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Abstract
The global production of electricity contributes significantly to the release of carbon 
dioxide emissions. Therefore, a transformation of the electricity system is of vital 
importance in order to restrict global warming. This paper proposes a modelling 
methodology for electricity systems with a large share of variable renewable elec-
tricity generation, such as wind and solar power. The model developed addresses 
the capacity expansion problem, i.e. identifying optimal long-term investments in 
the electricity system. Optimal investments are defined by minimum investment and 
production costs under electricity production constraints—having different spatial 
resolutions and technical detail—while meeting the electricity demand. Our model 
is able to capture a range of strategies to manage variations and to facilitate the inte-
gration of variable renewable electricity; it is very large due to the high temporal 
resolution required to capture the variations in wind and solar power production and 
the chronological time representation needed to model energy storage. Moreover, 
the model can be further extended—making it even larger—to capture a large geo-
graphical scope, accounting for the trade of electricity between regions with differ-
ent conditions for wind and solar power. Models of this nature thus typically need to 
be solved using some decomposition method to reduce solution times. In this paper, 
we develop a decomposition method using so-called variable splitting and Lagran-
gian relaxation; the dual problem is solved by a deflected subgradient algorithm. 
Our decomposition regards the temporal resolution by defining 2-week periods 
throughout the year and relaxing the overlapping constraints. The method is tested 
and evaluated on some real-world cases containing regions with different energy 
mixes and conditions for wind power. Numerical results show shorter computation 
times as compared with the non-decomposed model and capacity investment options 
similar to the optimal solution provided by the latter model.
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1 Introduction

EU’s roadmap 2050 establishes that the greenhouse gas emissions must decrease 
by some 85% until the year 2050 in order for global warming to be restricted to 2◦C 
(COM 2011). The electricity system contributes significantly to the emissions of 
carbon dioxide, both in the EU and globally. A transformation of the electricity sys-
tem is therefore needed, and electricity investment models can be used as a tool to 
make informed decisions regarding future electricity generation, storage, and trans-
mission capacity. The mathematical optimization models describing the electricity 
system minimizes the investment and production costs of the system under electric-
ity production constraints, while meeting the electricity demand. The existing sys-
tems mostly consist of thermal power (IEA 2020), and thus the traditional models 
are designed with this in mind. The characterization of such a system, dominated by 
dispatchable generation, includes the ability to regulate the electricity production to 
meet instant demand.

The vast majority of scenarios for the European electricity system complying 
with a 2◦C warming target contain, however, large shares of variable renewable 
technologies, e.g. wind and solar power. These electricity generation technologies 
are characterized as being non-dispatchable, meaning that the electricity generation 
cannot be completely controlled but depend on weather and climatic conditions. 
Hence, models applied for investigating electricity systems with potentially large 
shares of wind and solar power need an ability to capture the variability in produc-
tion and demand. Intuitively, variability can be accounted for by increasing the tem-
poral resolution. Electricity investment models are, however, often computationally 
demanding due to their technological and/or spatial scope and level of detail.

To reduce computation time and computer memory requirements, previous 
work on electricity system investment models has typically focused on simplifying 
the time representation. Ringkjøb et  al. (2018) reviewed 75 modelling tools used 
for analysing energy and electricity systems with large shares of variable renewa-
ble electricity (VRE); one remaining challenge identified regards how to represent 
short-term variability in long-term studies. A methodological review of strategies 
for integrating short-term variations is given by Collins et  al. (2017); the authors 
discuss methods for improving the time representation in long-term electricity sys-
tem investment models that employ traditional representations of time. Pfenninger 
et al. (2014) review several articles that discuss time representation for energy sys-
tem models, which contain a substantial level of VRE.

Traditional time representation methods for electricity system investment models 
typically belong to a family of methods denoted as time slices. Integral time slices can 
for example be a single time slice per year or a small set of seasonal and daily time 
slices to represent the differences in demand dependent on season, weekday, or time 
of day. Time slicing methods that are based on an approximation of the joint prob-
ability distribution of the load and VRE generation are developed by, e.g. Wogrin et al. 
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(2014) and Lehtveer et al. (2017). Another time slicing method is the representative 
days method, suggested by Nahmmacher et al. (2016), which identifies a number of 
24-hour segments based on load and VRE patterns over a day. Time reduction meth-
ods based on these principles have been implemented and shown promising results for 
long-term investment models; see, e.g. Mai et al. (2013); Gils (2016); Gerbaulet and 
Lorenz (2017), and Frew and Jacobson (2016); the methods have been compared and 
evaluated in Reichenberg et al. (2018).

The integral time slicing methods have, however, not worked when considering 
a larger geographical scope, including, e.g. regional trade. The reason for this is that 
approximating the joint probability distribution is challenging since, unlike variations in 
load, variations in VRE generation do not follow a common pattern across a wide geo-
graphical scope. Thus, the integral time slicing methods cannot properly account for wind 
and solar variations in models where a large geographical scope is considered. Further-
more, smoothing effects through trade is an important variation management strategy for 
VRE and thus, as is also concluded in Reichenberg et al. (2018), the integral time slicing 
method is not ideal for a multi-node electricity system model with large shares of VRE.

The representative days approach, on the other hand, can be employed in network 
models and therefore incorporate trade (see Frew et al. (2016)). This time representa-
tion can also handle short-term storage, but as the representative days typically consist 
of diurnal slices, it does not account for storage between days, which requires intercon-
nected time steps. An alternative is to model over longer time periods, e.g. weeks, but 
this increases model complexity and thus computation time. Hence, simplification in 
the spatial or technological system detail dimensions might be necessary to compensate 
for the increased complexity.

This study aims to develop a methodology to decompose and solve long-term elec-
tricity system investment models by combining Lagrangian relaxation and variable 
splitting (Guignard and Kim 1987; Jörnsten and Näsberg 1986). A key objective is to 
examine how a high temporal resolution (i.e. 3 h) impacts the solution times using these 
decomposition methods, and—when possible—compare the solutions and solution 
times of the decomposed models with those of the non-decomposed model. The model 
investigated in this study considers only isolated regions and does not include the pos-
sibility to trade electricity with neighbouring regions (and thus over-invests in capacity 
to meet demand); the suggested solution method can be used for such models as well.

The paper outline is as follows. Section 2 defines the electricity system investment 
model, while Sect. 3 presents the mathematical methods to solve the model. Section 4 
discusses how the model is implemented and solved using the introduced methods, and 
the results are evaluated in Sect. 5. Lastly, Sect. 6 concludes the main contributions of the 
paper.

2  Model

The problem consists of minimizing investment and operational costs while meeting 
the demand for electricity in a European electricity system. Europe is here divided into 
several regions, chosen according to country borders and, when existent, infrastructural 
bottlenecks within the countries.
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Electricity is produced by different electricity generation technologies, e.g. coal, 
hydro-, wind, and solar power. The production capacity, measured in GW, deter-
mines an upper limit for the amount of electricity that can be produced at any instant. 
We assume an aggregated capacity within each region, instead of studying separate 
power plants. This reduces significantly the problem size, albeit losing some system 
detail. Previous work by Göransson (2014) shows, however, that the loss is marginal 
for the total system cost as well as for the average full load hours of each electricity 
production type, including wind power. Furthermore, we study a time period rang-
ing from 2020 to 2050 and consider both existing production capacity as well as 
new investments. The total time period is divided into several investment periods to 
account for the life span of different power plants, i.e. the production capacity life 
span.

This work considers isolated regions, meaning that trade along an electricity grid 
is not possible. Hence, each region produces all electricity (measured in GWh/h) to 
meet its electricity demand.

Thermal cycling is included, as previous work has shown that it has a substan-
tial impact on the cost-optimal electricity system composition (Göransson et  al. 
2017). Furthermore, to retain a linear model, thermal cycling is accounted for using 
a relaxed unit commitment approach as described by Weber (2005). The cost and 
technical limitations of cycling thermal generation is included through a cost for 
starting thermal generation capacity, a minimum down time, and a cost of operating 
it at part load. Started capacity can operate in the range between minimum load level 
and rated power. With a time resolution of 3 h, which we have used in our evalu-
ation in Sect. 5, it is assumed to be technically possible to change the operational 
level within this range for all thermal generation. Thus, ramping limits are implicitly 
included for thermal power by limiting the possible start-up capacity in the con-
straints (3)–(5). However, for shorter time steps, explicit constraints similar to the 
constraints (10) may be necessary to include in order to properly capture the under-
lying unit commitment problem. For renewable electricity production, constraints 
regarding production and capacity limits from weather and terrain are included. 
Hydropower is constrained by ramp rate, i.e. the maximum rate at which the elec-
tricity output can increase or decrease and balance constraints for electricity storage. 
Lastly, the total system carbon dioxide emissions should be accounted for. This can 
be represented either by a hard constraint, or—as in our implementation—by includ-
ing a cost (penalizing carbon-emitting technologies) in the objective.

2.1  Electricity system investment model

The problem is represented with a linear optimization model. The sets employed 
by the model are given in Table 1. The set P represents all the electricity produc-
tion technologies, e.g. hydropower, wind power, and nuclear power. This set con-
tains thermal power technologies, Pthermal , such as nuclear power and waste incin-
eration plants. It also contains renewable electricity generation technologies, and in 
this model, namely Pwind , Psolar , and Phydro . The set of renewables are then defined 
as Pren∶=Pwind ∪ Psolar ∪ Phydro . The modelling years are given by S , and the set of 
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time steps within a year is denoted T  . Since thermal cycling is considered in this 
model, Tstart(p) , is the set of hours in the start-up interval for technology p ∈ P . The 
model uses the concept of investment periods, denoted I  , which are necessary in 
order to know during which year an investment in production capacity was made. 
This is relevant for two reasons: Firstly, the model covers several years. Hence, if an 
investment in capacity of technology type p is made during year s, it should not be 
possible to use that invested capacity prior to the year s. Secondly, since each pro-
duction technology type p ∈ P has a specific life span Up , it is crucial to know when 
the investment was made in order to estimate its remaining life. Therefore, the set 
Iactive(s, p) is defined to contain the investment periods for technology type p that are 
still active at year s ∈ S . Note that S ⊂ I .

A full nomenclature list is given in Appendix A. The mathematical constraints and 
objective for the problem are described below. All the decision variables in the model 
are nonnegative.

2.1.1  Meeting the demand

We begin by introducing the decision variables

Letting dst denote the demand at time step t ∈ T  in year s ∈ S , the constraints

imply that the produced electricity meets the demand during all modelled time steps 
and years.

xpist = generated electricity [GWh/h] of technology type p ∈ P in year s ∈ S for investment

period i ∈ Iactive(s, p) and time step t ∈ T.

(1)
∑
p∈P

∑
i∈Iactive(s,p)

xpist ≥ dst, s ∈ S, t ∈ T,

Table 1  The index sets used in the model

Symbol Representation Member

P := Pthermal ∪ Pren Electricity generation technologies p
Pthermal Thermal power technologies p
Pren ∶=Pwind ∪ Psolar ∪ Phydro Renewable technologies p
Pwind Wind technologies p
Psolar Solar technologies p
Phydro Hydropower technologies p
I ∶={1960, 1970,… , 2050} Investment years, defining investment periods i
S ∶={2020, 2030,… , 2050} New capacity investment years; S ⊂ I s
Iactive(s, p) ∶=I ∩ {s − Up,… , s} Investment periods for each technology type p ∈ P 

with life span Up that is active at year s ∈ S

i

T ∶={1,… ,T} Time steps within a year t
Tstart(p) ⊂ T ∪ {0} Hours in the start-up interval for technology p ∈ P t
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2.1.2  Generation limits

To represent the capacity installed in the system, we define the decision variables

Letting bgen
pi

 denote the existing production capacity of technology type p ∈ P in 
investment period i ∈ I ⧵S , the variables ypi are fixed such that no new investments 
can be made prior to “now”, as

2.1.3  Thermal cycling

The property implying thermal cycling is that for thermal power plants, the capacity 
that has been taken out of operation has a minimum downtime that corresponds to the 
time it takes to start up the capacity before it can generate electricity once again. More 
importantly, the start-up cost of a unit is typically high, which property can be captured 
by thermal cycling constraints. To model this, we define two sets of decision variables:

The capacity that is currently up and running in a thermal power plant is referred 
to as hot or available capacity. The electricity generation should never exceed the 
available capacity. Likewise, it is required to generate a minimum level of electricity 
depending on the available capacity in order for it to stay hot. Letting �p denote the 
percentage corresponding to the minimum load level, this yields the constraints

To connect the started hot capacity to the available capacity, the following con-
straints are used:

The difference in available capacity between the time steps t and t − 1 then corre-
sponds to the started hot capacity. Here, we connect the first time step t = 1 to the 
very last time step t = T  to ensure continuity in the available capacity and thereby 
avoid boundary effects. Since it is costly to start new capacity the variable z+

pist
 is 

penalized in the objective function. Hence, z+
pist

 equals zero whenever zpist ≤ zp,i,s,t−1 
holds. Moreover, tp ∈ Tstart(p) , p ∈ Pthermal , hours back in time, the started hot 

ypi = installed capacity [GW] of technology type p ∈ P in investment period i ∈ I.

(2)ypi = b
gen

pi
, p ∈ P, i ∈ I ⧵ S.

zpist = available hot capacity [GWh/h] of technology type p ∈ Pthermal in year s ∈ S for

investment period i ∈ Iactive(s, p) and time step t ∈ T;

z+
pist

= started hot capacity [GWh/h] of technology type p ∈ Pthermal in year s ∈ S for

investment period i ∈ Iactive(s, p) from time step t − 1 ∈ T to time step t ∈ T.

(3)�p ⋅ zpist ≤ xpist ≤ zpist, i ∈ Iactive(s, p), p ∈ Pthermal, s ∈ S, t ∈ T.

(4)

z+
pist

≥

{
zpist − zp,i,s,t−1, t ∈ T ⧵ {1},

zpist − zpisT , t = 1,
i ∈ Iactive(s, p), p ∈ Pthermal, s ∈ S.
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capacity is limited by the available hot capacity zpist . This yields, for i ∈ Iactive(s, p) , 
p ∈ Pthermal , s ∈ S , and t ∈ T  , the constraints

which linearize the start-up constraints that are more intuitively modelled as inte-
gers. The idea is that capacity that has been taken out of operation has a minimum 
downtime before it can be started again. As a simple example, consider a case where 
the minimum downtime equals 3, implying that the model needs to consider the hot 
capacity up to three time steps back. The amount of start-up capacity that is avail-
able equals the total installed capacity minus the capacity that has not been hot in 
any of the previous three time steps (since any other capacity is either still hot or 
limited by its current downtime). This can, for some specific values of p, i, s, and t, 
be expressed mathematically as

See also Weber (2005) for further details.

2.1.4  Renewables

For each technology p ∈ Pwind ∪ Psolar , the upper production limit of wind and solar 
power due to weather and climate is modelled using the profile �pt ∈ [0, 1] , t ∈ T  , and 
the total installed capacity that is still active in year s, using the inequalities

Not all areas are suitable for installation of wind farms, since wind speed and ter-
rain vary across the region. Hence, due to reasons regarding land exploitation, there 
is an upper limit, Wp on the possible investments in wind capacity for wind type 
p ∈ Pwind , which is modelled as

Define the decision variables

Letting gt denote the inflow into the reservoirs at time step t ∈ T  (assumed constant 
over the years) and � [h] denote the length of the time steps, the hydropower balance 
is then modelled as

(5)
∑

j∈Iactive(s,p)

ypj − z+
pist

≥

{
zp,i,s,t−tp , tp ∈ Tstart(p) ⧵ {t,… , T},

zp,i,s,T+t−tp , tp ∈ Tstart(p) ⧵ {0,… , t − 1},

z+
pist

≤
∑

j∈Iactive(s,p)

ypj −max{zp,i,s,t−1, zp,i,s,t−2, zp,i,s,t−3}.

(6)xpist ≤ �pt

∑
j∈Iactive(s,p)

ypj, i ∈ Iactive(s, p), p ∈ Pwind ∪ Psolar, s ∈ S, t ∈ T.

(7)
∑
i∈I

ypi ≤ Wp, p ∈ Pwind.

wst = hydropower storage [GWh] in year s ∈ S at time step t ∈ T.
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In this model presentation, � = 1 for simplicity but still necessary to include for the 
dimension analysis. The upper limit for the hydropower storage, denoted H , is mod-
elled as

The production level of hydropower cannot change too quickly, which is modelled 
by ramping rate constraints. Letting 𝛿inc > 0 and 𝛿dec > 0 denote the shares cor-
responding to maximum change speeds, upper limits on the rate of increase and 
decrease, respectively, of the storage levels for i ∈ Iactive(s, p) , p ∈ Phydro , and s ∈ S , 
are implied by the constraints 

 Lastly, no new investments in hydropower capacity are allowed. Thus,

2.1.5  Emissions

Emissions arise from running the power plants (e.g. fuel), but also from start-ups of 
plants since fuel is needed for this. Furthermore, there are extra emissions when not 
running on full capacity, due to reduced efficiency. Let epi denote the emissions released 
[CO2/(GWh/h)] by technology type p ∈ P in investment period i ∈ I  . Let e+

pi
 and ẽpi 

denote the emissions released from start-ups and from running on part-load, respec-
tively, for technology type p ∈ Pthermal in investment period i ∈ I  . The total emissions 
for year s ∈ S and time step t ∈ T  is then expressed as

2.1.6  Objective

The objective is to minimize the total system costs. The sum (13a) considers the 
investment costs in electricity production technologies; cinv

ps
 is the investment cost 

(including annuity costs) for technology type p ∈ P in year s ∈ S , and comf
p

 is the 
fixed operation and maintenance costs for technology type p ∈ P . The sum (13b) 
considers the costs of electricity production; crun

pi
 are the running costs for tech-

(8)wst + gt −
∑

i∈Iactive(s,p)

� ⋅ xpist ≥

{
ws,t+1, t ∈ T ⧵ {T},

ws1, t = T ,
p ∈ Phydro, s ∈ S.

(9)wst ≤ H, s ∈ S, t ∈ T.

(10a)(1 + �inc)xpist ≥

{
xp,i,s,t+1, t ∈ T ⧵ {T},

xpis1, t = T;

(10b)(1 − �dec)xpist ≤

{
xp,i,s,t+1, t ∈ T ⧵ {T},

xpis1, t = T .

(11)yps = 0, p ∈ Phydro, s ∈ S.

(12)etot
st
∶=

∑
p∈P

∑
i∈Iactive(s,p)

epixpist +
∑

p∈Pthermal

∑
i∈Iactive(s,p)

(
e+
pi
z+
pist

+ ẽpi(zpist − xpist)
)
.



1271

1 3

A Lagrangian relaxation approach to an electricity system…

nology type p ∈ P where the investment was made in period i ∈ I  . The sum 
(13c) describes the additional costs for thermal power technology types 
p ∈ Pthermal ; c+ps is the start-up cost for hot capacity in year s ∈ S ; c̃ps is the addi-
tional cost for running on part-load capacity in year s ∈ S . The sum (13d) 
describes the costs for carbon dioxide emissions. Denoting the variables on vec-
tor form as y , x , z , z+ , and etot , the objective function is defined as 

 For the investment costs in (13a) only the investment periods that coincide with the 
years s ∈ S are considered, while no costs for prior investments are included. The 
costs in (13b)–(13c) cover all active investment periods.

3  Mathematical methodology

The above model is very large-scale, even for fairly small problem instances. In 
order to reduce computation times—or make the model even solvable for very 
large problem instances—special mathematical methods need to be utilized. Some 
decomposition methods relating to electrical energy applications are covered by 
Sagastizábal (2012); Göransson et al. (2021) develop a heuristic that divides an 
electricity system model into 26 subproblems consisting of 2-week segments. In 
this article, we adapt this heuristic approach to a mathematical method based on 
Lagrangian decomposition (Guignard 2003), for solving our model. Note that this 
entire section, besides Algorithm 2, uses a separate notation, which differs from 
that used in the rest of the article.

3.1  Lagrangian duality and Lagrangian relaxation

Many large optimization problems are structured such that they consist of several 
smaller problems, connected by some overlapping, typically complicating, con-
straints. Each separate problem is, however, often easily solved in comparison with 
the full problem. Lagrangian dual methods, such as Lagrangian relaxation, takes 
advantage of this problem structure; see Guignard (2003).

(13a)Ctot(y, x, z, z+, etot) ∶=
∑
p∈P

∑
s∈S

(cinv
ps

+ comf
p

)yps

(13b)+
∑
p∈P

∑
i∈Iactive(s,p)

∑
s∈S

∑
t∈T

crun
pi
xpist

(13c)+
∑

p∈Pthermal

∑
i∈Iactive(s,p)

∑
s∈S

∑
t∈T

(
c+
ps
z+
pist

+ c̃ps(zpist − xpist)
)

(13d)+
∑
s∈S

∑
t∈T

cCO2

s
etot
st
.
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The idea of Lagrangian relaxation is to relax the overlapping constraints such 
that the remaining problem separates into several subproblems. Consider the convex 
optimization problem to

where c, x ∈ ℝ
n , g ∶ ℝ

n
→ ℝ

m such that each function gi , i = 1,… ,m , is convex, 
X ⊂ ℝ

n is a convex set, and m, n ∈ ℤ+ . We also assume that {x ∈ X | g(x) ≤ 0
m} ≠ � 

such that there exists a feasible solution. Here, g(x) ≤ 0
m are the connecting con-

straints while the remaining constraints x ∈ X are separable.
Define the Lagrangian function L ∶ ℝ

m+n
→ ℝ such that L(x,�)∶=c⊤x + �⊤g(x) , 

where � ∈ ℝ
m are the Lagrangian multipliers. The Lagrangian dual problem is then 

defined as

where h ∶ ℝ
m
→ ℝ denotes the concave Lagrangian dual function, defined as

For any � ≥ 0
m the problem of minimizing the function L over its first argument x is 

referred to as the subproblem, which is separable due to the set X being a Cartesian 
product set.

By weak duality, h(�) ≤ z∗ holds whenever � ≥ 0
m . Hence, any feasible solution 

to the dual problem provides a lower bound on the optimal objective value of the 
original problem. Furthermore, any feasible solution x̄ to (14) provides an upper 
bound on z∗ , since the inequality z∗ ≤ c⊤x̄ holds. Moreover, since (14) is a convex 
optimization problem, strong duality implies that the equality z∗ = h∗ holds.

For a fixed value of the Lagrangian multiplier � , the remaining subproblems 
are typically easy to solve in comparison with the full problem. However, solv-
ing the dual problem requires the use of algorithms that (sequentially) update the 
values of the Lagrangian multipliers. Bundle methods are based on the idea to 
approximate the set of subgradients (i.e. subdifferential) of the objective function 
by gathering subgradients from previous iterations into a bundle. For comprehen-
sive descriptions of bundle methods, see e.g. Lemaréchal et al. (1995) and Kiwiel 
(1990). The subgradient algorithm was developed by N.Z. Shor in 1962; see Shor 
(1991) for a full review of the early history of non-smooth optimization. This 
method is frequently applied to optimization problems, especially in the context 
of Lagrangian duality. Larsson et al. (1996) defined the conditional subgradient 
method, which generalizes the subgradient algorithm by projecting the subgra-
dients themselves. An issue, however, with the classical subgradient algorithm is 
that it often stalls due to zigzagging (e.g. Larsson et al. (1996)). Thus, we instead 
consider the modified deflected subgradient (MDS) method by Belgacem and 
Amir (2018), which combines the modified gradient technique (MGT) by Cam-
erini et al. (1975), and the average direction strategy (ADS) by Sherali and Ulular 

(14)
z∗∶= minimumx c⊤x,

subject to g(x) ≤ 0
m,

x ∈ X,

(15)h∗∶=max�≥0m h(�),

(16)h(�) ∶= minx∈X L(x,�) = minx∈X
{
c⊤x + �⊤g(x)

}
.
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(1989). In the MDS method, the step direction is a weighted average of a current 
subgradient and the previous step direction, which reduces the zigzagging behav-
iour. Consider the following definition.

Definition 1 A vector � ∈ ℝ
m is a subgradient to the concave function h at �̄� ∈ ℝ

m 
if the inequality

holds for all � ∈ ℝ
m . The set �h(�̄�) of subgradients to h at �̄� ∈ ℝ

m is called the 
subdifferential.

Geometrically, a subgradient is the gradient of a supporting hyperplane to 
the hypograph of the function h at the point (�̄�, h(�̄�)) (see (Bazaraa et al. 2013, 
Sect. 3.2)). The MDS algorithm is provided in Algorithm 1. Here, we assume that 
� ∈ Π , such that Π is the feasible set for the multipliers � . In (15), Π∶=ℝm

+
 but 

in our application additional dual constraints are implied (see the model (33) in 
Sect. 4). The operator ProjΠ refers to a Euclidean projection onto the set Π , which 
is modelled as a convex quadratic optimization problem; for our specific defini-
tion of the set Π this projection problem is efficiently solved using Lagrangian 
duality, the main computational complexity coming from calculating and com-
paring partial derivatives of the Lagrangian dual function. The step lengths �k in 
Algorithm 1 are chosen according to some rule, which guarantees convergence. 
The Polyak step length rule (Polyak 1969) has seen much use in practice and is 
used in this work. It is defined as 

under the conditions

 Here, �k acts as a scaling parameter for the step length, while the parameters �1 and 
�2 define positive limits for the scaling parameter.

The use of (18a) together with (18b) guarantees theoretical convergence to an opti-
mal solution to the dual problem (15) (see Polyak (1969)). However, the dual optimal 

(17)h(𝝅) ≤ h(�̄�) + 𝜸T (𝝅 − �̄�)

(18a)�k∶=
�k
(
h∗ − h(�k)

)
||�k||2 ,

(18b)0 < 𝜖1 ≤ 𝜃k ≤ 2 − 𝜖2 < 2, k = 0, 1, 2, ... .

Algorithm 1  Modified deflected subgradient algorithm
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value h∗ is typically not known. If so, an upper bound h̄ ≥ h∗ can be used instead in 
order to achieve finite convergence to an �-optimal solution for some 𝜖 > h̄ − h∗ , where 
a point � ∈ Π is �-optimal if h(�) ≥ h∗ − � , 𝜖 > 0 ; see (Polyak 1969, Theorem 4).

However, since the linear optimization model presented in Sect. 2 can be solved to 
optimality for our specific problem instances, by strong duality the dual optimal value 
h∗ is available to us.

The value of the scaling parameter �k can be chosen in different ways. One method 
that in practice has been shown to give fast convergence to a close to optimal solution 
is presented in Caprara et al. (1999); the method is adaptive, such that the value of the 
parameter is updated every � number of subgradient iterations: 

where

 The values of � and the numbers 0.1, and 0.01 should be modified depending on the 
results from the computations. Note that the updates (19) do not guarantee that the 
inequalities 0 < 𝜃k < 2 will hold for all iterations k.

3.2  Variable splitting

Relaxing over the time dimension is tricky since some variables are time-independ-
ent. For example, assume the year is divided into N time periods, such that Tn contains 
the time steps in time period n ∈ N∶={1,… ,N} . Define the variables xt ∈ Xt ⊆ ℝ+ 
and y ≥ 0 , representing the electricity generation in time step t ∈ Tn , n ∈ N  , and the 
invested capacity, respectively. Then, consider the following simplified version of the 
model presented in Sect. 2:

where cinv and crun
t

 , t ∈ Tn , n ∈ N  , are investment and run costs, respectively. Here, 
the time-independent variable y complicates the problem. Although the constraints 
xt ≤ y can be relaxed, they represent an important property of the electricity sys-
tem (one cannot produce more electricity than the installed capacity). Thus, they are 
very important for the model structure and should not be relaxed. Hence, we employ 
the concept of variable splitting (introduced by Jörnsten and Näsberg (1986)). The 
main idea is to introduce copies of certain primal variables (here, the variable y). 
Constraints are added to ensure consistency between the original variables and the 
copies, and then these consistency constraints are Lagrangian relaxed. This makes 
the problem separable, while the most important model structure is kept in each 

(19a)𝜃k+1∶=

⎧
⎪⎨⎪⎩

1

2
𝜃k, if h̄ − h > 0.1 ⋅ �h�,

3

2
𝜃k, if h̄ − h < 0.01 ⋅ �h�, k = 1, 2, ...,

𝜃k, otherwise,

(19b)h̄∶= max
r=k−�+1,...,k

h(�r) and h∶= min
r=k−�+1,...,k

h(�r).

(20)

minimize
y,xt

cinvy +
∑
n∈N

∑
t∈Tn

crun
t
xt,

subject to xt ≤ y, t ∈ Tn, n ∈ N,

xt ∈ Xt, t ∈ Tn, n ∈ N,

y ≥ 0,
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subproblem; thus, the solution process can be parallelized. The variable splitting 
method was developed simultaneously by several research groups, thus also referred 
to as Lagrangian decomposition (Guignard and Kim 1987) and variable layering 
(Glover and Klingman 1988).

3.3  Generating primal solutions

In general, subgradient optimization methods often identify near-optimal dual solu-
tions, but do not directly provide solutions to the primal problem. The conditional 
subgradient method constructs a sequence {x(�k)} of solutions to the Lagrangian 
subproblem, but these solutions are typically not feasible in the original primal 
problem since they do not have to satisfy the relaxed constraints. Thus, the sequence 
{x(�k)} does not converge to an optimal primal solution. Some method is therefore 
needed to remedy this. ADMM is a popular optimization algorithm, which relies 
on Lagrangian relaxation and the dual ascent method to converge to optimality and 
create primal feasible solutions (Boyd et al. 2011). In this work, we focus on using 
ergodic sequences of subproblem solutions.

As first presented by Larsson et  al. (1999), ergodic sequences create approxi-
mations of primal solutions by averaging the subproblem solutions. The authors 
showed that the ergodic sequences in the limit produce optimal solutions to the orig-
inal problem. An enhanced version in terms of convergence speed was introduced by 
Gustavsson et al. (2015). This version exploits more information from later subprob-
lem solutions than from earlier ones. The ergodic sequence {x̃k} is defined as

where the convexity weights �k
s
 are chosen according to the sn-rule:

For n > 0 , the sn-rule yields a sequence in which later iterates are assigned higher 
weights than earlier ones. For increasing values of n, the weights are shifted towards 
later iterates. See also (Gustavsson et al. 2015, Def. 1).

It remains, however, to combine the ergodic sequences with the variable splitting 
approach. The idea used in this article is to calculate each subproblem’s average 
investments over the subgradient iterations. This procedure converges in the limit for 
each subproblem, however, providing N (possibly) different solutions for the invest-
ments. Furthermore, these N solutions are most likely not feasible in the original 
full-scale model, since the subproblems possess different profiles for weather and 
demand. The heuristic in Algorithm 2 combines these solutions into a primal solu-
tion. The rationale behind the algorithm is that if enough many subproblems make 
a specific investment, that investment is likely necessary; a more expensive invest-
ment option requires a larger number of subproblems to be included in the solution, 
as compared to a cheaper investment option. Also, if exactly the same investment is 

(21)x̃k∶=

k−1∑
s=0

�k
s
x(𝝅s);

k−1∑
s=0

�k
s
= 1; �k

s
≥ 0, s = 0, ..., k − 1,

(22)�k
s
∶=

(s + 1)n∑k−1

r=0
(r + 1)n

, s = 0, ..., k − 1, k = 1, 2, ...; n ≥ 0.
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made in a large enough share of the subproblems, this investment is likely to be part 
of a near-optimal solution; it is thus used in the primal solution. Otherwise, we let 
the investment be the median of the nonzero subproblem solutions. However, our 
tests have shown that the heuristic tends to overestimate wind and solar power and 
underestimate intermediate production technology. Thus, the median is scaled by �p 
for some technologies p.

The presented algorithm does not consider the case when investments for the 
same technology are made by several subproblems but in different years. When this 
is the case, for each subproblem we find the maximum investment of that production 
technology over the years 2020–2050, which yields N different values in total. Then, 
the heuristic chooses the average of the nonzero options among these values. The 
heuristic does not guarantee primal feasibility, but in practice it seems to give near-
feasible primal solutions. The values of the remaining variables (e.g. x and z ) are 
recomputed by letting the investment variables be fixed to their current values while 
solving the full model, which then simplifies to an easily solvable dispatch model. 
Note that the numbers used as limits here should be interpreted as a guideline and 
might require adjustments for different data instances.

4  Implementing Lagrangian relaxation and variable splitting

The idea is to separate the annual time steps of the full-scale model into M-week 
periods and solve them in parallel. Thus, some new sets and parameters are 
necessary:

As an example, for N = 26 time periods and with the time step length � = 1 , each period 
will contain Ω = 336 time steps. Thus, T1 = {0 ⋅ 336 + 1,… , 1 ⋅ 336} = {1,… , 336} , 
T2 = {1 ⋅ 336 + 1,… , 2 ⋅ 336} = {337,… , 672} , … , 
T26 = {25 ⋅ 336 + 1,… , 26 ⋅ 336} = {8401,… , 8736}.

N ={1,… ,N} is the set of time periods within a year, with M∶=
⌊
52

N

⌋
;

Tn ={(n − 1)Ω + 1,… , nΩ} is the set of time steps within each time period n ∈ N,

where Ω =
24×7×M

�
is the length of a time period and � is the time step length.

Algorithm 2  Heuristic generation of a primal investment solution 
[
Ŷps

]
p∈P,s∈S
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Let ysplit
pin

∶=ypi , n ∈ N  , represent splitting variables for the investment variables, 
and consider again the objective function (13). Using the above notation, it is equiv-
alently expressed as

where the system cost in each time period n ∈ N  is defined as 

 The investment variables in the model constraints should also be replaced by the 
splitting variables, and we add to the model the constraints

These constraints are then Lagrangian relaxed using Lagrangian multipliers �one
psn

.
As for the other model variables, the constraints that cover multiple time steps 

need to be handled. More specifically, it is "the seams" that make the problem non-
separable over time periods. Consider again the constraints (4); using the notation 
above, they are equivalently expressed as

Here, it is the second and third sets of constraints—the seams—that need to be 
Lagrangian relaxed in order to make the model separable. For this, we denote the 
Lagrangian multipliers �two

pist
.

Moreover, for all p ∈ Pthermal, s ∈ S and i ∈ Iactive(s, p) , the constraints (5) can 
be written as

Note that we have replaced the original investment variables by the splitting varia-
bles for investments in electricity generation. The first constraint corresponds to 

(23)Ctot(y, x, z, z+, etot)∶=
∑
n∈N

Csplit
n

(ysplit, x, z, z+, etot),

(24a)Csplit
n

(ysplit, x, z, z+, etot)∶=
∑
p∈P

∑
s∈S

(
cinv
ps

+ comf
p

N
ysplit
psn

+
∑

i∈Iactive(s,p)

∑
t∈Tn

crun
pi

xpist

)

(24b)+
∑

p∈Pthermal

∑
s∈S

∑
i∈Iactive(s,p)

∑
t∈Tn

(
c+
ps
z+
pist

+ c̃ps(zpist − xpist)
)

(24c)+
∑
s∈S

∑
t∈Tn

cCO2

s
etot
st

(25)ysplit
psn

= yps, p ∈ P, s ∈ S, n ∈ N.

(26)
z+
pist

≥

⎧
⎪⎨⎪⎩

zpist − zp,i,s,t−1, t ∈ Tn ⧵ {(n − 1)Ω + 1}, n ∈ N,

zpist − zp,i,s,t−1, t = (n − 1)Ω + 1, n ∈ N ⧵ {1},

zpist − zpisT , t = 1,

p ∈ Pthermal, i ∈ Iactive(s, p), s ∈ S.

(27)

�
j∈Iactive(s,p)

y
split

pjn
− z+

pist
≥

⎧
⎪⎨⎪⎩

zp,i,s,t−tp , tp ∈ {m ∈ Tstart(p) ∶ t − m ∈ Tn}, t ∈ Tn, n ∈ N,

zp,i,s,t−tp , tp ∈ {m ∈ Tstart(p) ∶ t − m ∈ Tn−1}, t ∈ Tn, n ∈ N ⧵ {1},

zp,i,s,NΩ+t−tp , tp ∈ {m ∈ Tstart(p) ∶ t − m ≤ 0}, t ∈ Tn, n = 1.
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time steps for zpist within the M-week period, while the second constraint represents 
the time steps in the previous M-week period. The third constraint is the special case 
of first and last M-week period during the year. Here, we Lagrangian relax the sec-
ond and third constraint using Lagrangian multipliers �three

p,i,s,t,tp,n
.

Furthermore, the constraints (8) are replaced by

Once again, the second and third constraints should be relaxed with Lagrangian 
multipliers �four

pst
.

For all p ∈ Phydro , i ∈ Iactive(s, p) and s ∈ S , the constraints (10a) and (10b) can 
be written as 

 The second and third constraints in each of the expressions (29a) and (29b) should 
be relaxed, and we denote the corresponding Lagrangian multipliers by �five

pist
 and �six

pist

.
To each subproblem n ∈ N  , the constraints (30), which limit the hot and start-

up capacity, respectively, are added. These constraints are redundant in the origi-
nal model but are here used to strengthen the dual formulation by making the 
subproblems tighter. They are formulated as 

 The new objective equals the sum of Ctot(y, x, z, z+, etot)—from (23)—
and the Lagrangian penalty term Hrelax(y, ysplit, x,w, z, z+,�) , where 
�∶=(�one,�two,�three,�four,�five,�six) , i.e. vector notation for all the Lagrangian 
multipliers, derived from the Lagrangian relaxation of the constraints as described 
above; the latter is expressed as 

(28)wst + gt −
�

i∈Iactive(s,p)

� ⋅ xpist ≥

⎧
⎪⎨⎪⎩

ws,t+1, t ∈ Tn ⧵ {nΩ}, n ∈ N,

ws,t+1, t = nΩ, n ∈ N ⧵ {N},

ws1, t = T ,

p ∈ Phydro, s ∈ S.

(29a)(1 + �inc
r
)xpist ≥

⎧
⎪⎨⎪⎩

xp,i,s,t+1, t ∈ Tn ⧵ {nΩ}, n ∈ N,

xp,i,s,t+1, t = nΩ, n ∈ N ⧵ {N},

xpis1, t = T;

(29b)(1 − �dec
r

)xpist ≤

⎧
⎪⎨⎪⎩

xp,i,s,t+1, t ∈ Tn ⧵ {nΩ}, n ∈ N,

xp,i,s,t+1, t = nΩ, n ∈ N ⧵ {N},

xpis1, t = T .

(30a)zpist ≤
∑

j∈Iactive(s,p)

y
split

pjn
, i ∈ Iactive(s, p), p ∈ Pthermal, t ∈ T,

(30b)z+
pist

≤
∑

j∈Iactive(s,p)

y
split

pjn
, i ∈ Iactive(s, p), p ∈ Pthermal, t ∈ T.
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The Lagrangian dual function, whose computation separates into n ∈ N  subprob-
lems, is defined as

and the Lagrangian dual problem is defined as 

(31a)Hrelax(y, ysplit, x,w, z, z+,�) ∶=
∑
n∈N

∑
p∈P

∑
s∈S

�one
psn

(
yps − ysplit

psn

)

(31b)

+
∑

n∈N⧵{1}

∑
p∈Pthermal

∑
s∈S

∑
i∈Iactive(s,p)

(
�two
p,i,s,(n−1)Ω+1

(
zp,i,s,(n−1)Ω+1 − zp,i,s,(n−1)Ω − z+

p,i,s,(n−1)Ω+1

)

+
∑
t∈Tn

∑
tp∈{m∈Tstart(p)∶t−m∈Tn−1}

�three
pist tpn

(
zp,i,s,t−tp −

∑
j∈Iactive(s,p)

y
split

pjn
+ z+

pist

))

(31c)

+
∑

p∈Pthermal

∑
s∈S

∑
i∈Iactive(s,p)

(
�two
pis1

(
zpis1 − zpisT − z+

pis1

)

+
∑
t∈T1

∑
tp∈{m∈Tstart(p)∶m≥t}

�three
p,i,s,t,tp,1

(
zp,i,s,NΩ+t−tp −

∑
j∈Iactive(s,p)

y
split

pj1
+ z+

pist

))

(31d)

+
∑

n∈N⧵{N}

∑
p∈Phydro

∑
s∈S

(
�four
p,s,nΩ

(
ws,nΩ+1 − ws,nΩ − gnΩ

)

+
∑

i∈Iactive(s,p)

(
�four
p,s,nΩ

� xp,i,s,nΩ +
(
�five
p,i,s,nΩ

− �six
p,i,s,nΩ

)
xp,i,s,nΩ+1

−
(
�five
p,i,s,nΩ

(1 + �inc
r
) − �six

p,i,s,nΩ
(1 − �dec

r
)
)
xp,i,s,nΩ

))

(31e)

+
∑

p∈Phydro

∑
s∈S

(
�four
psT

(
ws1 − wsT − gT

)

+
∑

i∈Iactive(s,p)

(
�four
psT

� xpisT + �five
pisT

(
xpis1 − (1 + �inc)xpisT

)

+ �six
pisT

(
(1 − �dec)xpisT − xpis1

)))
.

(32)

h(�) ∶= minimum
y, ysplit , x,w, z, z+, etot

∑
n∈N

Csplit
n

(ysplit, x, z, z+, etot) + Hrelax(y, ysplit, x,w, z, z+,�),

subject to (1), (2), (3), (6), (7), (9), (11), (12),

(26), (27), (28), (29), (30)
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 Although the variables y are included in the objective of the subproblem in (32), 
their values will take the value 0 ( ∞ ) for any values of the dual variables �one that 
can (cannot) be optimal in the Lagrangian dual defined by (33a) and (33d). The con-
straints (33b)–(33c) restrict the dual space to yield only finite (i.e. 0) values of y in 
the solution to (32); see also (Guignard 1993, Le. 2.2) for a theoretical motivation. 
Note that the constraints (33b)–(33d) define the set Π in Algorithm 1. A detailed 
theoretical motivation for this formulation, as well an algorithm for updating these 
dual variables in the subgradient algorithm, are found in Granfeldt (2021).

5  Implementation, data, and results

The implementation of the presented model and method is done in Julia (Bezanson 
et al. 2017) and JuMP (Dunning et al. 2017), using the Gurobi Optimizer version 
9.1.1 (Gurobi Optimization, LLC 2021) on a system with Intel Xeon CPU E5-2650 
v4 processor (2.20 GHz) with 24 cores and 256 GB RAM.

5.1  Data

The investment and variable costs, year 2050, for the electricity generation technolo-
gies considered in the model are presented in Table  2. The investment costs and 
fixed operation and maintenance costs are based on the World Energy Outlook (IEA 
2016). The costs for wind and solar power are, however, based on data from the 
Danish Energy Agency (Energistyrelsen 2016). The models use annualized invest-
ment costs, assuming 5% interest rate. Technology learning for thermal generation is 
included as gradual improvements in the efficiencies of these technologies, which is 
reflected in a reduced variable cost for later years in the model. Also the cost of car-
bon dioxide emissions varies between years as it is assumed to become more expen-
sive in forthcoming years. Moreover, the variable costs do not include costs from 
thermal cycling generation. Instead, the start-up and part-load costs are included 
explicitly as part of the thermal cycling constraints in the model. These costs, 
including the minimum load level, are based on the report by Jordan and Venkatara-
man (2012). The cycling properties of nuclear power are based on the paper by Pers-
son et al. (2012), which considers a start-up time of 20 h and a minimum load level 
of 70%. Biogas is assumed to be produced through gasification of solid biomass 

(33a)maximum
�

h(�),

(33b)subject to
∑
n∈N

�one
psn

≥ 0, p ∈ P, s ∈ S,

(33c)
�one

psn
≤ N−1

(
cinv
ps

+ comf

p

)
, p ∈ P, s ∈ S, n ∈ N,

(33d)�two, �three, �four, �five, �six ≥ 0.
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with 70% conversion efficiency. The cost of the gasifier equipment is included in 
the form of 20 €/MWh added to the fuel cost, rather than being incorporated in the 
investment cost of biogas technologies; this is due to biogas being storable, such that 
the gasifier equipment may attain a much larger number of full-load hours than the 
power plant consuming the biogas. The total cost of gasification equipment is from 
Thunman et al. (2019); 8,000 full-load hours are assumed.

Wind and solar power and sites are ordered in classes. Offshore wind sites are 
represented by one class while onshore wind sites are organized into several classes 
corresponding to different wind conditions, where each class is represented as one 
generation technology. For solar power, the classes represent land-based solar PV 
or rooftop solar PV. Wind and solar supply profiles and available capacities for dif-
ferent resource classes are based on a code set presented by Mattsson et al. (2021), 
which combines data with high spatial resolution and high temporal resolution. 
Table 3 provides the full load hours (FLH) and maximum capacities (Cap) for the 
onshore classes, as well as the offshore wind.

5.2  Results from the computations

Three regions with different conditions for wind power and with various existing 
energy mixes are evaluated: Hungary (HU), Ireland (IE), and southern Sweden 
(SE3), the latter being defined as the corresponding bidding area on the Nord 
Pool power exchange market (Nord Pool AS 2020). Table 4 presents the existing 

Table 2  Costs and some technical properties for the electricity generation technologies

All costs are given for the year 2050. The onshore wind classes all have the same costs and properties. 
The following abbreviations are used: ST steam turbine, CCGT  combined cycle gas turbine, GT gas tur-
bine, and PV photovoltaics

Technology Investment Variable Fixed O &M Lifetime Minimum Start-up Start-up
costs costs costs load level time cost

   ∈ P [M€/MW] [€/MWh] [k€/MW,yr] [yr] [share] [h] [€/MW]

Coal ST 1.98 23.2 42.9 40 0.3 12 250
Natural gas CCGT 0.90 58.6 16.5 30 0.3 6 45
Natural gas GT 0.45 89.6 15.0 30 0.3 0 35
Biomass ST 1.98 86.6 51.9 40 0.3 12 240
Biomass CCGT 0.90 106.9 16.5 30 0.3 6 45
Biomass GT 0.45 164.1 15.0 30 0.3 0 50
Hydropower 2.39 1.0 54.4 500 0 0 0
Nuclear 3.98 24.5 149.0 60 0.7 24 660
Solar PV, land 0.42 1.1 6.50 40 0 0 0
Solar PV, rooftop 0.59 1.1 10.8 40 0 0 0
Onshore wind (A1–B5) 0.96 1.1 12.6 30 0 0 0
Offshore wind 1.53 1.1 36.0 30 0 0 0
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energy mixes in these regions. As we can see, the installed production capacity 
in HU consists mostly of nuclear and natural gas (gas turbines and combined-
cycle gas turbines). The IE region has most of its production capacity in wind 
and natural gas, and also some coal. The production capacity in SE3 has histori-
cally been largely dominated by nuclear power, followed by some hydropower 
and wind power. Some of the nuclear power capacity used for this instance has, 
however, been recently decommissioned in Sweden. In this evaluation, trade is 
disregarded as only a single region is studied in each case. For each studied case, 
2-week periods are used which thus yields 26 subproblems. In all our instances, 
we have used a 3 h time step throughout the year. As is evident by Table 5, the 
full model instance size is much larger than that of a single subproblem.

Figure  1 illustrates results from 50 deflected subgradient iterations of the 
decomposed model for the three instances. All costs are normalized, so that the 
optimal objective value for each instance equals 1. The dual objective value is the 
value of the Lagrangian objective function, while the primal objective value is cal-
culated by solving the full model with fixed investments according to the solution 
provided by the heuristic in Algorithm 2. The scaling parameter �k in (19a) for the 
step length �k in (18a) in Algorithm 1, is updated every � = 5 for all three regions.

For the HU-case, the best primal objective is found after only a few iterations. 
For the IE-region, however, the primal objective decreases drastically at first before 
increasing again, and then finally stabilizing around the same value as the upper 
bound (UBD) concluded during the first few iterations. For the SE3-region, it is nec-
essary to greatly penalize the "seams" of the constraints relating to the hydropower 
reservoir storage level in order to avoid boundary effects. Thus, the large values of 

Table 3  Full-load hours (FLH) and maximum capacity limits (Cap) for wind and solar power classes in 
the examined regions

Absence of available sites is indicated by ∅

Technology Wind class HU IE SE3

∈ Pwind FLH [h] Cap [MW] FLH [h] Cap [MW] FLH [h] Cap [MW]

Onshore A1 1387 5970 ∅ ∅ 1288 150
Onshore A2 1831 22510 1965 7 1895 34180
Onshore A3 2409 5580 2715 300 2389 32750
Onshore A4 3181 6.7 3419 2750 3254 6120
Onshore A5 ∅ ∅ 4243 24800 3999 1320
Onshore B1 ∅ ∅ ∅ ∅ 1264 380
Onshore B2 ∅ ∅ ∅ ∅ 1868 5970
Onshore B3 ∅ ∅ ∅ ∅ 2515 6140
Onshore B4 ∅ ∅ ∅ ∅ 3097 680
Onshore B5 ∅ ∅ 5661 0.8 4141 10
Offshore – ∅ ∅ 4955 8340 4402 67770
Solar PV A1 544 – 382 – 401 –
Solar PV B1 ∅ – ∅ – 349 –
Solar PV R1 546 – 390 – 407 –
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the dual multipliers �four need to be compensated by a smaller Polyak step length 
in the subgradient algorithm, which results in the behaviour in Fig. 1c where nei-
ther the primal nor dual objective values make much progress. However, if the dual 
multipliers and the step length parameter are given similar values as in the other two 
instances, then the duality gap decreases as the number of iterations increase; see 
also Fig. 3 in Appendix B. However, due to the resulting boundary effects, this pro-
duces unreasonable feasible solutions with large primal objective values.

To conclude, the lower bound improves for the instances HU and IE (and SE3 
dependent on parameter settings), implying that the subgradient algorithm per-
forms well, albeit very slowly. However, we see that our subgradient algorithm is 
very sensitive to parameter settings and requires some calibration before produc-
ing good result. This is especially the case for the SE3-region, which is likely 
related to the large share of hydropower in Sweden as compared to the other 
examined regions. Indeed, our hypothesis is that the results for the HU-region 
are better due to the lack of hydropower (see Table  4), and thus those storage 
constraints and corresponding multipliers are not present in the model. Moreover, 
dependent on the initial values of the dual multipliers, the starting point for the 
dual objective value greatly varies. Hence, combined with the slow dual conver-
gence, the size of the duality gap at our early termination is dependent on the 
initial subgradient algorithm settings.

Based on the results presented in Fig. 1, we stop the subgradient algorithm after 
three iterations as the potential savings in total system costs from running more iter-
ations are not enough to compensate for the increased computation time. Figure 2 
presents the results in terms of new production capacity for the three different cases, 

Table 4  Existing capacity in 
the three different regions, 
measured in GW

HU IE SE3

Coal ST 0.20 0.86 –
Natural gas CCGT 1.00 3.22 0.08
Natural gas GT 1.00 3.22 0.08
Biomass ST 0.31 – 1.15
Hydropower – 0.25 2.59
Nuclear 1.89 – 9.49
Solar PV 0.62 2.24 0.51
Wind onshore 0.33 4.13 2.45
Wind offshore – 0.02 0.15

Table 5  The number of variables and constraints for the full model and for a single subproblem in the 
SE3-region instance with a 3 h time step

# Variables # Constraints

Full model 4 321 715 3 972 177
Subproblem 172 497 180 273
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where the solutions provided by the decomposed model are compared with the opti-
mal solutions provided by solving the full-scale model.

For the HU-region in Fig.  2a, the duality gap at termination is 13.3% . The 
feasible solution generated by Algorithm  2 is very similar to the optimal solu-
tion, besides some investments in natural gas and a slight overestimation of wind 
power capacity. The scaling parameter in Algorithm  2 was set to increase the 
investments in biomass production capacity, while decreasing the investments in 
natural gas. The difference in total system cost for this case is 1.11% . For the 
IE-region in Fig. 2b, the duality gap after three iterations is 12.7% . The installed 
capacity in wind power is underestimated, but this is mainly the result of the scal-
ing parameter in Algorithm 2 being set too harsh to reduce wind power invest-
ments. As for the HU-region, the scaling parameter was moreover set to increase 
the investments in biomass production capacity, while decreasing the invest-
ments in natural gas. Thus, some biomass CCGT (combined cycle gas turbines) 
replaces natural gas GT (gas turbines) in the heuristic solution. The total system 
cost difference is 1.97% for this case. Lastly, as expected based on the results in 
Fig.  1c, the subgradient algorithm for the SE3-region terminated with the very 
large duality gap 57.7% . The feasible solution provided by the heuristic suggests 
CCGT running on natural gas for intermediate peak power, as compared to bio-
mass in the optimal solution. Moreover, solar power is overestimated, and some 
offshore wind power is replaced by onshore wind power. As for the feasibility 
heuristic, the scaling parameter in Algorithm 2 was set to decrease investments in 
both solar and wind power to counteract the overestimations provided by the sub-
gradient algorithm. The difference in total system cost is 10.75% , which is much 
worse if compared to the other tested instances. It should be noted however that 

(a) (b) (c)

Fig. 1  Dual and primal objective values—the latter calculated by solving the model (1)–(13) with fixed 
investments from Algorithm  2—versus subgradient iteration numbers. LBD and UBD denote, respec-
tively, the lower and upper bound on the optimal value. All values are normalized by the optimal objec-
tive value for the respective instance
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if natural gas CCGT is manually replaced by biomass CCGT in the solution, the 
total system cost difference is reduced to 2.33%.

The decomposed model is implemented so that all computations are performed 
sequentially. The computation process can, however, be parallelized, and there-
fore the numbers presented correspond to a simulated parallel solve process. The 
argument for a sequential implementation over a parallel implementation on a 
single multi-core computer is that the decomposed model has the potential to be 
solved in parallel using a computer cluster (thus, 26 identical computers). Each 
subproblem is then solved on a computer where no parallelization is necessary 
and thus full processor capacity, and all CPU cores can be used to solve a single 
subproblem. Table 6 compares computation times for the different instances and 
models. The build time is the time it takes to build the model in Julia, i.e. convert 
data from files to create sets and parameters and declare the model with its vari-
ables, constraints, and objective function. For the decomposed model, we use the 
maximum build time among the 26 subproblems. The solve time is the time it 
takes to solve the model. For the decomposed model, the maximum solve time 
among the 26 subproblems is saved each iteration and finally summarized to pro-
vide the total solution time. The algorithm time is the computation time within 
the subgradient algorithm, including calculating new values of the Lagrangian 
multipliers. The total time is the sum of the computation times. The average 
solve time for a subproblem and the total number of subgradient iterations are 
also included.

As is evident from Table 6, in all instances the computing times for the decom-
posed model using the subgradient algorithm are lower, as compared to the full 
model. The total computing times for the regions HU, IE, and SE3 decrease by 

(a) (b) (c)

Fig. 2  Investments in new capacity for the full and the decomposed model in three different regions. 
The increase in total system costs for the decomposed model compared to the full model is (a) 1.11% , 
b 1.97% , and c 10.75%
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9.1% , 13.8% , and 62.2% , respectively. This assumes, however, a parallel approach 
since a sequential implementation would take much longer time to solve. More-
over, the computation time for the decomposed model is highly dependent on 
the number of subgradient iterations. It should also be noted that the program-
ming implementation of the models leaves room for improvement, and therefore 
the numbers presented here besides the solution times merely hint at the time 
complexity. Furthermore, for instances of this size it is likely unnecessary to 
implement the decomposition method since the full model computing times are 
quite short. Nevertheless, if several regions with options to trade electricity are 
included in the instances, the full model computing times are known to increase 
dramatically. Further, in Göransson et  al. (2021), where we evaluated different 
spatial scope sizes, we showed that this choice of a 2-week period decomposi-
tion became increasingly beneficial in terms of computing times—as compared 
to the full model—as more regions were included in the problem instances. Since 
increasing the temporal resolution (from 3  h) will scale similarly as increasing 
the spatial scope, we argue that our proposed method likely has the potential to 
solve models with both a high temporal resolution and a rich spatial scope within 
reasonable solution times.

Table 6  Computation times (all measured in seconds) for the different models and instances. For the 
decomposed model, the build and solve times are given presuming that all 26 subproblems are solved in 
parallel

Region Model Build Solve Algorithm Total Average subproblem # Subgradient
time time time time solve time iterations

HU Full model 329 153 – 482 – –
Decomposed model 136 97 205 438 23 3

IE Full model 150 350 – 500 – –
Decomposed model 135 88 207 431 20 3

SE3 Full model 155 1031 – 1186 – –
Decomposed model 138 109 201 448 27 3
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6  Discussion, conclusions, and future work

The model presented in this paper is a single-node electricity system model that 
can be used as a tool to analyse long-term investments in an electricity system 
containing a large share of variable renewable electricity generation. The model 
includes a fine discretization of time, using 3-hour time steps throughout the 
year, which allows for wind and solar power variations to be captured. In particu-
lar, the high temporal resolution captures the value of variable electricity produc-
tion with respect to curtailment. The model is decomposed into M-week periods 
(where we in our tests let M = 2 ) using variable splitting and Lagrangian relaxa-
tion, which allows for the capture of wind events that last several days. However, 
although not evaluated in our tests, the proposed decomposition method can be 
used with different values of M to represent electricity systems that are domi-
nated by variability on other time scales. Although, this will most likely affect 
the computation times as well as the accuracy of the results. The dual problem is 
solved by a deflected subgradient algorithm, and ergodic sequences are utilized 
to combine primal solutions from different iterations. A heuristic finally merges 
the 26 different solutions—one for each subproblem—into a single solution. The 
decomposition enables a separate solution of each subproblem which reduces 
memory requirements drastically. When utilizing computers with several CPUs 
or computer clusters, the subproblems can be solved in parallel to reduce com-
putation times compared to solving the non-decomposed model. Furthermore—
although neither included in our modelling nor evaluated in our tests—the sug-
gested method has the potential to include trade between regions as a variation 
management strategy. The inclusion of trade in electricity system models using a 
fine temporal resolution typically leads to computationally very demanding prob-
lems, but with the proposed decomposition method it is likely that such models 
could be solved within reasonable computing times; further computational exper-
iments are, however, needed in order to examine this presumed property. The 
choice of excluding trade from our model naturally leads to excess production 
capacity in the solutions to the problem instances. On the other hand, the issue of 
a restricted grid capacity is indeed faced during the current times. Moreover, we 
expect that batteries and hydrogen storage as well as demand flexibility will be 
key components in future electricity system. The mathematical implementation 
of these strategies follows a similar structure as Constraint (8) (demand flexibil-
ity is for example implemented using this structure in Göransson et  al. (2014)) 
and can thus be fitted into the suggested structure. It is however unclear if our 
method will be able to properly dimension seasonal storage due to the 2-week 
period decomposition.

When evaluated for three different cases containing regions with varying con-
ditions for variable renewable electricity sources, the method provides capac-
ity investments similar to the optimal solution for investments provided by the 
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non-decomposed model. The heuristic used to combine the subproblem solu-
tions can, however, be further developed as it is sensitive to parameter settings 
and requires some fine-tuning to provide good results. Furthermore, the decom-
posed model makes investments in electricity generation technology with the 
same production pattern (i.e. base, peak, and intermediate power plants) as the 
non-decomposed model, but occasionally choose natural gas over biomass as 
fuel. This is likely due to them having very similar costs using the assumed costs 
of carbon dioxide emissions. When these costs are increased, the decomposed 
model provides solutions containing biomass instead of natural gas.

The most important extensions of our work are to further develop the model 
to include and evaluate several regions and electricity trade with neighbouring 
regions, as well as technology options for batteries and demand flexibility such 
as hydrogen storage. However, if electricity trade or wind power are not of rel-
evance for the investigated instances, other time representation methods such as 
representative days or time slicing are likely more efficient approaches than our 
proposed method.

A Nomenclature

See Tables 7, 8
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B Additional results

Figure  3 shows the result from 50 deflected subgradient iterations of the decom-
posed model for the SE3-region. Here, the values on the dual multipliers and the 
scale parameter in (18a) are similar to the ones used when solving the HU and IE 
problem instances. We see that the duality gap is very large, but progress is made 
both on the upper and lower bound as the number of iterations increases.

Acknowledgements We thank Professor Tom Brown, TU Berlin, for valuable input to method develop-
ment. The authors would like to thank the anonymous referees for their valuable suggestions and feed-
back which contributed to an improved quality of the results of the paper. The research leading to the 
results presented in this article was supported by the Swedish Energy Agency (project number 39907-1).

Funding Open access funding provided by Chalmers University of Technology.

Data availability The input data applied in this work is given in Sect. 5.1 together with relevant refer-
ences. The datasets generated during the current study are available from the corresponding author on 
reasonable request.

Declarations 

Conflict of interest On behalf of all authors, the corresponding author states that there is no conflict of 
interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative 
Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended 
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

Fig. 3  Dual and primal objec-
tive values—the latter calculated 
by solving the model (1)–(13) 
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