
Supporting Meta-model-based Language Evolution and Rapid Prototyping with
Automated Grammar Optimization

Weixing Zhanga, Jörg Holtmanna, Regina Hebigb, Jan-Philipp Steghöferc

aDepartment of Computer Science & Engineering, Chalmers | University of Gothenburg, Gothenburg, Sweden
bInstitute of Computer Science, University of Rostock, Rostock, Germany

cXITASO GmbH IT & Software Solutions, Augsburg, Germany

Abstract

In model-driven engineering, textual domain-specific languages (DSLs) are constructed using a meta-model and a grammar

and artifacts for parsing can be generated from this meta-model.

When designing such a DSL, it is often necessary to manually optimize the generated grammar. When the meta-model

changes during rapid prototyping or language evolution, the regenerated grammar needs to be optimized again, causing

repeated effort and potential mistakes.

We compared the generated grammars of seven DSLs to their original, hand-crafted grammars. We extracted a set

of optimization rules that transform the generated grammars into ones that parse the same language as the original

grammars and implemented them in GrammarOptimizer.

To evaluate GrammarOptimizer, we applied the optimization rules to these seven languages. The tool can modify the

generated grammars so that they parse the same languages as the original, hand-crafted ones. In addition, we optimized

generated grammars for different versions of QVTo and EAST-ADL to validate the support for language evolution. The

contribution of this paper is GrammarOptimizer, a novel tool for optimizing generated grammars based on meta-models.

It reduces the efforts of language engineers and simplifies rapid prototyping and evolution of meta-model-based DSLs.

Keywords: Domain-specific Languages, DSL, Grammar, Xtext, Language Evolution, Language Prototyping

1. Introduction1

Domain-Specific Languages (DSLs) are a common way2

to describe certain application domains and to specify3

the relevant concepts and their relationships (Iung et al.,4

2020). They are, among many other things, used to de-5

scribe model transformations (the Operational transfor-6

mation language of the MOF Query, View, and Trans-7

formation — QVTo (Object Management Group, 2016)8

and the ATLAS Transformation Language — ATL (Eclipse9

Email addresses: weixing.zhang@gu.se (Weixing Zhang),

jorg.holtmann@gu.se (Jörg Holtmann),

regina.hebig@uni-rostock.de (Regina Hebig),

jan-philipp.steghoefer@xitaso.com (Jan-Philipp Steghöfer)

Foundation, 2018)), bibliographies (BibTeX (Paperpile, 10

2022)), graph models (DOT (Graphviz Authors, 2022)), 11

formal requirements (the Scenario Modeling Language — 12

SML (Greenyer, 2018) and Spectra (Spectra Authors, 13

2021)), meta-models (Xcore (Eclipse Foundation, 2018)), 14

or web-sites (Xenia (Xenia Authors, 2019)). 15

In many cases, the syntax of the language that engineers 16

and developers work with is textual. For example, DOT is 17

based on a clearly defined and well-documented grammar 18

so that a parser can be constructed to translate the input in 19

the respective language into an abstract syntax tree which 20

can then be interpreted. 21

A different way to go about constructing DSLs is pro- 22

Preprint submitted to Elsevier February 14, 2023

posed by model-driven engineering. There, the concepts23

that are relevant in the domain are first captured in a24

meta-model which defines the abstract syntax (see, e.g.,25

(Roy Chaudhuri et al., 2019; Frank, 2013; Mernik et al.,26

2005)). Different concrete syntaxes, e.g., graphical, tex-27

tual, or form-based, can then be defined to describe actual28

models that adhere to the abstract syntax. Ideally, when-29

ever the DSL evolves, the language engineer would only30

change the abstract syntax and the concrete syntaxes would31

automatically be updated to accommodate the new and32

modified concepts (Karaila, 2009; Ciccozzi et al., 2019; van33

Amstel et al., 2010). In this form of language evolution,34

tooling provides the adaptations of the concrete syntaxes35

and the language engineer would not need to manually36

adapt these definitions.37

In this paper, we consider the Eclipse ecosystem and38

Xtext (Eclipse Foundation, 2023a) as its de-facto standard39

framework for developing textual DSLs. Xtext relies on the40

Eclipse Modeling Framework (EMF) (Eclipse Foundation,41

2023b) and uses its Ecore (meta-)modeling facilities as42

basis. Xtext offers three options to develop a textual DSL43

based on a grammar in accordance with a meta-model:44

1. hand-crafting a grammar and...45

(a) ...automatically generating a meta-model from it46

(which typically differs significantly from a meta-47

model that a modeling language expert would48

design);49

(b) ...manually aligning it with a given meta-model;50

2. and generating a grammar from a given meta-model.51

We argue for the use of the last option of generating a52

grammar from a given meta-model, because conceiving a53

well-engineered meta-model is the basis for well-accepted54

concrete syntaxes (both textual and graphical) and the55

basis for well-elaborated model exploitations (like auto-56

matic processing or communication). Using this option57

also frees language engineers from the limitations of gram-58

mar definitions which are usually done in Extended Backus59

Naur Form (EBNF): Meta-models are more expressive than60

grammars and are easier to modify to accommodate rapid 61

prototyping and evolution (Kleppe, 2007). 62

One problem that prevents using a grammar generated 63

from the meta-model directly is that the grammars Xtext 64

automatically generates are not particularly user-friendly. 65

At the same time, the grammars themselves are hard to 66

understand and the languages defined by them are verbose, 67

use many braces, and enforce very strict rules about the 68

presence of keywords and certain constructs. While the 69

usability of DSLs is largely dependent on the right choice 70

of concept names (see, e.g., (Albuquerque et al., 2015)), 71

the syntax also plays a significant role in how easily a 72

language can be learned. Stefik and Siebert (2013) find 73

that languages in which, e.g., if-statements are written 74

without parentheses, braces, and single equal signs (such 75

as Python (Prechelt, 2000)) are more easily picked up by 76

novices. We also find that Xtext tends to add a number of 77

keywords that are not strictly necessary and that make the 78

generated language more verbose without adding clarity. 79

These issues can be addressed by tweaking the grammars 80

manually. The problem with this approach, however, is 81

that an evolution of the meta-model will require repeating 82

this time-consuming process for any meta-model change. 83

Alternatively, instead of auto-generating the grammar when 84

the meta-model evolves, the existing grammar could be 85

manually evolved by new grammar rules and by modifying 86

existing ones. This process is, again, time-consuming and 87

error-prone and can easily lead to inconsistencies. 88

We propose a different approach: Automated optimiza- 89

tion of the generated grammar based on simple optimiza- 90

tion rules. Instead of modifying the grammar directly, the 91

language engineer creates a set of simple optimization rule 92

applications that modify the grammar file to make the re- 93

sulting language easier to use and less verbose. Whenever 94

the meta-model changes and the grammar is regenerated, 95

the same or a slightly modified set of optimization rules 96

can be used to update the new grammar to have the same 97

properties as the previous version. This ensures very short 98

2

round-trip times, compatibility between grammars of differ-99

ent language versions allows for easy experimentation with100

language variations, and provides a significant reduction of101

effort when a language evolves.102

The contribution of this paper is thus the GrammarOp-103

timizer, a tool that modifies a generated grammar by104

applying a set of configurable, modular, simple optimiza-105

tion rules. It integrates into the workflow of language106

engineers working with Eclipse, EMF, and Xtext technolo-107

gies and is able to apply rules to reproduce the textual108

syntaxes of common, textual DSLs.109

We demonstrate its applicability on seven domain-specific110

languages from different application areas. We also show its111

support for language evolution in two cases: 1), we recreate112

the textual model transformation language QVTo in all113

four versions of the official standard (Object Management114

Group, 2016) with only small changes to the configuration115

of optimization rule applications and with high consistency116

of the syntax between versions; and 2), we conceived for the117

automotive systems modeling language EAST-ADL (EAST-118

ADL Association, 2021) together with an industrial partner119

a textual concrete syntax (Holtmann et al., 2023), where120

we initially started with a grammar for a subset of the121

EAST-ADL meta-model (i.e., textual language version 1)122

and subsequently evolved the grammar to encompass the123

full meta-model (i.e., textual language version 2).124

2. Background: Textual DSL Engineering based on125

Meta-models126

As outlined in the introduction, the engineering of textual127

DSLs can be conducted through the traditional approach128

of specifying grammars, but also by means of meta-models.129

Both approaches have commonalities, but also differences130

(Paige et al., 2014). Like grammars specified by means of131

the Extended Backus Naur Form (EBNF) (International Or-132

ganization for Standardization (ISO), 1996), meta-models133

enable formally specifying how the terms and structures of134

DSLs are composed. In contrast to grammar specifications,135

however, meta-models describe DSLs as graph structures 136

and are often used as the basis for graphical or non-textual 137

DSLs. Particularly, the focus in meta-model engineering 138

is on specifying the abstract syntax. The definition of 139

concrete syntaxes is often considered a subsequent DSL 140

engineering step. However, the focus in grammar engineer- 141

ing is directly on the concrete syntax (Kleppe, 2007) and 142

leaves the definition of the abstract syntax to the compiler. 143

Meta-model-based textual DSLs. There are also examples 144

of textual DSLs that are built with meta-model technology. 145

For example, the Object Management Group (OMG) de- 146

fines textual DSLs that hook into their meta-model-based 147

Meta Object Facility (MOF) and Unified Modeling Lan- 148

guage ecosystems, for example, the Object Constraint Lan- 149

guage (OCL) (Object Management Group (OMG), 2014) 150

and the Operational transformation language of the MOF 151

Query, View, and Transformation (QVTo) (Object Manage- 152

ment Group, 2016). However, this is done in a cumbersome 153

way: Both the specifications for OCL and QVTo define a 154

meta-model specifying the abstract syntax and a grammar 155

in EBNF specifying the concrete syntax of the DSL. This 156

grammar, in turn, defines a different set of concepts and, 157

therefore, a meta-model for the concrete syntax that is 158

different from the meta-model for the abstract syntax. As 159

Willink (Willink, 2020) points out, this leads to the awk- 160

ward fact that the corresponding tool implementations such 161

as Eclipse OCL (Eclipse Foundation, 2022a) and Eclipse 162

QVTo (Eclipse Foundation, 2022b) also apply this distinc- 163

tion. That is, both tool implementations each require an 164

abstract syntax and a concrete syntax meta-model and, due 165

to their structural divergences, a dedicated transformation 166

between them. Additionally, both tool implementations 167

provide a hand-crafted concrete syntax parser, which im- 168

plements the actual EBNF grammar. Maintaining these 169

different parts and updating the manually created ones 170

incurs significant effort whenever the language should be 171

evolved. 172

3

Grammar generation and Xtext. A much more streamlined173

approach to language engineering would, instead, use a174

single meta-model and use this in a model-driven approach175

to derive the concrete syntax directly from it. With the176

exception of EMFText (Heidenreich et al., 2009) and the177

Grasland toolkit (Kleppe, 2007) that are both not main-178

tained anymore, Xtext is currently the only textual DSL179

framework that allows generating a grammar from a meta-180

model. Using an EBNF-based Xtext grammar, Xtext ap-181

plies the ANTLR parser generator framework (Parr, 2022)182

to derive the actual parser and all its required inputs. It183

also generates editors along with syntax highlighting, code184

validation, and other useful tools.185

A language engineer has two options when constructing186

a new language from a meta-model in Xtext:187

1. Hand-craft a grammar that maps syntactical ele-188

ments of the textual concrete syntax to the concepts189

of the abstract syntax. This is the way many DSLs190

have been built in Xtext (e.g., Xcore (Eclipse Foun-191

dation, 2018), Spectra (Spectra Authors, 2021), and192

Xenia (Xenia Authors, 2019)). However, this approach193

is not very robust when the meta-model changes since194

the grammar needs to be adapted manually to that195

meta-model change.196

2. Generate a grammar from the meta-model using197

Xtext’s built-in functionality (we call this grammar198

generated grammar in this paper). This creates a199

grammar that contains grammar rules for all meta-200

model elements that are contained in a common root201

node and resolves references, etc., to a degree (see202

Section 4.4 for details). This approach deals very well203

with meta-model changes and only requires the re-204

generation of the grammar which is very fast and can205

be automated. However, the grammar is going to be206

very verbose, structured extensively using braces, and207

uses a lot of keywords. This makes it difficult to use208

such a generated grammar in practice.209

In this paper, we focus on making the second option more210

usable to give language engineers the ability to quickly 211

re-generate their grammars when the meta-model changes, 212

e.g., for rapid prototyping or for language evolution. Thus, 213

we provide the ability to optimize the automatically gener- 214

ated grammars to improve their usability and make them 215

similar in this regard to hand-crafted grammars. We show 216

that this optimization can be re-applied to evolving versions 217

of the language. Our contribution, GrammarOptimizer, 218

therefore combines the advantages of both approaches while 219

mitigating their respective disadvantages. 220

3. Related Work 221

In the following, we discuss approaches for grammar op- 222

timization, approaches that are concerned with the design 223

and evolution of DSLs, and other approaches. 224

Grammar Optimization. There are a few works that aim 225

at optimizing grammar rules with a focus on XML-based 226

languages. For example, Neubauer et al. (2015, 2017) also 227

mention optimization of grammar rules in Xtext. Their 228

approach XMLText and the scope of their optimization 229

focus only on XML-based languages. They convert an 230

XML schema definition to a meta-model using the built-in 231

capabilities of EMF. Based on that meta-model, they then 232

use an adapted Xtext grammar generator for XML-based 233

languages to provide more human-friendly notations for 234

editing XML files. XMLText thereby acts as a sort of 235

compiler add-on to enable editing in a different notation 236

and to automatically translate to XML and vice versa. 237

In contrast, we develop a post-processing approach that 238

enables the optimization of any Xtext grammar (not only 239

XML-based ones, cf. also our discussion in Section 8). 240

The approach of Chodarev (2016) shares the same goal 241

and a similar functional principle as XMLText, but uses 242

other technological frameworks. In contrast to XMLText, 243

Chodarev supports more straightforward customization of 244

the target XML language by directly annotating the meta- 245

model that is generated from the XML schema. The same 246

4

distinction applies here as well: GrammarOptimizer247

enables the optimization of any Xtext grammar and is not248

restricted to XML-based languages.249

Grammar optimization for DSLs in general is addressed250

by Jouault et al. (2006). They propose an approach to251

specify a syntax for textual, meta-model-based DSLs with252

a dedicated DSL called Textual Concrete Syntax, which is253

based on a meta-model. From such a syntax specification,254

a concrete grammar and a parser are generated. The255

approach is similar to a template language restricting the256

language engineer and thereby, as the authors state, lacks257

the freedom of grammar specifications in terms of syntax258

customization options. In contrast, we argue that the259

GrammarOptimizer provides more syntax customization260

options to achieve a well-accepted textual DSL.261

Finally, Novotný (2012) designed a model-driven Xtext262

pretty printer, which is used for improving the readability263

of the DSL by means of improved, language-specific, and264

configurable code formatting and syntax highlighting. In265

contrast, our GrammarOptimizer is not about improving266

code readability but focused on how to design the DSL267

itself to be easy to use and user-friendly.268

Designing and Evolving Meta-model-based DSLs. Many269

papers about the design of DSLs focus solely on the con-270

struction of the abstract syntax and ignore the concrete271

syntaxes (e.g., (Roy Chaudhuri et al., 2019; Frank, 2011)),272

or focus exclusively on graphical notations (e.g.,(Frank,273

2013; Tolvanen and Kelly, 2018)). In contrast, the guide-274

lines proposed by Karsai et al. (2009) contain specific ideas275

about concrete syntax design, e.g., to “balance compact-276

ness and comprehensibility”. Arguably, the languages au-277

tomatically generated by Xtext are neither compact nor278

comprehensible and therefore require manual changes.279

Mernik et al. (2005) acknowledge that DSL design is280

not a sequential process. The paper also mentions the im-281

portance of textual concrete syntaxes to support common282

editing operations as well as the reuse of existing languages.283

Likewise, van Amstel et al. (2010) describe DSL devel- 284

opment as an iterative process and use EMF and Xtext 285

for the textual syntax of the DSL. They also discuss the 286

evolution of the language, and that “it is hard to predict 287

which language features will improve understandability and 288

modifiability without actually using the language”. Again, 289

this is an argument for the need to do prototyping when 290

developing a language. Karaila (2009) broadens the scope 291

and also argues for the need for evolving DSLs along with 292

the “engineering environment” they are situated in, in- 293

cluding editors and code generators. Pizka and Jürgens 294

(2007) also acknowledge the “constant need for evolution” 295

of DSLs. 296

There is a lot of research supporting different aspects of 297

language change and evolution. Existing approaches focus 298

on how diverse artifacts can be co-evolved with evolving 299

meta-models, namely the models that are instances of the 300

meta-models (Hebig et al., 2016), OCL constraints that are 301

used to specify static semantics of the language (Khelladi 302

et al., 2017, 2016), graphical editors of the language (Ruscio 303

et al., 2010; Di Ruscio et al., 2011), and model transfor- 304

mations that consume or produce programs of the lan- 305

guage (García et al., 2012). Specifically, the evolution of 306

language instances with evolving meta-models is well sup- 307

ported by research approaches. For example, Di Ruscio et 308

al. (Di Ruscio et al., 2011) support language evolution by 309

using model transformations to simultaneously migrate the 310

meta-model as well as model instances. 311

Thus, while these approaches cover a lot of requirements, 312

there is still a need to address the evolution of textual 313

grammars with the change of the meta-model as it happens 314

during rapid prototyping or normal language evolution. 315

This is a challenge, especially since fully generated gram- 316

mars are usually not suitable for use in practice. This 317

implies that upon changing a meta-model, it is necessary 318

to co-evolve a manually created grammar or a grammar that 319

has been generated and then manually changed. Gram- 320

marOptimizer has been created to support prototyping 321

5

and evolution of DSLs and is, therefore, able to support322

and largely automate these activities.323

Other Approaches. As we mentioned above, besides Xtext,324

there are two more approaches that support the generation325

of EBNF-based grammars and from these the generation of326

the actual parsers. These are EMFText (Heidenreich et al.,327

2009) and the Grasland toolkit (Kleppe, 2007), which are328

both not maintained anymore.329

Whereas our work focuses on the Eclipse technology330

stack based on EMF and Xtext, there are a number of331

other language workbenches and supporting tools that sup-332

port the design of DS(M)Ls and their evolution. However,333

none of these approaches are able to derive grammars di-334

rectly from meta-models, a prerequisite for the approach335

to language engineering we propose and the basis of our336

contribution, GrammarOptimizer. Instead, tools like337

textX (Dejanović et al., 2017) go the other way around and338

derive the meta-model from a grammar. Langium (Type-339

Fox GmbH, 2022) is the self-proclaimed Xtext successor340

without the strong binding to Eclipse, but does not support341

this particular use case just yet and instead focuses on lan-342

guage construction based on grammars. MetaEdit+ (Kelly343

and Tolvanen, 2018) does not offer a textual syntax for the344

languages, but instead a generator to create text out of345

diagrams that are modeled using either tables, matrices,346

or diagrams. JetBrains MPS (JetBrains, 2022) is based347

on projectional editing where concrete syntaxes are projec-348

tions of the abstract syntax. However, these projections349

are manually defined and not automatically derived from350

the meta-model as it is the case with Xtext. Finally, Pizka351

and Jürgens (2007) propose an approach to evolve DSLs352

including their concrete syntaxes and instances. For that,353

they present “evolution languages” that evolve the concrete354

syntax separately. However, they focus on DSLs that are355

built with classical compilers and not with meta-models.356

4. Methodology: Analysis of Existing Languages 357

In this section, we describe how we identify candidate 358

grammar optimization rules by analyzing existing DSLs. In 359

order to explain how we select DSLs and how we manipulate 360

the artifacts that define them, we first introduce our notion 361

of imitation before describing our selection strategy, how 362

we exclude certain language parts, how we prepare the 363

meta-models, and the two iterations in which we conduct 364

our analysis. 365

4.1. Definition of Imitation 366

To assess whether an optimized grammar produces the 367

same language as the original grammar we introduce the 368

concept of imitation. We consider a set of grammar rules 369

in the original grammar {rrx|1 ≤ x ≤ n} to be imitated if 370

there is a set of grammar rules in the optimized grammar 371

{roy|1 ≤ y ≤ m} that together produce the exact same 372

language as rrx. 373

Such a definition is necessary as many textual languages 374

are defined by EBNF grammars which are necessarily differ- 375

ent from Xtext grammars. An Xtext grammar will always 376

include some static semantics that an EBNF grammar does 377

not include. The reason for that is that Xtext grammars 378

distinguish between element specification and references 379

in a way EBNF grammars do not. For example, in the 380

rule SimpleOutPatternElement (Listing 1) in the original 381

EBNF grammar of ATL, rows 6 and 7 both include iden- 382

tifiers. However, the semantics of the language interprets 383

the identifier in row 7 after the keyword in as a reference 384

to another element specified in the ATL artifact. While 385

the EBNF grammar does not distinguish this semantics, 386

the Xtext grammar does. In Listing 2 in row 9, the model 387

attribute is assigned to an EString that will be interpreted 388

as a reference. The reference is specified by [OCLDummy | 389

EString], where OCLDummy refers to the type of the refer- 390

enced element and EString to the type of the token that 391

should be parsed. In addition, EBNF grammars often work 392

with types such as IDENTIFIER, whereas a meta-model 393

6

Listing 1: Excerpt of original grammar rules for ATL (in EBNF)

1 o u t P a t t e r n : := ’ to ’ outPatternElement (’ , ’

outPatternElement) ∗ ;

2

3 outPatternElement : := simpleOutPatternElement |

forEachOutPatternElement ;

4

5 s impleOutPatternElement : :=

6 IDENTIFIER ’ : ’ OclDummy

7 (’ in ’ IDENTIFIER) ?

8 (’mapsTo ’ IDENTIFIER) ?

9 (’ (’ (b inding (’ , ’ b inding) ∗) ? ’) ’) ? ;

and an Xtext grammar use ETypes, such as EString. We394

decided to accept these small differences and ignore them395

when judging whether a grammar rule is imitated. Thus,396

our definition of imitation is open to the Xtext grammar397

being more specific than the EBNF grammar. However,398

we consider that appropriate in cases where the specifica-399

tions made by the Xtext grammar are part of the original400

language’s semantics, and are normally implemented as401

constraints by the compiler.402

Consider the example of the grammar rule outPattern.403

The original grammar rules are shown in Listing 1. For404

the purpose of this example, Listing 2 shows the same405

grammar rules in partially optimized form. As de-406

scribed above, we assume here that EString is substi-407

tuting IDENTIFIER. According to our definition, simple-408

OutPatternElement from Listing 1 is not imitated by409

the rule SimpleOutPatternElement from Listing 2, since410

the latter does not allow to write parentheses with-411

out at least one binding in between. However, if412

SimpleOutPatternElement from Listing 2 did in fact im-413

itate the rule simpleOutPatternElement from Listing 1,414

then OutPattern and OutPatternElement from Listing 2415

would imitate outPattern and outPatternElement from416

Listing 1, since they then would produce the same language.417

Listing 2: Excerpt of partially optimized grammar rules for ATL (in

Xtext)

1 OutPattern r e t u r n s OutPattern:

2 ’ to ’ e lements+=OutPatternElement (" , "

e lements+=OutPatternElement) ∗ ;

3

4 OutPatternElement r e t u r n s OutPatternElement:

5 SimpleOutPatternElement |

ForEachOutPatternElement ;

6

7 SimpleOutPatternElement r e t u r n s

SimpleOutPatternElement:

8 varName=EString ’ : ’ type=OclDummy

9 (’ in ’ model=[OCLDummy| EString]) ?

10 (’mapsTo ’ sourceElement =[InPatternElement |

EStr ing]) ?

11 (’ (’ b ind ings+=Binding (" , " b ind ings+=

Binding) ∗ ’) ’) ? ;

4.2. Selection of Sample DSLs 418

We selected a number of DSLs for which both a grammar 419

and a meta-model were available. The basic idea is that 420

the grammar for a DSL serves as the ground truth and that 421

we derive grammar optimization rules to turn a grammar 422

that was generated from the meta-model into that ground 423

truth. By selecting a number of DSLs with a grammar 424

or precise syntax definition from which we could derive 425

that gold standard, we aimed to generalize the grammar 426

optimization rules so that new languages can be optimized 427

based on rules that we include in GrammarOptimizer. 428

Sources. To find language candidates, we collected well- 429

known languages, such as DOT, and used language collec- 430

tions, such as the Atlantic Zoo (AtlanMod Team, 2019), a 431

list of robotics DSLs (Nordmann et al., 2020), and similar 432

collections (Wikimedia Foundation, 2023; Barash, 2020; 433

Semantic Designs, 2021; Community, 2021; Van Deursen 434

et al., 2000). However, it turned out that the search for 435

suitable examples was not trivial despite these resources. 436

The quality of the meta-models in these collections was 437

often insufficient for our purposes. In many cases, the 438

7

meta-model structures were too different from the gram-439

mars or there was no grammar in either Xtext or in EBNF440

publicly available as well as no clear syntax definition by441

other means. We therefore extended our search to also442

use Github’s search feature to find projects in which meta-443

models and Xtext grammars were present and manually444

searched the Eclipse Foundation’s Git repositories for suit-445

able candidates. Grammars were either taken from the446

language specifications or from the repositories directly.447

Concrete Grammar Reconstruction for BibTeX. In some448

cases, the syntax of a language is described in detail online,449

but no EBNF or Xtext grammar can be found. In our case,450

this is the language BibTeX. It is a well-known language451

to describe bibliographic data mostly used in the context452

of typesetting with LaTeX that is notable for its distinct453

syntax. In this case, we utilized the available detailed454

descriptions (Paperpile, 2022) to reconstruct the grammar.455

To validate the grammar we created, we used a number of456

examples of bibliographies from (Paperpile, 2022) and from457

our own collection to check that we covered all relevant458

cases.459

Meta-model Reconstruction for DOT. DOT is a well-known460

language for the specification of graph models that are input461

to the graph visualization and layouting tool Graphviz.462

Since it is an often used language with a relatively simple,463

but powerful syntax, we decided to include it, even if464

we could not find a complete meta-model that contains465

both the graph structures and formatting primitives. The466

repository that also contains the grammar we ended up467

using (miklossy et al., 2020), e.g., only contains meta-468

models for font and graph model styles.469

Therefore, we used the Xtext grammar that parses the470

same language as DOT’s original grammar to derive a471

meta-model (miklossy et al., 2020). Xtext grammars in-472

clude more information than an EBNF grammar, such as473

information about references between concepts of the lan-474

guage. Thus, the fact that the DOT grammar was already475

formulated in Xtext allowed us to directly generate DOT’s 476

Ecore meta-model from this Xtext grammar. This meta- 477

model acquisition method is an exception in this paper. 478

Since this paper focuses on how to optimize the generated 479

grammar, we consider this way of obtaining the meta-model 480

acceptable for this one case. 481

Selected Cases. As a result, we identified a sample of seven 482

DSLs (cf. Table 1), which has a mix of different sources for 483

meta-models and grammars. This convenience sampling 484

consists of a mix of well-known DSLs with lesser-known, 485

but well-developed ones. We believe this breadth of do- 486

mains and language styles is broad enough to extract a 487

generically applicable set of candidate optimization rules 488

for GrammarOptimizer. We selected four of the sample 489

DSLs for the first iteration and three DSLs for the second 490

iteration (see Section 4.5). In Table 1, we list all seven 491

languages, including information about the meta-model 492

(source and the number of classes in the meta-model) and 493

the original grammar (source and the number of grammar 494

rules). 495

4.3. Exclusion of Language Parts for Low-level Expressions 496

Two of the analyzed languages encompass language parts 497

for expressions, which describe low-level concepts like bi- 498

nary expressions (e.g., addition). We excluded such lan- 499

guage parts in ATL and in SML due to several aspects. 500

Both languages distinguish the actual language part and 501

the expression language part already on the meta-model 502

level and thereby treat the expression language part differ- 503

ently. The respective expression parts are similarly large 504

than the actual languages (i.e., 56 classes for the embedded 505

OCL part of ATL and 36 classes for the SML scenario 506

expressions meta-model), which implies a high analysis 507

effort. Finally, although having a significantly large meta- 508

model, the embedded OCL part of ATL does not specify 509

the expressions to a sufficient level of detail (e.g., it does 510

not allow to specify binary expressions). 511

8

Table 1: DSLs used in this paper, the sources of the meta-model and the grammar used, as well as the size of the meta-model and grammar.

The first set of DSLs was analyzed to derive necessary optimization rules, and the second set to validate the candidate optimization rules and

extend them if necessary.

Meta-model Original Grammar Generated Grammar
Iteration DSL Source Classes1 Source Rules lines rules calls

ATL2 Atlantic Zoo 30 ATL Syntax 28 275 30 232
(AtlanMod Team, 2019) (Eclipse Foundation, 2018)

BibTex Grammarware 48 Self-built 46 293 48 188
1st (Zaytsev, 2013) Based on (Paperpile, 2022)

DOT Generated 19 Dot 32 125 23 51
(Graphviz Authors, 2022)

SML3 SML repository 48 SML repository 45 658 96 377
(Greenyer, 2018) (Greenyer, 2018)

Spectra GitHub Repository 54 GitHub Repository 58 442 62 243
(Spectra Authors, 2021) (Spectra Authors, 2021)

2nd Xcore Eclipse 22 Eclipse 26 243 33 149
(Eclipse Foundation, 2012) (Eclipse Foundation, 2018)

Xenia Github Repository 13 Github Repository 13 84 15 36
(Xenia Authors, 2019) (Xenia Authors, 2019)

1 After adaptations, containing both classes and enumerations.
2 Excluding embedded OCL rules.
3 Excluding embedded SML expressions rules.

Exclusion from the Meta-model. To exclude parts of the512

language, we perform the following changes to the respec-513

tive meta-models:514

• We add a dummy class that contains only one attribute515

name to the meta-model, e.g. OCLDummy.516

• For all attributes in the meta-model that have a517

type from the excluded language part we change518

the type to the dummy class. For example, in the519

ATL meta-model, we substituted the attribute types520

Iterator, OCLExpression, OCLModel, Parameter,521

and OCLFeatureDefinition with OCLDummy.522

• For a metaclass m that has a superclass s in523

the excluded language part, we add attributes of524

the superclass s to the metaclass m and removed525

the inheritance relationship. For example, we526

added the attributes of VariableDeclaration to527

RuleVariableDeclaractor and PatternElement.528

• For the special case of a metaclass m that has a su-529

perclass s in the excluded language part, where the530

superclass s has in turn a superclass sus that is part of 531

the included language part, we do not remove the in- 532

heritance relationship but changed it so that m inherits 533

directly from sus. For example, in ATL, we changed 534

RuleVariableDeclaractor and PatternElement so 535

that they inherit from LocatedElement instead of 536

VariableDeclaration (which is part of OCL). 537

• Finally we deleted all metaclasses of the excluded 538

language part. 539

Exclusion from the Grammar. In addition, we need to 540

ensure that we can compare the language without the 541

excluded parts to the original grammar. To do so, we 542

create versions of the original grammars in which these 543

respective language parts are substituted by a dummy 544

grammar rule, e.g., OCLDummy in the case of ATL. This 545

dummy grammar rule is then called everywhere where a 546

rule of the excluded language part would have been called, 547

as shown in Listing 2 in lines 8 and 9. 548

9

4.4. Meta-model Preparations and Generating an Xtext549

Grammar550

The first step of the analysis of any of the languages is to551

generate an Xtext grammar based on the language’s meta-552

model. This is done by using the Xtext project wizard553

within Eclipse.554

Note that it is sometimes necessary to slightly change555

the meta-model to enable the generation of the Xtext gram-556

mar or to ensure that the compatibility with the original557

grammar can be reached. These changes are necessary in558

case the meta-model is already ill-formed for EMF itself559

(e.g., purely descriptive Ecore files that are not intended560

for instantiating runtime models) or if it does not adhere561

to certain assumptions that Xtext makes (e.g., no bidirec-562

tional references). In such cases, we conducted the following563

changes:564

• Adding values to the namespace URI or prefix, if these565

were missing. These values are required to generate566

the EMF model code.567

• Adding root container elements, if these were missing.568

Every instantiable EMF meta-model requires a root569

container element. The reason is that only elements570

directly or transitively contained by this root element571

can later be instantiated in a generated model. In572

some specific constellations, Xtext does not generate573

rule calls, even if the meta-model has a root container574

element, namely, when this element is not abstract but575

has subtypes. Also in these cases, we added an addi-576

tional root container element containing the original577

root container.578

• Removing bidirectional references, if present. Xtext579

cannot cope with bidirectional references (and they580

are also considered an EMF antipattern1).581

1See, e.g., the discussion in https://www.eclipse.org/forums/

index.php/t/1105161/.

• Switching to EMF-native primitive datatypes, if other 582

ones are used: Some meta-models introduce their own 583

primitive datatypes (e.g., Boolean, String, etc.) in- 584

stead of using EMF’s defaults. However, Xtext utilizes 585

these EMF-native primitive datatypes and has spe- 586

cific rules on how to treat them. For example, an 587

attribute of the type EBoolean in the meta-model will 588

be translated into a grammar that allows the user 589

to define the value of that attribute via the presence 590

(=true) or absence (=false) of an optional keyword. 591

For example, an ATL user might specify that a lazy 592

rule is unique by adding the keyword unique in front 593

of the lazy rule. Thus, we switched from custom 594

primitive datatypes to the EMF-native ones in the 595

EMF meta-models. 596

• Boolean values with lower bound 1 were changed to 0 597

since Xtext would otherwise generate a grammar that 598

enforces the value “true” for that attribute. 599

• Mandatory attributes are changed to be optional 600

if they were not required in the original gram- 601

mar. For example, the attribute mapsTo in class 602

InPatternElement is mandatory in the ATL meta- 603

model, but there is no corresponding element in the 604

original grammar. 605

• Adding missing concepts. We constructed the original 606

grammar of BibTeX following the specification in (Pa- 607

perpile, 2022), as described above. The original gram- 608

mar contains the concepts entry type ‘unpublished’ 609

and standard field type ‘annote’, which are missing 610

in the meta-model. We manually added two classes to 611

the meta-model to correspond to these concepts. 612

In Table 1, we list how many lines, rules, and calls 613

between rules the generated grammars included for the 614

seven languages. 615

10

https://www.eclipse.org/forums/index.php/t/1105161/
https://www.eclipse.org/forums/index.php/t/1105161/

4.5. Analysis of Grammars616

We performed the analysis of existing languages in two617

iterations. The first iteration was purely exploratory. Here618

we analyzed four of the languages with the aim of finding as619

many candidate grammar optimization rules as possible. In620

the second iteration, we selected three additional languages621

to validate the candidate rules collected from the first622

iteration, add new rules if necessary, and generalise the623

existing rules when applicable.624

Our general approach was similar in both iterations.625

Once we had generated a grammar for a meta-model, we626

created a mapping between that generated grammar and627

the original grammar of the language. The goal of this628

mapping was to identify which grammar rules in the gener-629

ated grammar correspond to which grammar rules in the630

original grammar. Note that a grammar rule in the gener-631

ated grammar may be mapped to multiple grammar rules632

in the original grammar and vice versa. From there, we633

inspected the generated and original grammars to identify634

how they differed and which changes would be required635

to adjust the generated grammar so that it produces the636

same language as the original grammar, i.e., imitates the637

original grammar rules. We documented these changes638

per language and summarized them as optimization rule639

candidates in a spreadsheet.640

For example, the original grammar rule node_stmt in641

DOT (see Listing 3) maps to the generated grammar rule642

NodeStmt in Listing 4. Multiple changes are necessary to643

adjust the generated Xtext grammar rule:644

• Remove all the braces in the grammar rule NodeStmt.645

• Remove all the keywords in the grammar rule646

NodeStmt.647

• Remove the optionality from all the attributes in the648

grammar rule NodeStmt.649

• Change the multiplicity of the attribute attrLists650

from 1..* to 0..*.651

Listing 3: Non-terminal node_stmt in the original grammar of DOT,

in Xtext

1 node_stmt : node_id [a t t r _ l i s t]

Listing 4: Grammar rule NodeStmt in the generated grammar of DOT,

in Xtext

1 NodeStmt r e t u r n s NodeStmt:

2 {NodeStmt}

3 ’ NodeStmt ’

4 ’ { ’

5 (’ node ’ node=NodeId) ?

6 (’ a t t r L i s t s ’ ’ { ’ a t t r L i s t s+=

A t t r L i s t (" , " a t t r L i s t s+=

A t t r L i s t) ∗ ’ } ’) ?

7 ’ } ’ ;

Note that in most cases the original grammar was not 652

written in Xtext. For example, the returns statement in 653

line 1 of Listing 4 is required for parsing in Xtext. We took 654

that into account when comparing both grammars. 655

4.5.1. First Iteration: Identify Optimization Rules 656

The analysis of the grammars of the four selected DSLs 657

in the first iteration had two concrete purposes: 658

1. identify the differences between the original grammar 659

and generated grammar of the language; 660

2. derive grammar optimization rules that can be applied 661

to change the generated grammar so that the optimized 662

grammar parses the same language as the original 663

grammar. 664

Please note that it is not our aim to ensure that the opti- 665

mized grammar itself is identical to the original grammar. 666

Instead, our goal is that the optimized grammar is an im- 667

itation of the original grammar as defined in Section 4.1 668

and therefore is able to parse the same language as the 669

original, usually hand-crafted grammar of the DSL. Each 670

language was assigned to one author who performed the 671

analysis. 672

As a result of the analysis, we obtained an initial set of 673

grammar optimization rules, which contained a total of 56 674

11

Table 2: Summary of identified rules their rule variants and their

sources
Iteration Rule

Candidates
Selected Rules Rule

Variants

Iteration 1 56 43 61
Iteration 2 11 11 11

Intermediate sum 67 54 72

Evaluation 4 4 4

Overall sum 71 58 76

candidate optimization rules. Table 2 summarizes in the675

second column the number of identified rule candidates676

and in the second row the number for the first iteration.677

Since the initial set of grammar optimization rules was a678

result of an analysis done by multiple authors, it included679

rules that were partially overlapping and rules that turned680

out to only affect the grammar’s formatting, but not the681

language specified by the grammar. Thus, we filtered rules682

that belong to the latter case. For rule candidates that683

overlapped with each other, we selected a subset of the684

rules as a basis for the next step. This filtering led to685

a selection of 43 optimization rules (cf. third column in686

Table 2).687

We processed these 43 selected optimization rules to688

identify required rule variants that could be implemented689

directly by means of one Java class each, which we describe690

more technically as part of our design and implementation691

elaboration in Section 6.2. For identifying the rule variants,692

we focused on the following aspects:693

Specification of scope Small changes in the meta-model694

might lead to a different order of the lines in the gen-695

erated grammar rules or even a different order of the696

grammar rules. Therefore, the first step was to define697

a suitable concept to identify the parts of the gener-698

ated grammar that can function as the scope of an699

optimization rule, i.e., where it applies. We identified700

different suitable scopes, e.g., single lines only, specific701

attributes, specific grammar rules, or even the whole702

grammar. Initially, we identified separate rule vari-703

ants for each scope. Note that this also increased the 704

number of rule variants, as for some rule candidates 705

multiple scopes are possible. 706

Allowing multiple scopes In many cases, selecting only 707

one specific scope for a rule is too limiting. In the 708

example above (Listing 4), pairs of braces in different 709

scopes are removed: in the scope of the attribute 710

attrLists in line 6 and in the scope of the containing 711

grammar rule in lines 4 and 7. This illustrates that 712

changes might be applied at multiple places in the 713

grammar at once. When formulating rule variants, we 714

analyzed the rule candidates for their potential to be 715

applied in different scopes. When suitable, we made 716

the scope configurable. This means that only one 717

optimization rule variant is necessary for both cases in 718

the example. Depending on the provided parameters, 719

it will either replace the braces for the rule or for 720

specific attributes. 721

Composite optimization rules We decided to avoid op- 722

timization rule variants that can be replaced or com- 723

posed out of other rule variants, especially when such 724

compositions were only motivated by very few cases. 725

However, such rules might be added again later if it 726

turns out they are needed more often. 727

While we identified exactly one rule variant for 728

most of the selected optimization rules, we added 729

more than one rule variant for several of the rules. 730

We did this when slight variations of the results 731

were required. For example, we split up the op- 732

timization rule SubstituteBrace into the variants 733

ChangeBracesToParentheses, ChangeBracesToSquare, 734

and ChangeBracesToAngle. Note that this split-up into 735

variants is a design choice and not an inherent property of 736

the optimization rule, as, e.g., the type of target bracket 737

could be seen as nothing more than a parameter of the 738

rule. As a result, we settled on 61 rule variants for the 43 739

identified rules (cf. fourth column of second row in Table 2). 740

12

4.5.2. Second iteration: Validate Optimization Rules741

The last step left us with 43 selected optimization rules742

from the first iteration (cf. second row in Table 2). We743

developed a preliminary implementation of GrammarOp-744

timizer by implementing the 61 rules variants belonging745

to these 43 optimization rules as described in Section 6.746

To validate this set of optimization rules, we performed747

a second iteration. In the second iteration, we selected748

the three DSLs Spectra, Xenia, and Xcore. As in the first749

iteration, we generated a grammar from the meta-model,750

analyzed the differences between the generated grammar751

and the original grammar, and identified optimization rules752

that need to be applied on the generated grammar to753

accommodate these differences. In contrast to the first iter-754

ation, we aimed at utilizing as many existing optimization755

rules as possible and only added new rule candidates when756

necessary.757

We configured the preliminary GrammarOptimizer for758

the new languages by specifying which optimization rules759

to apply on the generated grammar. The execution results760

showed that the existing optimization rules were sufficient761

to change the generated grammar of Xenia to imitate the762

original grammar used as the ground truth. However, we763

could not fully transform the generated grammar of Xcore764

and Spectra with the preliminary set of 43 optimization765

rules from the first iteration. For example, Listing 5 shows766

two attributes unordered and unique in the grammar rule767

XOperation in the generated grammar for Xcore. How-768

ever, the grammar rules for the two attributes reference769

each other in the original grammar which can be seen in770

Listing 6. This optimization could not be performed with771

the optimization rules from the first iteration.772

Based on the non-optimized parts of the grammars of773

Xcore and Spectra, we identified another eleven optimiza-774

tion rules for the GrammarOptimizer. Therefore, after775

two iterations, we identified a total of 54 optimization rules776

(which will be implemented by a total of 72 rule variants)777

(cf. fourth row in Table 2).778

Listing 5: Two attributes in the grammar rule XOperation in the

generated grammar of Xcore

1 . . .

2 (unordered?= ’ unordered ’) ?

3 (unique?= ’ unique ’) ?

4 . . .

Listing 6: Two attributes in the grammar rule XOperation in the

original grammar of Xcore

1 . . .

2 unordered?= ’ unordered ’ unique?= ’

unique ’ ? |

3 unique?= ’ unique ’ unordered?= ’

unordered ’ ?

4 . . .

5. Identified Optimization Rules 779

In total, we identified 54 distinct optimization rules for 780

the grammar optimization after the 2nd iteration, which 781

we further refined into 72 rule variants (cf. fourth row 782

in Table 2). Note that 4 additional rules were identified 783

during the evaluation, as described later in Section 7.2, 784

increasing the final number of identified optimization rules 785

to 58 (cf. bottom row in Table 2). 786

Table 3 shows some examples of the optimization rules. 787

The rules we implemented can be categorized by the primi- 788

tives they manipulate: grammar rules, attributes keywords, 789

braces, multiplicities, optionality (a special form of multi- 790

plicities), grammar rule calls, import statements, symbols, 791

primitive types, and lines. They either ‘add’ things (e.g., 792

AddKeywordToRule), ‘remove’ things (e.g., RemoveOption- 793

ality), or ‘change’ things (e.g., ChangeCalledRule). All 794

optimization rules ensure that the resulting changed gram- 795

mar is still valid and syntactically correct Xtext. 796

Most optimization rules are ‘scoped’ which means that 797

they only apply to a specific grammar rule or attribute. 798

In other cases, the scope is configurable, depending on 799

the parameters of the optimization rule. For instance, 800

the RenameKeyword rule takes a grammar rule and an 801

13

Table 3: Excerpt of implemented grammar optimization rules. A

configurable scope (“Config.”) means that, depending on provided

parameters, the rule either applies globally to a specific grammar rule

or to a specific attribute.

Subject Op. Rule Scope

Keyword Add AddKeywordToAttr Attribute
AddKeywordToRule Rule
AddKeywordToLine Line

Change RenameKeyword Config.
AddAlternativeKeyword Rule

Rule Remove RemoveRule Global
Change RenameRule Rule

AddSymbolToRule Rule

Optionality Add AddOptionalityToAttr Attribute
AddOptionalityToKeyword Config.

Import Add AddImport Global
Remove RemoveImport Global

Brace Change ChangeBracesToSquare Attribute
Remove RemoveBraces Config.

attribute as a parameter. If both are set, the scope is the802

given attribute in the given rule. If no attribute is set, the803

scope is the given grammar rule. If none of the parameters804

is set, the scope is the entire grammar (“Global”). All805

occurrences of the given keyword are then renamed inside806

the respective scope.807

Changes to optionality are used when the generated808

grammar defines an element as mandatory, but the element809

should be optional according to the original grammar. This810

can apply to symbols (such as commas), attributes, or key-811

words. Additionally, when all attributes in a grammar rule812

are optional, we have an optimization rule that makes the813

container braces and all attributes between them optional.814

This optimization rule allows the user of the language to815

enter only the grammar rule name and nothing else, e.g.,816

“EAPackage DataTypes;”.817

Likewise, GrammarOptimizer contains rules to ma-818

nipulate the multiplicities in the generated grammars. The819

meta-models and the original grammars we used as inputs820

do not always agree about the multiplicity of elements. We821

provide optimization rules that can address this within the822

constraints allowed by EMF and Xtext.823

For the example in Listing 4, this means that the neces- 824

sary changes to reach the same language defined in Listing 3 825

can be implemented using the following GrammarOpti- 826

mizer rules: 827

• RemoveBraces is applied to the grammar rule 828

NodeStmt and all of its attributes. This removes all 829

the curly braces (‘{’ and ‘}’ in lines 4, 6, and 7) within 830

the grammar rule. 831

• RemoveKeyword is applied to the grammar rule 832

NodeStmt and all of its attributes. This removes 833

the keywords ‘NodeStmt’, ‘node’ and ‘attrLists’ 834

(lines 3, 5, and 6) from this grammar rule. 835

• RemoveOptionality is applied to both attributes. This 836

removes the question marks (‘?’) in lines 5 and 6. 837

• convert1toStarToStar is applied to the attribute 838

attrLists. This rule changes line 6. Before the 839

change, there is one mandatory instance of AttrList 840

followed by an arbitrary number of comma-separated 841

instances of AttrLists (note that this is the case be- 842

cause we removed the optionality before). As a result 843

of the convert1toStarToStar rule application, we yield 844

an arbitrary number of AttrLists and no commas in 845

between (specified as “(attrLists+=AttrList)*” in 846

the resulting optimized grammar). Note that the DOT 847

grammar is specified using a syntax that is slightly 848

different from standard EBNF. In that syntax, square 849

brackets ([and]) enclose optional items (Graphviz 850

Authors, 2022). 851

Note that line 2 in Listing 4 has no effect on the syntax of 852

the grammar but is required by and specific to Xtext, so 853

that we do not adapt such constructs. 854

6. Solution: Design and Implementation 855

The GrammarOptimizer is a Java library that offers a 856

simple API to configure optimization rule applications and 857

execute them on Xtext grammars. The language engineer 858

14

Figure 1: The class design for representing grammar rules.

can use that API to create a small program that executes859

GrammarOptimizer, which in turn will produce the860

optimized grammar.861

6.1. Grammar Representation862

We designed GrammarOptimizer to parse an Xtext863

grammar into an internal data structure which is then mod-864

ified and written out again. This internal representation865

of the grammar follows the structure depicted in Figure 1.866

A Grammar contains a number of GrammarRules that can867

be identified by their names. In turn, a GrammarRule868

consists of a sorted list of LineEntrys with their textual869

lineContent and an optional attrName that contains the870

name of the attribute defined in the line. Note that we871

utilize the fact that Xtext generates a new line for each872

attribute.873

6.2. Optimization Rule Design874

Internally, all optimization rules derive from the abstract875

class OptimizationRule as shown in Figure 2. Derived876

classes overwrite the apply()-method to perform the spe-877

cific text modifications for this rule. By doing so, the878

specific rule can access the necessary information through879

the class members: grammar (i.e., the entire grammar rep-880

resentation as explained in Section 6.1 and depicted in881

Figure 1), grammarRuleName (i.e., the name of the speci-882

fied grammar rule that a user wants to optimize exclusively),883

and attrName (i.e., the name of an attribute that a user884

wants to optimize exclusively). Sub-classes can also add885

additional members if necessary. This architecture makes886

the GrammarOptimizer extensible, as new optimization887

rules can easily be defined in the future.888

We built the optimization rules in a model-based man-889

ner by first creating the meta-model shown in Figure 2890

OptimizationRule

grammarRule : EString

attrName : EString

apply()

grammar : Grammar

AddKeywordToAttr

newKeyword : EString

isHead : EBoolean = false

RemoveKeyword

keywordName : EString

Convert1toStarToStarConvert1toStarToPlusRemoveXStarAttrKeyword

attributes : EString

RemoveComma

attributes : EString

MoveLine

source : EString

target : EString

isHead : EBoolean = false

RemoveRule Convert1ToStarTo1 ChangeTypeOfAttr

currentType : EString

newType : EString

AddParenthesesToAttr AddImport

newImport : EString

RemoveAttributeChangeAttrLineContent

newLineContent : EString

RemoveOptionalityConvert1toStarTo1orStarRemoveCertainTypeFromAttr

type : EString

ChangeRuleContent

newContent : EString

ChangeCommaToOtherSymbol

newSymbol : EString

MoveAttrToAfterRuleKeyword

movedLine : EString

AddStringToRuleKeyword

targetAttribute : EString

addedString : EString

isHead : EBoolean = false

AddOptionalityToAttr RemoveImport

import : EString

AddOptionalityToKeyword

keyword : EString

KeywordUpperToLowerCase

keyword : EString

AddSquareBracketToAttrAddSymbolToAttr

newSymbol : EString

ignoredAttributes : EString

isHead : EBoolean = false

onlyCommonRule : EBoolean = false

onlyUpperBoundOne : EBoolean = false

AddPrimitiveType

metaclass : EString

body : EString

annotation : EString

AddSymbolToRule

symbol : EString

bInside : EString

RemoveBraces

excludedGrammarRule : EString

Figure 2: Excerpt of the class diagram for optimization rules.

and then using EMF to automatically generate the class 891

bodies of the optimization rules. This way we only needed 892

to overwrite the apply()-method for the concrete rules. 893

Internally, the apply()-methods of our optimization rules 894

are implemented using regular expressions. Each optimiza- 895

tion rule takes a number of parameters, e.g., the name 896

of the grammar rule to work on or an attribute name to 897

identify the line to work on. In addition, some optimization 898

rules take a list of exceptions to the scope. For example, 899

the optimization rule to remove braces can be applied to 900

a global scope (i.e., all grammar rules) while excluding a 901

list of specific grammar rules from the processing. This 902

allows to configure optimization rule applications in a more 903

efficient way. 904

We implemented all optimization rules that we identified 905

above (see Section 5). 906

6.3. Configuration 907

The language engineer has to configure what optimiza- 908

tion rules the GrammarOptimizer should apply and 909

how. This is supported by the API offered by Gram- 910

marOptimizer. Listing 7 shows an example of how to 911

configure the optimization rule applications in a method 912

executeOptimization(), where the configuration revisits 913

the DOT grammar optimization example transforming List- 914

ing 4 into Listing 3. The lines 3 to 6 configure optimization 915

15

Listing 7: Excerpt of the configuration of GrammarOptimizer for

the QVTo 1.0 language.)

1 public stat ic boolean executeOpt imizat ion (

GrammarOptimizer go) {

2 . . .

3 go . removeBraces (" NodeStmt " , null , null) ;

4 go . removeKeyword (" NodeStmt " , null , null ,

null) ;

5 go . removeOptional i ty (" NodeStmt " , null) ;

6 go . convert1toStarToStar (" NodeStmt " , "

a t t r L i s t s ") ;

7 . . .

8 }

rule applications. For example, line 3 removes all curly916

braces in the grammar rule NodeStmt. The value of the917

first parameter is set to “NodeStmt”, which means that the918

operation of removing curly braces will occur in the gram-919

mar rule NodeStmt. If this first parameter is set to “null”,920

the operation would be executed for all grammar rules in921

the grammar. The second parameter is used to indicate922

the target attribute. Since it is set to “null”, all lines in923

the targeted grammar rule will be affected. However, if924

the parameter is set to a name of an attribute, only curly925

braces in the line containing that attribute will be removed.926

Finally, the third parameter can be used to indicate names927

of attributes for which the braces should not be removed.928

This can be used in case the second parameter is set to929

“null”.930

Similarly, the optimization rule application in line 4 is931

used to remove all keywords in the grammar rule NodeStmt.932

Again, the second parameter can be used to specify which933

lines should be affected using an attribute. The third934

parameter is used to indicate the target keyword. Since it935

is set to “null”, all keywords in the targeted lines will be936

removed. However, if the keyword is set, only that keyword937

will be removed. The last parameter can be used to indicate938

names of attributes for which the keyword should not be939

removed. This can be used in case the second parameter is940

set to “null”.941

Line 5 is used to remove the optionality from all lines in 942

the the grammar rule NodeStmt. If the second parameter 943

gets an argument that carries the name of an attribute, 944

the optionality is removed exclusively from the grammar 945

line specifying the syntax for this attribute. 946

Finally, line 6 changes the multiplicity of the attribute 947

attrLists in the grammar rule NodeStmt from 1..* to 948

0..*. If the second parameter would get the argument 949

“null”, this adaptation would have been executed to all 950

lines representing the respective attributes. 951

6.4. Execution 952

Once the language engineer has configured Gram- 953

marOptimizer, they can invoke the tool using 954

GrammarOptimizerRunner on the command line and 955

providing the paths to the input and output gram- 956

mars there. Alternatively, instead of invoking Gram- 957

marOptimizer via the command line and modifying 958

executeOptimization(), it is also possible to use JUnit 959

test cases to access the API and optimize grammars in 960

known locations. This is the approach we have followed in 961

order to generated the results presented in this paper. 962

Figure 3 uses the first optimization operation from List- 963

ing 7 removing curly braces as an example to depict how 964

GrammarOptimizer works internally when optimizing 965

grammars. The top of the figure shows an example input, 966

which is the grammar rule NodeStmt generated from the 967

meta-model of DOT (cf. Listing 4). In the lower right 968

corner, the resulting optimized Xtext grammar rule is il- 969

lustrated. 970

In Step 1 (initialization), GrammarOptimizer 971

builds a data structure out of the grammar initially gener- 972

ated by Xtext. That is, it builds a :Grammar object contain- 973

ing multiple :GrammarRule objects, with each of them con- 974

taining several :LineEntry objects in an ordered list. For 975

example, the :Grammar object contains a :GrammarRule 976

object with the name "NodeStmt". This :GrammarRule 977

object contains seven :LineEntry objects, which represent 978

16

NodeStmt returns NodeStmt:
 {NodeStmt}
 'NodeStmt'
 '{'
 ...
 ('attrLists' '{' attrLists+=AttrList ("," attrLists+=AttrLists)* '}')?
 '}';

strRaw = IOHelper.readFile("MyDot.xtext");
GrammarOptimizer go = new GrammarOptimizer();
if (!go.processGrammar(strRaw)) {
...
}

: Grammar

: GrammarRule

name = "NodeStmt"

rules

...
: LineEntry

lineContent=" '{' "

lines ...

1: Initialization

Grammar rule data structure

go.removeBraces("NodeStmt",
 null, null);

2b: Change

setFileText("MyDot1.xtext", strFinal);

NodeStmt returns NodeStmt:
 {NodeStmt}
 'NodeStmt'

 ...
 ('attrLists' attrLists+=AttrList ("," attrLists+=AttrList)*)?
 ;

: LineEntry

lineContent="('attrLists' '{' ... '}')?"

: Grammar

: GrammarRule

name = "NodeStmt"

rules

...
: LineEntry

lineContent=" "

lines ...

Grammar rule data structure

: LineEntry

lineContent="('attrLists' ...)?"

2: Per Optimization Rule

3: Finalization

: LineEntry

lineContent=" ; "

: LineEntry

lineContent=" '}'; "

2a: Locate affected
rules and lines

Figure 3: Exemplary Interplay of the Building Blocks of the GrammarOptimizer

the seven lines of the grammar rule in Listing 4. Three of979

these :LineEntry objects contain at least one curly brace980

(“ ‘{’ ” or “ ‘}’ ”). Figure 3 shows an excerpt of the981

object structure created for the example with the three line982

objects for the NodeStmt rule.983

In Step 2 (per Optimization Rule) each opti-984

mization rule application is processed by executing the985

apply()-method. For our example, the optimization rule986

removeBraces is applied via the GrammarOptimizer987

API as configured in line 3 of Listing 7.988

In Step 2a (localization of affected grammar rules989

and lines), the grammar rule and lines that need to be 990

changed are located, based on the configuration of the opti- 991

mization rule application. In the case of our example, the 992

grammar rule NodeStmt (cf. line 1 in Listing 4) is identified. 993

Then, all lines of that grammar rule are identified that in- 994

clude a curly brace. For example, the the lines represented 995

by :LineEntry objects as shown in Figure 3 are identified. 996

In Step 2b (change), the code uses regular expressions 997

for character-level matching and searching. If it finds curly 998

braces surrounded by single quotes (i.e., “ ‘{’ ” and “ 999

‘}’ ”), it removes them. 1000

17

Finally, in Step 3 (finalization), the GrammarOpti-1001

mizer writes the complete data structure containing the1002

optimized grammar rules to a new file by means of the call1003

setFileText(...).1004

6.5. Post-Processing vs. Changing Grammar Generation1005

GrammarOptimizer is designed to modify grammars1006

that Xtext generated out of meta-models. An alterna-1007

tive to this post-processing approach is to directly mod-1008

ify the Xtext grammar generator as, e.g., in XMLText1009

(Neubauer et al., 2015, 2017). However, we deliberately1010

chose a post-processing approach, because the application1011

of conventional regular expressions enables the transfer-1012

ability to other recent language development frameworks1013

like Langium (TypeFox GmbH, 2022) or textX (Dejanović1014

et al., 2017), if they support the grammar generation from1015

a meta-model in a future point in time. While the optimiza-1016

tion rules implemented in grammar optimizer are currently1017

tailored to the structure of Xtext grammars, GrammarOp-1018

timizer does not technically depend on Xtext and the rules1019

could easily be adapted to a different grammar language.1020

Furthermore, as the implementation of an Xtext grammar1021

generator necessarily depends on many version-specific in-1022

ternal aspects of Xtext, the post-processing approach using1023

regular expressions is considerably more maintainable.1024

6.6. Limitations1025

Our solution has the following two limitations.1026

First, GrammarOptimizer works on the generated1027

grammar, which is generated from a meta-model. This1028

means that the meta-model must contain all the concepts1029

that the original grammar has. Otherwise, the generated1030

grammar will lack the necessary classes or attributes. This1031

would result in the inability to imitate the original grammar.1032

A feasible solution would be to expand the working scope1033

of the GrammarOptimizer, e.g., to provide a feature to1034

detect whether all the concepts contained in the original1035

grammar corresponding elements can be found in the meta-1036

model. However, we decided against implementing such1037

a feature for now, as we see the main use case of the 1038

GrammarOptimizer not in imitating existing grammars, 1039

but in building and maintaining new DSLs. 1040

Second, we were not able to completely imitate one of 1041

the seven languages. In order to do so, we would have 1042

had to provide an optimization rule that would require the 1043

GrammarOptimizer user to input a multitude of param- 1044

eter options. This would have strongly increased the effort 1045

and reduced the usability to use this one optimization rule, 1046

and the rule is only required for this one language. Thus, 1047

we argue that a manual post-adaptation is more meaningful 1048

for this one case. However, the inherent extensibility of the 1049

GrammarOptimizer allows to add such an optimization 1050

rule if desired. We describe the issue in a more detailed 1051

manner in Section 7.1.4, which summarizes the evaluation 1052

results for the grammar adaptions of the seven analyzed 1053

languages. 1054

7. Evaluation 1055

In this evaluation, we focus on two main questions: 1056

1. Can our solution be used to adapt generated grammars 1057

so that they produce the same language as the original 1058

grammars? 1059

We evaluate this since we did not implement the op- 1060

timization rules exactly as we had analysed them, as 1061

described in Section 4.4. Instead, we merged these 1062

observed change needs into more general and config- 1063

urable rules. The purpose of this first evaluation step 1064

is to confirm that the result is still suitable for the 1065

original set of languages. 1066

2. Can our solution support the co-evolution of generated 1067

grammars when the meta-model evolves? Our original 1068

motivation for the work was to enable evolution and 1069

rapid prototyping for textual languages build with a 1070

meta-model. The aim here is to evaluate whether our 1071

approach is suitable for supporting these evolution 1072

scenarios. 1073

18

In the following, we address both questions.1074

7.1. Grammar Adaptation1075

To address the first question, we evaluate the Gram-1076

marOptimizer by transforming the generated grammars1077

of the seven DSLs, so that they parse the same syntax as1078

the original grammars.1079

7.1.1. Cases1080

Our goal is to evaluate whether the GrammarOpti-1081

mizer can be used to optimize the generated grammars so1082

that their rules imitate the rules of the original grammars.1083

We reused the meta-model adaptations and generated gram-1084

mars from Section 4.4. Furthermore, we continued working1085

with the versions of ATL and SML in which parts of their1086

languages were excluded as described in Section 4.3.1087

7.1.2. Method1088

For each DSL, we wrote a configuration for the final1089

version of GrammarOptimizer which was the result of1090

the work described in Sections 4 to 6. The goal was to1091

transform the generated grammar so as to ‘imitate’ as many1092

grammar rules as possible from the original grammar of1093

the DSL. Note that this was an iterative process in which1094

we incrementally added new optimization rule applications1095

to the GrammarOptimizer’s configuration, using the1096

original grammar as a ground truth and using our notion of1097

‘imitation’ (cf. Section 4.1 as the gold standard. Essentially,1098

we updated the GrammarOptimizer configuration and1099

then ran the tool before analysing the optimized grammar1100

for imitation of the original. We repeated the process1101

and adjusted the GrammarOptimizer configuration until1102

the test grammar’s rules ‘imitated’ the original grammar.1103

Note that in the case of Spectra, we did not reach that1104

point. We explain this in more detail in Section 7.1.4. For1105

all experiments, we used the set of 54 optimization rules1106

that were identified after the two iterations described in1107

Section 4 and as summarized in Section 5.1108

7.1.3. Metrics 1109

To evaluate the optimization results of the GrammarOp- 1110

timizer on the case DSLs, we assessed the following met- 1111

rics. 1112

#GORA Number of GrammarOptimizer rule applica- 1113

tions used for the configuration. 1114

Grammar rules The changes in grammar rules per- 1115

formed by the GrammarOptimizer when adapting 1116

the generated grammar towards the original grammar. 1117

We measure these changes in terms of 1118

• mod: Number of modified grammar rules 1119

• add: Number of added grammar rules 1120

• del: Number of deleted grammar rules 1121

Grammar lines The changes in the lines of the gram- 1122

mar performed by the GrammarOptimizer when 1123

adapting the generated grammar towards the original 1124

grammar. We measure these changes in terms of 1125

• mod: Number of modified lines 1126

• add: Number of added lines 1127

• del: Number of deleted lines 1128

Optimized grammar Metrics about the resulting opti- 1129

mized grammar. We assess 1130

• lines: Number of overall lines 1131

• rules: Number of grammar rules 1132

• calls: Number of calls between grammar rules 1133

#iGR Number of grammar rules in the original gram- 1134

mar that were successfully imitated by the optimized 1135

grammar. 1136

#niGR Number of grammar rules in the original grammar 1137

that were not imitated by the optimized grammar. 1138

7.1.4. Results 1139

Table 4 shows the results of applying the GrammarOp- 1140

timizer to the seven DSLs. See Table 1 for the correspond- 1141

ing metrics of the initially generated grammars. 1142

19

Table 4: Result of applying the GrammarOptimizer to different DSLs

Optimization Grammar Rules Lines in Grammar Optimized Grammar
DSL degree #GORA mod add del mod add del lines rules calls 1 #iGR #niGR

ATL Complete 178 30 0 0 187 0 23 187 30 76 28 0
BibTeX Complete 14 47 0 1 291 0 0 291 47 188 46 0
DOT Complete 79 24 1 3 112 2 0 114 25 41 13 0
SML Complete 421 40 5 56 267 18 2 285 45 121 44 0

Spectra Close 585 54 3 8 190 9 13 414 57 223 54 2
Xcore Complete 307 20 7 14 179 35 10 214 27 100 25 0
Xenia Complete 74 13 0 2 74 0 0 74 13 28 13 0

1 The number includes the calls to dummy OCL and dummy SML expressions.

Imitation. For all case DSLs in the first two iterations1143

except Spectra, we were able to achieve a complete adap-1144

tation, i.e., we were able to modify the grammar by using1145

GrammarOptimizer so that the grammar rules of the op-1146

timized grammar imitate all grammar rules of the original1147

grammar.1148

Limitation regarding Spectra. For one of the languages,1149

Spectra, we were able to come very close to the original1150

grammar. Many grammar rules of Spectra could be nearly1151

imitated. However, we did not implement all grammar1152

rules that would have been necessary to allow the full op-1153

timization of Spectra. Listing 8 shows the grammar rule1154

TemporalPrimaryExpr in Spectra’s generated grammar,1155

while Listing 9 shows what that grammar rule looks like in1156

the original grammar. In order to optimize the grammar1157

rule TemporalPrimaryExpr from Listing 8 to Listing 9, we1158

need to configure the GrammarOptimizer so that it com-1159

bines the attribute pointer and operator multiple times,1160

and the default value of the attribute operator is different1161

each time. The language engineers using the GrammarOp-1162

timizer need to input multiple parameters to ensure that1163

the GrammarOptimizer gets enough information, and1164

this complex optimization requirement only appears in1165

Spectra. Therefore we did not do such an optimization.1166

Size of the Changes. It is worth noting that the number of1167

optimization rule applications is significantly larger than1168

the number of grammar rules for all cases but BibTeX. This1169

Listing 8: Example — grammar rule TemporalPrimaryExpr in the

generated grammar of Spectra

1 TemporalPrimaryExpr r e t u r n s

TemporalPrimaryExpr:

2 {TemporalPrimaryExpr}

3 ’ TemporalPrimaryExpr ’

4 ’ { ’

5 (’ operator ’ operator=EString) ?

6 (’ predPatt ’ predPatt =[

Pred i cateOrPatte rnRe fe r rab l e | EStr ing]) ?

7 (’ p o i n t e r ’ p o i n t e r =[R e f e r r a b l e | EStr ing]) ?

8 (’ regexpPointer ’ regexpPointer =[

DefineRegExpDecl | EStr ing]) ?

9 (’ predPattParams ’ ’ { ’ predPattParams+=

TemporalExpression (" , " predPattParams

+=TemporalExpression) ∗ ’ } ’) ?

10 (’ tpe ’ tpe=TemporalExpression) ?

11 (’ index ’ ’ { ’ index+=TemporalExpression (" , "

index+=TemporalExpression) ∗ ’ } ’) ?

12 (’ tempora lExpress ion ’ tempora lExpress ion=

TemporalExpression) ?

13 (’ regexp ’ regexp=RegExp) ?

14 ’ } ’ ;

indicates that the effort required to describe the optimiza- 1170

tions once is significant. However, the actual changes to the 1171

grammar, e.g., in terms of modified lines in the grammar 1172

are in most cases comparable to the number of optimization 1173

rule applications (e.g., for ATL with 178 optimization rule 1174

applications and 187 changed lines in the grammar) or even 1175

much larger (e.g., for BibTeX with 14 optimization rule 1176

applications and 291 modified lines). Note that the number 1177

20

Listing 9: Example — grammar rule TemporalPrimaryExpr in the

original grammar of Spectra

1 TemporalPrimaryExpr r e t u r n s

TemporalExpress ion:

2 Constant | ’ (’ Quant i f i e rExpr ’) ’ | {

TemporalPrimaryExpr}

3 (predPatt =[Pred i cateOrPatte rnRe fe r rab l e]

4 (’ (’ predPattParams+=TemporalInExpr (’ , ’

predPattParams+=TemporalInExpr) ∗ ’) ’ | ’

() ’) |

5 operator =(’− ’ | ’ ! ’) tpe=TemporalPrimaryExpr |

6 p o i n t e r =[R e f e r r a b l e] (’ [’ index+=

TemporalInExpr ’] ’) ∗ |

7 operator=’ next ’ ’ (’ tempora lExpress ion=

TemporalInExpr ’) ’ |

8 operator=’ regexp ’ ’ (’ (regexp=RegExp |

regexpPointer =[DefineRegExpDecl]) ’) ’ |

9 p o i n t e r =[R e f e r r a b l e] operator=’ . a l l ’ |

10 p o i n t e r =[R e f e r r a b l e] operator=’ . any ’ |

11 p o i n t e r =[R e f e r r a b l e] operator=’ . prod ’ |

12 p o i n t e r =[R e f e r r a b l e] operator=’ . sum ’ |

13 p o i n t e r =[R e f e r r a b l e] operator=’ . min ’ |

14 p o i n t e r =[R e f e r r a b l e] operator=’ . max ’) ;

of changed, added, and deleted lines is also an underestima-1178

tion of the amount of necessary changes, as many lines will1179

be changed in multiple ways, e.g., by changing keywords1180

and braces in the same line. This explains why for some1181

languages the number of optimization rule applications is1182

bigger than the number of changed lines (e.g., for SML we1183

specified 421 optimization rule applications which changed,1184

added, and deleted together 287 lines in the grammar).1185

Effort for the Language Engineer. We acknowledge that1186

the number of optimization rule applications that are nec-1187

essary to adapt a generated grammar to imitate the origi-1188

nal grammar indicates that it is more effort to configure1189

GrammarOptimizer than to apply the desired change1190

in the grammar manually once. However, even with that1191

assumption, we argue that the effort of configuring Gram-1192

marOptimizer is in the same order of magnitude as the1193

effort of applying the changes manually to the grammar.1194

Furthermore, we argue that it is more efficient to config- 1195

ure GrammarOptimizer once than to manually rewrite 1196

grammar rules every time the language changes – under the 1197

assumption that the configuration can be reused for new 1198

versions of the grammar. In that case, the effort invested 1199

in configuring GrammarOptimizer would quickly pay 1200

off when a language is going through changes, e.g., while 1201

rapidly prototyping modifications or when the language 1202

is evolving. In the next section (Section 7.2), we evaluate 1203

this assumption. 1204

In terms of reusability of the configurable optimization 1205

rules, we observe that most of the languages we cover 1206

require at least one unique optimization rule that is not 1207

needed by any other language. This applies to DOT, Bib- 1208

TeX, ATL with one unique optimization rule, each. Spec- 1209

tra was our most complicated case with six unique rules, 1210

whereas Xcore requires four and SML requires five unique 1211

rules. This indicates that using GrammarOptimizer 1212

for a new language might require effort by implementing 1213

a few new optimization rules. However, we argue that 1214

this effort will be reduced as more optimization rules are 1215

added to GrammarOptimizer and that, in particular for 1216

evolving languages, the small investment to create a new 1217

optimization rule will pay off quickly. 1218

7.2. Supporting Evolution 1219

To address the second question, we evaluate the Gram- 1220

marOptimizer on two languages’ evolution histories: The 1221

industrial case of EAST-ADL and the evolution of the 1222

DSL QVTo. We focus on the question to what degree a 1223

configuration of the GrammarOptimizer that was made 1224

for one language version can be applied to a new version 1225

of the language. 1226

7.2.1. Cases 1227

The two cases we are using to evaluate how Gram- 1228

marOptimizer supports the evolution of a DSL are a 1229

textual variant of EAST-ADL (EAST-ADL Association, 1230

21

2021) and QVT Operational (QVTo) (Object Management1231

Group, 2016).1232

EAST-ADL. EAST-ADL is an architecture description1233

language used in the automotive domain (EAST-ADL As-1234

sociation, 2021). Together with an industrial language1235

engineer for EAST-ADL, we are currently developing a1236

textual notation for version 2.2 of the language (Holtmann1237

et al., 2023). We started this work with a simplified version1238

of the meta-model to limit the complexity of the resulting1239

grammar. In a later step, we switched to the full meta-1240

model. We treat this switch as an evolution step here. The1241

meta-model of EAST-ADL is taken from the EATOP repos-1242

itory (EAST-ADL Association, 2022). The meta-model of1243

the simplified version contains 91 classes and enumerations,1244

and the meta-model of the full version contains 291 classes1245

and enumerations.1246

QVTo. QVTo is one of the languages in the OMG QVT1247

standard (Object Management Group, 2016). We use the1248

original meta-models available in Ecore format on the OMG1249

website (Object Management Group, 2016). The baseline1250

version is QVTo 1.0 (Object Management Group, 2008)1251

and we simulate evolution to version 1.1 (Object Man-1252

agement Group, 2011), 1.2 (Object Management Group,1253

2015) and 1.3 (Object Management Group, 2016). Our1254

original intention was to use the Eclipse reference imple-1255

mentation of QVTo (Eclipse Foundation, 2022b), but due1256

to the differences in abstract syntax and concrete syntax1257

(see Section 2), we chose to use the official meta-models1258

instead. We analyzed four versions of QVTo’s OMG offi-1259

cial Ecore meta-model. There are 50 differences between1260

the meta-models of version 1.0 and 1.1, 29 of which are1261

parts that do not contain OCL (as for ATL as described1262

in Section 4.3, we exclude OCL in our solution for QVTo).1263

These 29 differences include different types, for example, 1)1264

the same set of attributes has different arrangement orders1265

in the same class in different versions of the meta-model;1266

2) the same class has different superclasses in different1267

versions; 3) the same attribute has different multiplicities 1268

in different versions, etc. There are 3 differences between 1269

versions 1.1 and 1.2, all of which are from the OCL part. 1270

There is only one difference between versions 1.2 and 1.3, 1271

and it is about the same attribute having a different lower 1272

bound for the multiplicity in the same class in the two ver- 1273

sions. Altogether we observed 54 meta-model differences 1274

in QVTo between the different versions. 1275

The OMG website provides an EBNF grammar for each 1276

version of QVTo, which is the basis for our imitations of 1277

the QVTo languages. Among them, versions 1.0, 1.1, and 1278

1.2 share the same EBNF grammar for the QVTo part 1279

except for the OCL parts, despite the differences in the 1280

meta-model. The EBNF grammar of QVTo in version 1.3 1281

is different from the other three versions. 1282

7.2.2. Preparation of the QVTo Case 1283

In contrast to the EAST-ADL case, we needed to perform 1284

some preparations of the grammar and the meta-model to 1285

study the QVTo case. All adaptations were done the same 1286

way on all versions of QVTo. 1287

Exclusion of OCL. As described in detail in Section 4.3, 1288

we excluded the embedded OCL language part from QVTo. 1289

For the meta-model, we introduced a dummy class for 1290

OCL, changed all calls to OCL types into calls to that 1291

dummy class, and removed the OCL metaclasses from the 1292

meta-model. 1293

As described in Section 4.3, excluding a language part 1294

such as the embedded OCL from the scope of the investiga- 1295

tion also implies that we need to exclude this language part 1296

when it comes to judging whether a grammar is imitated. 1297

Therefore, we substituted all grammar rules from the ex- 1298

cluded OCL part with a placeholder grammar rule called 1299

ExpressionGO where an OCL grammar rule would have 1300

been called. This change allows us to compare the original 1301

grammar of the different QVTo versions to the optimized 1302

grammar versions. 1303

22

QVTo Meta-model Adaptations. We found that some non-1304

terminals of QVTo’s EBNF grammar are missing in the1305

QVTo meta-model provided by OMG. For example, there1306

is a non-terminal <top_level> in the EBNF grammar, but1307

there is no counterpart for it in the meta-model. Therefore,1308

we need to adapt the meta-model to ensure that it contains1309

all the non-terminals in the EBNF grammar. To ensure1310

that the adaptation of the meta-model is done systemat-1311

ically, we defined seven general adaptation rules that we1312

followed when adapting the meta-models of the different1313

versions. We list these adaptation rules in the supplemental1314

material (Zhang et al., 2023).1315

As a result, we added 62 classes and enumerations with1316

their corresponding references to each version of the meta-1317

model. Note that this number is high compared to the1318

original number of classes in the meta-model (24 classes).1319

This massive change was necessary, because the available1320

Ecore meta-models were too abstract to cover all elements1321

of the language. The original meta-model did contain most1322

key concepts, but would not allow to actually specify a1323

complete QVTo transformation. For example, with the1324

original meta-model, it was not possible to represent the1325

scope of a mapping or helper.1326

These changes enable us to imitate the QVTo gram-1327

mar. However, they do not bias the results concerning1328

the effects of the observed meta-model evolution as, with1329

exception of a single case, these evolutionary differences1330

are neither erased nor increased by the changes we per-1331

formed to the meta-model. The exception is a meta-model1332

evolution change between version 1.0 and 1.1 where the1333

class MappingOperation has super types Operation and1334

NamedElement, while the same class in V1.1 does not. The1335

meta-model change performed by us removes the superclass1336

Operation from MappingOperation in version 1.0. We did1337

this change to prevent conflicts as the attribute name would1338

have been inherited multiple times by MappingOperation.1339

This in turn would cause problems in the generation pro-1340

cess. Thus, only two of the 54 meta-model evolutionary1341

differences could not be studied. The differences and their 1342

analysis can be found in the supplemental material (Zhang 1343

et al., 2023). 1344

7.2.3. Method 1345

To evaluate how GrammarOptimizer supports the 1346

evolution of meta-models we look at the effort that is 1347

required to update the optimization rule applications after 1348

an update of the meta-models of EAST-ADL and QVTo. 1349

Baseline GrammarOptimizer Configuration. First, we 1350

generated the grammar for the initial version of a language’s 1351

meta-model (i.e., the simple version for EAST-ADL and 1352

version 1.0 for QVTo). Then we defined the configuration 1353

of optimization rule applications that allows the Gram- 1354

marOptimizer to modify the generated grammar so that 1355

its grammar rules imitate the original grammar for each 1356

case. Doing so confirmed the observation from the first 1357

part of the evaluation that a new language of sufficient 1358

complexity requires at least some new optimization rules 1359

(see Section 7.1.4). Consequently, we identified the need 1360

for four additional optimization rules for QVTo, which we 1361

implemented accordingly as part of the GrammarOpti- 1362

mizer (this is also summarized in Section 5 in Table 2). 1363

This step provided us with a baseline configuration for the 1364

GrammarOptimizer. 1365

Evolution. For the following language versions, i.e., the 1366

full version of EAST-ADL and QVTo 1.1, we then gener- 1367

ated the grammar from the corresponding version of the 1368

meta-model and applied the GrammarOptimizer with 1369

the configuration of the previous version (i.e., simple EAST- 1370

ADL and QVTo 1.0). We then identified whether this was 1371

already sufficient to imitate the language’s grammar or 1372

whether changes and additions to the optimization rule 1373

applications were required. We continued adjusting the 1374

optimization rule applications accordingly to gain a Gram- 1375

marOptimizer configuration valid for the new version 1376

(full EAST-ADL and QVTo 1.1, respectively). For QVTo, 1377

23

we repeated that process two more times: For QVTo 1.2,1378

we took the configuration of QVTo 1.1 as a baseline, and1379

for QVTo 1.3, we took the configuration of QVTo 1.2 as a1380

baseline.1381

7.2.4. Metrics1382

We documented the metrics used in Section 7.1.3 for1383

EAST-ADL and QVTo in their different versions. In addi-1384

tion, we also documented the following metric:1385

#cORA The number of changed, added, and deleted op-1386

timization rule applications compared to the previous1387

language version.1388

7.2.5. Results1389

Table 5 shows the results of the evolution cases.1390

EAST-ADL. Compared with the simplified version of1391

EAST-ADL, the full version is much larger. It contains1392

291 metaclasses, i.e., 200 metaclasses more than the simple1393

version of EAST-ADL, which leads to a generated grammar1394

with 291 grammar rules and 2,839 non-blank lines in the1395

generated grammar file (cf. Table 5).1396

The 22 optimization rule applications for the simple1397

version of EAST-ADL already change the grammar sig-1398

nificantly, causing modifications of all 91 grammar rules1399

and changes in nearly every line of the grammar. This1400

also illustrates how massive the changes to the generated1401

grammar are to reach the desired grammar. The number of1402

changes is even larger with the full version of EAST-ADL.1403

We only needed to change and add a total of 10 grammar1404

optimization rule applications to complete the optimization1405

of the grammar of full EAST-ADL. While this is increasing1406

the GrammarOptimizer configuration from the simple1407

EAST-ADL version quite a bit (from 22 optimization rule1408

applications to 31 optimization rule applications), the in-1409

crease is fairly small given that the meta-model increased1410

massively (with 200 additional metaclasses).1411

The reason is that our grammar optimization require-1412

ments for the simplified version and the full version of1413

EAST-ADL are almost the same. This optimization re- 1414

quirement is mainly based on the look and feel of the 1415

language and is provided by an industrial partner. These 1416

optimization rule applications have been configured for the 1417

simplified version. When we applied them to the generated 1418

grammar of the full version of EAST-ADL, we found that 1419

we can reuse all of these optimization rule applications. 1420

Furthermore, we benefit from the fact that many optimiza- 1421

tion rule applications are formulated for the scope of the 1422

whole grammar and thus can also influence grammar rules 1423

added during the evolution step. We do not list a number 1424

of grammar rules in a original grammar of EAST-ADL 1425

in Table 5, because there is no “original” text grammar 1426

of EAST-ADL. Instead, we optimize the generated gram- 1427

mar of EAST-ADL according to our industrial partner’s 1428

requirements for EAST-ADL’s textual concrete syntax. 1429

QVTo. The baseline configuration of the GrammarOp- 1430

timizer for QVTo includes 733 optimization rule applica- 1431

tions, which is a lot given that the original grammar of 1432

QVTo 1.0 has 115 non-terminals. Note that the optimized 1433

grammar has even fewer grammar rules (77) as some of the 1434

rules in the optimized grammar imitate multiple rules from 1435

the original grammar at once. This again is a testament to 1436

how different the original grammar is from the generated 1437

one (over 228 lines in the grammar are modified, 2 lines are 1438

added, and 580 lines are deleted by these 733 optimization 1439

rule applications). 1440

However, if we look at the evolution towards versions 1.1, 1441

1.2, and 1.3 we witness that very few changes to the Gram- 1442

marOptimizer configuration are required. In fact, only 1443

between 0 and 2 out of the 733 optimization rule applica- 1444

tions needed adjustments. The reason is that, even though 1445

there are many differences between different versions of the 1446

QVTo meta-model, there are only 0 to 2 differences that 1447

affect the optimization rule applications. 1448

For example, version 1.0 of the QVTo meta-model has an 1449

attribute called bindParameter in the class VarParameter, 1450

24

whereas it is called representedParameter in version 1.1.1451

This attribute is not needed according to the original gram-1452

mars, so the GrammarOptimizer configuration includes1453

a call to the optimization rule RemoveAttribute to remove1454

the grammar line that was generated based on that at-1455

tribute. The second parameter of the optimization rule1456

RemoveAttribute needs to specify the name of the attribute.1457

As a consequence of the evolution, we had to change that1458

name in the optimization rule application. Another ex-1459

ample concerns the class TypeDef, which contains an at-1460

tribute typedef_condition in version 1.2 of the QVTo1461

meta-model. We added square brackets to it by apply-1462

ing the optimization rule AddSquareBracketsToAttr in the1463

grammar optimization. However, in version 1.3 of the1464

QVTo meta-model, the class TypeDef does not contain1465

such an attribute, so the optimization rule application1466

AddSquareBracketsToAttr was unnecessary.1467

Most of the differences between different versions of the1468

meta-model do not lead to changes in the optimization rule1469

applications. For example, the multiplicity of the attribute1470

when in the class MappingOperation is different in version1471

1.0 and 1.1. We used RemoveAttribute to remove the1472

attribute during the optimization of grammar version 1.0.1473

The same command can still be used in version 1.1, as the1474

removal operation does not need to consider the multiplicity1475

of an attribute. Therefore, this difference does not affect1476

the configuration of optimization rule applications.1477

8. Discussion1478

In the following, we discuss the threats to validity of the1479

evaluation, different aspects of the GrammarOptimizer,1480

and future work implied by the current limitations.1481

8.1. Threats to Validity1482

The threats to validity structured according to the taxon-1483

omy of Runeson et al. (Runeson and Höst, 2008; Runeson1484

et al., 2012) are as follows.1485

8.1.1. Construct Validity 1486

We limited our analysis to languages for which we could 1487

find meta-models in the Ecore format. Some of these 1488

meta-models were not “official”, in the sense that they had 1489

been reconstructed from a language in order to include 1490

them in one of the “zoos”. An example of that is the 1491

meta-model for BibTeX we used in our study. In the case 1492

of the DOT language, we reconstructed the meta-model 1493

from an Xtext grammar we found online. We adopted a 1494

reverse-engineering strategy where we generated the meta- 1495

model from the original grammar and then generated a 1496

new grammar out of this meta-model. This poses a threat 1497

to validity since many of the languages we looked at can 1498

be considered “artificial” in the sense that they were not 1499

developed based on meta-models. However, we do not 1500

think this affects the construct validity of our analysis 1501

since our purpose is to analyze what changes need to be 1502

made from an Xtext grammar file that has been generated. 1503

In addition, we address this threat to validity by also 1504

including a number of languages (e.g., Xenia and Xcore) 1505

that are based on meta-models and using the meta-models 1506

provided by the developers of the language. 1507

Furthermore, we had to adapt some of the meta-models 1508

to be able to generate Xtext grammars out of them at all 1509

(cf. Section 4.4) or to introduce certain language constructs 1510

required by the textual concrete syntax (cf. Section 7.2.2). 1511

These meta-model adaptations might have introduced bi- 1512

ased changes and thereby impose a threat to construct 1513

validity. However, we reduced these adaptations to a mini- 1514

mum as far as possible to mitigate this threat and docu- 1515

mented all of them in our supplemental material (Zhang 1516

et al., 2023) to ensure their reproducibility. 1517

8.1.2. Internal Validity 1518

In the evaluation (cf. Section 7), we set up and quan- 1519

titatively evaluate size and complexity metrics regarding 1520

the considered meta-models and grammars as well as re- 1521

garding the GrammarOptimizer configurations for the 1522

25

Table 5: Result of supporting evolution

Meta-m. Generated grammar Optimized grammar Grammar rules Lines in Grammar
DSL Classes 1 lines rules calls lines rules calls 2 mod add del mod add del #GORA #cORA

EAST-ADL 91 755 91 735 767 103 782 70 12 0 517 14 2 22 /
(simple)
EAST-ADL 291 2,839 291 3,062 2,851 303 3,074 233 12 1 2,046 16 4 31 10
(full)

QVTo 1.0 85 1,026 109 910 444 77 181 66 1 33 228 2 580 733 /
QVTo 1.1 85 992 110 836 444 77 181 66 1 34 228 2 546 733 2
QVTo 1.2 85 992 110 836 444 77 181 66 1 34 228 2 546 733 0
QVTo 1.3 85 991 110 835 443 77 180 66 1 34 228 2 546 733 1

1 The number is after adaptation, and it contains both classes and enumerations.
2 The number includes the calls to dummy OCL and dummy SML expressions.

use cases of one-time grammar adaptations and language1523

evolution. Based on that, we conclude and argue in Sec-1524

tions 7.1.4 and 8.2 about the effort required for creating1525

and evolving languages as well as the effort to create and re-1526

use GrammarOptimizer configurations. These relations1527

might be incorrect. However, the applied metrics provide1528

objective and obvious indications about the particular sizes1529

and complexities and thereby the associated engineering1530

efforts.1531

8.1.3. External Validity1532

As discussed in the analysis part, we analyzed a total of1533

seven DSLs to identify generic optimization rules. Whereas1534

we believe that we have achieved significant coverage by1535

selecting languages from different domains and with very1536

different grammar structures, we cannot deny that analysis1537

of further languages could have led to more optimization1538

rules. However, due to the extensible nature of Gram-1539

marOptimizer, the practical impact of this threat to gen-1540

eralisability is low since it is easy to add additional generic1541

optimization rules once more languages are analyzed.1542

8.1.4. Reliability1543

Our overall procedure to conceive and develop the Gram-1544

marOptimizer encompassed multiple steps. That is, we1545

first determined the differences between the particular ini-1546

tially generated Xtext grammars and the grammars of the1547

actual languages in two iterations as described in Section 4.1548

This analysis yielded the corresponding identified concep- 1549

tual grammar optimization rules summarized in Section 5. 1550

Based on these identified conceptual grammar optimization 1551

rules, we then implemented them as described in Section 6. 1552

This procedure imposes multiple threats to reliability. For 1553

example, analyzing a different set of languages could have 1554

led to a different set of identified optimization rules, which 1555

then would have led to a different implementation. Fur- 1556

thermore, analyzing the languages in a different order or 1557

as part of different iterations could have led to a different 1558

abstraction level of the rules and thereby a different number 1559

of rule. Finally, the design decisions that we made during 1560

the identification of the conceptual optimization rules and 1561

during their implementation could also have led to different 1562

kinds of rules or of the implementation. However, we dis- 1563

cussed all of these aspects repeatedly amongst all authors 1564

to mitigate this threat and documented the results as part 1565

of our supplemental material (Zhang et al., 2023) to ensure 1566

their reproducibility. 1567

8.2. The Effort of Creating and Evolving a Language with 1568

the GrammarOptimizer 1569

The results of our evaluation show three things. First, 1570

the syntax of all studied languages was quite far removed 1571

from the syntax that a generated grammar produces. Thus, 1572

in most cases, creating a DSL with Xtext will require the 1573

language engineer to perform big changes to the gener- 1574

26

ated grammar. Second, depending on the language, using1575

the GrammarOptimizer for a single version of the lan-1576

guage may or may not be more effort for the language1577

engineer, compared to manually adapting the grammar.1578

Third, there seems to be a large potential for the reuse1579

of GrammarOptimizer configurations between different1580

versions of a language, thus supporting the evolution of1581

textual languages.1582

These observations can be combined with the experience1583

that most languages evolve with time and that especially1584

DSLs go through a rapid prototyping phase at the be-1585

ginning where language versions are built for practical1586

evaluation (Wang and Gupta, 2005). Therefore, we con-1587

clude that the GrammarOptimizer has big potential to1588

save manual effort when it comes to developing DSLs.1589

8.3. Implications for Practitioners and Researchers1590

Our results have several implications for language engi-1591

neers and researchers.1592

Impact on Textual Language Engineering. Our work might1593

have an impact on the way DSL engineers create tex-1594

tual DSLs nowadays. That is, instead of specifying gram-1595

mars and thereby having to be EBNF experts, the Gram-1596

marOptimizer also enables engineers familiar with meta-1597

modelling to conceive well-engineered meta-models and to1598

semi-automatically generate user-friendly grammars from1599

them. Furthermore, Kleppe (Kleppe, 2007) compiles a list1600

of advantages of approaches like the GrammarOptimizer,1601

among them two that apply especially to our solution: 1)1602

the GrammarOptimizer provides flexibility for the DSL1603

engineering process, as it is no longer necessary to define1604

the kind of notation used for the DSL at the very begin-1605

ning as well as 2) the GrammarOptimizer enables rapid1606

prototyping of textual DSLs based on meta-models.1607

Blended Modeling. Ciccozzi et al. (Ciccozzi et al., 2019)1608

coin the term blended modeling for the activity of interact-1609

ing with one model through multiple notations (e.g., both1610

textual and graphical notations), which would increase the 1611

usability and flexibility for different kinds of model stake- 1612

holders. However, enabling blended modeling shifts more 1613

effort to language engineers. This is due to the fact that the 1614

realization of the different editors for the different notations 1615

requires many manual steps when using conventional mod- 1616

eling frameworks. In this context, Cicozzi and colleagues 1617

particularly stress the issue of the manual customization of 1618

grammars in the case of meta-model evolution. Thus, as 1619

one research direction to enable blended modeling, Ciccozzi 1620

et al. formulate the need to automatically generate the dif- 1621

ferent editors from a given meta-model. Our work serves as 1622

one building block toward realizing this research direction 1623

and opens up the possibility to develop and evolve blended 1624

modeling languages that include textual versions. 1625

Prevention of Language Flaws. Willink (Willink, 2020) 1626

reflects on the version history of the Object Constraint 1627

Language (OCL) and the flaws that were introduced dur- 1628

ing the development of the different OCL 2.x specifications 1629

by the Object Management Group (Object Management 1630

Group (OMG), 2014). Particularly, he points out that the 1631

lack of a parser for the proposed grammar led to several 1632

grammar inaccuracies and thereby to ambiguities in the 1633

concrete textual syntax. This in turn led to the fact that 1634

the concrete syntax and the abstract syntax in the Eclipse 1635

OCL implementation (Eclipse Foundation, 2022a) are so 1636

divergent that two distinct meta-models with a dedicated 1637

transformation between both are required, which also holds 1638

for the QVTo specification and its Eclipse implementation 1639

(Willink, 2020) (cf. Section 2). The GrammarOptimizer 1640

will help to prevent and bridge such flaws in language engi- 1641

neering in the future. Xtext already enables the generation 1642

of the complete infrastructure for a textual concrete syn- 1643

tax from an abstract syntax represented by a meta-model. 1644

Our approach adds the ability to optimize the grammar 1645

(i.e., the concrete syntax), as we show in the evaluation by 1646

deriving an applicable parser with an optimized grammar 1647

27

from the QVTo specification meta-models.1648

8.4. Future Work1649

The GrammarOptimizer is a first step in the direction1650

of supporting the evolution of textual grammars for DSLs.1651

However, there are, of course, still open questions and1652

challenges that we discuss in the following.1653

Name Changes to Meta-model Elements. In the Gram-1654

marOptimizer configurations, we currently reference the1655

grammar concepts derived from the meta-model classes1656

and attributes by means of the class and attribute names1657

(cf. Listing 7). Thus, if a meta-model evolution involves1658

many name changes, likewise many changes to optimization1659

rule applications are required. Consequently, we plan as1660

future work to improve the GrammarOptimizer with1661

a more flexible concept, in which we more closely align1662

the grammar optimization rule applications with the meta-1663

model based on name-independent references.1664

More Efficient Rules and Libraries. We think that there is1665

a lot of potential to make the available set of optimization1666

rules more efficient. This could for example be done by1667

providing libraries of more complex, recurring changes1668

that can be reused. Such a library could contain a set of1669

optimization rules that brings a generated grammar closer1670

to the style of Python (Zhang et al., 2023), which can1671

then be used as a basis to perform additional DSL-specific1672

changes. Such a change might make the application of the1673

GrammarOptimizer attractive even in those cases where1674

no evolution of the language is expected.1675

In addition, the API of GrammarOptimizer could be1676

changed to a fluent version where the optimization rule1677

application is configured via method calls before they are1678

executed instead of using the current API that contains1679

many null parameters. This could also lead to a reduction1680

of the number of grammar optimization rule applications1681

that need to be executed since some executions could be1682

performed at the same time.1683

Another interesting idea would be to use artificial intelli- 1684

gence to learn existing examples of grammar optimizations 1685

in existing languages to provide optimization suggestions 1686

for new languages and even automatically create configura- 1687

tions for the GrammarOptimizer. 1688

Expression Languages. In this paper, we excluded the ex- 1689

pression language parts (e.g., OCL) of two of the exam- 1690

ple languages (cf. Section 4.3). However, expression lan- 1691

guages define low-level concepts and have different kinds of 1692

grammars and underlying meta-models than conventional 1693

languages. In future work, we want to further explore 1694

expression languages specifically, in order to ensure that 1695

the GrammarOptimizer can be used for these types of 1696

syntaxes as well. 1697

Visualization of Configuration. Currently, we configure 1698

the GrammarOptimizer by calling the methods of opti- 1699

mization rules, which is a code-based way of working. In 1700

the future, we intend to improve the tooling for Gram- 1701

marOptimizer and embed the current library into a more 1702

sophisticated workbench that allows the language engineer 1703

to select and parameterize optimization rule applications 1704

either using a DSL or a graphical user interface and pro- 1705

vides previews of the modified grammar as well as a view 1706

of what valid instances of the language look like. 1707

Co-evolving Model Instances. We also intend to couple 1708

GrammarOptimizer with an approach for language evo- 1709

lution that also addresses the model instances. In principle, 1710

a model instance, i.e., a text file containing valid code in 1711

the DSL can be read using the old grammar and parsed 1712

into an instance of the old meta-model. It can then be 1713

transformed, e.g., using QVTo to conform to the new meta- 1714

model, and then be serialized again using the new grammar. 1715

However, following this approach means that formatting 1716

and comments can be lost. Instead, we intend to derive a 1717

textual transformation from the differences in the gram- 1718

mars and the optimization rule applications that can be 1719

28

applied to the model instances and maintains formatting1720

and comments as much as possible.1721

9. Conclusion1722

In this paper, we have presented GrammarOptimizer,1723

a tool that supports language engineers in the rapid proto-1724

typing and evolution of textual domain-specific languages1725

which are based on meta-models. GrammarOptimizer1726

uses a number of optimization rules to modify a grammar1727

generated by Xtext from a meta-model. These optimization1728

rules have been derived from an analysis of the difference1729

between the actual and the generated grammars of seven1730

DSLs.1731

We have shown how GrammarOptimizer can be used1732

to modify grammars generated by Xtext based on these1733

optimization rules. This automation is particularly use-1734

ful while a language is being developed to allow for rapid1735

prototyping without cumbersome manual configuration of1736

grammars and when the language evolves. We have evalu-1737

ated GrammarOptimizer on seven grammars to gauge1738

the feasibility and effort required for defining the optimiza-1739

tion rules. We have also shown how GrammarOptimizer1740

supports evolution with the examples of EAST-ADL and1741

QVTo.1742

Overall, our tool enables language engineers to use a1743

meta-model-based language engineering workflow and still1744

produce high-quality grammars that are very close in qual-1745

ity to hand-crafted ones. We believe that this will reduce1746

the development time and effort for domain-specific lan-1747

guages and will allow language engineers and users to lever-1748

age the advantages of using meta-models, e.g., in terms of1749

modifiability and documentation.1750

In future work, we plan to extend GrammarOptimizer1751

into a more full-fledged language workbench that supports1752

advanced features like refactoring of meta-models, a “what1753

you see is what you get” view of the optimization of the1754

grammar, and the ability to co-evolve model instances1755

alongside the underlying language. We will also explore the1756

integration into workflows that generate graphical editors 1757

in order to enable blended modelling. 1758

Acknowledgements 1759

This work has been sponsored by Vinnova under grant 1760

number 2019-02382 as part of the ITEA 4 project BUM- 1761

BLE. 1762

References 1763

A. Iung, J. Carbonell, L. Marchezan, E. Rodrigues, M. Bernardino, 1764

F. P. Basso, B. Medeiros, Systematic mapping study on domain- 1765

specific language development tools, Empirical Software Engineer- 1766

ing 25 (2020) 4205–4249. 1767

Object Management Group, QVT – MOF Query/View/Transforma- 1768

tion Specification, 2016. URL: https://www.omg.org/spec/QVT/, 1769

Accessed February, 2023. 1770

Eclipse Foundation, ATL Syntax, 2018. URL: https://wiki.eclipse. 1771

org/M2M/ATL/Syntax, Accessed February, 2023. 1772

Paperpile, A complete guide to the BibTeX format, 2022. URL: 1773

https://www.bibtex.com/g/bibtex-format/, Accessed February, 1774

2023. 1775

Graphviz Authors, Dot language, 2022. URL: https://graphviz. 1776

org/doc/info/lang.html, Accessed February, 2023. 1777

J. Greenyer, Scenario Modeling Language (SML) Repository, 2018. 1778

URL: https://bitbucket.org/jgreenyer/scenariotools-sml/ 1779

src/master/, Accessed February, 2023. 1780

Spectra Authors, Spectra, 2021. URL: https://github.com/ 1781

SpectraSynthesizer/spectra-lang/blob/master/tau.smlab. 1782

syntech.Spectra/src/tau/smlab/syntech/Spectra.xtext, Ac- 1783

cessed February, 2023. 1784

Eclipse Foundation, Eclipse xcore wiki, 2018. URL: https: 1785

//git.eclipse.org/c/emf/org.eclipse.emf.git/tree/plugins/ 1786

org.eclipse.emf.ecore.xcore/src/org/eclipse/emf/ecore/ 1787

xcore/Xcore.xtext, Accessed February, 2023. 1788

Xenia Authors, Xenia xtext, 2019. URL: https://github.com/ 1789

rodchenk/xenia/blob/master/com.foliage.xenia/src/com/ 1790

foliage/xenia/Xenia.xtext, Accessed February, 2023. 1791

S. Roy Chaudhuri, S. Natarajan, A. Banerjee, V. Choppella, Method- 1792

ology to develop domain specific modeling languages, in: Pro- 1793

ceedings of the 17th ACM SIGPLAN International Workshop on 1794

Domain-Specific Modeling, ACM SIGPLAN, 2019, pp. 1–10. 1795

U. Frank, Domain-specific modeling languages: requirements analysis 1796

and design guidelines, in: Domain engineering, Springer, 2013, pp. 1797

133–157. 1798

29

https://www.omg.org/spec/QVT/
https://wiki.eclipse.org/M2M/ATL/Syntax
https://wiki.eclipse.org/M2M/ATL/Syntax
https://wiki.eclipse.org/M2M/ATL/Syntax
https://www.bibtex.com/g/bibtex-format/
https://graphviz.org/doc/info/lang.html
https://graphviz.org/doc/info/lang.html
https://graphviz.org/doc/info/lang.html
https://bitbucket.org/jgreenyer/scenariotools-sml/src/master/
https://bitbucket.org/jgreenyer/scenariotools-sml/src/master/
https://bitbucket.org/jgreenyer/scenariotools-sml/src/master/
https://github.com/SpectraSynthesizer/spectra-lang/blob/master/tau.smlab.syntech.Spectra/src/tau/smlab/syntech/Spectra.xtext
https://github.com/SpectraSynthesizer/spectra-lang/blob/master/tau.smlab.syntech.Spectra/src/tau/smlab/syntech/Spectra.xtext
https://github.com/SpectraSynthesizer/spectra-lang/blob/master/tau.smlab.syntech.Spectra/src/tau/smlab/syntech/Spectra.xtext
https://github.com/SpectraSynthesizer/spectra-lang/blob/master/tau.smlab.syntech.Spectra/src/tau/smlab/syntech/Spectra.xtext
https://github.com/SpectraSynthesizer/spectra-lang/blob/master/tau.smlab.syntech.Spectra/src/tau/smlab/syntech/Spectra.xtext
https://git.eclipse.org/c/emf/org.eclipse.emf.git/tree/plugins/org.eclipse.emf.ecore.xcore/src/org/eclipse/emf/ecore/xcore/Xcore.xtext
https://git.eclipse.org/c/emf/org.eclipse.emf.git/tree/plugins/org.eclipse.emf.ecore.xcore/src/org/eclipse/emf/ecore/xcore/Xcore.xtext
https://git.eclipse.org/c/emf/org.eclipse.emf.git/tree/plugins/org.eclipse.emf.ecore.xcore/src/org/eclipse/emf/ecore/xcore/Xcore.xtext
https://git.eclipse.org/c/emf/org.eclipse.emf.git/tree/plugins/org.eclipse.emf.ecore.xcore/src/org/eclipse/emf/ecore/xcore/Xcore.xtext
https://git.eclipse.org/c/emf/org.eclipse.emf.git/tree/plugins/org.eclipse.emf.ecore.xcore/src/org/eclipse/emf/ecore/xcore/Xcore.xtext
https://git.eclipse.org/c/emf/org.eclipse.emf.git/tree/plugins/org.eclipse.emf.ecore.xcore/src/org/eclipse/emf/ecore/xcore/Xcore.xtext
https://git.eclipse.org/c/emf/org.eclipse.emf.git/tree/plugins/org.eclipse.emf.ecore.xcore/src/org/eclipse/emf/ecore/xcore/Xcore.xtext
https://github.com/rodchenk/xenia/blob/master/com.foliage.xenia/src/com/foliage/xenia/Xenia.xtext
https://github.com/rodchenk/xenia/blob/master/com.foliage.xenia/src/com/foliage/xenia/Xenia.xtext
https://github.com/rodchenk/xenia/blob/master/com.foliage.xenia/src/com/foliage/xenia/Xenia.xtext
https://github.com/rodchenk/xenia/blob/master/com.foliage.xenia/src/com/foliage/xenia/Xenia.xtext
https://github.com/rodchenk/xenia/blob/master/com.foliage.xenia/src/com/foliage/xenia/Xenia.xtext

M. Mernik, J. Heering, A. M. Sloane, When and how to develop1799

domain-specific languages, ACM computing surveys (CSUR) 371800

(2005) 316–344.1801

M. Karaila, Evolution of a domain specific language and its engineer-1802

ing environment–lehman’s laws revisited, in: Proceedings of the1803

9th OOPSLA Workshop on Domain-Specific Modeling, 2009, pp.1804

1–7.1805

F. Ciccozzi, M. Tichy, H. Vangheluwe, D. Weyns, Blended modelling—1806

what, why and how, in: 1st Intl. Workshop on Multi-Paradigm1807

Modelling for Cyber-Physical Systems (MPM4CPS), IEEE, 2019,1808

pp. 425–430. doi:10.1109/MODELS-C.2019.00068.1809

M. van Amstel, M. van den Brand, L. Engelen, An exercise in iterative1810

domain-specific language design, in: Proceedings of the joint1811

ERCIM workshop on software evolution (EVOL) and international1812

workshop on principles of software evolution (IWPSE), 2010, pp.1813

48–57.1814

Eclipse Foundation, Xtext language development framework,1815

2023a. URL: https://www.eclipse.org/Xtext/, Accessed Febru-1816

ary, 2023.1817

Eclipse Foundation, Eclipse Modeling Framework (E;F), 2023b.1818

URL: https://www.eclipse.org/modeling/emf/, Accessed Febru-1819

ary, 2023.1820

A. Kleppe, Towards the generation of a text-based ide from a1821

language metamodel, in: European Conf. on Model Driven1822

Architecture—Foundations and Applications (ECMDA-FA), vol-1823

ume 4530 of LNCS, Springer, 2007, pp. 114–129. doi:10.1007/1824

978-3-540-72901-3_9.1825

D. Albuquerque, B. Cafeo, A. Garcia, S. Barbosa, S. Abrahão,1826

A. Ribeiro, Quantifying usability of domain-specific languages: An1827

empirical study on software maintenance, Journal of Systems and1828

Software 101 (2015) 245–259.1829

A. Stefik, S. Siebert, An empirical investigation into programming1830

language syntax, ACM Transactions on Computing Education1831

(TOCE) 13 (2013) 1–40.1832

L. Prechelt, An empirical comparison of c, c++, java, perl, python,1833

rexx and tcl, IEEE Computer 33 (2000) 23–29.1834

EAST-ADL Association, East-adl, 2021. URL: https://www.1835

east-adl.info/, Accessed February, 2023.1836

J. Holtmann, J.-P. Steghöfer, W. Zhang, Exploiting meta-model1837

structures in the generation of xtext editors, in: 11th Intl. Conf.1838

on Model-Based Software and Systems Engineering (MODELS-1839

WARD), 2023, pp. 218–225. doi:10.5220/0000170800003402, ac-1840

cepted for publication.1841

R. F. Paige, D. S. Kolovos, F. A. Polack, A tutorial on metamodelling1842

for grammar researchers, Science of Computer Programming1843

96 (2014) 396–416. doi:10.1016/j.scico.2014.05.007, selected1844

Papers from the Fifth Intl. Conf. on Software Language Engineering1845

(SLE 2012).1846

International Organization for Standardization (ISO), Information 1847

technology—Syntactic metalanguage—Extended BNF (ISO/IEC 1848

14977:1996), 1996. 1849

A. Kleppe, A language description is more than a metamodel, in: 1850

4th International Workshop on Language Engineering, 2007. 1851

Object Management Group (OMG), Object constraint language 2.x 1852

specification, 2014. URL: https://www.omg.org/spec/OCL/, Ac- 1853

cessed February, 2023. 1854

E. Willink, Reflections on OCL 2, Journal of Object Technology 19 1855

(2020) 3:1–16. doi:10.5381/jot.2020.19.3.a17. 1856

Eclipse Foundation, Eclipse OCL™ (Object Constraint Lan- 1857

guage), 2022a. URL: https://projects.eclipse.org/projects/ 1858

modeling.mdt.ocl, Accessed February, 2023. 1859

Eclipse Foundation, Qvto – eclipsepedia, 2022b. URL: https://wiki. 1860

eclipse.org/QVTo, Accessed February, 2023. 1861

F. Heidenreich, J. Johannes, S. Karol, M. Seifert, C. Wende, Deriva- 1862

tion and refinement of textual syntax for models, in: European 1863

Conf. on Model Driven Architecture—Foundations and Applica- 1864

tions (ECMDA-FA), volume 5562 of LNCS, Springer, 2009, pp. 1865

114–129. doi:10.1007/978-3-642-02674-4_9. 1866

T. Parr, ANTLR, 2022. URL: https://www.antlr.org/, Accessed 1867

February, 2023. 1868

P. Neubauer, A. Bergmayr, T. Mayerhofer, J. Troya, M. Wimmer, 1869

Xmltext: From xml schema to xtext, in: 2015 ACM SIGPLAN 1870

Intl. Conf. on Software Language Engineering, 2015, pp. 71–76. 1871

doi:10.1145/2814251.2814267. 1872

P. Neubauer, R. Bill, M. Wimmer, Modernizing domain-specific lan- 1873

guages with xmltext and intelledit, in: 2017 IEEE 24th Intl. Conf. 1874

on Software Analysis, Evolution and Reengineering (SANER), 1875

2017. 1876

S. Chodarev, Development of human-friendly notation for xml-based 1877

languages, in: 2016 Federated Conference on Computer Science 1878

and Information Systems (FedCSIS), IEEE, 2016, pp. 1565–1571. 1879

F. Jouault, J. Bézivin, I. Kurtev, Tcs: A dsl for the specification of 1880

textual concrete syntaxes in model engineering, in: 5th Intl. Conf. 1881

on Generative Programming and Component Engineering, ACM, 1882

2006, p. 249–254. doi:10.1145/1173706.1173744. 1883

M. Novotný, Model-driven Pretty Printer for Xtext Framework, Mas- 1884

ter’s thesis, Charles University in Prague, Faculty of Mathematics 1885

and Physics, 2012. 1886

U. Frank, Some guidelines for the conception of domain-specific 1887

modelling languages, in: Enterprise Modelling and Information 1888

Systems Architectures (EMISA 2011), Gesellschaft für Informatik 1889

eV, 2011, pp. 93–106. 1890

J.-P. Tolvanen, S. Kelly, Effort used to create domain-specific model- 1891

ing languages, in: Proceedings of the 21th ACM/IEEE Interna- 1892

tional Conference on Model Driven Engineering Languages and 1893

Systems, 2018, pp. 235–244. 1894

30

http://dx.doi.org/10.1109/MODELS-C.2019.00068
https://www.eclipse.org/Xtext/
https://www.eclipse.org/modeling/emf/
http://dx.doi.org/10.1007/978-3-540-72901-3_9
http://dx.doi.org/10.1007/978-3-540-72901-3_9
http://dx.doi.org/10.1007/978-3-540-72901-3_9
https://www.east-adl.info/
https://www.east-adl.info/
https://www.east-adl.info/
http://dx.doi.org/10.5220/0000170800003402
http://dx.doi.org/10.1016/j.scico.2014.05.007
https://www.omg.org/spec/OCL/
http://dx.doi.org/10.5381/jot.2020.19.3.a17
https://projects.eclipse.org/projects/modeling.mdt.ocl
https://projects.eclipse.org/projects/modeling.mdt.ocl
https://projects.eclipse.org/projects/modeling.mdt.ocl
https://wiki.eclipse.org/QVTo
https://wiki.eclipse.org/QVTo
https://wiki.eclipse.org/QVTo
http://dx.doi.org/10.1007/978-3-642-02674-4_9
https://www.antlr.org/
http://dx.doi.org/10.1145/2814251.2814267
http://dx.doi.org/10.1145/1173706.1173744

G. Karsai, H. Krahn, C. Pinkernell, B. Rumpe, M. Schindler, S. Völkel,1895

Design guidelines for domain specific languages, in: Proceedings of1896

the 9th OOPSLA Workshop on Domain-Specific Modeling (DSM’1897

09), TR no B-108, Helsinki School of Economics, Orlando, Florida,1898

USA, 2009. URL: http://arxiv.org/abs/1409.2378.1899

M. Pizka, E. Jürgens, Tool-supported multi-level language evolu-1900

tion, in: Software and Services Variability Management Workshop,1901

volume 3, 2007, pp. 48–67.1902

R. Hebig, D. E. Khelladi, R. Bendraou, Approaches to co-evolution of1903

metamodels and models: A survey, IEEE Transactions on Software1904

Engineering 43 (2016) 396–414.1905

D. E. Khelladi, R. Bendraou, R. Hebig, M.-P. Gervais, A semi-1906

automatic maintenance and co-evolution of OCL constraints with1907

(meta) model evolution, Journal of Systems and Software 1341908

(2017) 242–260.1909

D. E. Khelladi, R. Hebig, R. Bendraou, J. Robin, M.-P. Gervais,1910

Metamodel and constraints co-evolution: A semi automatic main-1911

tenance of OCL constraints, in: International Conference on1912

Software Reuse, Springer, 2016, pp. 333–349.1913

D. D. Ruscio, R. Lämmel, A. Pierantonio, Automated co-evolution1914

of gmf editor models, in: International conference on software1915

language engineering, Springer, 2010, pp. 143–162.1916

D. Di Ruscio, L. Iovino, A. Pierantonio, What is needed for managing1917

co-evolution in mde?, in: Proceedings of the 2nd International1918

Workshop on Model Comparison in Practice, 2011, pp. 30–38.1919

J. García, O. Diaz, M. Azanza, Model transformation co-evolution: A1920

semi-automatic approach, in: International conference on software1921

language engineering, Springer, 2012, pp. 144–163.1922

I. Dejanović, R. Vaderna, G. Milosavljević, Ž. Vuković, Textx:1923

A python tool for domain-specific languages implementation,1924

Knowledge-Based Systems 115 (2017) 1–4. doi:10.1016/j.knosys.1925

2016.10.023.1926

TypeFox GmbH, Langium, 2022. URL: https://langium.org/, Ac-1927

cessed February, 2023.1928

S. Kelly, J.-P. Tolvanen, Collaborative creation and versioning of1929

modeling languages with metaedit+, in: Proceedings of the 21st1930

ACM/IEEE International Conference on Model Driven Engineering1931

Languages and Systems: Companion Proceedings, 2018, pp. 37–41.1932

JetBrains, MPS: The Domain-Specific Language Creator by JetBrains,1933

2022. URL: https://www.jetbrains.com/mps/, Accessed February,1934

2023.1935

AtlanMod Team, Atlantic zoo, 2019. URL: https://github.com/1936

atlanmod/atlantic-zoo, Accessed February, 2023.1937

A. Nordmann, N. Hochgeschwender, D. Wigand, S. Wrede, An1938

overview of domain-specific languages in robotics, 2020. URL:1939

https://corlab.github.io/dslzoo/all.html, Accessed February,1940

2023.1941

I. Wikimedia Foundation, Wikipedia page of domain specific language,1942

2023. URL: https://en.wikipedia.org/wiki/Domain-specific_ 1943

language, Accessed February, 2023. 1944

M. Barash, Zoo of domain-specific languages, 2020. URL: http:// 1945

dsl-course.org/, Accessed February, 2023. 1946

I. Semantic Designs, Domain specific languages, 2021. URL: http: 1947

//www.semdesigns.com/products/DMS/DomainSpecificLanguage. 1948

html, Accessed February, 2023. 1949

D. Community, Financial domain-specific language listing, 2021. URL: 1950

http://dslfin.org/resources.html, Accessed February, 2023. 1951

A. Van Deursen, P. Klint, J. Visser, Domain-specific languages: An 1952

annotated bibliography, ACM Sigplan Notices 35 (2000) 26–36. 1953

miklossy, nyssen, prggz, mwienand, Dot xtext grammar, 2020. URL: 1954

https://github.com/eclipse/gef/blob/master/org.eclipse. 1955

gef.dot/src/org/eclipse/gef/dot/internal/language/Dot. 1956

xtext, Accessed February, 2023. 1957

V. Zaytsev, Grammarware bibtex metamodel, 2013. URL: 1958

https://github.com/grammarware/slps/blob/master/topics/ 1959

grammars/bibtex/bibtex-1/BibTeX.ecore, Accessed February, 1960

2023. 1961

Spectra Authors, Spectra metamodel, 2021. URL: https: 1962

//github.com/SpectraSynthesizer/spectra-lang/blob/master/ 1963

tau.smlab.syntech.Spectra/model/generated/Spectra.ecore, 1964

Accessed February, 2023. 1965

Eclipse Foundation, Xcore metamodel, 2012. URL: https: 1966

//git.eclipse.org/c/emf/org.eclipse.emf.git/tree/plugins/ 1967

org.eclipse.emf.ecore.xcore/model/Xcore.ecore, Accessed 1968

February, 2023. 1969

Xenia Authors, Xenia metmodel, 2019. URL: https: 1970

//github.com/rodchenk/xenia/blob/master/com.foliage. 1971

xenia/model/generated/Xenia.ecore, Accessed February, 2023. 1972

EAST-ADL Association, EATOP Repository, 2022. URL: https: 1973

//bitbucket.org/east-adl/east-adl/src/Revison/, Accessed 1974

February, 2023. 1975

Object Management Group, QVT – MOF Query/View/Transforma- 1976

tion Specification Version 1.0, 2008. URL: https://www.omg.org/ 1977

spec/QVT/1.0/, Accessed February, 2023. 1978

Object Management Group, QVT – MOF Query/View/Transforma- 1979

tion Specification Version 1.1, 2011. URL: https://www.omg.org/ 1980

spec/QVT/1.1/, Accessed February, 2023. 1981

Object Management Group, QVT – MOF Query/View/Transforma- 1982

tion Specification Version 1.2, 2015. URL: https://www.omg.org/ 1983

spec/QVT/1.2/, Accessed February, 2023. 1984

Object Management Group, QVT – MOF Query/View/Transforma- 1985

tion Specification Version 1.3, 2016. URL: https://www.omg.org/ 1986

spec/QVT/1.3/, Accessed February, 2023. 1987

W. Zhang, J. Holtmann, R. Hebig, J.-P. Steghöfer, Grammaropti- 1988

mizer_data: Formal release, 2023. doi:10.5281/zenodo.7641329, 1989

Accessed February, 2023. 1990

31

http://arxiv.org/abs/1409.2378
http://dx.doi.org/10.1016/j.knosys.2016.10.023
http://dx.doi.org/10.1016/j.knosys.2016.10.023
http://dx.doi.org/10.1016/j.knosys.2016.10.023
https://langium.org/
https://www.jetbrains.com/mps/
https://github.com/atlanmod/atlantic-zoo
https://github.com/atlanmod/atlantic-zoo
https://github.com/atlanmod/atlantic-zoo
https://corlab.github.io/dslzoo/all.html
https://en.wikipedia.org/wiki/Domain-specific_language
https://en.wikipedia.org/wiki/Domain-specific_language
https://en.wikipedia.org/wiki/Domain-specific_language
http://dsl-course.org/
http://dsl-course.org/
http://dsl-course.org/
http://www.semdesigns.com/products/DMS/DomainSpecificLanguage.html
http://www.semdesigns.com/products/DMS/DomainSpecificLanguage.html
http://www.semdesigns.com/products/DMS/DomainSpecificLanguage.html
http://www.semdesigns.com/products/DMS/DomainSpecificLanguage.html
http://www.semdesigns.com/products/DMS/DomainSpecificLanguage.html
http://dslfin.org/resources.html
https://github.com/eclipse/gef/blob/master/org.eclipse.gef.dot/src/org/eclipse/gef/dot/internal/language/Dot.xtext
https://github.com/eclipse/gef/blob/master/org.eclipse.gef.dot/src/org/eclipse/gef/dot/internal/language/Dot.xtext
https://github.com/eclipse/gef/blob/master/org.eclipse.gef.dot/src/org/eclipse/gef/dot/internal/language/Dot.xtext
https://github.com/eclipse/gef/blob/master/org.eclipse.gef.dot/src/org/eclipse/gef/dot/internal/language/Dot.xtext
https://github.com/eclipse/gef/blob/master/org.eclipse.gef.dot/src/org/eclipse/gef/dot/internal/language/Dot.xtext
https://github.com/grammarware/slps/blob/master/topics/grammars/bibtex/bibtex-1/BibTeX.ecore
https://github.com/grammarware/slps/blob/master/topics/grammars/bibtex/bibtex-1/BibTeX.ecore
https://github.com/grammarware/slps/blob/master/topics/grammars/bibtex/bibtex-1/BibTeX.ecore
https://github.com/SpectraSynthesizer/spectra-lang/blob/master/tau.smlab.syntech.Spectra/model/generated/Spectra.ecore
https://github.com/SpectraSynthesizer/spectra-lang/blob/master/tau.smlab.syntech.Spectra/model/generated/Spectra.ecore
https://github.com/SpectraSynthesizer/spectra-lang/blob/master/tau.smlab.syntech.Spectra/model/generated/Spectra.ecore
https://github.com/SpectraSynthesizer/spectra-lang/blob/master/tau.smlab.syntech.Spectra/model/generated/Spectra.ecore
https://github.com/SpectraSynthesizer/spectra-lang/blob/master/tau.smlab.syntech.Spectra/model/generated/Spectra.ecore
https://git.eclipse.org/c/emf/org.eclipse.emf.git/tree/plugins/org.eclipse.emf.ecore.xcore/model/Xcore.ecore
https://git.eclipse.org/c/emf/org.eclipse.emf.git/tree/plugins/org.eclipse.emf.ecore.xcore/model/Xcore.ecore
https://git.eclipse.org/c/emf/org.eclipse.emf.git/tree/plugins/org.eclipse.emf.ecore.xcore/model/Xcore.ecore
https://git.eclipse.org/c/emf/org.eclipse.emf.git/tree/plugins/org.eclipse.emf.ecore.xcore/model/Xcore.ecore
https://git.eclipse.org/c/emf/org.eclipse.emf.git/tree/plugins/org.eclipse.emf.ecore.xcore/model/Xcore.ecore
https://github.com/rodchenk/xenia/blob/master/com.foliage.xenia/model/generated/Xenia.ecore
https://github.com/rodchenk/xenia/blob/master/com.foliage.xenia/model/generated/Xenia.ecore
https://github.com/rodchenk/xenia/blob/master/com.foliage.xenia/model/generated/Xenia.ecore
https://github.com/rodchenk/xenia/blob/master/com.foliage.xenia/model/generated/Xenia.ecore
https://github.com/rodchenk/xenia/blob/master/com.foliage.xenia/model/generated/Xenia.ecore
https://bitbucket.org/east-adl/east-adl/src/Revison/
https://bitbucket.org/east-adl/east-adl/src/Revison/
https://bitbucket.org/east-adl/east-adl/src/Revison/
https://www.omg.org/spec/QVT/1.0/
https://www.omg.org/spec/QVT/1.0/
https://www.omg.org/spec/QVT/1.0/
https://www.omg.org/spec/QVT/1.1/
https://www.omg.org/spec/QVT/1.1/
https://www.omg.org/spec/QVT/1.1/
https://www.omg.org/spec/QVT/1.2/
https://www.omg.org/spec/QVT/1.2/
https://www.omg.org/spec/QVT/1.2/
https://www.omg.org/spec/QVT/1.3/
https://www.omg.org/spec/QVT/1.3/
https://www.omg.org/spec/QVT/1.3/
http://dx.doi.org/10.5281/zenodo.7641329

P. Runeson, M. Höst, Guidelines for conducting and reporting case1991

study research in software engineering, Empirical Software Engi-1992

neering 14 (2008) 131–164. doi:10.1007/s10664-008-9102-8.1993

P. Runeson, M. Höst, R. Austen, B. Regnell, Case Study Research in1994

Software Engineering — Guidelines and Examples, 1st ed., Wiley,1995

2012.1996

Q. Wang, G. Gupta, Rapidly prototyping implementation infrastruc-1997

ture of domain specific languages: a semantics-based approach, in:1998

Proceedings of the 2005 ACM symposium on Applied computing,1999

2005, pp. 1419–1426.2000

W. Zhang, R. Hebig, J.-P. Steghöfer, J. Holtmann, Creating python-2001

style domain specific languages: A semi-automated approach and2002

intermediate results, in: 11th Intl. Conf. on Model-Based Software2003

and Systems Engineering (MODELSWARD), 2023, pp. 210–217.2004

doi:10.5220/0000170800003402, accepted for publication.2005

32

http://dx.doi.org/10.1007/s10664-008-9102-8
http://dx.doi.org/10.5220/0000170800003402

	Introduction
	Background: Textual DSL Engineering based on Meta-models
	Related Work
	Methodology: Analysis of Existing Languages
	Definition of Imitation
	Selection of Sample DSLs
	Exclusion of Language Parts for Low-level Expressions
	Meta-model Preparations and Generating an Xtext Grammar
	Analysis of Grammars
	First Iteration: Identify Optimization Rules
	Second iteration: Validate Optimization Rules

	Identified Optimization Rules
	Solution: Design and Implementation
	Grammar Representation
	Optimization Rule Design
	Configuration
	Execution
	Post-Processing vs. Changing Grammar Generation
	Limitations

	Evaluation
	Grammar Adaptation
	Cases
	Method
	Metrics
	Results

	Supporting Evolution
	Cases
	Preparation of the QVTo Case
	Method
	Metrics
	Results

	Discussion
	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity
	Reliability

	The Effort of Creating and Evolving a Language with the GrammarOptimizer
	Implications for Practitioners and Researchers
	Future Work

	Conclusion

