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Signature of quantum criticality in cuprates
by charge density fluctuations

Riccardo Arpaia 1 , Leonardo Martinelli2, Marco Moretti Sala 2,
Sergio Caprara 3,4, Abhishek Nag 5, Nicholas B. Brookes 6, Pietro Camisa2,
Qizhi Li7, Qiang Gao 8, Xingjiang Zhou 8, Mirian Garcia-Fernandez 5,
Ke-Jin Zhou 5, Enrico Schierle 9, Thilo Bauch 1, Ying Ying Peng 7,
Carlo Di Castro 3, Marco Grilli 3,4, Floriana Lombardi 1,
Lucio Braicovich 2,6 & Giacomo Ghiringhelli 2,10

The universality of the strangemetal phase inmany quantummaterials is often
attributed to the presence of a quantum critical point (QCP), a zero-
temperature phase transition ruled by quantum fluctuations. In cuprates,
where superconductivity hinders direct QCP observation, indirect evidence
comes from the identification of fluctuations compatible with the strange
metal phase. Here we show that the recently discovered charge density fluc-
tuations (CDF) possess the right properties to be associated to a quantum
phase transition. Using resonant x-ray scattering, we studied the CDF in two
families of cuprate superconductors across a wide doping range (up to
p = 0.22). At p* ≈0.19, the putative QCP, the CDF intensity peaks, and the
characteristic energy Δ is minimum, marking a wedge-shaped region in the
phase diagram indicative of a quantum critical behavior, albeit with anomalies.
These findings strengthen the role of charge order in explaining strangemetal
phenomenology and provide insights into high-temperature
superconductivity.

The strange metal phase in cuprate superconductors extends over a
large portion of the doping-temperature phase diagram and is par-
ticularly robust at the doping level p*, around which the maximum
superconducting critical temperature is achieved1–5. At this doping,
the resistivity is linear in T down to the superconducting critical
temperature Tc or, in the presence of strong magnetic fields, to the
lowest temperatures3, electronic excitations lose their quasiparticle
character6, the Drude peak in the optical conductivity acquires an
anomalous power-law decay in frequency7, the magnetoresistance is
linear in field8 and the spin relaxation rate is almost T-independent9.

The Fermi-liquid theory, although successful for strongly correlated
normal metals, does not provide a proper description of this phe-
nomenology. The unconventional properties of the strangemetal are
likely the result of strong electron correlation in a quasi-2D structure
that leads to a complex energetic landscape where several electronic
phases compete and may coexist. Indeed, a novel state has been
recently proposed, with very strong long-range quantum entangle-
ment and a thermalization time defined by the Planckian scattering
time10. Other theories suggest that quasiparticles get spoiled by
strong scattering either on nearly local excitations (such as the
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pseudospin degrees of freedom of the Sachdev-Ye-Kitaev model11,12,
the charge density fluctuations13, the short ranged antiferromagnetic
fluctuations14) or on long-wavelength fluctuations (such as loop
currents15, phase fluctuations of incommensurate charge order16).
In all cases, the physics of the strangemetal phase seems compatible
with the existence of a quantum critical point at the doping level
p* (hereafter named QCP*)15,17, although with an unconventional
phenomenology18. In a hypothetical QCP scenario, both thermal and
quantum fluctuations determine transport at high temperature but
only the latter are relevant at low temperatures: with p approaching
p*, one should then observe a vanishing characteristic energy Δ19. In
other words, Δ would set the doping-dependent temperature scale
above which the strange metal region appears as a strong manifes-
tation of a quantum critical behavior. The QCP* scenario would be
confirmed by the recognition of the associated fluctuations and by
the determination of their energy following the expected doping
dependence. The experimental evidence of these two aspects has
been so far elusive. Moreover, it is unclear whether they are of
charge20, spin4,21, ormixed22 nature.We note that although the energy
scale of the pseudogap23 is comparable to that of these fluctuations,
the latter is not commonly considered to be correlated to the
former18,24,25.

Charge density fluctuations (CDF)26, precursors of charge density
waves27–31 (CDW), were recently observed in several cuprate families32,
and pervade the whole strange metal region above and below the
pseudogap temperature T*. For their characteristics - presence in a
broad range of doping in the phase diagram, finite energy and short
correlation length that implies a broad almost isotropic q-space dis-
tribution - they were immediately connected to the strange metal
phase of the cuprates. Besides the mere phenomenology, various
theories put the CDF at the origin of the strange metal phenomenon,
either by extending perturbatively into the strange metal region the
approach of a Fermi liquid13 or by waiving the concept of quasiparticle
in favor of a quantum entangled matter10. Are CDF the quantum fluc-
tuations at the origin of the QCP*?

To answer this question, we have used resonant x-ray scattering
to measure the doping and temperature dependence of the energy,
intensity and correlation length of CDF in YBa2Cu3O7–δ (YBCO) and
Bi2Sr2CaCu2O8+δ (Bi2212) samples. We spanned a broad doping
range, with special attention for three cases, where the absence of
CDW permits a thorough study of CDF, i.e., outside the quasi-static
charge density wave dome ranging, e.g. in YBCO, from p ~ 0.08 to
p ~ 0.1627,31. We thus chose p = 0.22, in the overdoped region, where
the strange metal at high temperature is substituted by a the Fermi
liquid behavior at lower temperatures; p = 0.19 ≈ p* for both YBCO
and Bi221233, where the strange metal extends down to the super-
conducting critical temperature Tc; and p = 0.06, where the strange
metal behavior is observed only at relatively high temperatures33,34.
High resolution spectra at the CDF critical wave vector qCDF provide a
direct measurement of the doping dependence of the characteristic
energy parameter Δ(T,p), which is minimum at p* and, at fixed
p, grows with temperature. Moreover, the quasi-elastic spectral
weight increases almost constantly with temperature, everywhere in
the reciprocal space (see Supplementary Figs. 1a, b, 2a, b, and 3a).
Such isotropic rise of scattered intensity was disregarded in previous
experiments. On the contrary, here we carefully analyze this phe-
nomenon and find that the quasi-elastic signal grows linearly at
high temperatures, more steeply at p* than in underdoped samples,
following the Bose distribution function in the semiclassical regime
(see Supplementary Fig. 4a). Thus, far from qCDF, we can associate a
T-independent energy Ω that follows the same doping dependence
of Δ (the latter representing the characteristic energy of the fluctua-
tions at q = qCDF and at the lowest measured temperature). All this
experimental evidence suggests the presence of a link between CDF
and the QCP*.

Results
CDF at p=0.19
We have performed resonant inelastic x-ray scattering (RIXS) and
energy-integrated resonant x-ray scattering (EI-RXS) at the Cu L3 edge
(~930 eV) at different momentum transfer components q parallel to
the CuO2 planes along the (H,0) and (H,H) directions, on slightly
overdoped (p ~ 0.19) samples of YBCO and Bi2212 (see Methods for
details about the sample growth). Figure 1 summarizes the very-high-
resolution (~38meV) RIXS results at 80 K and 200K, i.e., close to and
well above Tc, respectively. To properly map the CDF signal, panels 1a
and 1b represent as colormaps the difference between the spectra
measured along the (H,0) and (H,H) directions. In this way the elastic
scattering signal originated from surface defects gets mostly canceled
out and the weak CDF signal emerges at small but finite energy,
with broad intensity peaks at q = qCDF ~ (0.30,0) for YBCO and
q = qCDF ~ (0.25,0) for Bi2212. Each spectrum of the (H,0) series can be
fitted below 150meV with four narrow Gaussian peaks (elastic, CDF,
bond-stretching phonons, phonon overtones in increasing energy
loss), plus a broader feature for the spin and particle-hole excitations
(see Methods, and Supplementary Fig. 5). As shown in panels 1d-i, the
elastic peak intensity is temperature independent, with a monotonic
decrease vs H as in undoped samples (see Supplementary Fig. 6a) due
to the absence of contribution from the CDW, as expected at doping
levels above optimum27,31. On the contrary, the CDF intensity, at finite
energy, is T-dependent and broad both in energy and in momentum.
The FWHMof theCDFGaussianpeak, 55–60meV, is significantly larger
than the experimental energy resolution, and the energy position
increases from Δ ~10meV at 80K to ~15meV at 200K. The CDF
intensity plotted versus q is peaked at H =HCDF with a
FWHM~0.15 r.l.u., corresponding to a rather short-ranged correlation
length. The shape of this broad-in-q peak is very similar at the two
temperatures, as already observed in ref. 26, but its intensity is almost
isotropically stronger at 200K than at 80K, for reasons discussed
below. Finally, panels 1 f,i show the softening of the bond-stretching
phonon, with an energy drop ΔEph, measured at a H value close but
higher than HCDF, which is larger at 80K (ΔEph ~ 15meV) than at 200K.
This indicates that, as opposite to the most common
interpretations35–39, the phonon softening is not associated only to
long-ranged CDW but also, or mainly, to CDF.

Temperature dependence of CDF
For an extensive analysis of the temperature evolution of the CDF
signal at p ~ 0.19, we have used medium resolution RIXS (~62meV, see
Fig. 2a) and EI-RXS data,which are quicker tomeasure but do not allow
the direct determination of the characteristic energy Δ, because the
CDF contribution cannot be resolved from the elastic one (see Meth-
ods and Supplementary Fig. 7). In this case, to best single out the CDF
component and minimize the contribution of the bond-stretching
phonons, in Fig. 2 we plot, as function of momentum, the integral of
the RIXS spectra up to 35meV energy loss (vertical band in Fig. 2a).
This integral intensity is dominated by the CDF on top of other elastic
and quasi-elastic components. A peak is present along the (H,0)
direction but not along (H,H) (Fig. 2b, c, Supplementary Figs. 1a, b and
2a, b), consistently with the high resolution RIXS data and with ref. 26.
Moreover, along both directions this quasi-elastic intensity increases
with the temperature. It is evident that the T and q dependence of the
CDF scattering intensity cannot be properly described by a single,
temperature independent energy parameter. Therefore, we have
modeled the CDF component ICDF(q,ω) of the RIXS spectra according
to the theory of the charge density instability in a highly-correlated
Fermi liquid40, which is particularly appropriate for the slightly over-
doped samples. The theoretical x-ray scattering intensity is given by

ICDF ðq,ωÞ / Im Dðq,ωÞ½ � � bðωÞ, ð1Þ

Article https://doi.org/10.1038/s41467-023-42961-5

Nature Communications |         (2023) 14:7198 2



i.e., the product of the T-dependent Bose distribution bðωÞ=
ð1� e�ω=kBT Þ�1

with the imaginary part of the dynamical density fluc-
tuation propagator Dðq,ωÞ, where the _ constant is implicit so that
the ω terms stand for energy, and ω>0 for energy loss (Stokes) scat-
tering. The propagator is that of overdamped quantum critical
fluctuations13,20,21,40

Dðq,ωÞ= 1

ω0 Tð Þ+ ν0 q� qCDF

�� ��2 � iγω� ω2=�ω
� � , ð2Þ

with the CDF frequency ω following a parabolic dispersion from ω0 at
q =qCDF, with coefficient ν0; �ω is the cut-off frequency abovewhich the
CDF spectral density decreases more rapidly. The Landau damping
parameter γ is proportional to the electron density of states that sets a
measure of the phase space available for the decay of the fluctuations.
It can be shown that in q =qCDF the maximum of Im DðqCDF,ωÞ� �

is in
ω= ω0

γ , which is thus the energy Δ directly measured with very high
resolution RIXS at the criticalwave vector. Theminimum frequencyω0

is also linked to theCDF correlation length ξ by the relationω0 = ν0ξ
�2,

so that it can be independently determined from the width in q of the
CDF intensity peak, which is inversely proportional to ξ .

At a generic wave vector different from qCDF, the maximum of
Im½DðqCDF,ωÞ� is instead reached at ω= γ�1½ω0 Tð Þ+ ν0 q� qCDF

�� ��2�, an
energywhich is higher thanΔ. In particular, whenwe are far away from

qCDF the T-independent, quadratic term becomes relevant, and this
energy is maximum. We have named it Ω.

We have performed a global fit, which simultaneously considers
all the YBCOdata in both (H,0) and (H,H) directions at the 13measured
temperatures, using Eqs. (1) and (2), with four critical wave-vectors in
the first Brillouin zone qCDF = ±qCDF, 0

� �
, 0, ± qCDF
� �

. The experi-
mental data and the fitting results are compared in Fig. 2b–e. The
fitting leads to numerically robust estimates of ω0(T), ν0, γ and �ω (see
Methods). In particular, we find ω0 to increase from 5meV at Tc to
20meV at room temperature (see Fig. 2i), and ν0 = 1.26 eV (r.l.u.)−2 to
be close to the value previously found for optimal doping13,26. The
success of the global fittingwith the chosenmodel entails that the CDF
intensity has a major contribution in the quasi-elastic resonant scat-
tering at all q values far from the Γ point and causes the almost iso-
tropic increase of its intensity with the temperature, due to the finite
energy of the CDF. Thismeans that thewhole of the reciprocal space is
under the influence of CDF (see Supplementary Fig. 1e).

Given the importance of getting a reliable estimate of ω0(T), we
have analyzed the data also in a different way. We have isolated the
CDF peak close to qCDF by subtracting, at each T, the featureless (H,H)
data from the (H,0) ones. This subtraction allows us to remove from
the quasi-elastic RIXS intensity the contribution of the elastic scatter-
ingdue to surfacedefects,which is independent of themodulusofq; at
the same time, along the (H,H) direction the CDF contribution is still
present though rather flat, so that the shape, i.e. the FWHM, of the CDF
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Fig. 1 | Charge density fluctuations in overdoped cuprates. High resolution
(ΔE = 38meV) RIXS spectra have been measured on YBCO and Bi2212 (p ≈0.19) at
several momenta along both the (H,0) and (H,H) directions, at T = 80K and
T = 200K. a, b Intensitymaps of the difference (H,0) – (H,H) taken at 80K on YBCO
and Bi2212. c Fit of a RIXS spectrum on Bi2212 at a representative momentum. The
green, red, orange, blue Gaussians and the region below the gray dashed line
represent respectively the pure elastic (mainly given by the specular peak centered
at Γ = (0,0)), the CDF, the bond-stretching phonon modes, the bond-stretching
overtone and the paramagnons. Additional details on the fit are provided in the

Methods section. Given the position, intensity and width of the Gaussians, we have
obtained, as a function of q along the (H,0) direction and at both temperatures,
d the area of the elastic line, e the area of the CDF peak, and f the bond-stretching
phonon dispersion. The error bars are estimated using the 95% confidence interval
of the fit. In panel f the orange lines are guides to the eye while the gray line
represents the phonon dispersion in absence of any softening, as measured in
ref. 69. g–i Same as d–f, but on YBCO. In panel i, the gray line represents the
phonon dispersion in absence of any softening, as measured in ref. 70.
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peak is not altered by the subtraction procedure. We have therefore
fitted the resulting (H,0) – (H,H) curves to a Lorentzian peak (Fig. 2f)
and observe that, with increasing T, the height of the difference peak
slowlydecreases, i.e. the intensity increases less atqCDF than far from it,
and the FWHM increases (Fig. 2g, h). Both T dependences show amild
slope discontinuity around Tc (see dotted vertical lines in Fig. 2g, h)
which tells us about a possible entwining between CDF and the
superconducting state. Moreover, the extrapolation to zero kelvin of
the high-temperature linear-in-T behavior of the FWHM provides the
estimate of a finite CDF correlation length ξ / FWHM�1 forT!0. This
last occurrence sets a strong difference between CDF and CDW26 (see
Supplementary Fig. 3c–e), and confirms that a standard criticality
based on the divergence of a spatial correlation length cannot be
contemplated for CDF.

The ω0ðTÞ obtained from the FWHM are compared in Fig. 2i with
those determined with the global fit on the same dataset (solid line)
and with the energy Δ extracted directly from the very-high-resolution
spectra (triangles). Similar energies have been determined for Bi2212
at the same doping level (see Supplementary Fig. 2). The fact that the
values of Δ and ω0, determined by different procedures and from
different data sets, coincide within the experimental uncertainties
allows us to take γ ~ 1 for T > Tc; although further investigations might

lead to a more precise estimate of the Landau damping parameter γ,
we do not expect it to depart significantly from one, if not at low
temperatures, and with superconductivity suppressed by a magnetic
field, as it was also previously found by the fit of the linear-in-T resis-
tivity of YBCO13.

Doping dependence of CDF
To determine the dependence of the CDF properties over a sig-
nificantly broad doping range, we performed the RIXS measurements
on a strongly underdoped (p ~ 0.06) YBCOsample (seeMethods). Even
at such low doping level, the high resolution spectra of Fig. 3a show a
CDF peak, centered at q = qCDF ~ (0.35,0), with an energy
ΔðTmin,p=0:06Þ∼ 25meV at 20K (see Supplementary Fig. 6b, c). This
energy value, so high already close to Tc, is therefore significantly
larger than that of the p ~ 0.19 samples. Although weaker, the tem-
perature dependence of the CDF intensity and FWHM in the
p =0.06 sample is similar to that of the overdoped ones (see Fig. 3b, c
and Supplementary Fig. 3a, b). We also notice that the softening of the
bond-stretching phonons (ΔEph ~ 4meV at 20K) is still present at
p =0.06, though much weaker than at higher doping (see Supple-
mentary Fig. 6c). This occurrence further supports the generality of
the connection between CDF and bond-stretching phonons.
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Fig. 2 | CDF energy from the T-dependence of the quasi-elastic spectral weight.
Medium resolution (ΔE = 62meV) RIXS spectra have been measured on YBCO
(p ≈0.185) at several momenta along both the (H,0) and (H,H) directions, in the
temperature range between T = 20K and T = 290K. a RIXS spectra taken at a
representative momentum as a function of the temperature. The vertical band
represents the energy range, [−0.1, 0.035] eV, where the spectral intensity has been
integrated to single out the CDF contribution. b, c The integrated intensity mea-
sured respectively along the (H,0) and (H,H) directions is shownas a contourplot as
a functionof the temperature.d, eGlobalfit of the curvespresented in panelsb and
c, respectively along the (H,0) and (H,H) direction, achieved by modeling the CDF
peakwith theproductof the Bose distribution function andof the imaginary part of
the dynamical density fluctuation propagator (Eqs. (1) and (2)). Here, the

experimental data are fitted considering ω0 varying with temperature in the range
5–20meV, �ω = 45.55meV, ν0 = 1.26 eV(r.l.u.)−2, γ = 1.6. f The CDF peak, given by the
difference (H,0)-(H,H), is plotted at several temperatures. g, h The height and
FWHMof the single Lorentzian profiles used to fit the data in panel f are presented
as a function of the temperature. The error bars represent the 95% confidence
interval of the Lorentzian fit. The solid line is a linear fit of the data. i The char-
acteristic CDF energy Δ, extracted from the high resolution spectra by the energy
positionof theCDFGaussians, and the frequencyω0, determined from themedium
resolution spectra by the FWHMof the CDF profiles, are plotted as a function of the
temperature respectively as triangles and circles. Remarkably, the frequency ω0 at
q = qCDF, as determined by the global fit (solid line), is in very good qualitative
agreement with the experiment.
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For a definitive assessment of the relation of CDF with a quantum
critical scenario, we went beyond p* ~ 0.19 by using Ca-doped YBCO
thin films with p = 0.22 (see Methods). In agreement with previous
works27,31, we find no signatures of CDW. However, we observe a broad
and weakly T-dependent peak of the quasi-elastic scattering intensity,
typical of CDF, centered at (0.27,0). Both this wave vector, and that for
p ~ 0.06, (0.35,0), fall exactly on the straight line that describes the
doping dependence of the CDW wave vector of YBCO31 (see Fig. 3d).
These two values significantly extend the doping range over which the
HCDF is known for this cuprate family. The (H,0)-(H,H) RIXS map
in Fig. 3e shows that the CDF energy is larger at p = 0.22 than at

p =0.19, and the fit of the high resolution spectra leads to
ΔðTmin,p=0:22Þ∼ 18meV. Moreover, the CDF scattering intensity is
smaller at p = 0.22 than at p =0.19. By adding the high temperature
data of three other samples (see Fig. 3f, g and Supplementary
Fig. 3c–e), at very low (p ~ 0) and intermediate doping (p ~ 0.09 and
0.10), we can convincingly show in Fig. 3h that the CDF intensity has a
maximum at p = 0.19. This result is robust and independent of the
procedures for the subtraction of the pure elastic contribution.

The results for the p =0.06, 0.19 and 0.22 samples suggest that
not only the intensity but also the energy associated to the CDF
depends on the doping level, calling for a study at intermediate values
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Fig. 3 | Doping dependence of the charge density fluctuations in YBCO. a High
resolution RIXS map along the (H,0) direction taken at T = 20K for a strongly
underdoped (p =0.06) YBCO. The map is presented after subtracting the fit of the
pure elastic peak from the raw spectra. b, c Height and FWHM as a function of the
temperature of the Lorentzian profiles used to fit the CDF peak. Here, the peak has
been obtained from the difference (H,0) - (H,H) of the intensity of the medium
resolution RIXS spectra, integrated within the energy range shown in Fig. 2a. The
error bars represent the 95% confidence interval of the Lorentzian fit. The solid line
is a linear fit of the data. d The HCDF of the CDF peaks in the YBCO and Ca-YBCO
samples we have measured is in agreement with the HCDW doping dependence of
CDW previously found in YBCO (see squares, taken from ref. 31). The same linear
trend is indeed also followed by the samples at p =0.06 and p =0.22, where no

signature of charge order was previously detected. e High resolution RIXS map of
the difference (H,0) – (H,H) taken at T = 60K for an overdoped (p =0.22) Ca-YBCO
sample. f The integrated intensity at T ≈ 290K is presented as a function of the
momenta along the (H,0) direction for YBCO samples at different level of doping p.
Curves are presented after a vertical translation, so to align the integrated inten-
sities at the lowest and highest momentum values. g The CDF peak, determined by
the difference (H,0) - (H,H), is shown at T ≈ 290K for strongly underdoped
(p =0.06) YBCO, for a slightly overdoped (p =0.185) YBCO, and for an overdoped
(p =0.22) Ca-YBCO thin film. For clarity, the weak, high-temperature CDF peaks are
here presented after smoothing. h The height of the CDF peak, normalized to the
maximum value measured at p ≈0.19, is plotted vs doping for the YBCO and Ca-
YBCO. The violet region is a guide to the eye.
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of p. However, in those cases the task is more difficult because the
CDW peak at zero energy cannot be resolved from the CDF signal at
very low energy, being the respective critical wave-vectors almost
coincident (see Fig. 3d). Therefore we have studied the CDF far from
qCDF, where the CDW contribute negligibly to the scattering intensity,
i.e., along the (H,H) direction andon the tails of the (H,0) scan.Whatwe
can determine in this way isΩ, the bosonic characteristic energy of the
CDF previously mentioned. We expect Ω to be related to, and larger
than, the energy Δ at qCDF. For convenience, we assume that Ω is
constantwith respect to temperature, since theT-dependentω0 term
is little relevant in the expression of Ω for each doping p. Conse-
quently, the energy-integral of the quasi-elastic intensity far from
qCDF can be simply attributed to a bosonic distribution function of a
single characteristic energyΩ at all temperatures. Even before fitting
the experimental data we observe that the T dependence of the
intensity is very similar at all q positions along the (H,H) and that it
strongly depends on the doping level (see Fig. 4a, b). We fitted those
curves with a simple function A+ I0 1 + 2 eΩ=kBT � 1

� ��1
h i

where I0 is
the CDF intensity at zero temperature and A accounts for the non-
CDF scattering contributions (see Methods and Supplementary
Fig. 4). We can thus be confident in using the same method at
intermediate doping. Interestingly,Ω is 15–20meV larger forp = 0.06

than for p = 0.19, which is close towhat we have also observed at qCDF

for Δ (see Fig. 4c).
The values of Δ, converted into kelvin, are shown in the phase

diagram of Fig. 4d for a set of YBCO, NBCO and Bi2212 samples,
including those previously used in ref. 26. Both below and above p*
these points line up with the border of the strange metal phase as
determined by transport24,41,42 (shaded regions in Fig. 4d) and define a
characteristic wedge with a minimum at p*.

Discussion
Thanks to an innovative analysis of RIXS data, applied to a large set of
measurements (6 doping levels, 3 families of samples, wide tempera-
ture range, high and low resolution in energy), we provide here a
consistent assessment of the doping and temperature dependences of
the CDF intensity and energy in superconducting cuprates. We find
that the CDF scattering intensity is strongest in proximity of p ~ 0.19
and at low T, while it fades both when increasing the temperature and
when moving the doping away from p*. Moreover, the energy
ΔðTmin,pÞ, i.e. the minimum of the parabolic relation for the CDF dis-
persion in the q-space, is lowest at p ~ 0.19, while it increases with
temperature at all dopings. The results are summarized in Fig. 4e,
where we depict the CDF dispersion relation using the propagator of
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Fig. 4 | Charge density fluctuations in the cuprate phase diagram. a The inte-
grated intensity measured on YBCO (p ≈0.06) is presented as a function of the
temperature for several momenta along the (H,H) direction. For each momentum,
the solid line represents the fit of the data assuming a Bose distribution function.
b Same as previous panel, on YBCO (p ≈0.19). c The energies Ω, determined from
the Bose fit on spectra measured along the (H,H) direction, are plotted together
with the energies Δ, directly measured at q = qCDF in the very high resolution
spectra. Here and in the next panel we consider the Δ valuemeasured at the lowest
temperature. The two NBCO samples are from Ref. 26. At any doping, Ω >Δ, as
expected when moving away from qCDF. As highlighted by the lines, which are

guides to the eye, both energies increase when decreasing the doping, with a
minimum at p =0.19. d The temperatures corresponding to the energies Δ are
presented as a function of doping p as filled symbols. In the constructed cuprate
phase diagram, we also show the temperatureTL, where the linear-in-T dependence
of the resistance, signature of the strange metal behavior, is lost in YBCO and
Bi221224,41,42. e In the p-T phase diagram, we have depicted the CDF dispersion
relation at three temperatures (T ≈ 20K, T ≈ 100K, T ≈ 300K) and doping levels
(p =0.06, p =0.19, p =0.22), using the propagator of Eq. (2) and the energy values
experimentally determined in this work.
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Eq. (2) calculated with the parameters experimentally determined. We
find a good indication that the CDF can be the fluctuations associated
to a quantum critical point at p ~ 0.19. In fact, the CDF are enhanced
exactly at the putative QCP*. Moreover, the CDF energy Δ coincides,
within the experimental errors, to the temperature where the strange
metal ends, i.e., where the linear-in-T resistivity is lost. These corre-
spondences point towards a strong role of charge excitations in driv-
ing the phase transition, giving rise to the strange metal. However,
since recent inelastic neutron scattering and nuclear magnetic reso-
nance results support a quantum criticality at p* in La2−xSrxCuO4

related to spin excitations43,44, at our present knowledge, we cannot
exclude a subdominant spin nature of the quantum fluctuations we
have singled out with RIXS. Finally, it is worth reminding that the CDF
are strongest at a doping level, slightly above the optimal doping,
where the superfluid density45–47, the superconducting critical current
density46,48 and the upper critical field49 are the highest.

In a scenario of quantum criticality, one should expect the cor-
relation length of the CDF to diverge at p* when approaching zero
temperature. This is not happening in our data for p =0.19, also
because the superconducting order clearly influence the behavior of
CDF below Tc. We can postulate that, under high magnetic field sup-
pressing superconductivity, the CDFmight be drastically different and
ξ diverges. However, this scenario is in contradiction with the obser-
vation that the linear resistivity of the strange metal extends down to
very low T in the absence of superconductivity3. In fact, as we attribute
the linear resistivity to the quasi-isotropic scattering of carriers by
CDF13, a CDF peak becoming very narrow at low Twould not guarantee
the needed isotropic scattering mechanism. To resolve this contra-
diction, we can think either of a frustrated criticality at p = 0.19, with Δ
remaining finite as T!0, or ofΔ= ω0

γ ! 0 due to the divergence of the
damping factor γ, with ω0 staying finite50. In the latter case, small
domains hosting CDF with finite correlation length ξwould undergo a
critical slowing down resulting in an almost persistent glassy state. In
other words, the tendency towards a long-range order at the QCP*
would be frozen in an incoherent ensemble of CDF droplets. This
picture would be consistent with the existence of an anomalous QCP.

Our observations stimulate important questions about the pos-
sible interconnection between charge ordering, lattice dynamics,
strange metal and superconductivity in cuprates. While the presence
of CDF leads to a softening of the high-energy bond-stretching pho-
nons, as we have observed in Fig. 1f, i, it is very plausible a direct
coupling of the CDF with the acoustic phonons, whose intensity is
robust at the Cu L3 edge51 and whose energy falls within a similar range
as that of CDF38. Furthermore, it is noteworthy that the characteristic
CDF energy ΔðpÞ (see Fig. 4d) is in good quantitative agreement with
the T* line observed in the underdoped regime, up to the doping level
p* where it vanishes52–54. However, our experiment cannot unravel the
possible cause/effect hierarchy between charge density/quantum
fluctuations and the pseudogap55,56, or the relation of the pseudogap
with the quantum criticality5,52,53. Conversely, we have shown that at
doping levels above p*, i.e., outside the pseudogap region, the charge
density fluctuations are still present, and their energy is still in quan-
titative agreementwith the temperaturewhere the strangemetal ends,
although in the absence of the pseudogap.

Methods
Sample growth and characterization
The four YBa2Cu3O7-δ (YBCO) films and the Y0.7Ca0.3Ba2Cu3O7-δ (Ca-
YBCO) film, with thickness t = 50 nm, have been deposited by pulsed
laser deposition on 5 × 5 mm2 (001) SrTiO3 substrates. Details of the
growth procedure are given in ref. 34. After the deposition, using a
post-annealing oxygen pressure of 4.9 · 10−5, 1.1 · 10−4, 2.7 · 10−4, 6.5 · 102

torr (for the YBCO films) and 6.5 · 102 torr (for the Ca-YBCO film), films
with a zero resistance critical temperature respectively of 0, 12, 51, 85K
(for the YBCO films) and of 60K (for the Ca-YBCO film) have been

achieved. The doping levels p have been determined, using a method
already successfully used for single crystals57, by the knowledgeofTc in
combination with the c-axis length, obtained via X-ray Diffraction:
thus, the doping values p = 0, 0.06, 0.09, 0.185 (for the four YBCOfilm)
and 0.22 (for the Ca-YBCO film) have been extracted.

The slightly overdoped Bi2Sr2CaCu2O8+δ (Bi2212) single crystal,
with Tc = 82 K, has been prepared by growing an optimally doped
sample by traveling solvent floating zone method, and by subse-
quently annealing it in a high-pressure (0.2MPa) oxygen atmosphere
at 500 °C for five days58.

RIXS measurements
The RIXS spectra on the slightly overdoped YBCO (p = 0.185) and
Bi2212 (p =0.19) samples have been collected at the I21 beamline of the
Diamond Light Source59. The combined (beamline and spectrometer)
energy resolution, determined by measuring the width of the non-
resonant elastic line on a carbon tape, was 38meV for the high reso-
lution spectra, measured at two temperatures (T = 80 and 200K) and
65meV for the medium resolution spectra, measured at twelve dif-
ferent temperatures in the range between 20 and 260K.

The RIXS spectra on the undoped and underdoped YBCO (p =0,
0.06, 0.09) samples have been collected at the ID32 beamline of the
European Synchrotron Radiation Facility (ESRF) in Grenoble using the
high-resolution ERIXS spectrometer60. The combined (beamline and
spectrometer) energy resolution, determined by measuring the width
of the non-resonant elastic line from silver paint, was 41meV for the
high resolution spectra (measured at T = 20K, on the p =0 and
0.06 samples) and 62meV for the medium resolution spectra (mea-
sured in the range between 20 and 290K i) at nine different tem-
peratures for the p = 0 and 0.06 samples; ii) at four different
temperatures for the p =0.09 sample). Relaxing the energy resolution
up to 62meV has allowed us to perform a thorough temperature
dependence. The fully agreement between the results coming from
high and medium resolution RIXS spectra, we have presented in the
manuscript, demonstrates that the pollution coming from the bond
stretching phonons to the CDF dependencies are negligible.

The incident X-rays have been chosen so that their energy is tuned
to the maximum of the Cu L3 absorption peak at around 931 eV, and
their polarization is linear, perpendicular to the scattering plane (σ-
polarization). They impinge on the sample surface, normal to the
YBCO c-axis, and are scattered by an angle 2θ. The momentum trans-
fers aregiven in units of the reciprocal lattice vectorsa* = 2π/a,b* = 2π/
b, c* = 2π/c. We have worked at 2θ ≈ 150° in order to get |q| = 0.91 Å−1,
which allowed us to cover thewhole first Brillouin zone along the (H,0)
direction (0.5 r.l.u. ≈0.81 Å−1). We have changed the in-plane wave
vector component q//,fixing 2θ and rotating the samples around θonly
(charge order in cuprates is indeed only weakly L-dependent).

The RIXS spectra in the manuscript have been first corrected for
self-absorption61,62 and then normalized to the integral of the inter-
orbital dd excitations, in the range [−3 eV, −1 eV]. The self-absorption
correction compensates for the possible reabsorption of scattered
photons along their path out of the sample from the scattering point.
The probability of self-absorption depends on the absorption coeffi-
cients of the incident and scattered photons (which depend on their
energy and polarization) and on the scattering geometry. It also
depends on the total thickness of the sample. We have implemented
the exact form of the correction that takes into account all the para-
meters: θ and χ, angles between the normal to the sample surface and
the incident and emitted photon propagation direction; αT1, 2 and
αR1, 2, total and resonant part of absorption coefficient for the incident/
scattered photons, with αT =α0 +αR and α0 non-resonant pre-edge
absorption coefficient not contributing to the RIXS signal; d, sample
thickness. The quality of the correction depends on the knowledge of
the absorption coefficients, which critically depend on the photon
energy and polarization in the proximity of the absorption resonance.
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Conversely, the angular dependence is univocally known. The
absorption coefficients were evaluated from the XAS spectra mea-
sured on every sample during each RIXS experiment. Their relative
values are sufficient for the correction in case of thick samples (as
single crystals, whose thickness can be approximated to infinite),
whereas the absolute value of αT1 is needed for thin films, but it can be
estimated from tabulated data of α0.

For clarity, we report here the self-absorption correction for-
mulas. Calling η1ðhν2Þ the ideal RIXS spectrummeasured with incident
photonenergyhν1 andpolarization ε1, the self-absorptionmodifies the
spectral intensity point by point leading to:

I1 hν2
� �

=
αR1

αT1
C1 hν2, ε2

� �
D1 hν2, ε2

� �
η1ðhν2Þ

with

C1 θ, χ,
αT2ðhν2, ε2Þ

αT1

� �
= 1 +

αT2 hν2, ε2
� �

sin θ

αT1 sin χ

� ��1

D1 θ, χ,
αT2ðhν2, ε2Þ

αT1
,αT1,d

� �
= 1� exp �C1 � αT1 �

d
sinθ

	 


We notice that for thick samples, d ! 1 andD= 1. Therefore, the
spectrum η1 hν2

� �
that ideally would be measured in the absence of

self-absorption from a thick sample is derived from the measured one
I1 hν2
� �

as

η1 hν2
� �

=
αT1
αR1

C1D1
I1 hν2
� �

Thanks to this procedure we can safely compare the shape and
intensity of spectra measured at different θ and χ angles (i.e., at dif-
ferent q points) for a given sample and excitation energy (fixed
absorption coefficients, also when the temperature is varied). Spectra
of different samples can also be compared, although with some extra
precautions due to the uncertainties related to the α coefficients that
are not identical in different samples.

We also emphasize here that the self-absorption correction we
have applied for both thin films and single crystals does notmodify the
FWHM and the HCDF of the CDF peak (See Supplementary Fig. 8).

EI-RXS measurements
Energy Integrated Resonant X-ray scattering (EI-RXS) measurements
have been performed at the UE46-PGM1 beamline of BESSY II at
Helmholtz Zentrum Berlin63 on the slightly overdoped YBCO
(p = 0.185) and Bi2212 (p = 0.19) samples. The geometry was identical
to that of the RIXS experiments. The samples have been mounted on
an ultra-high vacuum diffractometer, in contact with the cold finger of
a liquid-Helium-flow cryostat. The incident photons are linearly
polarized in the direction perpendicular to the scattering plane (σ-
polarization). The scattered photons have been detected using a
standard photodiodewithout discrimination of either polarization and
energy, implying that the measured intensities represent an integra-
tion over all elastic and inelastic scattering processes. Momentum-
space scans have been measured at several temperatures in the range
between 10 and 300K.

Alignment and fit of the high resolution RIXS spectra
For each sample, we have first determined the zero energy loss line by
measuring a resonant spectrum close to Γ=(0,0): here, the low energy
region is indeed dominated by the purely elastic intensity of the
specular, which prevails over any other inelastic contribution, coming
from charge order or phonons. The upper error on the position of the

zero can be estimated in the order of 2meV, aswehave shown in detail
in the supplementary material of ref. 26. All the spectra measured at
higher q values have been aligned among each other, and to the
reference spectrum at Γ, by aligning themaxima of the first derivatives
of the quasi-elastic regions.

To extract quantitative information from the spectra, we have
fitted those along the (H,0) direction considering the quasi-elastic
region as the sum of: i) an energy resolution limited, purely elastic,
peak (greenGaussian in Fig. 1c); ii) a lowenergypeak linked toCDF (red
Gaussian in Fig. 1c), whose FWHM is a free fit parameter and whose
position is first left free to change, then fixed to its value close to qc,
which is more stable (being its intensity overshadowed by that of the
specular peak at low q values and by that of the breathing phonons at
high q values); iii) a Gaussian associated to the bond-stretching pho-
nons (orange curve in Fig. 1c), whose position and FWHM are free fit
parameters; iv) a Gaussian associated to the phonon overtones, with
variable FWHM and position set to twice the position of the bond-
stretching phonon peak; v) an antisymmetrized Lorentzian function,
associated to the paramagnons, as shown in ref. 64.

A similar fit has been done on the spectra measured along the
(H,H) direction: for each sample i) the intensity of the purely elastic
peak is at any q very close to that along the (H,0) direction (which
justifies the difference spectraplotted in Fig. 1a, b) (see Supplementary
Fig. 5d); ii) the position of the CDF Gaussian is much higher than that
extracted along the (H,0) direction (see Supplementary Fig. 5f), in
agreement with theoretical previsions (see Eqs. (1) and (2)), while the
intensity of the peak is almost q-independent; iii) the bond-stretching
phonons donot soften, differently fromwhat observed along the (H,0)
direction (see Supplementary Fig. 5h).

Here, it is worth mentioning that the positions in energy of the
CDF, Δ, and of the bond-stretching phonons are affected by an
uncertainty of about 4meV. As previously discussed in ref. 26, this is
well below the energy resolution of our instrument. Indeed these two
peak positions are determined by the difference between the centroid
of the pure elastic peak and the centroid either of the CDF peak at
q = qCDF or of the bond-stretching phonon peak. This estimation is
muchmore accurate than the instrumental bandwidth: the position of
the centroid of a data distribution is well defined and very stable, even
when the noise level is relatively high, once the line-shape of the data
distribution is well-known.

Our high-resolution spectra could in principle be fitted con-
sidering only two peaks in the quasi-elastic region, i.e., the pure elastic
peak and the bond-stretching phonon one. However, we have also
considered a third peak between these two, which we have assigned to
charge density fluctuations. This is mainly for two reasons. First, the fit
improves significantly, since we directly account for the presence of
the strong intensity at qCDF and finite energy, which is evident from the
maps in Figs. 1 and 3. Secondly, it is rather common for Cu L3 RIXS
spectra of cuprates, measured with good resolution (35–40meV BW)
to make a three peak fitting for the undoped compounds: one for the
elastic component at zero energy, one for the bond-stretching pho-
nons above 50meV, and one of intermediate energy for other low-
energy phonons modes, such as the bond-buckling65,66. However, in
doped samples, charge order excitations become relevant, and their
spectral intensity dominates the region between the elastic and the
bond-stretching phonon peak. A three-peak fit (elastic, CDF and bond-
stretching) can be performed here, without including an additional,
fourth component connected to the bond-buckling phonons. Indeed,
their intensity at the Cu L3 edge is much smaller than the other low-
energy phonons, as the acoustic and the bond-stretching51. We note
that, on the contrary, for O K edge RIXS the buckling mode is more
intense and cannot be neglected38,67. Moreover, in the range of qwhere
theCDF is the strongest and its energyΔ is determined, i.e. atq close to
qCDF ≈0.25-0.35 r.l.u., their intensity, being proportional to cos2ðπqÞ51,
is even weaker. Therefore, we decided not to include the buckling
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phonon contribution in our fitting, in order to restrict the number of
free parameters and obtainmore robust results. For completeness, we
have anyway made a test with four peaks, adding a fourth Gaussian
component, centered at the energy where buckling phonons have
been previously measured in YBCO and Bi2212 by other techniques.
We found that the intensity of this additional phonon mode is low
enough to leave unaltered the position of the CDF contribution, i.e.,
the CDF energy Δ (see Supplementary Fig. 9). Of course, a softening of
the bond-buckling phonon branch due CDF is expected, as it has been
already measured in cuprates at the O K edge38,67. However, the
intensity wemeasure at the Cu L3 edge is too low to study this phonon
anomaly and to attribute to this phonon anomaly any change in the
CDF parameters as extracted by the three-peak fit.

Global fit of the medium energy resolution RIXS spectra
Medium energy resolution RIXS spectra have been integrated over the
[−100, 35]meV energy range to extract quantitative informationon the
intensity evolution of the CDF peak with momentum q and tempera-
ture T, irrespective of the details of its spectral line shape, as shown in
Fig. 2a. The I(q,T) curves were all fit simultaneously to extract robust
estimates of the parameters appearing in Eqs. (1) and (2), as shown for
slightly overdoped YBCO (see Fig. 2b–e and Supplementary Fig. 1a, b)
and Bi2212 (see Supplementary Fig. 2a, b).

Bose fit of the medium energy resolution RIXS spectra
The Bose function A+ I0 1 + 2 eΩ=kBT � 1

� ��1
h i

used in the main text
depends, among the other, on the values of the variablesA and I0. Their
sum represents the total quasi-elastic intensity in the zero temperature
limit: I0 is the CDF intensity, which far from qCDF we consider q-inde-
pendent, while A accounts for the non-CDF contributions, which is
strongly q-dependent, andminimum at high q values (consequently to
the q-dependence of the specular elastic peak, see Supplementary
Fig. 6a). For each sample, we have determined the A and I0 values from
the high-resolution spectra, given the relative weight of the purely
elastic Gaussian and of the CDF Gaussian in the [−100, 35] meV energy
range. The doping dependence of theΩ values, i.e. CDF energies along
the (H,H) direction estimated from the fit, is however very robust, and
the solidity of the Ω values goes beyond any possible uncertainties in
the correct determination of A and I0.

In Fig. 4a, b the difference between the data taken on samples at
various dopings is very clear. In particular, the slopes of the quasi-
linear trend of the integrated intensity versus temperature are very
different (see also Supplementary Fig. 4a). In a Bose scenario, this
means that the energies Ω are different. More precisely, we can
estimate the ratio between theΩ values at different dopings, which is
a good indicator of the situation. This approach is based on the fact
that the Bose function can be put in a universal form by plotting it in
terms of the reduced temperature T/Ω. Thus, different curves will
collapse onto the universal function if they are plotted as a function
of T/Ω. Because the scaling factors are different in the two cases, the
definition of reduced temperature, thence the energy Ω, is different.
This is very clear from Supplementary Fig. 4b, where we have plotted
as a functionofT/Ω the two curves of the strongly underdopedandof
slightly overdoped samples at q = 0.44 r.l.u. Here, the ratio is 1.5,
which is in agreement with theΩp=0.06/Ωp=0.19 ratio (47/31), resulting
from the Bose fit presented in the main text. This ratio of the two
scaling factors does not depend on the choice of one of the two
values of Ω, and is T-independent because of the universality of the
Bose plot.

Focusing instead on the absolute values of Ω, the values deter-
mined from thefit are in fairly good agreementwith the valueswe have
directly measured in the high-resolution spectra. Indeed, the position
of the CDF Gaussian along the (H,H) direction is, depending on the q
value, in the 35–38meV energy range (see Supplementary Fig. 5f): this
value is only ~15% higher than that we have found using the Bose fit.

Data availability
All data shown in the main text and in the supplementary information
are available at the Zenodo repository68, under accession code https://
doi.org/10.5281/zenodo.8430044.
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