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A B S T R A C T

The vanadium redox flow battery (VRB) system involves complex multi-physical and multi-timescale interac-
tions, where the electrolyte flow rate plays a pivotal role in both static and dynamic performance. Traditionally,
fixed flow rates have been employed for operational convenience. However, in today’s highly dynamic energy
market environment, adjusting flow rates based on operating conditions can provide significant advantages for
improving VRB energy conversion efficiency and cost-effectiveness. Unfortunately, incorporating the electrolyte
flow rate into conventional multi-physical models is overly complex for VRB management and control systems,
as real-time operations demand low-computational and low-complexity models for onboard functionalities.
This paper introduces a novel data-driven approach that integrates flow rates into VRB modeling, enhancing
data processing capabilities and prediction accuracy of VRB behaviors. The proposed model adopts a gated
recurrent unit (GRU) neural network as its fundamental framework, exhibiting exceptional proficiency in
capturing VRB’s nonlinear voltage segments. The GRU network structure is carefully designed to optimize
the predictive ability of the model, with flow rate considered as a crucial input parameter to account for its
influence on VRB behavior. Model refinement involves analyzing well-designed simulation results obtained
during VRB operations under various flow rates. Laboratory experiments were also designed and conducted,
covering different conditions of currents and flow rates to validate the proposed data-driven modeling method.
Comparative analyses were performed against several state-of-the-art algorithms, including equivalent circuit
models and other data-driven models, demonstrating the superiority of the proposed GRU-based VRB model
considering flow rates. Thanks to the GRU’s outstanding capability in processing time series data, the proposed
model delivers impressively accurate terminal voltage predictions with a low error margin of no more than
0.023 V (1.3%) under wide operating ranges. These results indicate the efficacy and robustness of the proposed
approach, highlighting the novelty and significance of accounting for flow rates in accurate VRB modeling for
management and control system design.
1. Introduction

As an emerging energy storage technology, vanadium redox flow
batteries (VRBs) offer high safety, flexible design, and zero-emission
levels, rendering them particularly well-suited for long-duration opera-
tions and a promising option in our efforts to achieve future carbon
neutrality [1–3]. Therefore, VRBs have demonstrated their potential
in various modern applications, such as serving as reliable power
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sources for communication base stations, utility-scale energy storage,
and microgrids [4,5]. As the scope of the applications widens, there is a
growing need for highly precise VRB models for effective management
of these delicate electrochemical devices. However, due to VRBs’ com-
plex operational mechanisms and the infinite-order nature, developing
a simplified yet accurate VRB model for online use of advanced battery
management and optimal control poses a fundamental challenge [6,7].
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Nomenclature

Abbreviation

BPNN Back-propagation neural network
CNN Convolutional neural network
DDM Data-driven model
ECM Equivalent circuit model
EM Electrochemical model
GRU Gated recurrent unit
Li-ion Lithium-ion
LSTM Long-short-term memory
MAE Mean absolute error
MSE Mean squared error
PSO Particle swarm optimization
R2 R-square
RMSE Root-mean-square error
RNN Recurrent neural network
SOC State of charge
VRB Vanadium redox flow battery

Symbol

𝛼 Learning rate
𝑥̄ Normalized input of GRU or model
𝑦̄ Mean value of model output
𝛽1, 𝛽2 Dynamic average rates
𝐺̂ Corrected 𝐺
𝑀̂ Corrected 𝑀
𝑦̂ Predicted value of model output
 Loss function
𝜃 All the learnable parameters
ℎ̃ Candidate state of GRU
𝜀 Update parameter
𝑏 A learnable parameter vector
𝑓 GRU function
𝐺 Second moment of 𝑔
𝑔 Updated gradient
ℎ Output of GRU
𝑀 First moment of 𝑔
𝑛 Number of data samples
𝑄acc Accumulated charge
𝑄nom,chg Nominal charging capacity
𝑄nom,dch Nominal discharging capacity
𝑟 Reset gate of GRU
𝑈 A learnable parameter matrix
𝑊 A learnable parameter matrix
𝑥 Input of GRU or VRB model
𝑥max Maximum value of input data
𝑥min Minimum value of input data
𝑦 Actual value of model output
𝑧 Update gate of GRU
SOC0 Initial SOC
SOCchg SOC during charging
SOCdch SOC during discharging

Subscript

𝑖 Data sample index
𝑗 ∈ {ℎ, 𝑧, 𝑟}
𝑡 Time index
2

Existing VRB models can be categorized into electrochemical mod-
els (EMs), equivalent circuit models (ECMs), and data-driven models
(DDMs) [8]. EMs typically consist of a set of highly complex partial
differential–algebraic equations, primarily used for battery design and
performance analysis [9]. Developing a reliable EM requires in-depth
knowledge of the internal mechanisms of VRBs, which can be a signif-
icant challenge for many power engineers who lack a background in
electrochemistry and multi-physics modeling [10]. In contrast to EMs,
ECMs are established to mimic the external characteristics through
electrical equivalence [11]. Commonly used ECMs are based on the
relationship among various electrical circuit components, such as re-
sistance and capacitance [12]. ECMs often neglect the influence of the
electrolyte flow rates on the VRB’s external characteristics since the
flow rate is typically considered fixed and not subject to adjustment
during operation [13].

Recent studies, however, have revealed that varying the flow rates
of VRBs might significantly improve their system efficiency [14,15]. For
example, Khazael et al. conducted an analysis on how the flow rates
affect VRB performance and found a correlation between flow rates
and voltage drop [16]. This connection arises because the flow rate
is closely related to the concentrations of vanadium ions and protons
inside the battery, thus affecting the terminal voltage of VRBs [17].
By ignoring the influence of the flow rate, the terminal voltage is
calculated based on a simple transformation and superposition of lin-
ear and negative exponential functions, limiting the fitting ability of
nonlinear segments. Previous studies on the flow rate influence on
the VRB mainly focused on establishing equivalent hydraulic models
without considering the internal electrochemical characteristics. How-
ever, it is well-known that the hydraulic and electric fields in VRBs are
highly coupled. A single equivalent circuit in the coupled model can
only describe phenomenological behaviors within a limited operating
range, while accurately replicating system behaviors and reflecting
the completing internal operational mechanisms under all allowable
operating conditions might require complex model structures and care-
fully designed experiments for identifying the high-dimensional model
parameters [18,19].

In contrast, establishing a DDM does not require prior knowledge of
system mechanisms or physical model structures, and the model accu-
racy can be readily improved by increasing the training data size and
type [20]. Additionally, DDMs have outstanding capability to identify
nonlinear characteristics, making them highly suitable for the diverse
operating conditions of modern energy systems such as lithium-ion
(Li-ion) batteries. For instance, in [21], Li-ion batteries were modeled
using the back-propagation neural network (BPNN), and the BPNN’s
weights and thresholds were optimized using the particle swarm opti-
mization (PSO) algorithm based on the Levy flight strategy. Another
BPNN was proposed in [22], which was trained by the Levenberg–
Marquardt algorithm and optimized through the genetic algorithm and
PSO. However, in BPNNs, information is transferred in a unidirectional
manner, and the influence of the past output on the present input is
ignored, weakening the model’s predictability. To address this problem,
a multi-layer perceptron was employed to establish a Li-ion battery
model in [23], where the data sequence was split into discrete points.
Although the external characteristics of the battery show regularity
and continuity over time, the models [20–24] ignored the time-series
feature, resulting in limited accuracy for long-term data.

Due to the rapid growth in battery data volume in recent years,
deep learning has been explored for modeling Li-ion battery to con-
sider the features in the time series. For example, in [25], a Li-ion
battery model based on a recurrent neural network (RNN) with a
time lag was proposed. RNNs have a memory function that makes
them suitable for simulating temporal processes. However, RNNs are
limited in their ability to capture long-term dependencies in data, often
leading to the issues such as gradient disappearance or explosion. To
solve this problem, an RNN model in [26] divided the hidden layers

into different modules by clock-controlled RNN and assigned specified
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clock speeds for each module to mitigate the long-term dependencies.
Nevertheless, traditional RNNs may still encounter gradient-related is-
sues. Introducing a long-short-term memory (LSTM) unit can effectively
control the information accumulation rate, selectively incorporate new
information, and forget previous information, making them suitable for
handling long-term series data. Thus, in [27,28], a convolutional neural
network (CNN) and an LSTM network were combined and optimized
by a honey badger algorithm. The gated recurrent unit (GRU) neural
network is another option for long-term series data, offering memory
capability similar to LSTM but with a simplified network structure and
fewer hidden layer neurons. With their looped network knot, GRUs
are more suitable for processing temporal data, thereby effectively
improving the problem of long-term dependence [29]. A Li-ion battery
model, featuring the GRU as its core component and employing deep
feature selection was proposed in [30], where the input quantities were
weighted before fed into the GRU structures.

While extending the aforementioned DDMs to VRB systems may
seem straightforward, there remains a scarcity of relevant research in
this domain. Assessing the applicability of existing data-driven tech-
niques to VRBs requires individual evaluation, taking into account the
notable structural and operational differences between Li-ion batteries
and VRBs, as discussed earlier [31]. For example, pioneering studies
on VRB DDMs based on deep learning were introduced in [20,28].
However, it should be noted that both of these studies assume a
constant flow rate. Furthermore, in [29], a physics-informed CoKriging
model was proposed, where the battery is discharged and charged
at a constant current. These assumptions significantly deviate from
the evolving requirements of new VRB applications, which demand
continuous adjustment of flow rates [32].

In view of the above, this paper contributes to proposing a novel
data-driven modeling framework tailored for VRBs, marking the early
attempt of a flow-rate-aware approach. More specifically, we employ a
GRU neural network to characterize VRB performance without the need
for prior knowledge of the complex internal mechanisms. The GRU has
the capability to approach the nonlinear characteristic of the VRB, and
its recurrent and gated structures can alleviate the timing dependence
problems of conventional neural networks to handle larger datasets.
Flow rate, current, state of charge (SOC), and historical voltage are
selected as inputs to the model, which reflects the VRB behaviors
via multi-physics fields. Experiments under systematically varying cur-
rent and flow rates are designed and conducted on a laboratory VRB
platform to validate the proposed models.

The rest of this paper is organized as follows: Section 2 outlines
the framework of the DDM of VRB, including the extraction of GRU-
based temporal features and the setting of hyperparameters. Section 3
details the experimental platform, experimental design, and the data
processing procedures. The effect of flow rates on the performance of
VRBs is also analyzed. Section 4 assesses the accuracy of the proposed
model under varying flow rates by comparing it with experimental data
and other existing models. Finally, we present our concluding remarks
are in Section 5.

2. A data-driven VRB model based on GRU neural networks

The flow-rate-aware DDM framework for VRBs is depicted in Fig. 1,
consisting of three key steps:

(1) Determination of the model structure.
(2) Experimental design and data collection.
(3) Model training and validation.
To predict the VRB terminal voltage, the data sequences are first

normalized and directed to the input layer. Subsequently, the temporal
features of each sequence are individually extracted through a GRU
layer. Given that the cutoff voltage of experiments is manually set, the
sequences need to pass through a sigmoid layer to restrict the output
within the range of [0,1]. Finally, a fully connected layer is utilized to
calculate the model output.
3

Table 1
Hyperparameters of the GRU neural network.

Layer Number of neurons Activation function

Input Layer 4 –
GRU Layer 64 State activation function: tanh

Gate activation function: sigmoid
Sigmoid Layer 64 Sigmoid
Fully-Connected Layer 1 –
Output Layer 1 Loss function: MSE

2.1. Temporal feature extraction based on GRU

Since the external characteristics of VRBs exhibit regularity and
continuity over time, continuous data in time contain more informa-
tion [33]. Therefore, the time-series model of VRB based on neural
networks can approximate nonlinear relationships and better handle
the connections between external characteristics. The GRU-RNN is
shown in Fig. 2, where we use the subscripts 𝑡 and 𝑡 − 1 to represent
he current and the previous time instants, respectively, and 𝑥𝑡 and
𝑡 represent the input and the output of the GRU, respectively. Since
he GRU has fewer parameters than the LSTM, the training process of
he GRU is more straightforward and faster [29,33]. The GRU state is
pdated by:

𝑡 = 𝑧𝑡 ⊙ ℎ𝑡−1 +
(

1 − 𝑧𝑡
)

⊙ ℎ̃𝑡 (1)

𝑡 = 𝜎
(

𝑊𝑧𝑥𝑡 + 𝑈𝑧ℎ𝑡−1 + 𝑏𝑧
)

(2)

̃ 𝑡 = tanh
(

𝑊ℎ𝑥𝑡 + 𝑈ℎ
(

𝑟𝑡 ⊙ ℎ𝑡−1
)

+ 𝑏ℎ
)

(3)

𝑡 = 𝜎
(

𝑊𝑟𝑥𝑡 + 𝑈𝑟ℎ𝑡−1 + 𝑏𝑟
)

(4)

here ⊙ represents the element-wise product. ℎ̃𝑡, 𝑧𝑡, and 𝑟𝑡 are the
andidate state, the update gate, and the reset gate, respectively. The
pdate gate 𝑧𝑡 ∈ [0, 1] is used to balance between the input and
orget and the reset gate 𝑟𝑡 ∈ [0, 1] is to control the dependence of
he candidate state on the previous state. Furthermore, 𝑊𝑗 , 𝑈𝑗 , and 𝑏𝑗
𝑗 ∈ {ℎ, 𝑧, 𝑟}) represent the learnable network parameters associated
ith the specific network structure.

.2. Selection of hyperparameters

The selection of model hyperparameters is accomplished through an
terative trial-and-error approach. Specifically, the batch size is set to
6, the learning rate is set to 0.005, and the model employs a single-
ayer GRU structure. The numbers of neurons in the input and output
ayers are determined by the numbers of input and output features. The
yperparameters of the GRU neural network used in this work are given
n Table 1.

.3. Training the GRU neural network

This subsection provides a concise overview of the GRU neural
etwork training process. Initially, the data undergo normalization to
liminate the influence of different scales and units as follows:

̄ 𝑖 =
𝑥𝑖 − 𝑥min

𝑥max − 𝑥min
(5)

where 𝑥max and 𝑥min are the maximum and the minimum values in the
dataset, respectively. Normalizing the data ensures that the neural net-
work effectively processes and learns from the input features without
being skewed by variations in scales or units, leading to more accurate
and reliable predictions. Subsequently, we employed the mean squared
error (MSE) as the chosen loss function for the training process.


(

𝑦̂𝑖, 𝑦𝑖
)

= 1
𝑛
∑

(

𝑦̂𝑖 − 𝑦𝑖
)2 = 1

𝑛
∑

(

𝑓
(

𝑥̄𝑖, 𝜃
)

− 𝑦𝑖
)2 (6)
𝑛 𝑖=1 𝑛 𝑖=1



Journal of Energy Storage 74 (2023) 109537B. Xiong et al.
Fig. 1. Framework of the proposed flow-rate-aware DDM of VRBs.
where 𝑦̂𝑖 is the predicted value of the output 𝑦𝑖, 𝑓 (𝑥̄𝑖, 𝜃) represents the
GRU function, and 𝜃 represents all the parameters (𝑊 , 𝑈 , and 𝑏), and
𝑛 is the number of data samples in the training set. The BP algorithm
is used to reduce the error by adjusting the connection weights of
each layer, and the weights are obtained by gradient descent, which
is optimized by the Adam method. Here, the partial derivative of the
loss function for the network parameter 𝜃 is:

ℎ𝑡 (𝜃) =
1
𝑛

∑

(𝑥̄𝑖 ,𝑦𝑖)∈𝑛

𝜕
(

𝑦𝑖, 𝑓
(

𝑥̄𝑖, 𝜃
))

𝜕𝜃
(7)

where 𝑛 is the selected data set. The updated gradient 𝑔𝑡 is defined as:

𝑔𝑡 = ℎ𝑡
(

𝜃𝑡−1
)

(8)

The first-order moment 𝑀𝑡 and second-order moment 𝐺𝑡 of 𝑔𝑡 are
calculated by:

𝑀𝑡 = 𝛽1𝑀𝑡−1 +
(

1 − 𝛽1
)

𝑔𝑡 (9)

𝐺𝑡 = 𝛽2𝐺𝑡−1 + (1 − 𝛽2)𝑔2𝑡 (10)

where 𝛽1 = 0.9 and 𝛽2 = 0.999 are two dynamic average rates. 𝑀𝑡 and
𝐺𝑡 are updated to correct possible biases:

𝑀̂𝑡 =
𝑀𝑡

1 − 𝛽𝑡1
(11)

𝐺̂𝑡 =
𝐺𝑡

𝑡 (12)
4

1 − 𝛽2
Then, the new parameters are updated according to:

𝜃𝑡 = 𝜃𝑡−1 + 𝛥𝜃𝑡 = 𝜃𝑡−1 − 𝛼
𝑀̂𝑡

√

𝐺̂𝑡 + 𝜀
(13)

Here, the parameter 𝜀 is set to 10−8 to ensure numerical stability during
training. The initial learning rate 𝛼 is set to 0.005 and after 𝑡 = 20
s, the learning rate is multiplied by 0.2. This approach enhances the
convergence and facilitates efficient adaptation of the model to the
data, resulting in improved overall performance.

3. Experimental platform and data acquisition

3.1. Experimental platform setup

The proposed DDM framework underwent rigorous validation via
an experimental platform, depicted in Fig. 3(a). This platform consists
of three primary components: a VRB system, a battery testing system,
and a host computer, all of which are provided by Wuhan Zhisheng
New Energy Co., Ltd. Within the VRB system, two cells with identical
materials and building structures were used, as depicted in Fig. 3(b).
The specifications of the experimental platform are detailed in Table 2.
This configuration facilitated comprehensive testing and analysis, en-
suring the reliability and efficacy of the proposed DDM framework for
VRB modeling.
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Fig. 2. RNN, LSTM, and GRU structures.

Table 2
Specification of the experimental VRB system.

Parameters Setting

Electrolyte volume 25 mL
Electrolyte concentration 1.7 mol/L
Charge cutoff voltage 1.7 V
Discharge cutoff voltage 1.0 V
Number of cells 1
Shape of flow channels Serpentine
Current density 200 mA/cm2

Electrode size 3 cm × 3 cm
Membrane material Perfluorosulfur

3.2. Experimental design

Three cases were designed by considering different currents and
flow rates, as shown in Fig. 3. They are described as follows.

(1) Case 1: Constant flow rate and constant current in one cycle
To verify the impact of flow rate on the terminal voltage and to

examine the ability to learn the trend under different flow rates, one-
cycle experiments at a constant current of 1.0 A were conducted under
different constant flow rates of 90 mL/min–15 mL/min (15 mL/min
interval).

(2) Case 2: Constant flow rate and variable currents in one cycle
Experiments with constant flow rate and variable currents have

been conducted at 90 mL/min- 15 mL/min (15 mL/min interval) to learn
the relationship between the voltage and the flow rates and currents.
Two sub-cases were examined:

(a) The current increases from 0.6 A, with a step change of 0.02 A
every minute until reaching 1.8 A.

(b) The current decreases from 1.8 A, with a step change of −0.02
A every minute until reaching 0.6 A.

For example, during one specific charge–discharge cycle, the flow
rate is set at a constant value of 15 mL/min, current conditions is set
to sub-condition (a)

(3) Case 3: Variable flow rates and variable currents in one cycle
To further verify the adaptability of the proposed model to simulta-

neous variable flow rates and currents, experiments with variable flow
rates and variable currents in one cycle have been conducted. The flow
rate sub-conditions include:

(a) The flow rate increases stepwise. It starts at 15 mL/min and
increases by 15 mL/min every 6 or 12 mins until reaching 90 mL/min.
5

(b) The flow rate decreases stepwise. It starts at 90 mL/min and is
reduced by 15 mL/min every 6 or 12 mins until reaching 15 mL/min.

At every flow rate, the current sub-condition include:
(a) The current increases linearly. It starts at 0.6 A and increases by

0.2 A/min until reaching 1.8 A.
(b) The current decreases linearly. It starts at 1.8 A and decreases

by 0.2 A/min until reaching 0.6 A.
(c) The current increases stepwise. It starts at 0.6 A and increases

by 0.3 A every 3 min until reaching 1.8 A, with a duty cycle of 50%.
(d) The current decreases stepwise. It starts at 1.8 A and decreases

by 0.3 A every 3 min until reaching 0.6 A, with a duty cycle of 50%.
There are two types of current sub-conditions and four types of

flow rate sub-conditions, resulting in a total of eight different operating
conditions. For example, during one specific charge–discharge cycle,
the flow rate is set to sub-condition (a), current is set to sub-condition
(a).

3.3. Data preprocessing and analysis

The measured raw data were preprocessed as follows. (a) Dele-
tion of the pause segments. During these periods, the experiment
was paused to facilitate the manual adjustment of the flow rates.
Therefore, the data segments with these manual pause actions must
be removed. (b) Calculation of SOC. First, the VRB capacity is cali-
brated by low-current experiments. The nominal charging capacity is
𝑄nom,chg = 1107.175 mA h, and the discharging capacity is 𝑄nom,dch =
1070.925 mA h. The SOC data can thus be calculated by:

SOCchg = SOC0 +
𝑄acc

𝑄nom,chg
(14)

SOCdch = SOCchg −
𝑄acc

𝑄nom,dch
(15)

where SOC0 is the initial SOC, 𝑄acc is the accumulated charge cal-
culated as the integration of battery current, and SOCchg and SOCdch
denote the charging and discharging SOC, respectively.

The data obtained from VRB experiments are visualized in Fig. 4.
It can be seen that the terminal voltage of VRB varies with flow rates,
currents, and SOC. Among all features, the flow rate is unique for the
VRB. The voltages under different flow rates are shown in Fig. 5, clearly
indicating that substantial impact of flow rate on voltage. As the flow
rate increases, both the growth rate of charging voltage in Fig. 5(a)
and the reduction rate of discharging voltage in Fig. 5(b) decrease. In
addition, the black contour lines in Fig. 5 show that the change rate of
the terminal voltage decreases as the flow rate increases.

3.4. Performance metrics for model evaluation

The mean absolute error (MAE), root-mean-square error (RMSE),
and the coefficient of determination R-square (R2) will be used as the
metrics to evaluate the model performance. They are defined by

MAE= 1
𝑛

𝑛
∑

𝑖=1

|

|

𝑦̂𝑖 − 𝑦𝑖|| (16)

RMSE =

√

√

√

√

1
𝑛

𝑛
∑

𝑖=1

(

𝑦̂𝑖 − 𝑦𝑖
)2 (17)

R2 = 1 −
∑𝑛

𝑖=1
(

𝑦̂𝑖 − 𝑦̄𝑖
)2

∑𝑛
𝑖=1

(

𝑦̂𝑖 − 𝑦𝑖
)2

(18)

where 𝑦 is the actual value, 𝑦̂ is the predicted value from the model,
and 𝑦̄ is the mean value. 𝑛 is the number of data samples in the
corresponding data set.
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Fig. 3. VRB experimental platform: (a) Composition structure of the experimental platform; (b) Stack structures of the two cells.

Fig. 4. Waveforms of VRB experimental data.
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Fig. 5. Surfaces of VRB voltage as a function of flow rate and time during the (a) charging and (b) discharging processes.
Fig. 6. Comparison between the predicted voltage and experimental results under
different constant flow rates in six cycles. The same constant current is applied for
different cycles.

Table 3
Performance indicators based on the results with constant flow rate and constant
current in one cycle.

Flow rate (mL/min) 15 30 45 60 75 90

MAE 0.0055 0.0053 0.0052 0.0058 0.0059 0.0058
RMSE 0.0095 0.0088 0.0095 0.0090 0.0091 0.0091
R2 0.9958 0.9962 0.9954 0.9958 0.9957 0.9957

4. Results and discussion

4.1. Model performance under different flow rates

The measured data from Case 2 served for model training, and
the accuracy of different models was assessed by comparing their
predictions with the measured data obtained from Cases 1 and 3.
Fig. 6 presents a visual comparison between the VRB terminal voltage
predicted by the GRU neural network for Case 1 and the corresponding
experimental measurements, with fixed constant current but different
constant flow rates applied during six cycles. The model’s performance
is evaluated and summarized in Table 3.

The results show that the developed GRU neural network demon-
strates excellent accuracy in predicting the VRB terminal voltage across
various flow rate conditions, with the MAE and RMSE consistently
below 0.0059 V and 0.0095 V, respectively. These errors are as low
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as 0.35% and 0.56%, respectively, when compared to the maximum
battery voltage of 1.7 V. In Fig. 6, both the charging and discharging
processes show nearly linear voltage changes over time until reaching
their respective endpoints. Throughout these periods, the GRU neural
network’s the predicted voltage aligns well with the actual data. To
ensure safe operation, the battery’s cutoff voltage was artificially set
during experiments. However, the collected dataset contains limited
information about the cutoff voltage, posing challenges for conven-
tional GRU models to learn effectively. This limitation can lead to
an unfavorable prediction error, potentially causing overcharging or
overdischarging. To address this concern and enhance safety, our model
incorporates a sigmoid layer to constrain the GRU’s output within
the range of [0, 1]. Here, 0 and 1 correspond to the maximum and
minimum voltage limits after normalization, respectively. By applying
this approach, the model significantly reduces the prediction error and
mitigates the risk of overcharging or overdischarging during operation.

4.2. Model comparison

4.2.1. Comparison with ECMs
To examine the data processing capability of the proposed DDM at

different flow rates, the DDM was compared with a VRB model based
on the first-order RC equivalent circuit in Case 1. As shown in Fig. 7,
for the GRU model, as demonstrated in Section 4.1, its terminal voltage
adapts to different flow rates since the model captures the coupling
hydrodynamic and electric behaviors buried in the training data. In
contrast, the ECM relies on basic transformations and linear combi-
nations of negative exponential functions, rendering it inadequate in
reproducing the voltage segments attributed to the nonlinear dynamic
behaviors of the system. In addition, the ECM neglects the impact of
flow rates on external characteristics, leading to a failure to reflect
variable flow rates in the predicted voltage. The GRU performance
is therefore much superior to the ECM under the variable flow rate
conditions.

Note that during the final stages of charging and discharging (ap-
proximately the last 20 min), significant nonlinear voltage behaviors
are observed in Fig. 7. The proposed GRU model exhibits superior
adaptability to the variations in internal characteristics, thanks to its re-
markable ability to handle time-series data. At the end of the discharge,
the maximum error is less than 0.1096 V, and the time error to reach
the end of discharge is less than 1 min. In contrast, while the maximum
error of the ECM is 0.1475 V, which may not seem significantly higher
than the GRU model, the corresponding time error in predicting the
end of discharge reaches up to 12 min.
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Table 4
Comparison of performance indicators of SVM, BP, and GRU models.

Algorithm SVM BPNN GRU

MAE RMSE R2 MAE RMSE R2 MAE RMSE R2

15 mL/min 0.0319 0.0395 0.8935 0.0081 0.0114 0.9933 0.0056 0.0098 0.9953
30 mL/min 0.0288 0.0338 0.9272 0.0071 0.0104 0.9942 0.0053 0.0088 0.9961
45 mL/min 0.0268 0.0311 0.9407 0.0069 0.0101 0.9944 0.0052 0.0087 0.9962
60 mL/min 0.0260 0.0300 0.9446 0.0063 0.0096 0.9947 0.0058 0.0091 0.9957
75 mL/min 0.0267 0.0311 0.9382 0.0068 0.0100 0.9943 0.0059 0.0092 0.9957
90 mL/min 0.0299 0.0350 0.9165 0.0075 0.0106 0.9935 0.0058 0.0091 0.9957
Fig. 7. Comparison of results between an ECM and the proposed GRU model.

4.2.2. Comparison with state-of-the-art DDMs
A comparison of Case 1 between the proposed GRU model with

two widely adopted DDMs, SVM and BPNN, is presented in Table 4.
The results clearly demonstrate that the VRB model based on GRU
outperforms SVM and BPNN in terms of various evaluation indicators.
Specifically, SVM demonstrates the largest error, with its accuracy
showing significant fluctuations across various flow rates. Notably,
SVM records its highest error at a flow rate of 15 mL/min, reaching
a MAE of 0.0319 V. This is attributed to SVM’s conventional nature
as a machine learning algorithm, devoid of deep neural network struc-
tures. Instead, SVM relies on mathematical and geometric principles
for model training and prediction, making it ill-suited for capturing the
intricate dynamics of voltage fluctuations during battery operation.

In contrast, BPNN and GRU, both popular deep learning algo-
rithms, exhibit comparable performance indicators across different flow
rates. However, it is important to note that BPNN struggles to handle
temporal data, learning individual data samples in isolation. On the
other hand, GRU excels in processing time-series data and accurately
capturing the nonlinear variations in battery terminal voltage. The MAE
of GRU consistently remains below 0.0056 V, showcasing its superior
predictive capabilities. Hence, GRU was chosen to build our battery
model.

4.3. Model validation under different operating conditions

A VRB serves as a power source that frequently operates under
changing currents, experiencing acceleration, deceleration, and pulsed
current conditions when utilized for renewable energy storage. The
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Table 5
Performance indicators based on the results under variable and linear currents.

Case Linear current Increase Increase Decrease Decrease

Pulsed flow rate Increase Decrease Increase Decrease

MAE 0.0065 0.0058 0.0079 0.0059
RMSE 0.0095 0.0090 0.0120 0.0119
R2 0.9964 0.9965 0.9945 0.9945

flow rate is a vital operational parameter in flow batteries, directly
impacting the oxidation–reduction reactions within the cell stack. For
VRBs, a low flow rate causes an increase in concentration overpotential
within the battery. This speeds up the battery’s approach to the cutoff
voltage and consequently reduces the efficiency. On the other hand,
when the flow rate is too high, the electrolyte does not react sufficiently
within the battery, leading to a drop in the operational efficiency.
As such, it becomes imperative to assess the adaptability of the VRB
model across various scenarios. The results from Case 3, involving
linear current variation under different flow rates, are presented in
Fig. 8, and the performance indicators for variable flow rates and
linear currents are given in Table 5. The model showcases strong gen-
eralization capabilities and impressive temporal processing capacity. It
effectively analyzes the temporal relationship between input and output
vectors, enabling it to adapt dynamically to the fluctuations in VRB’s
internal characteristics. This capacity ensures the model’s effectiveness
in capturing the complexities of real-world operational conditions and
enhances its ability to deliver accurate predictions for different VRB
scenarios.

The pumps used in our experiments must be stopped at the instance
of switching the flow rates. Therefore, there is a shift point of the
terminal voltage at the point of flow rate switching. However, the
conventional model faces challenges, showing significant oscillations
during the simulation of the shift point and suffering from a substantial
deviation in fitting the edges. In contrast, the proposed model can suc-
cessfully control the oscillation within a narrow range using the feature
extractor of GRU, leading to a mean error of 0.0734 V at the shift
point. This noteworthy improvement in simulation accuracy at jump
points enables the model to better replicate the entire charging and
discharging process, especially when dealing with variable currents.

Compared to Case 3 of linear current variation in Fig. 8, it becomes
evident that the shift points of the terminal voltage appear more
frequently in the case of pulsed current variation. Fig. 9 displays the
results of shift points for Case 3, with step increases in flow rates
and current. The distance between the predicted and actual values
is effectively limited within a narrow range. The terminal voltage
under pulsed current conditions undergoes five distinct jumps at every
flow rate, showing the model’s excellent learning ability to adapt
to changes in external characteristics. The evaluating indicators for
experiments featuring variable flow rates and pulsed currents in a
single cycle are summarized in Table 6. The model achieves exceptional
performance, with an MAE of 0.0067 V for data from experiments
with step-transformation currents and the RMSEs within the range of
0 − 0.0146 V. These results highlight the model’s excellent capabilities
and reinforce its capacity to deliver accurate predictions in the face of
dynamic conditions with pulsed currents and variable flow rates.
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Fig. 8. Results for data with the case of the linear current variation. (a) Linear increase in current/step increase in flow rate(b) Linear increase in current/step decrease in flow
rate(c) Linear decrease in current/step increase in flow rate(d) Linear decrease in current/step decrease in flow rate.
Fig. 9. Results of shift points of the case with step increase flow rate and step increase
current.

Table 6
Performance indicators for experiments with variable flow rates and pulsed currents in
one cycle.

Case Pulsed current Increase Increase Decrease Decrease

Pulsed flow rate Increase Decrease Increase Decrease

MAE 0.0067 0.0067 0.0080 0.0055
RMSE 0.0139 0.0134 0.0146 0.0123
R2 0.9869 0.9864 0.9864 0.9882

4.4. Evaluation of model robustness

To demonstrate the model’s robustness to different cell parameters,
we conducted experiments on two VRB cells, accounting for potential
cell inconsistency. The earlier Cases 1–3 were replicated for both cells.
The model was trained using the data from Cell 1, and for testing,
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Fig. 10. Model performance metrics for results from the Cell 2.

one-cycle experiment data from Cell 2 were employed as the test set,
encompassing the variable flow rates and currents.

Fig. 10 illustrates the performance indicators for the results ob-
tained from Case 3 of Cell 2. The model presents excellent prediction
accuracy for data with linear current, as demonstrated by all three
evaluating indicators. Notably, the model’s RMSE remains well below
0.013 V for data from linear current variation experiments, indicating
its precise prediction of Cell 2’s terminal voltage. Furthermore, the
proposed model effectively limits the RMSE within a specific range of
less than 0.023 V for operating conditions involving pulsed current.
This level of accuracy meets the requirement of typical VRB models for
management and control purposes. Consequently, the VRB modeling
method, based on the GRU neural network while considering flow rates
can be extended to simulate the terminal voltage of VRB with the same
type and applicable to various related applications.

5. Conclusions

This paper presents a novel data-driven modeling approach for
vanadium redox flow batteries (VRB) using a gated recurrent unit
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(GRU) neural network targeting variable flow rate applications. By
incorporating electrolyte flow rates and considering the time-series
nature and nonlinearity of VRB characteristics, the developed model en-
ables accurate prediction of the terminal voltage at different flow rates
and enhances the precision of nonlinear data analysis. The proposed
GRU model takes inputs such as flow rate, current, state of charge, and
voltage, all while eliminating the need to consider internal operating
principles. This streamlining greatly reduces the model’s complexity,
making it well-suited for real-time operation. To evaluate the model’s
performance, simulations were conducted at different flow rates, and
the results in the nonlinear section are compared with those from
widely utilized equivalent circuit model. This comparison demonstrates
the superior data processing capabilities of the proposed model. In
addition, the effectiveness of the data-driven algorithm is assessed
by comparing it with other existing methods. The proposed model is
validated using experimental data from various test cases and another
VRB cell of the same type. The results clearly demonstrate the modeling
method’s adaptability to achieve high performance prediction.
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