-assist keystroke. The lookup map is implemented as a Java HashMap
whose get() method has a complexity of O(1) in most cases.

1.2.3 Stage 3: Python-Style Prototyping

As mentioned previously, when we explored and improved blended modeling
technologies based on the case language EAST-ADL, we identified a problem
with the grammar generated from the meta-model, i.e., the generated grammar
was not concise and user-friendly. Our industrial partner provided some
requirements of appearance for the language. For example, they requested that
curly braces and keywords be reduced in the grammar to make the language
more concise. Python is a language renowned for conciseness and provides a
very clean coding style, and it is considered easy to learn [36]. Therefore, in
this stage, we proposed a method that turns a DSL with a generated grammar
into a Python-style language.

Our methodology at this stage was based on constructive research [37]. First,
we took a small architecture description language DemoADL as a case language,
and generated a grammar from the meta-model of it and wrote example code
that conforms to the generated grammar. We then wrote pseudocode expressing
the same content in Python style. We compared the two pieces of source codes
and summarized the gaps between languages in those two styles. To address
these gaps, we proposed a series of steps for adapting the text of the grammar
and developed a script to semi-automate these adaptation steps.

To evaluate the usability and generality of the proposed method, we apply
it to two other DSLs, i.e., Xenia and ACME. With the help of the script, we

10 CHAPTER 1. INTRODUCTION

completed the adaptation of the generated grammars for these two languages.
We observe whether the adapted grammar is with a Python-style feature, i.e.,
using spaces and indents to express hierarchy. For each of the two languages, we
successively compared the adapted grammar with the generated grammar, and
compared the adapted grammar with the expert-created grammar, to observe
the improvement of conciseness, and being as compact as the expert-created
grammar.

1.2.4 Stage 4: Generalize Grammar Optimization Ap-
proach

In the last stage, we learned that some generalization (for the case of Python
styles) is possible, which can be re-applied to other languages. Therefore,
in this stage, we aimed to develop a more complete system that can adapt
the generated grammar, which is rule-based and can be applied to different
styles of languages. Also, our work on generating infrastructure in stage 2
inspired our ideas for generating adaptations. Therefore, the proposed rule-
based system in this stage will include rule configurations that support the
generation of grammar adaptations in the evolved version. In this section,
we will introduce the methodology we adopted in Stage 4, including the
extraction of candidate optimization rules, two iterations, and how to evaluate
the proposed methodology.

We selected seven case languages, i.e., ATL1, Bibtex2, DOT3, SML4, Spec-
tra5, Xcore6, and Xenia7, and obtained their meta-models and expert-created
grammars. To smoothly generate grammar from the meta-model, we slightly
process some meta-models, e.g., adding values to the namespace URI and
prefix in Bibtex. We took two iterations to analyze the grammars of these
languages and extracted candidate grammar optimization rules from the anal-
ysis. To reduce the complexity of the analysis, we excluded OCL expression
language parts from the meta-models and grammars of both ATL and SML.

Regarding grammar analysis, we drew on ideas from design science. We
analyzed different languages in different iterations and incrementally added ex-
tracted candidate optimization rules. We analyzed four of the seven languages
in the first iteration. This analysis identifies differences between the gener-
ated grammar and the expert-created grammar, and we extracted candidate
optimization rules from this analysis. These candidate rules can optimize the
generated grammar, and the optimized grammar produces the same language
as the expert-created grammar. We obtained a set of optimization rules by
excluding the duplicate candidate rules. In the second iteration, we applied the
optimization rules extracted from the first iteration to optimize the generated
grammars for the other three languages and analyzed any remaining differences
between the optimized grammars and the expert-created grammars. If there
are differences, we derived more optimization rules. We developed the grammar

1https://eclipse.dev/atl/
2https://www.bibtex.com/
3https://graphviz.org/doc/info/lang.html
4http://scenariotools.org/scenario-modeling-language/
5http://smlab.cs.tau.ac.il/syntech/spectra/index.html
6https://wiki.eclipse.org/Xcore
7https://github.com/rodchenk/xenia

https://eclipse.dev/atl/
https://www.bibtex.com/
https://graphviz.org/doc/info/lang.html
http://scenariotools.org/scenario-modeling-language/
http://smlab.cs.tau.ac.il/syntech/spectra/index.html
https://wiki.eclipse.org/Xcore
https://github.com/rodchenk/xenia

1.3. RESULTS AND EVALUATION 11

optimization tool GrammarOptimizer. In this development, we implemented
the optimization rules.

We evaluated the method proposed in this stage (i.e., GrammarOptimizer)
from two aspects. On the one hand, we applied it to the seven case languages
to evaluate its usability and generalization. For each language, we configured
the GrammarOptimizer to optimize the grammar generated by that language,
aiming to adapt it to a grammar that produces the same language as the
expert-created grammar. On the other hand, we applied GrammarOptimizer
to multiple versions of two languages (i.e., EAST-ADL and QVTo8) to evaluate
its support for language evolution. For the first version of each language (e.g.,
QVTo’s V1.0), we configured GrammarOptimizer to optimize the generated
grammar, and the optimized grammar can produce the same language as the
expert-created grammar. We reused these optimization rule configurations so
that they optimize the generated grammar of evolved versions (e.g., QVTo’s
V1.1). We then compared this optimized grammar and the expert-created
grammar and modified the configurations based on the difference(s). The goal
was that GrammarOptimizer could completely optimize the grammar driven by
the modified configurations, i.e., the optimized grammar could produce the same
language as the expert-created grammar. We evaluated GrammarOptimizer’s
support for language evolution by counting the number of modifications to
optimization rule configurations in the evolved version.

1.3 Results and Evaluation

As mentioned before, the work of this thesis consists of four stages, and the
four stages of work are highly connected. Our research results in the first
stage comprehensively reported the state-of-the-art and practices of blended
modeling tools, including the limitations of existing tools. This motivates us
to explore and improve existing blended modeling techniques. As a start, we
developed a textual language EATXT for the case language EAST-ADL in
Stage 2. During this development, we used EATXT as a case to demonstrate
how language engineers can extend the Xtext generator capabilities and its
implementation according to their own needs. While designing EATXT’s
grammar, we identified another problem, i.e., the grammar generated from the
meta-model was cumbersome and non-user-friendly. To this end, in stage 3 we
proposed a semi-automated method for converting a language with a generated
grammar into a Python-style language, thus improving its conciseness and user-
friendliness. We learned from the results of Stage 3 that the generalization of
some rules about grammar adaptation is possible, and we aimed to support the
co-evolution of meta-models and grammars, which motivated us to propose a
new solution in Stage 4, the solution is a rule-based system consisting of general
optimization rules. It can support the optimization of different languages and
support the co-evolution of meta-models and grammars. In this section, we
will elaborate on the results of the four stages respectively.

8https://wiki.eclipse.org/QVTo

https://wiki.eclipse.org/QVTo

12 CHAPTER 1. INTRODUCTION

1.3.1 Results and Evaluation in Stage 1

To understand the potential of existing modeling tools to support blended
modeling, we conducted a GLR in Stage 1 in which we reviewed nearly 5,000
academic papers and nearly 1,500 gray literature. Based on these, we identified
133 candidate modeling tools that involve blended modeling technologies and
finally identified 26 of them as the most advanced and practical modeling
tools that represent the current range of modeling tools. We investigated
these 26 modeling tools for their support of various blended aspects, such as
inconsistency tolerance, and then obtained many results.

The obtained results were divided into results on user-oriented characteristics
and results on realization-oriented characteristics. From the perspective of user-
oriented characteristics, the results showed that more than half of the 26 tools
supported two modeling notations, and about one-third of the tools supported
three modeling notations. Among them, Boston Professional [38] and TopBraid
Composer [39] supported four modeling notations. Graphical notation and
textual notations were the most available notations, i.e., all of the 26 tools
supported graphic notations, and most of them supported textual notations.
Usability aspects are generally difficult to measure, so we evaluated a tool’s
usability by evaluating whether it supports multi-notations visualization and
provides seamless navigation between notations. The results showed that all
26 tools supported the visualization of two or more notations. Our evaluation
of the navigation across notations was mainly divided into two points, i.e.,
whether the navigation between multiple notations is synchronized, and the
speed of navigation between different notations. The results showed that more
than half of the tools provided simultaneous navigation facilities, while the
majority of the tools provided immediate navigation from one notation to
another. Flexibility is the tolerance of inconsistent user-related embodiment at
various levels of abstraction across the modeling stack and various modeling
facilities. We considered three categories of flexibility, i.e., model, language,
and persistence. The results showed that most of the 26 tools did not support
deviations between different notations describing the same model, while the
other six supported model-level flexibility. Second, most tools did not allow
inconsistencies between the model and the language, and four tools allowed such
inconsistencies. The tool Umple [40] supported both model-level and language-
level flexibility. Third, most tools did not support persisting inconsistency
models.

We elaborate on our findings related to the realization characteristics of
sampled tools from the following three aspects, i.e., mapping and platforms,
change propagation and traceability, and inconsistency management. The
mapping between abstract syntax and notations is usually implemented in a
parser- or projection-based fashion. In the parser-based approach, the user
modifies the model through different notations and the parser generates an
abstract syntax tree. However, in the projection method, the abstract syntax
tree is modified directly. The results showed that 22 of the 26 tools implement
parser-based editors, while four tools have projection tools. The platforms used
by these 26 sampled tools are almost all Eclipse, and only mbdeddr [41] is the
only one of these tools based on MPS [42]. In addition, MagicDraw [43] supports
multiple platforms. During the data extraction phase, we failed to obtain any

1.3. RESULTS AND EVALUATION 13

useful information in the categories “change propagation” and “traceability”.
In the context of inconsistency management for modeling tools, a majority
of the tools (58%) lack visualization for inconsistencies (Table 19). In terms
of inconsistency management types, there are two fundamental approaches:
prevention and allow-and-resolve. Half of the tools (50%) focus on prevention,
while others either manage inconsistencies on the fly (42%) or on-demand (8%)
(Table 20). When it comes to inconsistency management automation, 50% of
the tools follow a preventive approach and do not offer inconsistency resolution,
while the remaining 13 tools provide varying degrees of automation for resolving
inconsistencies, with only two relying on manual resolution (Table 21).

1.3.2 Results and Evaluation in Stage 2

As we mentioned in Section 1.2.2, we developed a textual language (i.e., EATXT)
for EAST-ADL as a starting point for exploring and improving blended modeling
technology, and during this period demonstrated how language engineers could
extend Xtext’s generator capabilities according to their own needs. In this
section, we present the research results of Stage 2.

Firstly, in the case of EATXT, the generated template file contains 194
code templates with a total of more than 1,000 XML lines and covers all
meta-classes of the metamodel and their mandatory sub-elements. Secondly,
for each meta-class with the mandatory attribute, our approach generates
a proposal provider that includes a corresponding overriding content-assist
method which proposes a unique name. Overall, in the case of EATXT, the
generated EatxtProposalProvider encompasses 188 such methods. Thirdly,
for the formatter feature, we implemented the generator fragment format-
ting2/EatxtFormatter2Fragment.xtend as part of the plugin. This fragment is
executed by the MWE2 workflow and automatically generates the formatter
class formatting2/EatxtFormatter.xtend as part of the same plugin. The gener-
ated formatter class in the EATXT case encompasses 51 dispatch methods [44]
and 141 calls of the formatting methods for the nested sub-elements. Fourthly,
we generated a cross-reference lookup map in the activator of the plugin (i.e.,
org.bumble.eatxt in the case of EATXT). In the EATXT case, the map encom-
passes the source context meta-classes and corresponding target metaclasses
for 261 cross-references of the EAST-ADL metamodel.

1.3.3 Results and Evaluation in Stage 3

In Stage 2, we developed a textual language (i.e., EATXT) for EAST-ADL.
When designing the grammar for EATXT, we identified the problem that the
grammar generated from the metamodel was usually cumbersome and not user-
friendly. To improve the conciseness and user-friendliness of the language with
a generated grammar, in this stage, we proposed a method that can transform
the language into a Python-style language. In this section, we present the
results and our evaluation in Stage 3.

Firstly, we compared the program conforming to the generated grammar
and the program in Python style, and observed that the program conforming
to the generated grammar has issues in the following aspects: 1) inappropriate
positioning of identifiers, 2) heavy separation of code blocks; 3) duplicate

14 CHAPTER 1. INTRODUCTION

keywords, and 4) nested curly braces. In this regard, we proposed a method to
address these problems, which consists of steps that directly modify the text
of grammar definition. The steps are: 1) introduce the white-space-awareness
feature and remove curly braces, 2) reposition the identifier, 3) remove commas,
and 4) refine keywords (especially remove duplicate keywords). As stated in
Section 1.2.3, we semi-automated these adaptation steps by developing a script.

We applied the proposed method along with the script to two other DSLs,
i.e., Xenia and ACME. For each of them, we compared the adapted grammar
to the generated grammar and compared the adapted grammar to the expert-
created grammar. The comparison showed that the adapted grammar was
more concise and user-friendly than the generated grammar, and like Python,
the program used whitespace and indents to express hierarchy. Moreover,
the adapted grammar was closer to the expert-created grammar in terms of
compactness. Our case languages Xenia and ACME were different languages,
which showed that the proposed method and its script could be adapted to
different DSLs. Language engineers could use it to quickly reach a Python-like
grammar, which could then be used as a basis for further refinement of the
grammar.

1.3.4 Results and Evaluation in Stage 4

In Stage 3, we proposed a method that makes the grammar of a language
more concise and user-friendly by adapting the text of the generated grammar.
We learned that some generalization (for the case of Python style) is possible,
which can be re-applied to other languages. Therefore, we provide a solution
(i.e. GrammarOptimizer) in stage 4. GrammarOptimizer provides general
grammar optimization rules, can support the adaptation of different styles of
languages, and supports the co-evolution of meta-models and grammars. We
present the results of stage 4 in this section.

Before providing the solution GrammarOptimizer, we completed the fol-
lowing two works. First, through two iterations of comparative analysis of
generated grammars and expert-created grammars for seven case languages,
we extracted 56 general grammar optimization rules. Secondly, we developed
an Eclipse-based grammar optimization tool, i.e., GrammarOptimizer. In this
development, we implemented 56 general grammar optimization rules.

To evaluate the usability and generalizability of the proposed method,
we applied GrammarOptimizer to the seven case languages, i.e. we used it
to optimize the generated grammars of these case languages. The results
showed that the generated grammars of all DSLs except Spectra can be fully
optimized by GrammarOptimizer until they produce languages as same as
the expert-created grammars, i.e., the optimized grammar produces the same
language as the expert-created grammar. For Spectra, we were able to use
GrammarOptimizer to optimize it to be very close to the expert-created
grammar of Spectra, i.e., 96.30% (54/56) of the grammar rules could be
optimized to be equivalent to the corresponding grammar rules in the expert-
created grammar. This was a limitation of this method, which will explained
in detail in Chapter 5.

To evaluate the proposed approach’s support for language evolution, we
applied GrammarOptimizer to two versions of EAST-ADL and four versions

1.4. ANSWERS TO THE RQS 15

of QVTo. The grammar generated by the simplified version of EAST-ADL
contains 755 lines of text. We configured 22 optimization rule configurations
which completed the optimization of the generated grammar. The grammar
generated by the full version 2.2 of EAST-ADL has 2839 lines of text. We only
modified the configuration of 10 optimization rules to complete the optimization
of the generated grammar of the full version. Similarly, for the 1026 lines of text
in the generated grammar of version 1.0 of QVTo, we configured 733 grammar
optimization rule configurations to complete the optimization of the generated
grammar. However, facing the generated grammars of QVTo versions 1.1, 1.2,
and 1.3 with similar amounts of text, we only modified two, zero, and one
optimization rule configurations respectively to complete the optimization of
the generated grammars respectively.

1.4 Answers to the RQs

We will answer all the RQs in this section.
RQ1: What are the user-oriented characteristics of modeling tools most

suitable for supporting blended modeling?
From a user-oriented perspective, results indicated that over half of the 26

tools supported two modeling notations, while about one-third supported three.
Notably, Boston Professional and TopBraid Composer each accommodated four
modeling notations. Graphical and textual notations were the most common,
with all 26 tools offering graphical notations and the majority providing textual
options. Assessing usability, a generally challenging task, involved evaluat-
ing whether tools support multi-notations visualization and enable seamless
navigation between notations. All 26 tools facilitated the visualization of two
or more notations. Evaluating cross-notation navigation mainly considered
synchronization and speed; more than half of the tools allowed simultaneous
navigation, with most providing immediate transitions between notations. Flex-
ibility, pertaining to inconsistent user-related aspects across modeling levels
and facilities, was divided into three categories: model, language, and per-
sistence. Most tools did not support deviations between different notations
describing the same model; only six offered model-level flexibility. For language
and model inconsistencies, the majority of tools didn’t allow them, except for
four. Notably, Umple supported both model-level and language-level flexibility.
Concerning persisting inconsistency models, most tools did not offer support
for this. For more details, please refer to Section 2.4.2 in Chapter 2.

RQ2: What are the realization-oriented characteristics of modeling tools
most suitable for supporting blended modeling? From a realization-oriented
perspective, there are three aspects: mapping and platforms, change propa-
gation and traceability, and inconsistency management. The results showed
that most sampled tools (22 out of 26) use parser-based editors while four
employ projection tools. Eclipse is the primary platform for these tools, except
for mbdeddr (based on MPS), and MagicDraw supports multiple platforms.
In terms of inconsistency management, the majority of tools (58%) lack vi-
sualization. They mainly fall into two categories: prevention-focused (50%)
and real-time/on-demand resolution (42% and 8%). Automation-wise, 50%
follow a preventive approach, while 13 offer varying levels of automation for

16 CHAPTER 1. INTRODUCTION

inconsistency resolution, with only 2 relying on manual resolution. For more
details, please refer to Section 2.4.3 in Chapter 2.

RQ3: How can we build a solution to adapt generated grammars to
produce the same language as available expert-created grammars?

The result and evaluations showed that the solution (i.e., GrammarOpti-
mizer) developed in Stage 4 could adapt the generated grammar to produce
the same language as an expert-created grammar. GrammarOptimizer consists
of grammar optimization rules, which can be applied to different grammar
adaptation needs. We extracted grammar optimization rules from seven dif-
ferent case languages to maximize their usability and generalization. For the
grammar comparison, we used a manual comparison to confirm whether the
adapted grammar (i.e., the optimized grammar) and the expert-created gram-
mar produce the same language. For example, for the language DOT, in the
expert-created EBNF grammar, the grammar rule node_id does not contain
any curly braces, so in the optimized grammar (in Xtext), the corresponding
grammar rule NodeId should not contain any curly braces either.

RQ4: Can our solution support the co-evolution of generated grammars
when the meta-model evolves?

When using GrammarOptimizer to optimize a grammar, language engineers
need to configure the grammar optimization rules in the form of configurations.
These configurations drive GrammarOptimizer which rules to apply to adapt
the grammar. The language engineers reuse these configurations when the
language evolves and new grammar is generated from the evolved meta-model.
They only need to adjust the configurations accordingly for the changes between
meta-models to execute the optimization on the new version of the generated
grammar, thereby supporting the co-evolution of the meta-model and grammar.

1.5 Threats to Validity

In this section, we will discuss threats to both internal validity and external
validity. There will be also additional threats to validity discussed in the
subsequent chapters.

1.5.1 External Validity

As mentioned in the methodology section, we developed a textual language
called EATXT for EAST-ADL. We used EATXT as a case to illustrate how
language engineers can extend Xtext generators’ capabilities and its imple-
mentation according to their own needs, which was the completed work in
Paper B. There is a potential threat, i.e. whether the method proposed in
Paper B is also applied to other languages. First, we have explicitly stated in
Paper B that the discussed approach is for the Xtext editor. Xtext provides a
mechanism for extending functionality, and our method demonstrates how to
use this extension mechanism with EATXT as an example. Although EATXT
as a language has its metamodel distinct from other languages. However, this
extension mechanism is generic and is not limited to a specific metamodel.

1.6. SUMMARY OF CONTRIBUTIONS 17

1.5.2 Internal Validity
In the evaluation part of Stage 4, the number of optimization rule configurations
required to optimize the grammar generated by different versions of QVTo differs
very little, i.e., the maximum difference is two rule configurations. This data
serves as one of the evidences that our solution GrammarOptimizer supports
language evolution. However, the number of rule configurations required to
optimize the generated grammar of any version of QVTo exceeds 700, which
threatens the causal because the effort required to configure GrammarOptimizer
does not reflect any less effort than manually adapting the grammar. However,
we argue that it is more efficient to configure GrammarOptimizer once than to
manually rewrite grammar rules every time the language changes – under the
assumption that the configuration can be reused for new versions of the grammar.
In that case, the effort invested in configuring GrammarOptimizer would quickly
pay off when a language is going through changes, e.g., while rapidly prototyping
modifications or when the language is evolving. We evaluated this assumption
in stage 4. Furthermore, the effort required to configure optimization rules for
optimizing the generated grammar can technically be reduced, one solution
being to extract the rule configurations by comparing the generated grammar
and the target grammar rather than manually writing the configuration from
scratch [45].

1.6 Summary of Contributions

GrammarOptimizer

Metamodel
(Version a)

Metamodel
(Version b)

Optimized
Grammar

(Version a)

Optimized
Grammar

(Version b)

Generated
grammar

(Version a)

Generated
grammar

(Version b)Optimize to Optimize to

Concurrent

Optimization rule
configurations
(for version a)

Optimization rule
configurations
(for version b)

Generate

Generate

Adhere to

Adhere to
Adhere to

Adhere to

Evolve to

Evolve to

Reuse with

Automate

Apply Ac
co

rd
in

g
to

GrammarOptimizerSame

Automate

Apply

changes

Figure 1.3: Schematic diagram of the proposed solution in Stage 4 to support
the co-evolution of meta-models and grammars.

In this thesis, there is a clear contribution in each of our four stages of work.

The state-of-the-art of blended modeling tools. First, prior to our study
of Stage 1, a clear overview of the state of the art and practices in modeling

18 CHAPTER 1. INTRODUCTION

tools that support blended modeling was missing. Our study of Stage 1 filled
this gap, including indicating limitations of current tools and opportunities for
future research or industrial practice.

Extension of Xtext’s generator capabilities. In Stage 1, we comprehen-
sively reported on the state-of-the-art and practices of blended modeling tools.
We learned from this report that textual notations are a very popular type of
notation. However, not all modeling tools support textual notations, including
EAST-ADL. In Stage 2, we developed textual notations for EAST-ADL to
explore and improve blended modeling techniques. We identified issues with
the limitations of Xtext’s generator capabilities, therefore we used EAST-ADL
as a case to explore and show how to extend it and its implementation. Our
contribution in Stage 2 is the method of how language engineers can extend
Xtext’s generator capabilities and its implementation according to their own
needs. Language engineers can get a reference from our specific implementation
on the EATXT case.

Python-style prototyping. In Stage 2, we developed a textual language (i.e.,
EATXT) for EAST-ADL to explore and improve blended modeling techniques.
When designing the grammar for EATXT, we identified the problem that the
generated grammar was cumbersome and user-unfriendly. Our contribution in
Stage 3 is that we proposed a general method for converting a language with a
generated grammar into a Python-style language, including providing a script
that can semi-automate the execution of this method.

Tool GrammarOptimizer. Fourth, manually optimizing a grammar gener-
ated from a metamodel can be cumbersome and time-consuming, and as the
language evolves, manual improvements made in the generated grammar of the
previous version of the language can not be replayed in the generated grammar
of the evolved version. This causes language engineers to have to perform
similar optimizations on the generated grammar once again. Our work in Stage
4 provided a solution, i.e., the tool GrammarOptimizer, which includes 60
general optimization rules (four added during the evaluation). By configuring
these optimization rules, the solution can be applied to different languages for
rapid prototyping and co-evolution of meta-models and grammars.

Figure 1.3 depicts how GrammarOptimizer supports the co-evolution of
meta-model and grammar from version a to version b. By configuring Gram-
marOptimizer, language engineers can automate the optimization of the gen-
erated grammar of version a. In the same version, generated grammar and
optimized grammar adhere to the same meta-model. As the meta-model evolves,
language engineers regenerate the grammar from the meta-model (of version
b). To optimize the generated grammar (of version b), the language engineers
reuse the configurations of version a to replay the previous optimization in
the generated grammar (of version b). In addition, language engineers adjust
configurations based on differences between versions to optimize the changed
parts.

1.7. CONCLUSION AND FUTURE WORK 19

1.7 Conclusion and Future Work
In this thesis, we comprehensively report on the challenges and limitations of
modeling tools that support blended modeling, and opportunities for improving
them. Our report helps tool providers identify the limitations of their tools
in supporting blended modeling, and researchers can use this work to better
contextualize their research and better position their work in terms of applica-
bility. To contribute to the exploration and improvement of blended modeling
technology, in stage 2, this thesis takes EAST-ADL and its textual language
EATXT as an example to demonstrate how language engineers can extend the
Xtext generator capabilities and its implementation according to their needs.
Users and our peers who use Xtext to develop DSLs using the MDE approach
will benefit from this. In stage 3, this thesis proposes a semi-automated method
that can transform the language with a generated grammar into a Python-style
language. Language engineers can apply this method to quickly improve the
conciseness and user-friendliness of the language. We provide a systematic
rule-based solution in Stage 4 that can generate adaptations in evolved ver-
sions’ generated grammar of the evolving language, enabling semi-automated
co-evolution of metamodels and grammars.

In future work, we plan to expand GrammarOptimizer into a more mature
language workbench, supporting advanced features such as automatic extraction
of configuration, a “what you see is what you get” view of the optimization
of the grammar, optional language style library, and co-evolution of model
instances and grammar [46]. We will also explore integration with workflows
that generate graphical editors for blended modeling, which will further improve
existing blended modeling techniques.

20 CHAPTER 1. INTRODUCTION

