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“Hobbits ... liked to have books filled with things that they already knew, set
out fair and square with no contradictions.”

J.R.R. Tolkien
The Lord of the Rings: The Fellowship of the Ring

Prologue



Abstract
Owing to their absence of tailpipe emissions and their independence from
fossil fuels, Electric Vehicles (EVs) are currently experiencing a rapid deploy-
ment in an attempt to curb global greenhouse gas emissions. EV operation
represents a technical challenge, however, as new control algorithms need to
be developed to address their limited driving range and their longer charg-
ing times. Optimization-based control techniques offer a promising way to
plan EV operation over a prediction horizon while including key operational
constraints, but they can be prohibitively slow for real-time applications as
they rely on solving computationally hard optimization problems. One way
to address the computational complexity of these approaches is by deploying
adapted decomposition methods with which the computational load of solving
these optimization problems can be distributed across the vehicles involved,
where most computations can then be carried out in parallel.

This thesis presents decomposition-based solution procedures for optimal
control problems involving groups of EVs. In particular, the problems covered
in this work are (i) the cooperative eco-driving control of a platoon of electric
trucks, (ii) the eco-driving and operational control of an electric bus line, and
(iii) the operational control and charging scheduling of an electric bus network.
Even though their particular objective functions and constraints may differ,
the coupling structures of these problems, i.e. how each vehicle’s influence on
the others is organized, share some similarities.

The platoon control problem is formulated as a Nonlinear Program (NLP)
and solved with second-order optimization methods. The Riccati recursion
is used as part of a decomposition scheme that exploits the chain-like cou-
pling structure of a truck platoon and makes it possible to fully distribute all
computations. Similarly, the bus line problem is formulated as an NLP. A
primal decomposition scheme where the NLP is split into a master problem
and independent bus subproblems is presented. The hierarchical control ar-
chitecture obtained makes it possible to distribute most of the computations.
Finally, the bus network problem is formulated as a Mixed-integer Linear Pro-
gram (MILP). A dual decomposition scheme based on Lagrangian relaxation
is deployed to relax the coupling constraints between the different bus lines.

Keywords: Electric Vehicles, Optimal Control, Distributed Optimization,
Public Transit, Platooning.
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CHAPTER 1

Background and Outline

1.1 Introduction

The decarbonization of the transport sector constitutes a major challenge
for our societies due to the strong dependency of the sector on fossil fuels.
Contrary to other carbon-intensive activities, like the industry or the energy
sector, greenhouse gas emissions from the transport sector have continued
to increase steadily in both OECD and non-OECD countries, where they
represented 30% of all CO2 emissions in the former and 16% in the latter
in 2016 [1]. This trend may very well continue in the future as the total
transport demand is projected to keep increasing fast in the coming decades
since both passenger transport and global freight demand are expected to
triple between 2015 and 2050 [1]. In this context, Electric Vehicles (EVs) offer
a promising way to break the oil dependency of the transport sector and curb
its greenhouse gas emissions. EVs combine no tailpipe emissions with a lower
carbon intensity than fossil fuel vehicles and are now being massively deployed
on the roads of the world, with record sales in the last few years despite the
coronavirus pandemic [2].

In terms of absolute numbers, the deployment of large EVs such as electric
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Chapter 1 Background and Outline

buses and electric trucks is lagging behind that of lighter vehicles. In 2020, the
global fleet of electric buses was estimated to number around 600 000 vehicles
and about 30 000 for electric trucks, whereas more than 6 million electric cars
were estimated to be on the roads in the same year [2]. Electric bus fleets are
now being rapidly adopted by municipalities around the world as measures
to reduce both air and noise pollution in congested modern cities. Several of
the world’s largest cities have already pledged to reach specific electrification
targets in the current decade [3]. However, both electric buses and electric
trucks have to face technical challenges that do not exist for their conventional
counterparts. Electric trucks are still struggling with their limited driving
range for long-distance driving missions of several hundred kilometers. A
limited driving range can also be an issue for electric buses, which may struggle
to complete a full day of service on a single battery charge. The questions of
when and where to charge these large service vehicles, and of the type and
placement of the charging infrastructure, must also be addressed carefully. In
light of these new technical challenges, innovative control algorithms are now
needed to carry out the planning and operation of systems of electric trucks
and buses.

One direct way of increasing the driving range of EVs in operation is by de-
ploying control methods with a focus on energy efficiency. One such method
that has become especially popular for heavy-duty vehicles is platooning, a
method which consists of having vehicles drive in close succession in order to
decrease the drag force acting on them and thus reduce their energy consump-
tion. Platooning has been shown to lead to sizeable energy savings in field
experiments carried out on truck platoons [4]–[6]. In addition, this method
has the benefit of not needing any structural change in order to be imple-
mented, but guaranteeing safety when trucks are operated at a close distance
requires robust control algorithms. The platoon control problem has mostly
been treated from the angle of string stability, i.e. the attenuation of devi-
ations on positions and speed along the platoon, historically [7]–[9]. Driving
proximity can then be used as a satisfactory proxy for energy savings: the
closer trucks are driving to each other, the more the drag force is reduced.
However, tracking this simple control objective is not always energy-optimal
for truck platoons [10]. For instance, trucks driving as a platoon in a sharp
downhill may have to use their friction brakes to avoid collisions and thereby
waste energy.
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1.1 Introduction

Additional energy savings can be achieved for truck platoons, and for any
EV in general, by adopting eco-driving strategies [11]. This term denotes
the general idea of adapting vehicles’ driving profiles to the road conditions
with the goal of minimizing energy consumption. As a control strategy, eco-
driving relies on predictive information about road gradients and expected
traffic conditions, among other things, in order to estimate the energy optimal
trajectory over a control horizon. Eco-driving control has been applied for
driving missions of single trucks [12], [13] as well as truck platoons [14], [15],
and has shown an encouraging potential for energy savings for both. It must be
noted, however, that most of the works on the truck platoon control problem
available in the literature have focused on diesel trucks so far, with hybrid
electric and electric trucks only recently starting to attract attention [16].

Similarly, the specific challenges arising in the planning and operation of
a network of electric buses have only recently gained widespread interest in
the literature [17]. The electric bus planning process is usually decomposed
into a strategic, a tactical, and an operational stage, depending on the time
frame of the problem considered. The electrification of a bus network mostly
introduces new planning problems at the strategic and tactical stages [18]. At
the strategic stage, long-term decisions are taken on bus fleet and charging
infrastructure investments [3], as well as on charging infrastructure placement
[19]–[21]. At the tactical stage, the electric vehicle scheduling problem assigns
individual electric buses to specific timetabled trips [22], [23], while decisions
on when and for how long each bus should charge its battery can be obtained
from the charging scheduling problem [21], [24]–[26].

At the operational stage, real-time decisions are taken to control the vehicles
when they are in operation, usually with the aim of maximizing timetable ad-
herence or minimizing passengers’ waiting time. If left uncontrolled, bus lines
are prone to instability as any delay gets amplified by the additional dwell time
incurred by the increased passenger loads, thus acting as a positive feedback
loop that further increases the delay [27]. Likewise, any bus traveling behind a
delayed bus will encounter fewer passengers at stops and may eventually catch
up with the delayed bus, thus resulting in bus bunching. To counteract the
formation of bus bunching, several different intervention strategies have been
studied in the literature. The simplest of these is bus holding, a method that
consists of holding buses at predesignated control points to dissipate service
irregularities [28]–[32]. Other station control strategies include stop-skipping
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Chapter 1 Background and Outline

[33], [34] and limiting the number of passengers that are allowed to board each
bus [35]. Inter-station control strategies have been studied less systematically
by the scientific community, in part because they are usually harder to deploy
in practice. Examples of inter-station control strategies include transit signal
priority, where the phases of traffic lights at intersections are adjusted to favor
bus traffic [36], or bus substitution, where some buses are kept in reserve by
the transit agency and dispatched to replace buses who fall behind schedule
too much [37]. Finally, a control strategy of particular importance in the con-
text of this thesis is speed control, where the speed of each vehicle is adjusted
in real-time to offset any potential delay in bus service [38], [39].

Most of the control problems discussed so far can be seen conceptually as
aiming to minimize a certain cost (monetary or otherwise) over a given time
horizon for a system evolving with dynamics that can be modeled mathemati-
cally and with operating conditions that can be defined as a set of constraints.
As such, these problems can be considered as optimal control problems [40].
In fact, the eco-driving control problem mentioned earlier can be directly re-
garded as an optimal control problem [11].

A framework that has been steadily rising in popularity in the last few
decades for treating optimal control problems is Model Predictive Control
(MPC) [41]. MPC is an optimization-based approach where a discrete time
approximation of the original optimal control problem is solved only over a
(usually small) part of the time horizon of the original problem. Once one
optimization problem has been solved, the optimal control action obtained for
the current time step is applied and a new optimization problem is formed by
moving the MPC horizon one discrete time step forward, thus earning MPC
the alternative name of “receding horizon control”. The sequence of control
actions obtained is then an approximation of the optimal control trajectory of
the original problem. MPC has been successfully applied to the operational
control of a bus line as part of a speed control strategy [42]–[44]. Similarly, the
eco-driving control for a truck platoon has mostly been treated in the MPC
framework in the literature so far [14]–[16].

However, the downside of optimization-based control methods is their re-
liance on being able to solve potentially large optimization problems. Depend-
ing on the application, the optimization problems considered can involve the
control of many vehicles on possibly long horizons, and even the enormous
increase in the available computing power witnessed in the past decades may
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still not be enough to solve these large-scale problems in a reasonable time.
Thankfully, distributed optimization methods can, in certain cases, provide
significant computational improvements by making use of parallel computing
hardware [45]. By distributing the computations required to solve a given op-
timization problem, some of the computational load can be parallelized, which
can potentially result in significant computational speedups. This might not
always be possible though, and it usually depends on the specific structure of
the optimization problem considered as well as on the type of optimization
algorithm used to solve it.

It is often necessary to first decompose an optimization problem before
being able to distribute the computations required to solve it. The core idea
of decomposition methods in optimization is to identify smaller subproblems
in a larger optimization problem. An intuitive example of this is when an
optimization problem is formulated for a group of agents (e.g. vehicles) or
subsystems, in which case it is frequent to form subproblems corresponding to
the individual agents or subsystems. Subproblems usually have some degree
of coupling, i.e. they share some of the problem variables or constraints.
When they exist, these coupling variables or constraints make it impossible to
directly separate an optimization problem into independent subproblems. A
decomposition method then normally proceeds by extracting the subproblems
from the original problem and by finding its solution (or an approximation of
it) through an iterative procedure that involves solving the subproblems and
coordinating their solutions. Decomposition methods are usually classified
into primal or dual methods, depending on whether they aim to solve the
primal optimization problem or the associated dual problem [46]. The exact
decomposition method that is best adapted to solve a given problem depends
on what type of problem it is, and also on the specific coupling structure that
this problem has [47].

1.2 Research gaps
A few studies have focused on eco-driving for truck platoons, but all the
control methods that have been proposed in the literature are centralized
or partially centralized approaches. As such, they rely on a central control
unit to communicate reference trajectories to vehicles. Using such methods
might prove difficult for truck platoons where vehicles belong to different
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Chapter 1 Background and Outline

transportation companies, where the need to have a de facto “leader” in the
platoon who bears the responsibility of computing the final commands for
everybody else might be unacceptable. However, a fully distributed approach
for solving the eco-driving control problem of a truck platoon has so far been
lacking in the literature. In addition, no work has studied eco-driving for
platoons of fully electric trucks yet.

Most fully distributed solution algorithms for optimization problems arising
in control applications tend to rely on first-order optimization methods, that
is iterative solution methods that only use gradient information. By contrast,
second-order optimization methods are similar optimization methods that use
both gradient and Hessian information. Consequently, second-order methods
tend to have greater convergence speeds (up to quadratic convergence rates
when taking full Newton steps) and thus require fewer iterations to reach
an optimal solution. However, fully distributed algorithms for second-order
methods have received far less attention in the literature, despite their stronger
convergence properties. Part of the reason is that second-order methods are
usually hard to distribute and require specific problem structures with sparse
coupling in order to do so. In this thesis, a problem with such a structure is
presented together with a fully distributed second-order method to solve it.

Speed control strategies have not been studied as extensively as other con-
trol strategies in the operational bus line control literature. The few works
that combine speed control strategies with optimal control tend to use very
simplistic driving dynamics and energy consumption models. The main reason
for this is that detailed models make for complicated optimization problems
that can be hard to solve in almost real-time, which is a point that this thesis
tries to address.

Furthermore, very few works in the literature have explored the operational
control of electric buses. Most of the work carried out so far for the electric
bus network planning process has been at the strategic and tactical stages,
to generate fixed charging schedules for buses for example. However, these
schedules might not be robust to operational disturbances, and robust charg-
ing scheduling methods have so far been lacking in the literature. In addition,
no work at the operational stage has ever tried including eco-driving control
strategies for bus line control.

In light of these research gaps, this thesis explores the following research
questions:
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1.3 Contributions

• RQ1: How can the operational control of platoons of electric trucks and
electric bus lines be formulated as optimization problems?

• RQ2: How can the specific coupling structure of a truck platoon, a
bus line, or a bus network be exploited with decomposition schemes
to distribute most of the computations when solving the optimization
problems formulated in RQ1?

• RQ3: How can the characteristic chain-like structure of a truck platoon
be leveraged to solve a shared optimal control problem with second-
order optimization methods in a fully distributed and privacy-preserving
fashion?

1.3 Contributions
This thesis presents several control problems involving the operation of groups
of electric vehicles, namely platoons of electric trucks and networks of electric
buses. Each problem is formulated as an optimization problem in which the
coupling structure between the vehicles is clearly exhibited. Depending on
the exact nature of each problem, vehicles may share a common objective,
and they may have similar constraints. What all these problems have in
common, though, is that the coupling terms are relatively few compared with
the rest of the terms, which have to do with the dynamics and decisions
of individual vehicles for the most part. For all the problems studied, it is
therefore possible to decouple individual vehicle subproblems, where most of
the complexity is, and solve them separately. This thesis shows how specific
decomposition schemes can be deployed on the particular coupling structure of
each of the problems treated. These decomposition schemes make it possible
to distribute most of the computations required when solving these problems
with traditional optimization algorithms.

The focus of this thesis is on finding suitable decomposition schemes for
optimization problems with a specific coupling structure. The main research
limitation of the thesis is therefore that all the algorithms and decomposi-
tion methods presented are meant to be seen as proofs of concept rather than
full-fledged implementations ready to be deployed in practical situations. In
particular, an efficient real-time capable implementation of these algorithms is
left outside the scope of this thesis. In addition, all the optimal control prob-
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Chapter 1 Background and Outline

Table 1.1: Overview of the papers.
Paper A Paper B Paper C

System Truck platoon Bus line Bus network
Application Eco-driving Eco-driving +

service regularity
Charging +
service regularity

Optimization
problem

Nonlinear
program

Nonlinear
program

Mixed-integer
linear program

Coupling Constraints Objective Constraints
Decomposition
method

Riccati recursion Primal
decomposition

Lagrangian
decomposition

Control
architecture

Distributed Hierarchical Hierarchical

Exact solution Yes Yes No

lems presented are formulated over relatively long control horizons and with
economic objectives. The optimal solutions obtained should then be seen as
high-level reference trajectories, and should therefore be complemented with
low-level tracking control layers in a practical implementation. The design of
these low-level control layers is also left outside the scope of this thesis.

The main contributions of this thesis are:

• A fully distributed second-order optimization procedure is presented to
solve the cooperative eco-driving control problem for a platoon of vehi-
cles organized in a chain-like structure (RQ3).

• An optimal control problem with detailed dynamics and energy con-
sumption models is formulated for the eco-driving and operational con-
trol of an electric bus line (RQ1).

• A primal decomposition scheme is proposed to decouple individual bus
problems and solve them in parallel when solving the bus line control
problem (RQ2).

• An optimization problem integrating both the tactical level charging
scheduling problem and the operational control problem for an electric
bus network is formulated (RQ1).

10
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• A dual decomposition scheme is developed for the bus network control
problem that relaxes the coupling between bus lines at the shared charg-
ing infrastructure and makes it possible to solve each individual bus line
problem in parallel (RQ2).

Since the scope of the problems, algorithms, and decomposition methods
treated in the thesis is rather wide, Table 1.1 presents a succinct overview
of the main features of each of the appended papers.

1.4 Outline
This thesis is divided into two parts. Part I contains seven chapters that offer
an introduction to and an overview of the research papers appended in Part
II.

Part I is structured as follows. Chapter 2 introduces fundamental concepts
in optimal control and numerical optimization and lays the theoretical founda-
tion for understanding the subsequent chapters. The cooperative eco-driving
platoon control problem is briefly introduced in Chapter 3. There, it is shown
how solving this problem can be done in a distributed fashion by using the
Riccati recursion. Chapter 4 then formulates the eco-driving and operational
control problem for a line of electric buses and proposes a primal decomposi-
tion scheme aiming at decoupling individual bus subproblems. The focus of
Chapter 5 is on the operational control and charging scheduling problem for
an electric bus network. It is detailed there how a dual decomposition scheme
based on Lagrangian relaxation can be deployed on this problem. A succinct
summary for each of the publications included in Part II is then offered in
Chapter 6. Finally, Chapter 7 presents some concluding remarks as well as
suggestions for future research directions.
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CHAPTER 2

Preliminaries

This chapter provides some mathematical background useful for understand-
ing this thesis. In particular, a brief introduction to optimal control and
numerical optimization is given. Popular algorithms for smooth optimization
like Sequential Quadratic Programming (SQP) algorithms and Primal-dual In-
terior Point (PDIP) algorithms are briefly described. This presentation draws
upon [40], [48], [49], among other works.

2.1 Optimal control
Optimal control combines the control of dynamical systems, i.e. processes
described by states and evolving over time according to some deterministic
or stochastic rule, with optimization. Solving an Optimal Control Problem
(OCP) amounts to finding the control trajectory that minimizes a certain cost
functional subject to the evolution rule of the dynamical system and to some
additional path constraints. In this thesis, we consider deterministic dynam-
ical systems whose evolution rule can be formulated as ordinary differential
equations.

An OCP between an initial time t0 and a final time tf has the general form:
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min
x(.),u(.)

V (x(tf ), tf ) +
∫ tf

t0

l(x(t), u(t), t)dt (2.1a)

s.t. x(t0) = x̄0, (2.1b)
∀t ∈ [t0, tf ] :
ẋ(t) = f(x(t), u(t), t), (2.1c)
g(x(t), u(t), t) ≤ 0, (2.1d)

where x and u are the state and control input trajectories, respectively, V is
the terminal cost, l is the stage cost, x̄0 is the initial state, f represents the
system dynamics, and g represents the path constraints. In this version, no
endpoint conditions are considered.

There are two main ways of solving OCPs of the form (2.1): direct and
indirect approaches.

Indirect approaches

These approaches have been popular to solve OCPs historically, before the ad-
vent of modern computers. They stem from Pontryagin’s maximum principle,
which establishes necessary conditions for the optimal control input trajectory
and the associated state trajectory [40]. These conditions can be expressed
to form a two-point Boundary Value Problem (BVP). However, the BVP can
only be solved analytically for simple systems and must be solved numerically
in most practical applications, especially when considering path constraints.
This is why indirect methods are sometimes referred to as the “first optimize,
then discretize” approach to optimal control: some optimality conditions are
first derived, and then the resulting BVP is discretized in order to be solved
numerically. Indirect approaches have nowadays mostly been supplanted by
direct approaches for large-scale OCPs or OCPs with many path constraints.

Direct approaches

Direct methods take the opposite approach than indirect methods, which has
earned them the name of the “first discretize, then optimize” approach to op-
timal control. They proceed by first forming an optimization problem whose
solution is an approximation of the solution of the original OCP, and then by
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2.1 Optimal control

solving it. For continuous-time OCPs of the form (2.1), feasible sets for solu-
tion candidates consist of infinite-dimensional function spaces. By contrast,
feasible sets in regular optimization problems only consist of finite-dimensional
vector spaces, and effective numerical algorithms are today available to solve
such problems. This will be discussed later in this chapter.

Since only direct approaches have been used in this thesis, we now detail how
the discretization step can be carried out. A parametrized approximation of
the control input trajectory is usually searched for in the discretized problem.
A standard input parametrization choice is that of a piecewise constant input
on a uniform time grid, t0, t1, ..., tNk

, where Nk is the number of grid intervals
and where tNk

= tf . In this case, u(t) = uk, ∀t ∈ [tk, tk+1[, with k ∈
J0, Nk − 1K. The control input trajectory would then be approximated by the
vector of control inputs u = [u0, ..., uNk−1]⊤.

Similarly, the state trajectory can be approximated through multiple shoot-
ing by the state vector x = [x0, ..., xNk

]⊤, where each xk, k ∈ J0, NkK, denotes
the state value at the k-th grid point. Numerical integration is necessary
to express the stage cost (2.1a) and the dynamics (2.1c) in the discretized
problem. Numerical integrators can be either explicit or implicit, and there
are many different methods available, the most prominent of which are Euler
methods, Runge-Kutta methods, and collocation methods [48]. Regardless of
which numerical integrator is chosen, a discretized version of OCP (2.1) is:

min
x,u

V (xNk
) +

Nk−1∑
k=0

Lk(xk, uk) (2.2a)

s.t. x0 = x̄0, (2.2b)
∀k ∈ J0, Nk − 1K :
xk+1 = Fk(xk, uk), (2.2c)
gk(xk, uk) ≤ 0, (2.2d)

where Lk and Fk carry out the numerical integration on the interval [tk, tk+1[
of the stage cost l and system dynamics f , respectively, and where gk enforces
the path constraints g at the k-th grid point.

The optimization problem (2.2) obtained has a nonlinear objective function
and nonlinear constraints in the general case, which makes it a Nonlinear
Program (NLP). The next section shows how optimization problems of this
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type can be solved numerically.

2.2 Numerical optimization
Let us consider a general NLP:

min
x

f(x) (2.3a)

s.t. gi(x) = 0, i = 1, ...,m, (2.3b)
hi(x) ≤ 0, i = 1, ..., p, (2.3c)

where x ∈ Rn is now the vector of decision variables, f : Rn → R is the cost
function, g = [g1, ..., gm]⊤ are the equality constraints, with g : Rn → Rm,
and h = [h1, ..., hp]⊤ are the inequality constraints, with h : Rn → Rp.

A smooth version of NLP (2.3) is considered here, where the functions f ,
g, and h are twice continuously differentiable at least. These functions are
nonlinear in the general case, but there exist a few cases of interest which
deserve special mention. If f and h are convex functions and g is an affine
function, then (2.3) is a convex NLP. Similarly, if f is a quadratic function
and g and h are both affine functions, (2.3) is a Quadratic Program (QP). In
case f is affine as well, (2.3) reduces to a Linear Program (LP).

Optimality conditions

A few basic properties on the optimality of NLP (2.3) are now reviewed.

Definition 2.1 (Feasibility) A point x ∈ Rn is said to be feasible in (2.3) if
x ∈ Ω, where Ω is the feasible set of the problem and is defined as Ω = {x ∈
Rn| g(x) = 0, h(x) ≤ 0}.

Definition 2.2 (Global minimum) A point x∗ ∈ Ω is said to be a global
minimizer of the minimization problem (2.3) if

f(x∗) ≤ f(x), ∀x ∈ Ω. (2.4)

In this case, f(x∗) is said to be the global minimum of the problem.
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2.2 Numerical optimization

Definition 2.3 (Local minimum) A point x∗ ∈ Ω is said to be a local mini-
mizer of the minimization problem (2.3) if there exists a neighborhood N of
x∗ (e.g. an open ball) such that:

f(x∗) ≤ f(x), ∀x ∈ Ω ∩N . (2.5)

Definition 2.4 (Active constraints) An inequality constraint hi is said to be
active at a point x ∈ Ω if hi(x) = 0, and inactive otherwise. The active set
A(x) = {i ∈ J1, pK|hi(x) = 0} is then defined as the index set of the inequality
constraints that are active at x.

Before we assemble the first-order optimality conditions of NLP (2.3), the
concept of regularity must be briefly discussed. Feasible points are said to
be regular if they verify some constraint qualification conditions. Here, we
only present the one most commonly used in practice: Linear Independence
Constraint Qualification (LICQ).

Definition 2.5 (LICQ) The LICQ condition is said to hold at a given lo-
cal minimizer x∗ of problem (2.3) if the gradients of the equality constraints
{∇xgi}i∈J1,mK and active inequality constraints {∇xhi}i∈A(x∗) are linearly in-
dependent at x∗.

Definition 2.6 (Lagrangian function) The Lagrangian function of problem
(2.3) is defined as:

L(x, λ, µ) = f(x) + λ⊤g(x) + µ⊤h(x), (2.6)

where λ ∈ Rm and µ ∈ Rp are the Lagrange multipliers associated with the
equality and inequality constraints, respectively.

We are now ready to state the first-order optimality conditions of NLP (2.3),
also known as the Karush-Kuhn-Tucker (KKT) conditions.

Theorem 2.1 (KKT conditions) If x∗ is a regular local minimizer of (2.3),
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then ∃λ∗, µ∗ such that:

∇xL(x∗, λ∗, µ∗) = 0, (2.7a)
gi(x∗) = 0, i = 1, ...,m, (2.7b)
hi(x∗) ≤ 0, i = 1, ..., p, (2.7c)
µ∗

i hi(x∗) = 0, i = 1, ..., p, (2.7d)
µ∗

i ≥ 0 i = 1, ..., p. (2.7e)

In this case, x∗ is said to be a KKT point.

In the KKT conditions, (2.7b) and (2.7c) are the primal feasibility condi-
tions, simply ensuring that KKT points are part of the feasible set, and (2.7e)
are the dual feasibility conditions. Next, condition (2.7a) is usually called the
stationarity condition, and (2.7d) the complementary slackness.

Note that the KKT conditions are only necessary conditions for optimality:
not all KKT points are local minimizers. Nonetheless, KKT conditions play
an important role in continuous optimization as they form the basis on which
many numerical solvers are built, as will be seen shortly. For now, we make
the observation that convex problems constitute an interesting class of NLPs.
Indeed, for convex problems, the necessary conditions for optimality become
sufficient conditions, and local optimality leads to global optimality, as stated
in the following theorem.

Theorem 2.2 (Optimality of convex problems) If problem (2.3) is convex,
then any KKT point is also a global minimizer.

For non-convex problems, it is also of interest to have access to a set of
sufficient conditions for optimality. The second-order optimality conditions
of NLP (2.3), also known as the Second Order Sufficient Conditions (SOSC),
give us just that.

Definition 2.7 (Set of linearized feasible directions) The set of linearized
feasible directions at a feasible point x ∈ Ω is defined as:

F(x) = {d ∈ Rn| ∇g(x)⊤d = 0, ∇hi(x)⊤d ≤ 0, ∀i ∈ A(x)}. (2.8)
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Theorem 2.3 (SOSC) Let {x∗, λ∗, µ∗} satisfy the KKT conditions. If

d⊤∇2
xxL(x∗, λ∗, µ∗)d > 0, ∀d ∈ C(x∗, µ∗)\{0}, (2.9)

where C(x∗, µ∗) = {d ∈ F(x∗)| ∇hi(x∗)⊤d = 0, ∀i ∈ A(x∗) s.t. µ∗
i > 0} is the

critical cone, then the SOSC hold and x∗ is a strict local minimizer of (2.3).

The SOSC use curvature information to guarantee that no feasible direction
starting from a local minimizer x∗ can generate any improvement in the cost
function. The proofs of Theorems 2.1-2.3 can be found in [49].

We are now ready to present two of the most widely used methods for
solving NLPs: the sequential quadratic programming method and the primal-
dual interior point method. Both the SQP and PDIP methods fall into the
category of second-order optimization methods, which get their name from
the fact that they use information from both first-order and second-order
derivatives of the objective function and constraints to operate. At their core
lies the celebrated Newton’s method.

Newton’s method

Newton’s method is a root-finding algorithm that iteratively refines a solution
candidate by taking steps along the direction of the gradient of the function at
the current candidate. To illustrate how Newton’s method works in practice,
consider the root-finding problem:

r(z) = 0, (2.10)

where z ∈ Rn and r : Rn → Rn is a continuously differentiable function.
Newton’s method solves this problem by constructing a sequence of iterates,
starting from an initial guess z[0]. Each subsequent iterate is computed as:

z[j+1] = z[j] + α[j]∆z[j], (2.11)

where α[j] is the step size and ∆z[j] is the Newton direction. The Newton
direction is calculated as the solution of:

∇zr
(
z[j])∆z[j] + r(z[j]) = 0, (2.12)

19



Chapter 2 Preliminaries

where the Newton direction is well-defined only if the gradient ∇zr(z[j]) is
nonsingular.

The main strength of Newton’s method is its very fast convergence speed to
the roots of a function under good conditions. The following theorem states a
strong convergence speed result when applying Newton’s method to solve the
system of KKT conditions of an equality-constrained NLP.

Theorem 2.4 (Convergence speed of Newton’s method) If LICQ and SOSC
hold at the optimal solution and if Newton’s method is initiated sufficiently
close to the optimal solution, then the iterates generated by Newton’s method
converge quadratically to the optimal solution.

The proof can be found in [49]. Here it must be pointed out how fast
a quadratic convergence speed really is: the number of correct digits of the
iterates roughly doubles at each iteration. Even when some of the assumptions
of Theorem 2.4 do not hold, it is possible to show that Newton’s method still
benefits from a superlinear convergence speed. Both the SQP and PDIP
methods apply Newton’s method to solve NLP (2.3) and as such benefit from
its powerful convergence properties.

Most of the numerical algorithms for solving NLPs are essentially “KKT
solvers” in that they usually operate by generating a sequence of iterates con-
verging to a KKT point. In the case of the SQP and PDIP methods, Newton’s
method is deployed to find solutions to the system of equations formed by the
KKT conditions (2.7). However, the presence of inequality constraints com-
plicates the root-finding procedure presented earlier since (2.7c) and (2.7e)
are inequalities, and since the complementary slackness conditions (2.7d) are
non-smooth. Next, we give a detailed presentation of each method and show
how they handle these issues.

Sequential quadratic programming

The SQP method operates by iteratively generating a sequence of primal-dual
solution candidates for NLP (2.3). The Newton directions are computed by
solving local QP approximations of NLP (2.3) around each of the solution
candidates. The Newton step is then selected as the best descent direction
based on the local curvature information.

More specifically, the Newton direction at each SQP iteration j is calculated
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by solving the inequality-constrained QP:

min
∆x

1
2∆x⊤∇2

xxL
(
x[j], λ[j], µ[j])∆x+∇f(x[j])⊤∆x (2.13a)

s.t. ∇gi(x[j])⊤∆x+ gi(x[j]) = 0, i = 1, ...,m, (2.13b)

∇hi(x[j])⊤∆x+ hi(x[j]) ≤ 0, i = 1, ..., p, (2.13c)

which involves gradients and Hessians of the functions of NLP (2.3) at the
current solution candidate {x[j], λ[j], µ[j]}. Note that the exact Hessian ∇2

xxL
is only used in (2.13a) when LICQ and SOSC hold at the current iterate.
Otherwise, various Hessian approximations are available to choose from.

Let ∆x[j] be the primal solution of (2.13) and λ
[j]
QP and µ

[j]
QP be the dual

solutions. The SQP method then takes a Newton step on the current primal-
dual solution candidate as:

x[j+1] = x[j] + α[j]∆x[j], (2.14a)

λ[j+1] = α[j]λ
[j]
QP + (1− α[j])λ[j], (2.14b)

µ[j+1] = α[j]µ
[j]
QP + (1− α[j])µ[j], (2.14c)

where α[j] is the step size. Various strategies can be used to design the step
size in order to ensure progress when taking the Newton step. A backtracking
procedure can be deployed to adjust the step size in order to guarantee that the
next solution candidate is better than the previous one. The SQP method then
continues iterating until a solution candidate satisfying the KKT conditions
(2.7) up to a certain tolerance threshold is found.

Primal-dual interior point method

The PDIP method is similar to the SQP method in that it also generates a
sequence of primal-dual solution candidates iteratively for NLP (2.3). How-
ever, instead of solving a sequence of local QP subproblems, the PDIP method
indirectly solves a version of the NLP where the inequality constraints have
been relaxed through the introduction of slack variables. PDIP algorithms
tend to be faster than SQP algorithms on large NLPs, but their convergence
is generally not as robust.

The PDIP method proceeds by iteratively solving a relaxed version of the
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KKT conditions (2.7):

∇xL(x, λ, µ) = 0, (2.15a)
gi(x) = 0, i = 1, ...,m, (2.15b)
hi(x) + si = 0, i = 1, ..., p, (2.15c)
µisi − τ = 0, i = 1, ..., p, (2.15d)
µi ≥ 0, i = 1, ..., p, (2.15e)
si ≥ 0, i = 1, ..., p, (2.15f)

where τ is the barrier parameter, and s = [s1, ..., sp]⊤ is the vector of slack
variables. Part of the rationale for considering these modified KKT conditions
is that the complementary slackness conditions have now been smoothened in
(2.15d), thanks to the barrier parameter. These modified conditions provide
an approximation of the original KKT conditions (2.7) that gets gradually
closer as τ → 0. Observe that the original KKT conditions are recovered when
τ = 0. PDIP solvers are usually initialized with a large barrier parameter τ ,
where the convergence of Newton’s method is boosted by the smoother KKT
conditions. As iterations progress, τ is then gradually decreased to approach
the KKT conditions of the original problem, and the algorithms normally
terminate when (2.15) has been solved for a small enough value of τ .

Newton’s method can be applied directly on the subset of conditions (2.15a)-
(2.15d) since they are all equalities. The Newton direction at iteration j is
then given by solving the system:

H [j] ∇g(x[j]) ∇h(x[j]) 0
∇g(x[j])⊤ 0 0 0
∇h(x[j])⊤ 0 0 I

0 0 Σ[j] Λ[j]




∆x[j]

∆λ[j]

∆µ[j]

∆s[j]

 = −


∇xL(x[j], λ[j], µ[j])

g(x[j])
h(x[j]) + s[j]

Σ[j]µ[j] − τ [j]e


(2.16)

where H [j] = ∇2
xxL(x[j], λ[j], µ[j]) is the exact Hessian, where Λ[j] = diag(µ[j])

and Σ[j] = diag(s[j]), where I is the identity matrix, and where e = [1, ..., 1]⊤.
Note that (2.16) is sometimes called the KKT system, and the large matrix
on the left-hand side the KKT matrix.
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Taking a step along the Newton direction is similar to the SQP method:

x[j+1] = x[j] + α[j]∆x[j], (2.17a)

λ[j+1] = λ[j] + α[j]∆λ[j], (2.17b)

µ[j+1] = µ[j] + α[j]∆µ[j], (2.17c)

s[j+1] = s[j] + α[j]∆s[j]. (2.17d)

Here, however, some backtracking on µ[j+1] and s[j+1] is needed in order
to ensure that the inequality conditions (2.15e) and (2.15f) hold at the next
solution candidate. This is pretty straightforward since backtracking on µ and
s does not require any function evaluation, and the step size can simply be
chosen as α[j] = min(α[j]

µ , α
[j]
s ), where α[j]

µ = max(α ∈]0, 1]| µ[j] + α∆µ[j] ≥ 0)
and α

[j]
s = max(α ∈]0, 1]| s[j] + α∆s[j] ≥ 0). An additional backtracking step

may then be carried out in order to ensure progress.
Finally, note that the PDIP method, together with another optimization

method called the active-set method, often forms the basis of modern numer-
ical QP solvers, which can for instance be used to solve the QP subproblems
(2.13) arising in the SQP method.

Mixed-integer problems

We have so far presented numerical methods for solving continuous optimiza-
tion problems, a general form of which is given as NLP (2.3). The presentation
is now extended to include optimization problems where some of the decision
variables are restricted to take integer values, so-called mixed-integer prob-
lems.

Without loss of generality, a general form for a mixed-integer optimization
problem where all integer variables are represented as binary variables is:

min
xc,xb

f(xc, xb) (2.18a)

s.t. g(xc, xb) = 0, (2.18b)
h(xc, xb) ≤ 0, (2.18c)
xb ∈ {0, 1}nb , (2.18d)

where xc ∈ Rnc denotes the vector of continuous variables, xb is the vector of
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binary variables, nc and nb are the number of continuous and binary variables,
respectively, f is the objective function, g is the vector of equality constraints
and h is the vector of inequality constraints. Note that if the vector of binary
variables is empty, i.e. if xb = ∅, then problem (2.18) essentially reduces to
NLP (2.3).

A popular general framework for solving mixed-integer problems of the form
(2.18) is the family of Branch and Bound (BnB) methods. The core idea be-
hind these methods is to iteratively explore a search tree in which each branch
represents a subset of solutions for the integer variables of the problem. The
tree search is carried out by gradually improving an upper and lower bound
on the optimal value of the problem. The upper bound is normally improved
by finding better feasible solutions, while the lower bound is usually improved
by solving continuous subproblems at tree nodes in which the integrality con-
straints have been relaxed. There exist many BnB variants, differing mainly
in their search strategy, but this general procedure lies at the heart of many
well-established solvers for mixed-integer problems today.

In the rest of this thesis, the general form (2.18) and its associated notation
are used when formulating optimization problems.
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CHAPTER 3

Truck Platoon Control

Each of the next three chapters is centered on one of the control problems
treated in this thesis. Each problem is first formulated as a general optimiza-
tion problem where the coupling structure between vehicles is made apparent.
Then, a decomposition scheme is presented to exploit the specific coupling
structure of each problem with the goal of distributing most of the computa-
tions required to solve it.

The cooperative eco-driving control problem for a platoon of electric trucks
is the focus of this chapter. It is shown how the Riccati recursion can be
deployed to fully distribute second-order optimization algorithms when solving
this problem.

3.1 Problem formulation
The platoon eco-driving control problem consists of finding speed profiles for
all vehicles of the platoon over a given control horizon such that the overall
energy consumption of the platoon is minimized. In the version of the problem
formulated in Paper A, a continuous model for the longitudinal dynamics of
the vehicles is assembled in the space domain. In this problem, the state
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variables are the speed (or, more precisely, the kinetic energy) and travel time
of each vehicle, and the control inputs are the longitudinal and braking force
of each vehicle.

No binary variables are needed when assembling the cooperative eco-driving
control problem of a truck platoon. Therefore, xb = ∅ and xc is noted as x in
this section for the sake of clarity. Here, an index i denotes the i-th truck of
the platoon, where it is assumed that the platoon leader has an index 1. The
optimization problem formulated in Paper A can be written conceptually as:

min
x

N∑
i=1

fi(xi) (3.1a)

s.t. g1(x1) = 0, (3.1b)
h1(x1) ≤ 0, (3.1c)
∀i ∈ J2, NK :
gi(xi−1, xi) = 0, (3.1d)
hi(xi−1, xi) ≤ 0, (3.1e)

where N is the number of trucks in the platoon, where the optimization vari-
ables are organized as x = [x1, ..., xN ]⊤, where the constraint functions are
organized as g = [g1, ..., gN ]⊤ and h = [h1, ..., hN ]⊤, and where the objective
function term for each truck i is noted fi.

It can be observed in (3.1) that the constraints of the platoon leader have
a different form than the constraints of the other platoon members. Indeed,
since the platoon leader is not closely trailing behind any other truck, its
equality constraints (3.1b) consist of its own longitudinal dynamics, and its
inequality constraints (3.1c) include speed limits, the power limitations of its
electric motor, and a final travel time constraint. Constraints for the other
trucks contain all these terms as well, but the equality constraints (3.1d) also
include a drag reduction term dependent on the distance with the preceding
truck, and the inequality constraints (3.1e) include safety constraints that
specify a minimum acceptable distance to the preceding truck. Since (3.1)
is an eco-driving problem, the objective function is simply the overall energy
consumption of the platoon.

The objective function of the problem is separable since the overall en-
ergy consumption is the sum of the energy consumption of individual trucks.

26



3.2 The Riccati recursion

However, both the drag reduction and collision avoidance terms introduce con-
straint coupling. The coupling structure is particular as each vehicle is only
coupled to its immediate neighbors in the platoon, resulting in a so-called
chain-like structure. This coupling structure has interesting properties for
solving the problem, as will be explained in a moment.

The version of problem (3.1) formulated in Paper A has a nonlinear objective
function and nonlinear constraints and is therefore an NLP. No decomposition
method is applied directly to this NLP. Instead, if one deploys second-order op-
timization algorithms, like an SQP or PDIP algorithm, to solve NLP (3.1), one
can in fact decompose the computations required by the algorithms due to the
particular chain-like structure of a vehicle platoon. Here, the decomposition
step takes place directly in the low-level computations rather than upstream
when formulating the problem. The proposed decomposition scheme is based
on the concept of Riccati recursion, to which we now give a brief introduction.

3.2 The Riccati recursion
Let us consider the finite-horizon, discrete-time Linear-quadratic (LQ) control
problem, which can be written as the generic QP:

min
X,U

Nk−1∑
k=0

(
1
2

[
Xk

Uk

]⊤ [
Qk Mk

M⊤
k Rk

] [
Xk

Uk

]
+
[
qk

rk

]⊤ [
Xk

Uk

])
+ 1

2X
⊤
Nk
QNk

XNk
+ q⊤

Nk
XNk

(3.2a)

s.t. X0 = X̄0, (3.2b)
∀k ∈ J0, Nk − 1K :
Xk+1 = AkXk +BkUk + ck, (3.2c)

where X = [X0, ..., XNk
]⊤ ∈ Rn(Nk+1) is the vector of state variables and

U = [U0, ..., UNk−1]⊤ ∈ RmNk is the vector of control inputs, X̄0 ∈ Rn is the
vector of initial conditions, Nk is the horizon length, Qk,Rk,Mk are penalty
matrices and qk,rk are penalty vectors, and the matrices Ak,Bk and the vector
ck are used to write the dynamics.

This type of LQ problem often appears in MPC-related applications [41], in
particular when solving MPC-type optimization problems with second-order
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iterative methods, where subproblems with the form (3.2) usually need to be
solved at each iteration [50]–[53]. It is standard to assume that the matrices:[

Qk Mk

M⊤
k Rk

]
, ∀k ∈ J0, Nk − 1K, (3.3)

are positive semidefinite, and that all matrices Rk, k ∈ J0, Nk−1K, are positive
definite. These assumptions constitute a sufficient condition for problem (3.2)
to have a unique solution [51].

The optimal solution of (3.2) can be obtained by solving the KKT condi-
tions:

QkXk +MkUk + qk +A⊤
k λk+1 − λk = 0, ∀k ∈ J0, Nk − 1K, (3.4a)

M⊤
k Xk +RkUk + rk +B⊤

k λk+1 = 0, ∀k ∈ J0, Nk − 1K, (3.4b)
QNk

Xk + qNk
− λNk

= 0, (3.4c)
X0 = X̄0, (3.4d)
Xk+1 = AkXk +BkUk + ck, ∀k ∈ J0, Nk − 1K, (3.4e)

where λ0 ∈ Rn are the Lagrange multipliers associated with the initial con-
ditions constraint (3.2b), and each λk ∈ Rn, k ∈ J1, NkK, are the Lagrange
multipliers associated with the equality constraints (3.2c).

Equivalently, these KKT conditions can be assembled to form the KKT
system:

TZ = L, (3.5)

where T is the KKT matrix, where Z gathers the primal-dual optimization
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3.2 The Riccati recursion

variables and L the constant terms, such that:

T =



−I
−I Q0 M0 A⊤

0
M⊤

0 R0 B⊤
0

A0 B0 −I
−I Q1 M1

M⊤
1

. . . . . .

. . . QNk−1 MNk−1 A⊤
Nk−1

M⊤
Nk−1 RNk−1 B⊤

Nk−1
A⊤

Nk−1 BNk−1 −I
−I QNk


(3.6a)

Z =
[
λ0 X0 U0 λ1 X1 . . . XNk−1 UNk−1 λNk

XNk

]⊤ (3.6b)

L =
[
−X̄0 −q0 −r0 −c0 . . . −rNk−1 −cNk−1 −qNk

]⊤ (3.6c)

It can be observed that the KKT matrix for the LQ problem (3.6a) is sparse
and has a particular banded structure. The Riccati recursion is an algorithm
that is designed to exploit this particular structure and provide the solution
of the KKT system (3.5). Instead of directly inverting the KKT matrix, the
Riccati recursion factorizes it during a backward sweep and then computes
the optimal solution during a forward sweep. Performing these two successive
sweeps has a lower computational complexity than performing a direct inver-
sion of the KKT matrix [50]. For this reason, the Riccati recursion is often
used today in high-performance solvers for MPC applications [54].

The complete derivation of the Riccati recursion for the LQ problem (3.2) is
left outside the scope of this thesis. Instead, we refer the interested reader to
[53], where a comprehensive treatment of the topic is given. Only an adapted
version of the Riccati recursion algorithms for the standard problem (3.2) is
reproduced here.

Algorithm 1 presents the operations that take place during the backward
sweep of the Riccati recursion. A matrix Pk and a vector ψk are computed for
each stage of the LQ problem. Then, the optimal solution of the problem is
computed iteratively during the forward sweep, which is detailed in Algorithm
2. Note that the entire Riccati recursion procedure for solving the discrete-
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Algorithm 1: Backward sweep of the Riccati recursion
1 PNk

← QNk
, ψNk

← −qNk

2 for k = Nk − 1, ..., 0 do
3 Λk+1 ← (Rk +B⊤

k Pk+1Bk)−1

4 Pk ← Qk +A⊤
k Pk+1Ak− (A⊤

k Pk+1Bk +Mk)Λk+1(B⊤
k Pk+1Ak +M⊤

k )
5 Ψk ← −(Mk +A⊤

k Pk+1Bk)Λk+1(B⊤
k Ψk+1 − rk −B⊤

k Pk+1ck)+
A⊤

k Ψk+1 − qk −A⊤
k Pk+1ck

6 end

Algorithm 2: Forward sweep of the Riccati recursion
1 X0 ← X̄0
2 for k = 0, ..., Nk − 1 do
3 Uk ← Λk+1(B⊤

k Ψk+1−rk−B⊤
k Pk+1ck)−Λk+1(B⊤

k Pk+1Ak +M⊤
k )Xk

4 λk ← PkXk − ψk

5 Xk+1 ← AkXk +BkUk + ck

6 end
7 λNk

← PNk
XNk

− ψNk

time LQ problem (3.2) is conceptually very close to the standard dynamic
programming solution, see e.g. [41] and [55]. In fact, the operation on Line
4 of Algorithm 1 is none other than the discrete-time Riccati equation. By
solving the KKT system (3.5), the Riccati recursion provides the optimal
solution of the QP (3.2).

3.3 Decomposition method

We now turn our attention back to the platoon control problem. As mentioned
before, the optimization problem (3.1) is an NLP and can be solved with iter-
ative second-order methods, like SQP or PDIP. Doing so ultimately requires
having to solve subproblems at each iteration, regardless of the method chosen.
Adapting the notation a bit, it is shown in Paper A that these subproblems
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have the general form:

min
X,U

N∑
i=1

(
1
2

[
Xi−1
Ui

]⊤ [
Qi−1 Mi

M⊤
i Ri

] [
Xi−1
Ui

]
+
[
qi−1
ri

]⊤ [
Xi−1
Ui

])
+ 1

2X
⊤
NQNXN + q⊤

NXN (3.7a)

s.t. X0 = 0, (3.7b)
∀i ∈ J1, NK :
Xi = AiXi−1 +BiUi + ci. (3.7c)

Here, the notation introduced at the beginning of this chapter has been read-
opted: an index i denotes the i-th truck of the platoon, and N is the total
number of trucks. In this problem, the subscript i denotes local information
that only the i-th truck has access to. Since the end goal is to design a fully
distributed control algorithm for the platoon, it is crucial to keep track of ex-
actly what information needs to be exchanged between vehicles when solving
the subproblems.

The version of the subproblems given in (3.7) has been adapted from (A.16)
in Paper A. The original version is obtained by using the SQP method to solve
(3.1) and also includes linear inequality constraints. These constraints are not
reproduced here, however, for the sake of keeping this presentation concise. In
fact, it is shown in Paper A that the general structure of the KKT matrix of
the subproblems is not modified when linear inequality constraints are present.
We refer the interested reader to Paper A for more details on how inequality
constraints can be addressed in that case.

At first sight, the QP (3.7) appears to have a very similar structure to the
standard LQ problem (3.2). In fact, they can be shown to be exact same
problem when carrying out the following variable and index changes in (3.7):

Xi−1 ← X̃i, ∀i ∈ J1, N + 1K, (3.8a)
Qi−1 ← Q̃i, ∀i ∈ J1, N + 1K, (3.8b)
qi−1 ← q̃i, ∀i ∈ J1, N + 1K, (3.8c)
i← i− 1, ∀i ∈ J1, N + 1K, (3.8d)

where X̃i would then be the new name given to the state vectors. In other
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words, problems (3.2) and (3.7) have the same structure, but the variables
have been indexed differently. The reason for this is that the standard LQ
control problem (3.2) is assembled stage-by-stage, whereas the subproblem
(3.7) has been organized vehicle-by-vehicle. More precisely, the individual
stage-by-stage dynamics of each vehicle in (3.7) have been “hidden” away in
their local state vector in order for the coupling structure between vehicles to
appear in the QP. The coupling between the trucks in the platoon is clearly
visible in the equality constraints (3.7c), as the states of truck i depend on
its own control inputs, but also on the states of the preceding truck i− 1 due
to the distance-dependent drag reduction that comes from driving close to
another truck. The zero initial conditions in (3.7b) model the fact that the
platoon leader (with index 1) does not benefit from any drag reduction since
it is not trailing behind another truck.

Since the subproblems (3.7) have the same structure as the standard LQ
control problem (3.2), their KKT matrix has the same banded structure as
in (3.6a), and the Riccati recursion can thus be applied to solve them. This
time, the larger blocks inside the KKT matrix each contain the matrices and
local parameters corresponding to one vehicle. Consequently, the operations
carried out at each step of the backward and forward sweeps in the Riccati
recursion mostly involve the local data of a single truck. This particular way
to solve the truck subproblems opens the door to a fully distributed solution
method, as explained in the next section.

3.4 Distributed optimization
Algorithm 1 and Algorithm 2, which present the Riccati recursion for a stan-
dard LQ control problem, are now modified to adopt the notation used in the
truck platoon subproblems.

Algorithm 3 and Algorithm 4 present the Riccati recursion algorithms for
the truck platoon subproblems (3.7). The order in which the operations are
presented has been slightly modified compared to Algorithm 1 and Algorithm
2 in order to clearly highlight the role of each vehicle and the information
exchange needed to solve the subproblems. Remember that the notations have
been chosen such that each subscript i denotes the local information of truck
i. In these algorithms, the index of the truck involved in the computations is
given at the beginning of each line. Variables and coefficients with subscript
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Algorithm 3: Backward sweep of the Riccati recursion for the truck
platoon subproblem (3.7)

1 N : PN ← QN , ψN ← −qN

2 for i = N, ..., 2 do
3 i: Λi ← (Ri +B⊤

i PiBi)−1

4 i: Pi−1 ← A⊤
i PiAi − (A⊤

i PiBi +Mi)Λi(B⊤
i PiAi +M⊤

i )
5 i: Ψi−1 ← −(Mi +A⊤

i PiBi)Λi(B⊤
i Ψi − ri −B⊤

i Pici)−A⊤
i Pici

+A⊤
i Ψi

6 i: send Pi−1 and ψi−1 to bus i− 1
7 i− 1: Pi−1 ← Pi−1 +Qi−1
8 i− 1: ψi−1 ← ψi−1 − qi−1
9 end

Algorithm 4: Forward sweep of the Riccati recursion for the truck
platoon subproblem (3.7)

1 1: X0 ← 0, λ0 ← P0X0 − ψ0
2 for i = 1, ..., N do
3 i: Ui ← Λi(B⊤

i Ψi − ri −B⊤
i Pici)− Λi(B⊤

i PiAi +M⊤
i )Xi−1

4 i: Xi ← AiXi−1 +BiUi + ci

5 i: λi ← PiXi − ψi

6 i: send Xi to bus i+ 1
7 end

0 have been included in order to make comparisons with the standard LQ
problem easier, but they do not matter in the computations. Note also that
Line 6 in the forward sweep algorithm does not apply to the last truck of the
platoon with index N .

Thanks to the chain-like structure of the truck platoon, the backward and
forward sweeps of the Riccati recursion can be carried out physically up and
down the platoon by letting each truck take care of its own computations.
To do so, each intermediary truck i needs to receive matrix Pi and vector ψi

from the following truck during the backward sweep (Line 6 in Algorithm 3),
and the state vector Xi−1 from the preceding truck during the forward sweep
(Line 6 in Algorithm 4), as symbolized in Figure 3.1. This means that the
local information of each truck does not need to be communicated to other
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Figure 3.1: Representation of the inter-truck communications needed during the
Riccati recursion.

trucks, thus making this procedure privacy-preserving. Note that additional
information related to the overarching optimization algorithm would also need
to be exchanged when solving the platoon control problem (3.1). This includes
step size and termination criterion information of the SQP or PDIP algorithm
deployed for instance, none of which compromises the privacy-preserving na-
ture of the proposed method. We refer the interested reader to Paper A for an
in-depth presentation of the entire solution method. Additionally, some level
of parallelization could in principle be achieved in Algorithm 3 and Algorithm
4. Even though the operations are performed sequentially in these algorithms,
vehicles could start precomputing the local linear algebra operations required
while waiting for the missing terms to be communicated to them by the other
vehicles.

As we have seen, the proposed algorithms do not require centralized com-
putations. We believe that having a fully distributed control method for the
cooperative eco-driving of a truck platoon has promising practical implica-
tions. Since trucks do not need to communicate their local information with
other trucks and are ultimately responsible for computing their own solution,
it is conceivable that trucks belonging to different transportation companies
agree to form a platoon together for their mutual benefit. Such platoons could
be formed spontaneously while driving by trucks that happen to find them-
selves close to each other. However, it remains to address the question of
electing a platoon leader, since the leader does not benefit from a decreased
drag reduction and has thereby no immediate interest in being part of a pla-
toon. In Paper A, a leader compensation mechanism is proposed where an
equivalent monetary value is estimated from a parametric NLP in which a
virtual drag reduction term has been added for the platoon leader. It is un-
necessary to solve this NLP explicitly once the solution to the original problem
(3.1) is known, and the proposed leader compensation value is therefore cheap
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to compute. This could contribute to making the role of platoon leader more
attractive and thereby facilitate the spontaneous formation of platoons with
the proposed fully distributed control method.
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CHAPTER 4

Bus Line Control

This chapter focuses on the eco-driving and operational control problem for
an electric bus line. A formulation as an optimization problem is given, with
a particular emphasis on the coupling structure of the problem. A primal
decomposition scheme exploiting the weakly coupled structure of the problem
can be deployed to solve it in a scalable and computationally effective way.
The next few sections explain how.

4.1 Problem formulation
The bus line eco-driving and operational control problem is very similar to
the platoon eco-driving control problem in that it also consists of finding
speed profiles for all vehicles over a given control horizon. The cost function
in the bus line control problem includes the overall energy consumption of
the vehicles as well as a service regularity term that penalizes irregular bus
headways. Here too a continuous model for the longitudinal dynamics of the
vehicles is formulated in the space domain. The state variables also include
the speed (or rather, the kinetic energy) and travel time of the vehicles, and
the control variables are the longitudinal and braking force of the vehicles.
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Electric buses are quite similar to electric trucks in how their dynamics and
energy consumption are modeled, and the main difference between the bus
line control problem and the truck platoon control problem presented in the
previous chapter comes from the additional constraints related to passenger
boarding and the service regularity objective.

Note that the bus line model assembled in Paper B relies on the following
modeling assumptions: buses cannot dwell at bus stops longer than needed for
the passenger exchange operation to complete, passenger arrivals at stops are
described by a homogeneous Poisson process, the onboard capacity of buses
is not limited, and overtaking is not allowed.

The formulation of the eco-driving and operational control problem of an
electric bus line is modeled without binary variables in Paper B. Therefore,
here too we have xb = ∅, and use the notation x = xc. An index i now denotes
the i-th bus of the line. The optimization problem assembled in Paper B has
the general form:

min
x

N∑
i=1

fs,i(xi) + fc(xi−1, xi) (4.1a)

s.t. ∀i ∈ J1, NK :
gi(xi) = 0, (4.1b)
hi(xi) ≤ 0, (4.1c)

where N is the total number of buses, where the optimization variables are
such that x = [x1, ..., xN ]⊤, and where the constraints are such that g =
[g1, ..., gN ]⊤ and h = [h1, ..., hN ]⊤. In the objective function, fs,i denotes the
separable objective term which only depends on the variables of bus i, while
fc represents the coupling objective terms. Note that the notation x0 = xN

is used in the objective function (4.1a).
In this problem, the equality constraints (4.1b) represent the longitudinal

dynamics of each vehicle. These dynamics include a model for passenger
accumulation at bus stops in order to capture bus dwell times at stops, since
buses have to stop and pick up passengers at bus stops. Changes in bus
mass resulting from these passenger exchange operations are also captured
in the equality constraints. The inequality constraints (4.1c) include speed
limits and the power limitations of the electric motor of each bus. As for the
objective function (4.1a), the separable objective terms represent the energy
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consumption, which is computed from a detailed model of the electric motor
and battery of each bus. Finally, the coupling objective terms capture the
headways between consecutive buses, hence the coupling between each bus
i and the bus i− 1 preceding it. The objective of this problem is thus to
minimize the overall energy consumption (eco-driving) and to incentivize all
headways to have a similar value (service regularity). Since the longitudinal
dynamics of the vehicles and the energy consumption model used include many
nonlinear terms, the optimization problem (4.1) is an NLP.

4.2 Decomposition method

All constraints are separable in problem (4.1) since the dynamics, speed lim-
its, and motor power limitations are specific to every bus. Similarly, each
energy consumption term only involves variables associated with a single bus.
Only the service regularity terms in the objective function involve more than
one vehicle, as they introduce some coupling between all pairs of neighboring
buses.

The inter-bus coupling through fc in the objective function (4.1a) comes
from only a subset of variables, referred to as coupling variables hereafter.
For each i ∈ J1, NK, let xi = [yi, zi]⊤, where zi are the coupling variables of
bus i. The objective function (4.1a) can thus be rewritten as:

N∑
i=1

fs,i(yi, zi) + fc(zi−1, zi). (4.2)

It turns out that there is only a single coupling variable per pair of neighboring
buses for the bus line problem (4.1). This problem is therefore weakly coupled
as the coupling variables are very few compared with the total number of
variables, which motivates the use of primal decomposition methods [46], [56].
This type of decomposition provides an equivalent bilevel reformulation of the
original problem, where all the coupling variables are gathered in a higher-level
master problem, and where the rest of the terms are separated into lower-level
subproblems that are independent.
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The primal decomposition of problem (4.1) results in the master problem:

min
z

N∑
i=1

fc(zi−1, zi) + fsub,i(zi) (4.3a)

s.t. ∀i ∈ J1, NK :
hfeas,i(zi) ≤ 0, (4.3b)

and in the subproblems:

fsub,i(zi) = min
yi

fs,i(yi, zi) (4.4a)

s.t. ∀i ∈ J1, NK :
gi(yi, zi) = 0, (4.4b)
hi(yi, zi) ≤ 0, (4.4c)

where z = [z1, ..., zN ]⊤ is the vector of coupling variables. Additional con-
straints hfeas,i need to be added in the master problem in order to guarantee
that the values taken by each zi are feasible in the subproblems (4.4). This
additional set of constraints can be defined implicitly as the solution of small
optimization problems, and we refer the interested reader to (B.18) and (B.19)
in Paper B for more details.

4.3 Distributed optimization
The bus line control problem can now be solved by solving the master problem
(4.3) in the primal decomposition. The master problem is an NLP where part
of the objective function is defined implicitly as the solution of the subproblems
(4.4), which are also NLPs, but which are each much larger than the master
problem, in light of what has been said previously.

The key benefit of the primal decomposition scheme is that all subproblems
can now be solved independently since each of them only involves variables
connected to a single bus. In Paper B, it is proposed to solve the master prob-
lem with the SQP method. In the SQP algorithm proposed, computations at
the level of the master problem are few but must be centralized, whereas the
bulk of the computations, which come from having to solve the subproblems,
can be distributed. This makes it possible to design a hierarchical control
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Figure 4.1: Representation of the communication structure between the vehicles
and a central computing node in the proposed hierarchical control ar-
chitecture.

architecture where computations for solving the subproblems could be physi-
cally distributed. One option could be to solve each individual bus subproblem
directly onboard the bus in question, while centralized computations could be
performed by a central computing node, as symbolized in Figure 4.1. This
way, the communication requirements between this central node and the buses
would be minimal, since buses would already have access to the solution for
their own variables and only updates on the coupling variables would need to
be exchanged. Most of the computations could be carried out in parallel with
this procedure, thus potentially leading to significant computational speedups.

Finally, it must be noted that the vehicles are coupled in a chain-like struc-
ture here as well since each bus is only coupled to bus directly preceding and
following it. In the context of this problem, this indicates that the number of
coupling variables scales only linearly with the number of vehicles. Since the
centralized computations involve only the coupling variables, and since the
rest of the computations can be carried out in parallel, the proposed hierar-
chical control architecture scales very well with the number of buses.
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CHAPTER 5

Bus Network Control

This chapter presents a decomposition method for the operational control and
charging scheduling problem for an electric bus network.

5.1 Problem formulation
The control problem assembled in Paper C combines the tactical level charg-
ing scheduling problem, where decisions on when and for how long buses
should charge are taken, and the operational control problem where decisions
on bus speed and holding time are taken. Both types of decisions are taken
over a common control horizon. In order to be able to anticipate bus charg-
ing needs several hours ahead, the horizons considered for this bus network
control problem are significantly longer than they are for the bus line con-
trol problem presented in the previous chapter. As a result, only simplified
discrete dynamics are considered for the vehicles. Contrary to the bus line
control problem, bus holding is now allowed at the common bus terminal in
addition to the speed control of the vehicles. The state variables now include
the travel time, mass, and state-of-charge of each vehicle, and the control in-
puts are now speed commands, bus holding times, binary charging decisions,
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and charging times.
The bus network model considered in Paper C is built with the following

modeling assumptions: bus lines only have a single stop in common which is
also where all the shared charging infrastructure is located, bus holding can
only be carried out at this shared terminal, vehicles can not be redeployed on
a different bus line upon reaching the terminal, and overtaking is not allowed
between buses of the same line.

The bus network operational control and charging scheduling problem, as
it is formulated in Paper C, can then be represented conceptually as:

min
xc,xb

L∑
l=1

fl(xc,l, xb,l) (5.1a)

s.t. hc(xc, xb) ≤ 0, (5.1b)
xb,c ∈ {0, 1}nb,c , (5.1c)
∀l ∈ J1, LK :
gl(xc,l, xb,l) = 0, (5.1d)
hs,l(xc,l, xb,l) ≤ 0, (5.1e)
xb,l ∈ {0, 1}nb,l , (5.1f)

where an index l is used to denote the l-th bus line of the bus network con-
sidered, where L is the number of bus lines considered, where the continuous
variables have been organized as xc = [xc,1, ..., xc,L]⊤, where g = [g1, ..., gL]⊤,
and where fl is the objective function term for each line l. The inequality
constraints have been split into separable line-specific terms hs,l and a term
hc gathering all coupling constraints, such that h = [hs,1, ..., hs,L, hc]⊤. Sim-
ilarly, the nb,l binary variables that are specific to bus line l only are noted
xb,l, and the nb,c coupling binary variables are noted xb,c. The total vector of
binary variables can then be written as xb = [xb,1, ..., xb,L, xb,c]⊤. Note that
the coupling variables only appear in the coupling constraints (5.1b).

Contrary to the other problems presented so far in this thesis, charging
decisions must now be taken for the vehicles. These decisions are modeled
with the binary variables xb,l here, with the consequence of making (5.1) a
mixed-integer problem. The state-of-charge evolution of each vehicle in the
network, including battery charging and energy consumption when driving,
is captured in the equality constraints (5.1d). Additionally, the equality con-
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straints model the dynamics of the vehicles and the evolution of their mass,
which is determined by the passenger exchange operations. Next, the inequal-
ity constraints (5.1e) include travel time bounds on each inter-stop link of the
bus routes, bus capacity constraints, no-overtaking constraints, and, crucially,
constraints on the minimum state-of-charge that each bus must have when
leaving the chargers in order to be able to complete one full trip.

The economic objective function (5.1a) consists of a service regularity cost
term, which penalizes deviations from a desired target headway, and a charging
cost term for each bus line. The coupling constraints (5.1b) are charger exclu-
sion constraints that emerge from the assumption that the available charging
capacity is limited. This assumption is made here since the process of charging
buses in operation is usually carried out with high-power chargers which are
individually very expensive, with the consequence that transit agencies rarely
over-invest in them. These charger exclusion constraints model the fact that
two vehicles can not be using the same charger at the same time. However,
modeling this requires additional binary variables, which are noted xb,c here.
Finally, it must be noted that the objective function and all constraints are
linear in (5.1). This problem is therefore a Mixed-integer Linear Program
(MILP).

5.2 Decomposition method
In (5.1), the objective function and most of the constraints are separable across
bus lines. However, since the charging infrastructure is assumed to be shared
by all buses, the charger exclusion constraints (5.1b) involve all vehicles of
the network, thereby introducing coupling between vehicles from different bus
lines. Similarly, the binary variables xb,c, which appear in these constraints,
are also shared across bus lines. This means that problem (5.1) contains both
coupling variables and coupling constraints. Note that, if one were to zoom in
on the internal coupling structure of each individual bus line, one would find a
chain-like coupling structure between vehicles similar to the one investigated
in the previous chapter. However, only coupling between bus lines has been
exploited for the present problem and it is therefore the sole focus of the rest
of this chapter.

Being an MILP, the bus network problem formulated in (5.1) is NP-complete
[57], and thus suffers from combinatorial explosion. Solving such problems to
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optimality can prove to be difficult in practice, even for relatively small prob-
lem instances. In order for our problem to be tractable, even when considering
larger bus networks, we now present a heuristic solution method based on La-
grangian relaxation.

In a nutshell, the Lagrangian relaxation is a procedure that proposes to
solve a dual problem of the original MILP [58], [59]. This so-called Lagrangian
dual problem is formed by choosing to relax a subset of constraints from the
original problem, usually constraints that would make the problem easier in
some sense if they were removed. However, solving this dual problem is no
guarantee of finding the optimal solution of the original MILP since there
might be a nonzero duality gap, i.e. a difference between the optimal value
of the original problem and of its dual version. Fortunately, the Lagrangian
relaxation is known to generate very small duality gaps in general [58], which
in part motivates its use in the proposed heuristic solution method.

As mentioned before, all the coupling inequality constraints are affine in
the formulation of the operational control and charging scheduling problem
presented in (5.1). By noting K the dimension of hc in (5.1b), the k-th
component of hc, with k ∈ J1,KK, can therefore be expressed as:

L∑
l=1

(Hk
c,lxc,l +Hk

b,lxb,l) +Hk
b,cxb,c + hk, (5.2)

where the constraint coefficients have been gathered in the vectors Hk
c,l, Hk

b,l,
and Hk

b,c, and where hk is a scalar coefficient. Since these constraints are
responsible for the inter-line coupling in the problem, they are chosen to be
relaxed in the proposed Lagrangian relaxation.

Having chosen the coupling constraints for the relaxation, the Lagrangian
function of the problem (5.1) is defined as:

L(xc, xb, λ) =
L∑

l=1
fl(xc,l, xb,l)+

K∑
k=1

λk

[ L∑
l=1

(Hk
c,lxc,l +Hk

b,lxb,l)+Hk
b,cxb,c +hk

]
(5.3)

where λ is a vector containing the Lagrange multipliers associated with the
relaxed constraints (5.2), such that λ = [λ1, ..., λK ]⊤.

Let us now make an observation on the role played by the coupling variables
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xb,c in (5.3). First, let us consider the following minimization problem:

min
xb,c

L(xc, xb, λ) (5.4a)

s.t. xb,c ∈ {0, 1}nb,c (5.4b)

This problem consists in minimizing the Lagrangian function with respect to
the coupling variables only. The optimal solution of this problem is quite
straightforward since the variables xb,c only enter linearly in L in (5.3). The
solution of (5.4) is given by:

xb,c = max
(
− sign

( K∑
k=1

λkHk
b,c

)
, 0
)
. (5.5)

In other words, when minimizing the Lagrangian function L for a fixed vector
of Lagrange multipliers λ, each component of xb,c takes the value 0 or 1
depending on the sign of a fixed coefficient. This observation is useful for
simplifying the Lagrangian relaxation form presented now.

The Lagrangian dual problem can then be formulated as:

max
λ≥0

fdual(λ), (5.6)

where:

fdual(λ) = min
xc,xb

L∑
l=1

fl(xc,l, xb,l) +
K∑

k=1

L∑
l=1

λk(Hk
c,lxc,l +Hk

b,lxb,l) + λkh̃k

(5.7a)
s.t. ∀l ∈ J1, LK :

gl(xc,l, xb,l) = 0, (5.7b)
hs,l(xc,l, xb,l) ≤ 0, (5.7c)
xb,l ∈ {0, 1}nb,l . (5.7d)

Since they did not appear in any of the constraints, the coupling variables
have been removed from the optimization problem (5.7) by making use of the
observation presented above in (5.4)-(5.5). The constant terms resulting from
replacing xb,c by the expression given in (5.5) have been gathered in the terms
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h̃k in (5.7a), together with the other constant terms initially present in the
Lagrangian function.

5.3 Distributed optimization
It can be observed that the optimization problem (5.7) resulting from the
Lagrangian relaxation procedure is separable into line-specific subproblems
since all coupling constraints and variables have been removed. Doing so was
in turn only possible because the coupling variables entered linearly in the
coupling constraints, and were not present in any of the other constraints in
problem (5.1).

In Paper C, it is proposed to solve the Lagrangian dual problem using an
iterative optimization algorithm called the subgradient algorithm. As noted
previously, however, solving (5.6) might not always return the optimal solution
of the original MILP (5.1) and so it must not be forgotten that the proposed
method is a heuristic only.

The process of solving (5.6) with the subgradient algorithm is similar in

Figure 5.1: Representation of the communication structure between the bus lines
and a central computing node in the proposed hierarchical control ar-
chitecture.
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substance to the process of solving the decomposed bus line problem with the
SQP algorithm that was presented in the previous chapter. A few centralized
computations must be carried out at the level of the dual problem (5.6),
but most of the computations needed are for solving the MILP subproblems
(5.7) and can be distributed across bus lines. A similar hierarchical control
structure as for the bus line problem can thus be designed, as displayed in
Figure 5.1. Individual bus line computations, which are responsible for most of
the computation time of the algorithm, can now be carried out in parallel, and
the few centralized computations required can be handled by a shared central
computing node. This results in potentially large runtime improvements, and
makes the proposed solution procedure scalable with the number of bus lines.
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CHAPTER 6

Summary of included papers

This chapter provides a summary of the included papers.

6.1 Paper A
Rémi Lacombe, Sébastien Gros, Nikolce Murgovski, and Balázs Kulc-
sár
Distributed Eco-driving Control of a Platoon of Electric Vehicles Through
Riccati Recursion
IEEE Transactions on Intelligent Transportation Systems,
Vol. 24, pp. 3048-3063, March 2023.

This paper treats the eco-driving control problem for a platoon of electric
trucks. First, the longitudinal dynamics of each vehicle are formulated in the
space domain in order to include the influence of the road gradient and re-
move some nonlinear terms from the models. Since vehicles are driving as
a platoon, safety constraints are added to impose a minimum time headway
between successive vehicles to avoid collisions, and a nonlinear drag reduction
term is added to the dynamics of each vehicle except for the platoon leader.
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Next, the platoon control problem is formulated as an OCP with the goal
of minimizing the total energy consumption of the platoon. A direct opti-
mal control reformulation of this OCP is proposed and an SQP algorithm is
deployed to solve the resulting NLP. At each SQP iteration, the Newton di-
rection is obtained by solving a QP subproblem. By rearranging the decision
variables over successive vehicles and carrying out a few algebraic operations,
it is shown that each QP subproblem has the exact same structure as a stan-
dard inequality-constrained LQ problem. A PDIP algorithm is then proposed
to solve each QP subproblem. By carrying out a few more algebraic opera-
tions, the KKT system to be solved at each PDIP iteration is shown to be the
same as the KKT system of a standard LQ problem. Thanks to the particular
banded structure of the KKT matrix, the Riccati recursion can be deployed
to solve the KKT system. Since the decision variables are assembled vehicle-
by-vehicle, the backward and forward sweeps of the Riccati recursion can be
distributed physically by transmitting information up and down the platoon.
By doing so, individual vehicles do not need to communicate their local in-
formation, thus making the procedure privacy-preserving. All the decisions
related to the termination criteria and step size choices of the overarching
algorithms can be similarly taken in a distributed fashion. This fully dis-
tributed control method is then evaluated in a case study involving a platoon
of electric trucks driving on selected highway segments. It was found that, if
all platoon members are electric trucks, a tighter platoon formation is always
energy-optimal regardless of the road gradient, owing to the efficiency of the
regenerative braking ability of EVs. The proposed cooperative eco-driving
method manages to achieve energy savings in the order of 10% compared
with trucks driving on their own, thus making a strong argument for inde-
pendent trucks to spontaneously form platoons on the go with the proposed
distributed control method. Finally, a compensation mechanism is proposed
for the platoon leader whereby the leader receives a monetary compensation
representing his share of the overall energy savings of the platoon.

6.2 Paper B
Rémi Lacombe, Sébastien Gros, Nikolce Murgovski, and Balázs Kulc-
sár
Bilevel Optimization for Bunching Mitigation and Eco-Driving of Elec-
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tric Bus Lines
IEEE Transactions on Intelligent Transportation Systems,
Vol. 23, pp. 10662-10679, August 2022.

This paper treats the eco-driving and operational control problem for a line
of electric buses. A detailed operational model of a bus line is first assembled,
where the longitudinal bus dynamics are modeled in the space domain. This
feature makes it possible to capture bus dynamics at bus stops without integer
variables. Passenger accumulation at stops, and the resulting dwell times and
mass variations of buses, are also captured in this model. Energy consumption
is modeled as a nonlinear function based on realistic electric bus motor and
battery models. It is assumed in this paper that a speed control strategy
is used and that the aim is to minimize the energy consumption of the bus
line and provide a good level of service through headway regularity. To this
end, an OCP is assembled for the bus line control problem where the control
horizon of each bus extends to the position of the preceding bus, so as to
express headways as terminal states. This OCP is then converted into a
general NLP. A primal decomposition scheme is deployed to decompose this
NLP into a high-level master problem and low-level bus subproblems. In this
formulation, the only coupling variables appearing in the master problem are
time headways. By considering the bus subproblems as parametric NLPs
for which the parameters are the time headways, an algorithm based on the
SQP method is proposed to solve the master problem. In this algorithm,
the bus subproblems can be solved independently and only a few centralized
computations are needed at the high-level to update the parameters. This
opens the door to a hierarchical control architecture where the subproblems
can be solved in parallel onboard the concerned vehicle. Next, closed-loop
control can be achieved by embedding the proposed solution algorithm into
an MPC. A case study built on historical bus driving data is presented to
evaluate the operational performance of the proposed MPC. It is shown that
the MPC achieves a faster recovery to a regular level of service from initial
scenarios with different degrees of bus bunching than do rule-based baselines
implementing a simple holding or speed control strategy. In addition, energy
savings of up to 9% are reported, thanks to the eco-driving feature of the
proposed method.
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6.3 Paper C
Rémi Lacombe, Nikolce Murgovski, Sébastien Gros, and Balázs Kulc-
sár
Integrated Charging Scheduling and Operational Control for an Electric
Bus Network
Submitted in August 2023 to Elsevier Transportation Research.

This paper proposes to combine the charging scheduling problem with the
operational control problem for an electric bus network. To this end, a detailed
model of an electric bus network is assembled, one which includes travel time
commands on individual inter-stop links, passenger queues at stops, capacity
constraints, rush hour traffic, piecewise linear energy consumption functions
for each individual inter-stop link, partial charging, limited charging capac-
ity, and time-of-use electricity pricing. It is assumed that the transit agency
relies on daytime opportunity charging for the bus network considered and
that buses can only use a limited number of chargers that are all located at
a common terminal shared by all bus lines. Speed control is the main control
strategy deployed, but bus holding may also be applied at the shared termi-
nal. The bus network operational control and charging scheduling problem
is formulated over a long control horizon and is assembled as an MILP. An
economic objective function is considered including the total charging cost as
well as a monetary penalty for headway irregularities. A dual decomposition
scheme based on Lagrangian relaxation is then proposed. The only coupling
constraints between the different bus lines of the network are charger ex-
clusion constraints preventing buses from accessing the same charger at the
same time. These coupling constraints are relaxed to form the Lagrangian
dual problem of the original MILP. The subgradient algorithm is deployed to
solve the Lagrangian dual problem. Thanks to the proposed decomposition
scheme, the individual bus line subproblems are separable at each subgradient
iteration and can thus be solved in parallel, possibly by using physically dis-
tributed computing nodes. A simple local search heuristic is also proposed in
order to generate feasible solutions to the original problem since there might
be a nonzero duality gap. Next, a detailed case study based on historical data
from the city of Chicago is presented. A small bus network is constructed
with the high-fidelity microscopic traffic simulator Vissim. The proposed con-
trol framework is compared to two rule-based control baselines which reflect
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standard transit agency practices: either buses charge long enough to reach a
desired state-of-charge, or they charge for a fixed amount of time at each visit
to the chargers. As the proposed method integrates both charging and oper-
ational decisions, it is able to anticipate overlaps in buses’ charging schedules
and thus manages to avoid charging conflicts by slowing down or speeding up
buses accordingly. As a result, the proposed control framework is found to
consistently achieve lower overall costs over an entire day of bus operations
compared with the baselines, which suffer from charging conflicts.
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CHAPTER 7

Conclusion

This chapter concludes the thesis by summarizing the main results and by
suggesting future research directions that the Author believes would be mean-
ingful to investigate.

7.1 Concluding remarks
This thesis has presented partially and fully distributed optimization-based
methods for solving control problems in different applications involving groups
of electric vehicles. These control problems have all been formulated as op-
timization problems, each with its own coupling structure depending on the
type of application considered.

For instance, the bus network problem displays constraint coupling through
a set of constraints that we dubbed the charger exclusion constraints, which
prevent buses from different lines to access the same charger at the same
time. These constraints are not present in the other two problems treated
in this thesis since these problems have been assembled over shorter control
horizons where the need for battery charging is not considered. As such, these
problems both benefit from a particular chain-like coupling structure, where
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vehicles are organized in succession and each vehicle is only coupled to its
immediate neighbors. The platoon control problem too has been assembled
with coupling constraints, but constraints of a different type than for the
bus network problem. Indeed, coupling between trucks comes from enforcing
safety constraints to maintain trucks at a minimum distance from one another
in that problem, and also from modeling the drag reduction resulting from
trucks trailing closely behind one another. The coupling structure of the bus
line problem is of a different nature, as it only involves some coupling between
objective terms. This is the result of buses driving far away from one another,
and thus not needing the same type of safety constraints, and of buses having
a shared headway regularity objective. Headways being defined as the time
difference between two consecutive buses reaching the same position, inter-bus
coupling is unavoidable in the objective function in this problem.

What all the optimization problems assembled during the course of this
thesis have in common, though, is that they are all characterized by having a
weak coupling structure. By that, we mean that the number of coupling con-
straints and coupling terms in these problems is small compared with the total
number of constraints and terms not involving any coupling. Consequently,
specific decomposition schemes have been proposed in this thesis to exploit
these weak coupling structures when solving each problem.

Here, the platoon control problem has been formulated as an NLP with
coupling constraints. Different algorithms exist to solve this type of optimiza-
tion problem, but we chose to focus on second-order algorithms due to their
superior convergence properties. Thanks to the chain-like coupling structure
of the platoon, the intermediate QP subproblems that must be solved as part
of an SQP or PDIP procedure can be shown to be equivalent to a standard LQ
problem, but one in which the problem would be assembled vehicle-by-vehicle
instead of stage-by-stage. The Riccati recursion can then be applied to fac-
torize the banded KKT matrices of these subproblems in a vehicle-by-vehicle
fashion. By doing so, each truck is able to carry out most of the computations
for its own solution and does not need to broadcast its local information to
the rest of the platoon, thus making the entire procedure privacy-preserving.
These features would make it conceivable for trucks from different transporta-
tion companies to spontaneously form a platoon on the go in order to benefit
from air drag reduction without needing to disclose any private information.
With this procedure, the platoon control problem can be solved in a fully dis-
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tributed fashion, since information only needs to be communicated repeatedly
up and down the platoon. In principle, this fully distributed solution proce-
dure could also be adopted for any other type of vehicle platoon, and more
generally for any control application involving agents organized in a chain-like
structure.

The bus line problem, which is an eco-driving problem too, has also been
formulated as an NLP, but the source of coupling is now the objective function.
A primal decomposition scheme has been proposed in this thesis to split this
NLP into a master problem, which contains the coupling objective terms, and
independent bus line subproblems. This bilevel structure of the decomposed
problem makes it possible to solve the subproblems in parallel. This opens
the door to a hierarchical control architecture for the bus line problem, one
in which most of the computations are distributed and carried out in parallel
onboard the vehicles. The amount of centralized computations required is
relatively small in comparison, and so too are the communication requirements
between the central unit and the vehicles since each bus would be directly
computing its own solution. In addition, this procedure makes the proposed
control strategy scalable, since adding more buses to the system would not
increase the overall computation time by much as the new subproblems could
be solved in parallel as well.

The bus network problem had to be treated a bit differently than the other
two since it has been formulated as an MILP and involves binary decision vari-
ables. Problems of this type are known to scale poorly due to combinatorial
explosion. To remedy this, a dual decomposition scheme has been proposed
in this thesis as a scalable heuristic for finding a good solution to the bus
network problem within a reasonable time. In the proposed decomposition
scheme, a Lagrangian relaxation procedure is carried out in which the cou-
pling constraints are relaxed to form the Lagrangian dual problem. Relaxing
the coupling constraints makes it possible to decouple individual bus line sub-
problems, which are responsible for most of the computational load, and to
solve them in parallel during the solution procedure. A hierarchical control
architecture can thereby be assembled to find a good solution to the bus net-
work problem. In this control architecture, the bulk of the computations can
be distributed across the different bus lines. Similarly, the proposed control
architecture scales well with the number of bus lines since the individual bus
line subproblems are solved in parallel.

59



Chapter 7 Conclusion

7.2 Future work
Modeling

The optimization problems formulated in this thesis are based on a variety
of modeling assumptions. In future work, some of these assumptions could
be relaxed in order to increase the range of systems covered or to make the
control algorithms perform better by having a more faithful representation of
the underlying systems. The exact nature of these modeling extensions differs
for each of the applications considered in this thesis.

The platoon control problem discussed in Chapter 3 could be extended to
decide when a given group of trucks driving on the same road section would
benefit from spontaneously forming a platoon. Since the proposed control
method is privacy-preserving, it could in principle be used by trucks to form
platoons with neighboring trucks on the go. The question of whether the extra
energy required to form a platoon (e.g. by having to momentarily drive faster)
would be offset by the energy savings from temporarily being in a platoon is
fascinating and could be seen as an extension of the proposed control method.

The eco-driving trajectories generated by solving the bus line problem dis-
cussed in Chapter 4 could be improved by refining the model used for pre-
dicting driving conditions. A stochastic model could for example be used
to account for the variability of traffic. In addition, any knowledge of the
upcoming phases of traffic lights could also be included in the model.

As for the bus network problem discussed in Chapter 5, the way it is cur-
rently formulated relies on one central assumption: it is assumed that bus
routes are not overlapping. While this may constitute a good approximation
in many cases, a future research direction would be to model route overlaps
in order to account for bus networks with strongly overlapping lines. Doing
so would require more detailed passenger models and would likely change the
coupling structure of the resulting optimization problem. Finding suitable
decomposition methods to treat this new problem might be challenging and
is left for future research.

Real-time implementation

The next logical step to develop the work in this thesis would be to create
an effective implementation of the prototype algorithms presented. Since all
these algorithms are destined to be run in real-time or near real-time settings,
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their implementation for deployment on real systems would have to satisfy
these speed requirements.

This goal is not unrealistic. With the progress of onboard computational
capacity and the constant improvements of optimization algorithms, it is today
possible to solve large-scale NLPs extremely fast with adapted solvers, as
has been observed both in simulations and on real systems [60]. In fact,
experimental results suggest that vehicle-to-vehicle communications might be
more of a bottleneck than solving NLPs in some automotive applications, even
when vehicles are very close to each other [61].

For the prototype algorithms presented in this thesis, significant computa-
tional speedups could likely be obtained by using libraries and solvers specif-
ically designed for high-performance computing. For instance, the HPIPM
software [51], which contains hardware-tailored linear algebra routines specif-
ically designed for the real-time execution of MPC algorithms, would be a
good environment in which to implement the proposed algorithms. Deploy-
ing a real-time iteration scheme [62] could then lead to additional runtime
improvements and more frequent MPC updates.

A lot of research and implementation work would likely be needed to carry
out the steps suggested above and achieve near real-time performances. If that
were to be done, however, the algorithms proposed during the course of this
thesis could be evaluated on real test systems, and perhaps one day deployed
in real commercial systems where they would be contributing to their safe and
energy-efficient operation.
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