
Thesis for The Degree of Doctor of Philosophy

Journeys in vector space: Using deep neural network
representations to aid automotive software engineering

Dhasarathy Parthasarathy

Division of Computing Science
Department of Computer Science & Engineering

Chalmers University of Technology and Gothenburg University
Gothenburg, Sweden, 2023

Journeys in vector space: Using deep neural network representa-
tions to aid automotive software engineering

Dhasarathy Parthasarathy

Copyright ©2023 Dhasarathy Parthasarathy
except where otherwise stated.
All rights reserved.

ISBN 978-91-7905-945-3
Doktorsavhandlingar vid Chalmers tekniska högskola, Ny serie nr 5411.
ISSN 0346-718X

Department of Computer Science & Engineering
Division of Computing Science
Chalmers University of Technology and Gothenburg University
Gothenburg, Sweden

This thesis has been prepared using LATEX.

Printed by Chalmers Reproservice,
Gothenburg, Sweden 2023.

ii

,,

iv

,,,,

Abstract

Context – The automotive industry is in the midst of a transformation where
software is becoming the primary tool for delivering value to customers. While
this has vastly improved their product offerings, vehicle manufacturers are facing
an urgent need to continuously develop, test, and deliver functionality, while
maintaining high levels of quality. Increasing digitalization in the past decade
allows us to turn to an interesting avenue for addressing this need, which is data.
With activities in engineering and operating vehicles being increasingly recorded
as data, and with rapid advances in machine learning, this work takes a data-
driven, deep learning approach to solve tasks in automotive software engineering.

Scope – This work focuses upon two automotive software engineering tasks, (1)
assessing whether embedded software complies with specified design guidelines,
and (2) generating realistic stimuli to test embedded software in virtual rigs.

Contributions – First, as the main tool for solving the design compliance task,
we train tasnet, a language model of automotive software. Then, we introduce
DECO, a rule-based algorithm which assesses the compliance of query programs
with the Controller-Handler automotive software design pattern. Utilizing the
property of semantic regularity in language models, DECO conducts this as-
sessment by comparing the geometric alignment between query and benchmark
programs in tasnet’s representation space. Second, focusing upon stimulus
generation, we train logan, a deep generative model of in-vehicle behavior. We
then introduce MLERP, a rule-based algorithm which takes user-specified test
conditions and samples logan to generate realistic test stimuli which adhere to
the conditions. Using the property of interpolation in representation space for
semantic combination, MLERP generates novel stimuli within the boundaries
of specification. Third, staying with the testing use case, we improve logan to
train silgan, which simplifies the specification of test conditions. Then, noting
that sampling a generative model is less efficient, we introduce GRADES, a rule-
based algorithm that uses a specially constructed objective to search for stimuli.
GRADES is built upon the fact that neural networks in silgan are differen-
tiable, and, given an appropriate objective, a gradient descent-based search in
model representation space efficiently yields suitable stimuli. Fourth, we note
that our recipe for solving automotive software engineering tasks consistently
pairs a self-supervised foundation model with a rule-based algorithm operating
in the model’s representation space. This paradigm for building predictive
models, which we refer to as ‘pre-train and calculate’, not only extracts nuanced
predictions without any supervision, but is also relatively transparent. Fifth,
with our predictive approach relying heavily upon properties in abstract rep-
resentation space, we develop techniques that explain and characterize selected
high-dimensional vector spaces. Overall, by taking a data-driven deep learning
approach, techniques we introduce reduce manual effort in undertaking two
crucial engineering tasks. This has a direct effect on improving the cadence of
automotive software engineering without compromising the quality of delivery.

Keywords – automotive software design and testing, large language models,
generative adversarial networks, latent space arithmetic, explainable AI

Acknowledgment

I first thank Carl-Johan Seger, my thesis adviser at Chalmers, without whom
I would not have been able to initiate my doctoral research. Your advice,
perspectives, and support have been valuable for this journey. My next thanks
would be to the wonderful Wallenberg AI, Autonomous Systems and Software
Program (WASP) which, apart from funding my work, is exquisitely going about
its ambitious mission of nurturing talent in critical technologies. I then thank
my WASP collaborators, especially Anton Johansson, for insightful interactions.

At the Volvo Group, my professional universe for the last decade, there are
too many people to thank, so any list of names will fall woefully short. Nev-
ertheless, I make a feeble attempt. Enormous thanks to Daniel Karlsson and
Dan Walhström, my immediate managers, for rock solid support and quick
recognition of the potential of AI. Then comes the core-ML group - it is rare to
come across such a committed bunch of comrades who come together to take
on tough challenges. Our journeys are nothing short of remarkable. Thanks
also to Abhineet Tomar - you’re one person who has read every word that
I’ve written. Finally, I reserve special thanks for my erstwhile manager Ted
Kruse for giving true meaning to this quest. It’s your visionary, yet practical,
‘school’ of research that I hail from.

The greatest amount of gratitude is reserved for my family, the center of my ex-
istence. Thanks Amma, Appa, and Sumaka for making me what I am. Thanks
also to Usha amma for always wishing the best for me. Then of course comes
Mamta, my juggernaut. The combined subject of my love and admiration, and
my primary source of inspiration, this work is mainly for you.

Final word to the actual Parthasarathy. Appa, I hope this makes your banner
fly higher.

vii

List of Publications

This thesis is based on the following publications:

[A] D. Parthasarathy, C. Ekelin, A. Karri, J. Sun, P. Moraitis
“Measuring design compliance using neural language models: an automo-
tive case study”
PROMISE 2022: Proceedings of the 18th International Conference on
Predictive Models and Data Analytics in Software Engineering.

Judged best paper in PROMISE 22

Contributions – Conceived the overall idea, designed, largely developed,
largely analyzed, and wrote the contributions. I collaborated with J. Sun
and A. Karri on parts of the development and with C. Ekelin on parts
of the analysis.

[B] D. Parthasarathy, K. Bäckström, J. Henriksson, S. Einarsdóttir
“Controlled time series generation for automotive software-in-the-loop
testing using GANs”
IEEE International Conference On Artificial Intelligence Testing 2020.

Contributions – Conceived the overall idea, designed, largely developed,
analyzed, and wrote the contributions. I collaborated with K. Bäckstrom
in developing the MLERP algorithm.

[C] D. Parthasarathy, A. Johansson
“SilGAN: Generating driving maneuvers for scenario-based software-in-
the-loop testing”
IEEE International Conference On Artificial Intelligence Testing 2021.

Contributions – Conceived the overall idea, designed, largely developed,
analyzed, and wrote the contributions. I collaborated with A. Johansson
in developing the expansion stage of the model.

[D] D. Parthasarathy, A. Johansson
“Does the dataset meet your expectations? Explaining sample represen-
tation in image data”
32nd Benelux Conference, BNAIC/Benelearn 2020.

Contributions – Conceived the overall idea, designed, largely developed,
largely analyzed, and largely wrote the contributions. I collaborated with
A.Johansson on developing the overlap index.

ix

x

Contents

Abstract v

Acknowledgement vii

List of Publications ix

1 Introduction 1

1.1 Automotive software: preparing for the next wave 1

1.2 Research objectives . 3

1.3 Solution approach . 6

1.4 Thesis structure . 10

1.5 Relation to publications . 11

2 Background 13

2.1 Automotive application software 13

2.1.1 The importance of system thinking 15

2.1.2 The automotive E/E system 16

2.1.3 Vehicle application software as a system 18

2.2 Foundation models in deep learning 21

2.2.1 Domains, tasks and supervision in deep learning 22

2.2.2 Benefits and costs of supervised task specialization . . . 25

2.2.3 Flexibly applying foundation models for tasks 27

xi

xii CONTENTS

I Easing the process of software design compliance 31

3 Automotive software design 33

3.1 Patterns for designing vehicle application software 34

3.2 Limits of traditional design compliance assessment 37

3.3 Towards a deep learning approach for design compliance 38

4 Defining a system for design compliance assessment 41

4.1 The ‘language’ of design in code 42

4.2 Stating the problem of design compliance 43

4.3 The corpus and design pattern studied 44

5 Building a system for design compliance assessment 51

5.1 Constructing a system for assessing design compliance 51

5.2 Experiments in assessing design compliance 58

6 Discussions 67

6.1 On research questions . 67

6.2 On techniques employed . 69

6.3 Related work . 71

6.4 Congruence with research objectives 71

6.5 Congruence with the solution approach 72

II Easing the process of virtual software testing 75

7 Virtual automotive software testing 77

7.1 Simulation for testing vehicle application software 79

7.2 Limits of traditional simulation methods 82

7.3 A deep learning approach to stimulus generation 84

CONTENTS xiii

8 Defining a system for test stimulus generation 87

8.1 A wealth of operational scenarios in signals 88

8.2 Stating the problem of stimulus generation 89

8.3 The system of signals and software studied 91

9 Building a system for sampling test stimuli 95

9.1 Constructing a system for sampling stimuli 95

9.2 Experiments in sampling stimuli 102

10 Building a system for searching test stimuli 109

10.1 Expanding the set of signals . 109

10.2 Expanding the system for generating stimuli 113

10.3 Experiments in searching stimuli 117

11 Discussions 127

11.1 On research questions . 127

11.2 On techniques employed . 130

11.3 Related work . 134

11.4 Congruence with research objectives 135

11.5 Congruence with the solution approach 135

III Principled operations in vector space 141

12 Vector operations - a joint re-examination 143

12.1 Learning representations of domains 144

12.2 Regularity for design compliance 146

12.3 Interpolation for stimulus sampling 148

12.4 Gradient descent for stimulus search 149

12.5 Representational similarity as substratum 151

xiv CONTENTS

12.6 Put together, pre-train and calculate 152

12.7 What about pre-train and prompt? 153

13 Explaining representation spaces 157

13.1 Explaining domain adaptation in tasnet 158

13.2 Relative importance of tokens in a domain 159

13.3 Conducting a vocabulary challenge 161

13.4 Results . 162

13.5 Discussion . 164

13.6 Future extension . 166

14 Explaining sample representation in data 169

14.1 Interpretable assessment of sample representation 170

14.2 Explaining sample representation using annotations 171

14.3 Explaining sample representation using simulation 173

14.4 Discussion . 179

14.5 Related work . 181

14.6 Future extension . 182

15 Conclusions 185

15.1 Future work . 186

Bibliography 187

Chapter 1

Introduction

What drives the commercial vehicle? During most of its two century old history,
advances in the vehicle have primarily been driven by the need to improve the
efficiency of haulage and the energy consumed during the process. In just the
last few decades, however, the profile of the vehicle has changed dramatically.
Commercial vehicles are no longer seen as standalone units and are rather
considered to be integral parts of complex industrial systems and logistics
chains. New expectations are now being posed on performance, interoperability,
and sustainability, consequently requiring the vehicle to be multi-functional and
intelligent. This, in turn, has a direct impact on the automotive engineering
landscape where, complementing the electromechanical disciplines, software
has gained prominence as an important means of delivering value. Today, a
wide range of vehicle functionality including fleet operations, driver assistance,
and energy management have software at their core. At a time when even the
technology for automating the driver lies within grasp, it is safe to say that
the modern commercial vehicle is being increasingly driven by software [1].

1.1 Automotive software: preparing for the next
wave

The range of software-intensive functionality provided by a modern commercial
vehicle is visibly diverse. For instance, a quick glance at the driver guide of
a Volvo FH truck [2] reveals functions ranging from configuring the door lock
alarm, to draining the air-suspension system during ferry transport, and using
the pre-installed Alexa voice assistant. All this is in addition, of course, to
the core driving functionality provided by the truck that includes service and
emergency braking, fuel-efficient driving, lane keeping assistance, blind spot
monitoring, etc. In fact, software-intensive functions exposed to the driver in
this particular truck can number close to two hundred. This is a far cry from
its humble beginnings where software was applied for rudimentary engine and

1

2 CHAPTER 1. INTRODUCTION

brake control. As chronicled in [3], the present state of automotive software
is the culmination of at least five major stages of evolution (the current being
the 5th), each of which have remarkably increased its scope and influence.
While automotive software may have a good run, its onward journey is not
without issues. The trinity of major trends – automation, connectivity, and
electrification – in addition to digitalization and the growing importance of
transportation services, introduces new challenges in the process of engineering
automotive software. Let us briefly examine some of them.

• Evolving application landscape – An increasingly urbanized and connected
planet [4] is transforming the profile of commercial transport. When it comes
to trucks, for instance, long-haul transport is no longer the dominant applica-
tion and shares the spotlight with other applications like urban distribution,
construction, and mining. In order to field a product portfolio that targets
a wider range of applications, automakers face little choice but to reuse
functionality across their vehicle platforms, including software [5].

• Widening scenarios of operation – With increased reuse, not only does the
software system need to balance a wide set of applications, but it must also
reliably operate under a variety of scenarios and conditions. For instance,
the climate management system of a truck needs to be equally reliable no
matter if it operates in a pit-mine in northern Europe or on a highway in
north Africa. The same applies to a battery management system deployed
either in a wheel loader in South America or on a bus in South Asia. The
effort that vehicle manufacturers undertake to anticipate usage scenarios and
consequently design, develop, and test software-intensive solutions, all under
the shadow of market pressure, is immense [6].

• Balancing traditional and emerging domains of functionality – Control-
oriented functionality like vehicle motion control or engine control, have been
mainstays of the vehicle software platform for a few decades [3]. Due to their
safety and/or time-critical nature, such functions are usually developed using
control system or reliability engineering methods. More recently, information-
centric domains like infotainment and connectivity have grown in importance.
Lacking rigorous safety or timing needs, but introducing new challenges like
security and privacy [7], the latter domains arguably lend themselves more eas-
ily to the pure software engineering approach. Successful integration of diverse
functional domains requires the coexistence of diverse engineering approaches.

• Balancing reliability and agility – With vehicles becoming more software-
driven, the market expects automakers to deliver functionality at an un-
precedentedly high cadence. While it may be relatively easy to meet these
expectations in certain functionality domains, others – especially those with
safety implications – may find it difficult. Delivering functionality at a high
pace, while simultaneously ensuring quality and reliability is among the most
difficult challenges facing automotive software engineering today [8].

Simply put, with automotive functionality needing to cope with an expanding
list of applications and scenarios, there is a critical need for mechanisms that

1.2. RESEARCH OBJECTIVES 3

speed up the design, development, and testing of on-board software without
comprising quality. While this certainly calls for a multipronged search for
inspiration and solutions, the principal avenue that this work turns to is data.
Information, in considerable detail and volume, about the environment and the
scenarios under which a vehicle and its constituent systems actually operate, is
becoming readily available. This, combined with parallel advances in machine
learning techniques means that it is now possible to learn complex phenomena
represented in the data. Insights, thus learned, have the potential to ease, and
even automate, parts of the automotive software engineering process. Taking
first steps in investigating this potential is the fundamental contribution of this
work and, in elucidating its findings, we begin with an overview of its objectives.

1.2 Research objectives

Prior to introducing the objectives of this work, it is helpful to briefly set the
larger context of engineering vehicle functionality. As we have seen, modern
commercial vehicles subsume a few hundred functions that provide end-user
value. The traditional approach to realizing one such function would be to
use the venerable V-model of engineering. Variously described in [9–12], the
V-model is a sequential process, which begins with gathering necessary re-
quirements for the function. This is followed by analyzing and designing the
function in a manner agnostic to its implementation. Then, implementation
details are introduced by designing the system, sub-systems, and components
that would realize the function. The design process is followed by the actual
implementation, after which the process proceeds into the testing phases.

Figure 1.1: The V-model of realizing automotive functionality, with areas of
engineering focused upon in this work

In this function → systems → components hierarchy of implementation, soft-
ware as an entity typically makes its appearance at system and component
levels. Here, it is often necessary to engineer software in concert with the
associated hardware from the electronic, electric, mechanical and other physical
domains. Within the elaborate process of engineering vehicle functionality, this
work undertakes the objective of easing software design and testing. Specifically,

4 CHAPTER 1. INTRODUCTION

under the overall goal of developing tools and methods for data-driven software
engineering, this work focuses on the following objectives.

1. Easing the process of software design compliance. Realizing vehicle
functionality in accordance with the V-model involves design at the function,
system, and component levels, including that of software. The design of soft-
ware for, say, a new function is typically not re-invented in a vacuum. Rather,
it is guided by pre-defined organizing principles which ensure that this par-
ticular design is not at odds with others, and the implementation remains
extendable. Perhaps because of its need to coexist with other disciplines, the
automotive industry has a particularly strong tradition in identifying guiding
principles for designing software [13]. These principles address aspects like
separating concerns, encouraging modularity, and promoting reuse, that
ultimately enhance the long-term sustainability of the application, and the
agility in its engineering. Practically however, at the source code level,
inevitable engineering compromises cause the implementation to deviate
from specified design principles [14]. If practically unavoidable, in order
to ensure that design regression is at least manageable, it is essential to
identify deviations and intervene as early as possible. Under current indus-
trial practice, assessment of design compliance is largely manual, requiring
the time and expertise of experienced software architects and engineering
teams. While manual review ensures that the process is nuanced, the effort
involved is often forbidding. The increasing availability of code corpora
that represent design nuances in automotive software, we reason, offers an
alternative way to automate assessment while simultaneously attending to
its subtleties. This sets up the first objective undertaken by this work:

Given a set of design principles, and application software (code) to which
they are applicable, the first objective is to automate the process of assessing
whether the code complies with specified design principles, at levels of nuance
comparable to manual review.

The primary tool we use to automate compliance assessment is a neural
language model trained on source code. The performance of automatic
compliance assessment is evaluated using an expert review process that
assesses both the accuracy and nuance of predictions. Being a data-driven
technique, it is important to note that the quality of automated assessment
depends, among other factors, upon the extent of design nuances captured
in code corpora and the ability of the language model in representing them.

2. Easing the process of virtual software testing. After being designed
and implemented in accordance with the V-model, automotive embedded
software goes through multiple phases of testing. As an entity that drives a
real-time, safety-critical, multi-physics system, testing embedded on-board
software is a formidable operation. While there are several perspectives,
approaches, and methods in automotive software testing [15], one technique
that has gained prominence during recent years is virtual testing. In this
paradigm, testing is conducted with software in the loop with most (if not
all) of its dependencies simulated [16]. Simulating physical dependencies like
the driver or the engine allows testing the software under a wider range of

1.2. RESEARCH OBJECTIVES 5

scenarios at a faster pace, elements that are critical for the agile development
of reliable software. One issue with virtual testing, under current practice,
is that the quality of simulation is not always at a level that makes virtual
testing credible. Even if it is to only capture phenomena relevant to software
under test, in order to be credible, simulation models need to correctly
represent such phenomena at a considerable level of detail. With manual
specification of dependency behavior being the current norm, enormous
amounts of effort need to be expended to capture such details. The in-
creasing availability of data that records the behavior of such dependencies,
however, offers an alternative approach to offset this effort. This leads to
a definition of the second objective undertaken by this work:

Given application software, and a physical in-vehicle system it depends upon,
the second objective is to plausibly simulate this dependency, so that its
behavior – as seen in recorded data – can be replicated as plausibly realistic
stimuli to test the software.

The main tool used to achieve test stimulus generation is a deep generative
model trained on recorded vehicle behavior. The quality of generation is
evaluated by verifying that generated stimuli are novel, yet verifiably similar,
improvisations of recorded stimuli. As yet another data-driven approach,
we note that the quality of generated stimuli depends, among other factors,
upon the diversity of behavior captured in the data and the ability of the
generative model in representing them.

Figure 1.2: Research objectives focused upon in this work

As reiterated in Figure 1.2, this work places on-board application software at the
center of attention and focuses upon easing its design and testing. By targeting
the immediate upstream and downstream concerns in the process of developing
automotive software, tools and methods developed in this work address core
elements in the quest towards quickly delivering vehicle functionality without
compromising quality. This, in turn, has the potential to mitigate several
challenges foreseen in the development of the next wave of automotive software.

6 CHAPTER 1. INTRODUCTION

1.3 Solution approach

While previous sections may have hinted at it, we now explicitly state the
approach used to address the stated research objectives. For ease of discussion,
the statement is divided into three parts.

[A] This work focuses on developing data-driven, deep learning methods that
ease the design and testing of automotive software.

[B] Using foundation models in the requisite domain as primary tools, we
use principled, rule-based, vector operations in the model’s representation
space to automate stated software design and testing tasks. This achieves
nuance and flexibility in solving tasks, while avoiding the costs of explicit
supervision. Additionally, this approach results in predictive pipelines
with relative transparency.

[C] Building upon such transparency, in addition to leveraging benchmark
datasets, we use expert review for the design task and rule-based statistical
analysis for the test stimulus generation task, to verify that the approach
for automating either task is plausible.

Why we take this approach – To clarify why we take this approach, we begin
with Part A and discuss its twin technical thrusts – big data and deep learning.
They may be conjoined but, in order to get a better insight into their respective
characteristics and merits, it is instructive to examine them separately.

• Automotive big data is a reality. Let us consider two basic facts, (1)
commercial vehicles have been equipped with some form of connectivity tech-
nology for at least the last 10 years1, and (2) the market statistics provider
Statista2 estimates that at least 10 million commercial vehicles have been sold
annually during that period alone. There is a high likelihood, therefore, that
there are more than 100 million connected vehicles plying the roads of the
world today. With each of these vehicles reporting a whole host of operational
data, the automotive industry is firmly in a big data existence. This devel-
opment has sparked a number of business opportunities, many of which were
unthinkable two decades ago [17]. While exploiting the business potential may
have been the obvious first reaction to the development, it is inevitable that
the use of data permeates into the engineering process. Engineering decisions,
which may have relied more on assumptions and experience, can now be
further supported by facts [18]. Data allows organizations to operationalize a
build-measure-learn loop where observed insights can be directly applied to
the subsequent cycles of software engineering [19]. Parallel to big data, the
mainstreaming of open source [20–22] and the proliferation of software across
industries [23], has led to an exciting new phenomenon - big code [24]. Source
code of considerable volume and variety is beginning to become available,

1Volvo, for instance, has included a telematics gateway in its trucks since 2012
2https://www.statista.com/topics/3582/trucks-and-commercial-vehicles/

1.3. SOLUTION APPROACH 7

which opens up the possibility of using a data-driven approach for coding tasks.
The combination of big data and code therefore sets up the perfect baseline
to address the objective in focus here – easing software design and testing.

• Deep learning can help use big data to aid engineering. Automo-
tive software engineering, like any other engineering enterprise, is a high
dimensional activity. Several business and technical concerns, many of which
contradict each other, need to be balanced while making decisions. While
facts, derived from data, can inform engineers, if facts are not integrated in an
accessible manner, they have the potential to overwhelm the engineering pro-
cess. Worst case, the incomprehensibility of a sheer mass of data can paralyze
decision-making. What could help is an intelligent process that abstracts the
complexity by actively assisting, and not simply informing, the engineering
process. One technology that is able to ingest vast quantities of data, learn
complex phenomena that it represents, and use the knowledge to automate
tasks is, of course, deep learning [25]. A clear technology megatrend, deep
learning has impacted an extraordinarily wide range of domains [26], including
software engineering. As surveyed in [27], recent years has seen deep learning
being applied to tasks as complex as bug localization and code completion,
leveraging both big data and code. There is, therefore, ample potential to
apply this technology to assist automotive software design and testing.

Next, we turn to Part B of the approach that captures, in effect, the essence of
the main contributions of this work. In order to explain factors that motivate
this approach, it is helpful to examine the nature of the tasks specified in
the research objectives. As predictive tasks, assessing design compliance or
generating test stimuli do share characteristics with typical tasks like image
classification or object detection. Yet, as examined below, engineering tasks
like those defined in the objectives also differ in significant ways.

• Engineering tasks are relatively fluid. The popular impression that
deep learning evokes is one of models that, say, classifies an image into one
of a set of discrete categories, or those that draw bounding boxes, identifying
objects in a scene. Learning to solve such tasks, which are typically difficult
to address using hand-crafted algorithms, has been the hallmark of this
technology. However, the stereotypical approach for creating such models
has been to curate a dataset for each task, with necessary annotation, and
train with explicit supervision. In the classification example, this could mean
examining each image and assigning labels describing its content. If the task
set grows to include locating objects in the image, then additional annotation
in the form of bounding boxes is needed. Not only is such annotation widely
recognized as incurring enormous costs, but is also an activity whose effort can
grow exponentially with the number of tasks. Unlike these stereotypical tasks,
where large-scale application may sometimes justify the costs of annotation,
engineering tasks can be different. If we take a task like software design
review, engineers need to examine code from any number of perspectives like
safety, security, or testability. Treating each perspective as an individual task
to automate may not be realistic because it is not always clear where one task
ends and the other begins. Moreover, as an activity that is built upon human

8 CHAPTER 1. INTRODUCTION

judgement, engineering decisions are often debatable. During design review,
it is quite common that reviewers disagree about firmly labeling a particular
design as being (non-)compliant. While there may be broader agreement, finer
details may elicit discussions that are hard to settle. Given such a nature,
delineating engineering tasks, let alone curating annotated datasets for
supervised training to solve each of them, could involve unsurmountable effort.
This makes it difficult to take the typical approach of explicit supervision in
order to train models that solve tasks like design compliance or simulation.

• Engineering needs sufficient margin for decision-making. Beyond
the fluidity of tasks it involves, engineering is a creative process that involves
experimentation, refinement, and trade-offs. As a result, engineering decision-
making is seldom rigid or formulaic. In automotive software engineering,
any number of complications, including business needs, legacy, regulation,
etc., demand nuance in decision-making. For instance, there may be detailed
guidelines on how software should be designed, but the implementation may
need to violate it because, say, backward compatibility is broken otherwise. In
such a case, it is necessary to make the decision that even if the specification is
violated, it is justified under the given circumstance. The need for nuance has
special implications for using trained models as engineering tools. Even if we
look beyond the costs of annotation, a stereotypical deep learning model, like a
cat/dog image classifier, specializes in a narrow task and gives a binary answer.
In the design compliance use case, it is less helpful to have a model that
makes a yes/no decision on compliance because there is little room for nuance.
Given the continuum of possible violations, some of which may be acceptable,
it is much more beneficial if model predictions span the inevitable shades of
gray. This is yet another reason why explicit supervision with an annotated
dataset is less suited to train models that solve tasks defined in our objective.

Finally, we come to Part C of the solution approach which notes our method
for evaluating the quality of automating selected software engineering tasks.
Though the need for systematic evaluation may seem self-evident, we highlight
the essential concern for using trained models as engineering tools.

• Engineering means humans in the loop. With the objective of eas-
ing the design and testing of automotive software, the focus here is clearly
on developing engineering tools. Unlike an application, which focuses on
providing sharp value to lay end-users, engineering tools need to interact
with human engineers. Therefore, tools need to respond to several needs,
and perhaps a few eccentricities, of the human engineer. Engineers, as we
reasoned earlier, often require tools that imbue necessary domain knowledge,
flexibly tackle closely related tasks, and be answerable to scrutiny. Stated
simply, a tool that attempts to assist engineers must reflect some character-
istics of engineers themselves. Consequently, an important, but not always
definable, expectation that engineers place upon tools is trust. Since tools
are intricately involved in decision-making, it is only fair to expect reasonable
confidence in the ability of tools to correctly perform tasks.

How we take this approach – Having described why we take the stated

1.3. SOLUTION APPROACH 9

solution approach, we turn to how we undertake it.

Pre-train and calculate – To address the special needs of developing useful
engineering tools, we adopt the approach of pairing two powerful concepts (1)
foundation models, and (2) principled vector operations (Figure 1.3). In this
work, we use terminology introduced by the comprehensive report [28] which
defines foundation models as those that learn general concepts in a domain,
usually with the intention of being applied to several downstream tasks in that
domain. Such knowledge is induced by training them on a large dataset that
represents the domain in a self-supervised manner, a step that is commonly
referred to as pre-training. Facing fluidity and uncertainty, the use of a domain
generalist is analogous to working with an experienced human engineer who is
familiar with a domain and is able to generalize to a set of related tasks. Our
objective being solving tasks in software design and testing, we respectively
train foundation models in domains of vehicle application software and internal
vehicle behavior. Upon learning a domain, such generalist models can be used
to seed specialist models that solve specific tasks within the domain. A popular
method for achieving task specialization is fine-tuning, a commonly used transfer
learning [29] technique, which typically involves a supervised training step
with annotated data. But, as we reasoned previously, annotated datasets are
not especially viable in our case, which makes it difficult to apply the typical
‘pre-train and fine-tune’ approach. Instead, leveraging the generalist knowledge
of foundation models, as an alternative to explicit supervision, we extract
predictions using principled, rule-based vector operations. Representations
learned by foundation models may be abstract, but studies in past years have
reported that certain properties are consistently observable in representation
space. Using these properties, we build a principled rule-based pipeline of
vector operations in the representation space of foundation models to solve the
design and testing tasks set in the objective. We refer to this approach using
the shorthand ‘pre-train and calculate’. Specifically, we develop the following.

• Addressing design compliance, we train tasnet, a neural language model of
source code as a foundation model of automotive software. Using the prin-
ciple of semantic regularity in the model’s representation space, we develop
DECO a rule-based algorithm that automates compliance assessment by
comparing the geometric alignment between query and benchmark programs.

• Addressing test stimulus generation, we train logan, a deep generative model
on recorded stimuli as a foundation model of selected vehicle behavior. We
then develop a rule-based algorithm MLERP which uses interpolation and
sampling in representation space to semantically combine recorded stimuli
and generate novel stimuli.

• Noting that sampling is less efficient for targeted stimulus generation, we
extend logan to train silgan. Then, using the differentiable nature of deep
neural networks, we develop GRADES, a rule-based algorithm that searches
for targeted stimuli using gradient-descent in representation space.

Review and rule-based verification – Having utilized a principled and rel-
atively transparent pipeline to solve engineering tasks, we evaluate the quality

10 CHAPTER 1. INTRODUCTION

of automation in the following manner.

• For the design task, we evaluate the accuracy and nuance of compliance
assessment using a benchmark dataset and expert review respectively. The
expert review process also doubles up as a calibration mechanism, enhancing
the interpretability of automatic design compliance assessment. Currently,
our evaluation sets aside a few aspects like calibration of benchmarks across
differing or evolving interpretations of the design pattern. Despite such
limitations, both the prediction and evaluation techniques ensure that a
capable automatic alternative to manual compliance assessment is viable.

• For the test stimulus generation task, we adopt the conservative approach of
only generating novel stimuli that are improvised versions of recorded ground-
truth stimuli. Further, we use statistical measures to ensure that generated
stimuli have verifiable similarities to recorded stimuli that they are improvised
from. One limitation of this approach is that the evaluation only produces
a relative measure of quality. That is, generated stimuli is measured against
semantically close recorded stimuli and not against an absolute physical model
of the dependency that is being simulated. Despite using a relative measure
of generative quality, our approach ensures that a much-needed alternative
to the currently prevalent practice of hand-crafting stimuli is feasible.

Thus, not only do we automate engineering tasks with flexibility and nuance,
but we do so with a predictive pipeline that is relatively transparent, explain-
able, and verifiable within reasonable limits. In the human-in-the-loop reality
of automotive software engineering, the approach that we take increases the
likelihood that engineers use these tools with relative ease and confidence,
simplifying the development of automotive software. Further, in adopting this
approach, this work can also be clearly located within the field of deep learning
for software engineering [27]. Under this rubric, we introduce innovations that
ease its application to use cases in the automotive context.

Figure 1.3: The ‘pre-train and calculate’ approach used for solving software
engineering tasks set in the objective

1.4 Thesis structure

Following an overview of relevant background in automotive software engineer-
ing and deep learning in Chapter 2, this work devolves into three parts. Part I be-
gins with an introduction of necessary background in automotive software design.

1.5. RELATION TO PUBLICATIONS 11

Then, it describes the neural programming language model and the vector oper-
ations in its representation space that we develop to solve the task of design com-
pliance assessment. Part II, which deals with the testing objective, begins with
an overview of relevant concepts in virtual software testing. Then it presents
the deep generative model and associated vector operations that we develop to
generate realistic test stimuli. Part III then recounts, compares, and contrasts
vector operations that we use in representation space, in order to sketch our
common ‘pre-train and calculate’ recipe for extracting nuanced and transparent
predictions. It additionally discusses exploratory studies that we conduct on
explaining high-dimensional spaces, before presenting a concluding analysis.

1.5 Relation to publications

This thesis is the amalgamation Papers A-D, listed in Page ix. The relationship
between the contents of the thesis, and those in the articles, is mapped below.

• The introductory analysis in Chapter 1 establishes the overall relevance of Pa-
pers A-D for automotive software engineering. Further, the solution approach
traced in this chapter previews the common recipe used in Papers A-D. Then,
Chapter 2 provides necessary background in automotive software engineering
and deep learning that sets a baseline for explaining studies in Papers A-D.

• Part I of this thesis, covering Chapters 3-6, is an extended version of Paper A,
and describes background, analysis and implications with much more detail.

• Part II in the thesis, subsuming Chapters 7-11, combines and extends Papers
B and C, similarly providing deeper explanations, analysis and insights.

• Part III begins with Chapter 12, which presents new analysis that distills
the common recipe which Parts I and II employ to solve selected tasks in
automotive software engineering. Following this, Chapter 13 presents a new
experiment which, develops a method to test specific aspects of the foundation
model described in Part I. Then, Chapter 14 presents the content of Paper
D and connects it to the overall work conducted in all previous chapters.

Finally, the most significant new analysis presented in the thesis is the syn-
thesis of techniques presented in Papers A-D into the ‘pre-train and calculate’
paradigm. This paradigm presents a model for nuanced, transparent, and
unsupervised task specialization in automotive software engineering. Novel
insights from this synthesis echo throughout the thesis, before culminating into
a detailed examination of the paradigm and its characteristics in Chapter 12.

12 CHAPTER 1. INTRODUCTION

Chapter 2

Background

Seeking to apply deep learning to automotive (software) engineering, this work
lies at the interface of two immense disciplines. When juxtaposed, there are few
other pairs of disciplines that stand in such stark contrast. The former is firmly
established and bears a tremendous weight of legacy and tradition. The latter
is emerging, disruptive, and developing at a rapid pace. Since a comprehensive
joint review of both fields is clearly challenging, this work takes a practical
step-by-step approach in organizing the relevant background. As a first step,
the current chapter provides relevant background on both disciplines. We begin
with an overview of the automotive application software, easing the design and
testing of which are our primary objectives. Then, we introduce foundation
models, the primary tools used in our approach to ease these processes. Finally,
chapters that follow – which actually describe how we apply deep learning to
ease vehicle application software design and testing – further present deeper
background and related practices in these fields.

2.1 Automotive application software

In the complex entity that is the commercial vehicle, the most tangible of
all its facets is the functionality that it provides. Ranging from lane keeping
that assists the driver, to air suspension that assists the ride, and assignment
management that helps plan the transport mission, vehicle end-user functions
are as diverse as they are intricate. As elements of significance, both in this
work and in the larger context of automotive engineering, it helps to define a
vehicle function as follows.

Definition 1 An on-board vehicle function ȳ = f(x̄) can be seen as a process
that maps a list of inputs to a list of outputs, providing tangible value for either
end-users or for other vehicle functions, helping undertake an overall trans-
portation mission. Reflecting the diversity of functionality provided by a vehicle,

13

14 CHAPTER 2. BACKGROUND

functions f map a variety of input domains to a wide range of output domains.

Like any function in mathematics or computer science, a vehicle function takes
inputs, processes them, and produces outputs that generate value for other
functions, or end-users like drivers, mechanics, and fleet operators. Analogous
to a function in math or software, inputs to, and outputs from, vehicle functions
come in myriad forms and involve human operators, fellow in-vehicle functions,
and the external environment. Easing the development of these functions,
specifically their design and testing, is the primary objective of this research.
While detailing these research objectives, Section 1.2 also briefly introduced
the process of developing automotive functionality using the V-model. Such is
its recurrence in discussions on engineering automotive functionality [13,30,31]
that it is considered near-canonical. Thus, in tracing the epic journey of de-
signing and testing automotive software, the V-model is a point of origin as
good as any. Even in the simplified interpretation seen in Figure 1.1, design
and testing represent two thirds of the effort – a simple but clear indication
of their importance. Taking cues from requirements, in the sequential world of
V, the design activity is expected to minimize conceptual hurdles that hinder
its implementation. Upon implementation, the testing activity ensures its
quality, while also making sure that the requirements of the functions are
indeed realized. That V is a sequential model is clear, but what is perhaps less
apparent is that it entangles two different sequences. Let us briefly untangle
and examine them since both bear significance to engineering vehicle software.

The many facets of V – One sequence evident in V is specify → implement
→ verify. Since this is a sequence of activities guiding the engineering process,
it can be seen as a process-oriented sequence. In choosing to embody what is
clearly a waterfall engineering process, the automotive V-model betrays at least
two things. The first is its traditional roots, having blossomed in a period when
the waterfall approach was very much in vogue. The second is the emphasis on
reliability in developing an entity that possesses elements of safety-criticality.
Even in this arguably post-waterfall era, automotive industry standards for
safety [12] and cybersecurity [32] risk management continue to mandate waterfall
V as the process to follow. The import that this bears on both the design
and testing activities is quite significant. With standards or even regulatory
attention being paid, the process and outputs of both activities become artifacts
that are comparable in importance with the implementation itself. The next
sequence identifiable in V is function → system → component, which surely
betrays the multidisciplinary nature of engineering vehicle functionality. Take a
function like suspension control, whose implementation spans varied sciences like
pneumatics and electromechanics, apart from the computer science of hardware
and software. A sequence of (de)composition, that implements a multi-physics
function using a multitude of constituent systems and components, is necessary
to manage the engineering complexity. It is therefore clear that software
engineering is only one among multiple efforts, all of which need to harmonize.
This also bears considerable significance upon software design and testing.

This brief examination makes it clear that the canonical V-model places weighty
expectations on the design and testing. Yet, for all the import that it seems to

2.1. AUTOMOTIVE APPLICATION SOFTWARE 15

bear, it seems relatively silent on how to practically design, implement, and test
a vehicle function, including its software. Notionally, the starting point that V
offers for the entire process is requirements. But in reality, do requirements alone
have enough substance to drive an engineering process that is clearly complex?

2.1.1 The importance of system thinking

Perhaps the greatest weakness in the V-model approach to engineering automo-
tive functionality is its focus on individual functions. At the outset, such focus
may seem warranted because functions provide concrete end-user value. After
all, fleet operators pay for fuel-efficiency or driver assistance and not – we are
told – for using, say, Linux in the truck. In a modern vehicle with hundreds of
end-user functions, let us now consider the effects of excessive function-centrism.

Let us imagine a scenario of developing a vehicle P which realizes N different
functions that are exposed to the user. Be it waterfall or agile, the function en-
gineering process cannot usually skip specification, implementation and testing
activities. So it is safe to assume that the process sequence of V is followed, in at
least some loose sense. How the decomposition sequence is followed is, however,
an open question. It is, for instance, possible to realize P , simply an amalgama-
tion of N isolated systems Sn, n = 1...N , each dedicated to realizing one func-
tion. Simply put, there is nothing in the V decomposition sequence that prevents
such absolute isolation between functions. However, it is easy to see that such
isolation fragments the system drastically, creating silos of possibly redundant
systems and infrastructure. While the scenario of absolute isolation considered
here is extreme, system fragmentation introduced by function-centrism is a very
real issue [33]. Also, since such systemic disorganization is ostensibly hidden
from the customer, popular wisdom on customer priorities remains intact.
But, it takes no major leap of imagination to realize that the lack of system
organization will eventually impact the customer. The difficulty in evolving a
disorganized system decreases the cadence of delivering features, and customers
are bound to notice it. And, if using Linux helps organize the system and stream-
line the delivery and usability of functions, the customer may even demand it.

The multi-functional nature of the vehicle exposes a major inadequacy of V as
a complete engineering process – it lacks a clear stance on reuse. When a new
function is being engineered, it is impractical to (re-)invent its design, implemen-
tation, and tests in a vacuum. It is only practical to derive it from a pre-defined
set of reusable principles, platforms, and infrastructure which ensure that the
realization of one function is both viable and is not at odds with those of others.
This is precisely why the automotive industry has a strong tradition of system
thinking and architecture, which helps draft principles, rules, and concepts holis-
tically [13]. Proactively architecting systems and developing infrastructure not
only guards against the disorganization of function centrism but also provides
concepts and tools that are readily reusable during function development.

An orthogonal system perspective is thus a useful, if not necessary, complement
to the function perspective taken by V. Principles, in addition to platforms

16 CHAPTER 2. BACKGROUND

and infrastructure, developed from the system perspective provide the neces-
sary scaffolding to engineer several hundred functions with maximum reuse,
efficiency, and quality. The importance of system thinking may be reasonably
well recognized, but constant market demand for new functionality has given
new urgency, thrusting it into the forefront. Take, for instance, the Scaled
Agile Framework (SAFe) which was introduced for applying agile methods at
enterprise scale and has heavily inspired the automotive industry [34]. SAFe
pays close attention to system aspects and calls for the conscious development
of a ‘runway’1 of system concepts and infrastructure that allows functionality to
be implemented with minimal re-invention and delay. While the coexistence of
waterfall V with agile methods like SAFe is far from settled and is a subject of
current research [35], it is nevertheless a conspicuous example of the emphasis
given to system thinking by modern approaches to automotive engineering.

2.1.2 The automotive E/E system

Among the unique characteristics of the vehicle – a theme that will echo through-
out this work – is that it combines a wide range of sciences. To name just a
few, there is the thermodynamics of combustion, the hydraulics of braking, the
telecommunication of mobile networks, and the computer science of Android
apps. So, even if one were to prioritize system thinking, the sheer vortex of
disciplines makes it difficult to delineate, organize, and nurture systems. This
is particularly true for software because it has traditionally been seen as a mere
supporting entity that is deeply embedded within the multi-physics vehicle.
Today, with its wide recognition as a key means of delivering end-user value,
it is time to relegate the traditional view and pivot software to the foreground.

A network of control units – Perhaps the first step in the elevation of
software as a system was the definition of the automotive Electrical/Electronic
(E/E) system [36]. As the name suggests, the crucial innovation that it intro-
duced is the recognition that electrics and electronics play an outsized role in
managing all other physics. The elementary operating principle of the E/E
system is simple – combining sensors and actuators with a microcontroller
translates any physical domain into the digital domain, allowing software to
control it. This directly leads to the definition of the first pivotal architectural
element of the E/E system – the Electronic Control Unit (ECU). The ECU
in a vehicle is usually a microcontroller-based embedded system. It interfaces
with sensors and actuators, and runs control software, thus serving as a hub
for automatic control. The ECU typifies a piece of system thinking that helps
architect the E/E system and avoid some pitfalls of function centrism. As
rallying points for automatic control functionality, ECUs naturally encourage
reuse. This can be illustrated using an example. System thinking at the
function level has long understood that vehicle functionality tend to fall under
well-recognized domains [37]. Traditionally, functionality domains were primar-
ily control-centric, examples of which include (1) chassis, which controls aspects
such as brake and steering, (2) powertrain, which controls the engine or electric

1https://www.scaledagileframework.com/architectural-runway/

2.1. AUTOMOTIVE APPLICATION SOFTWARE 17

propulsion motors, (3) body electronics, which controls functions like door
locks, windows, ventilation, etc., (4) driver assistance, which controls assistance
functions like lane keeping and safety functions like emergency braking. More
recently, they have been complemented by information centric domains like
(1) connectivity, which handles telematics functions, and (2) infotainment that
handles information display and entertainment functions. Using one main ECU
and a handful of supporting ECUs for each of these domains virtually sets
up the skeleton of a fully functional vehicle. The topology of the resulting
distributed E/E system could look like Figure 2.1, with ECUs interlinked using
different networking technologies like Controller Area Network (CAN) and
Ethernet. Such interlinking ensures that ECUs can also collaborate to realize
functionality. By simply combining two architectural principles – ECUs and
domain centralization – a sound, yet generic, E/E system emerges. With this,
engineering new functionality, even using V, will not happen in a vacuum. Best
case, there is a domain, ECU, or even sensors and actuators ready for reuse.

Figure 2.1: Example of a domain-centralized E/E system with the Electronic
Control Unit (ECU) as the pivotal entity

It is no exaggeration to say that the ECU as an element has been a major
driver for delivering software-based control functionality. However, if E/E
system thinking places outsize focus on ECUs, it could mean that not enough
attention is paid to nurturing the software that is deployed in it. This usually
has the inadvertent side effect of tightly coupling control software with the
hardware (microcontroller, sensors, and actuators) of a given ECU, limiting
the potential of both. With ECU-centrism therefore leading to its own risks
of limited reuse, delivering software intensive functionality with high quality
at high cadence must clearly overcome this limitation. Further help is needed
to elevate the potential of both hardware and, more importantly for this work,
software beyond the restraints of ECU-centrism. This leads us to the next
pivotal architectural concept of the E/E system – AUTOSAR.

18 CHAPTER 2. BACKGROUND

2.1.3 Vehicle application software as a system

Layered control software – Automotive Software Architecture (AUTOSAR)
[38], was nothing less than a groundbreaking development for automotive soft-
ware when it was first introduced in the early 2000s. Today, as an established
industry standard, it institutes a paradigm where software is defined as a
system in its own right, and as an entity whose influence is palpable. To get
a better insight into the innovations that AUTOSAR introduces, it is easiest
to examine its layered architecture (Figure 2.2).

Figure 2.2: The layered AUTOSAR architecture

Bottom-up, classic AUTOSAR defines the following layers. The import of the
‘classic’ qualifier will be examined shortly.

• Hardware – which normally refers to the microcontroller and its peripherals
in an ECU. With sufficient means, it can also include sensors and actuators.
The recognition of a hardware layer is an act of decoupling as important for
hardware as it is for software. After all, it is necessary to be able to evolve
hardware components along with software, with minimal mutual interference.

• Basic software (BSW) – which can be paraphrased as platform software
and has all the characteristics of an embedded real-time operating system.
This means that one part of this layer is software that abstracts all hardware
including the microcontroller, its peripherals, sensors, and actuators. The
other part is core kernel services including the communication stacks for
networking. That the classic AUTOSAR kernel chooses an event-triggered
execution model [39] betrays its origins, and perhaps its preference, as a host
for control-centric functionality. Using this combination of solutions, the
BSW layer achieves healthy decoupling from ECU hardware.

• Runtime environment (RTE) – which allows automotive software to truly
break the barriers of ECU-centrism. The BSW layer introduces crucial de-
coupling, but only within the confines of one ECU. The RTE takes it a step

2.1. AUTOMOTIVE APPLICATION SOFTWARE 19

further by essentially virtualizing the ECU. It provides an environment and ab-
stractions that allow application software to execute and collaborate in a way
that is transparent to the ECU they are actually deployed upon. This ensures
that all software atop the RTE is decoupled from the ECU, helping delineate a
true application software layer and pivoting software firmly to the foreground.

The AUTOSAR software component – Using the BSW and RTE as a
two-step decoupling process, AUTOSAR is another piece of system thinking
which architects an exclusive space for application software. That the vehicle is
a multi-physics system with strong interdependencies is abundantly clear. But,
the E/E system with dual architectural pillars of ECUs and AUTOSAR help
abstract not just the electronic hardware but also the platform and application
software. This is a tremendously powerful act of inversion that elevates software,
which previously lived a deeply embedded existence, into a privileged position.
In this relatively hermetic space for software, AUTOSAR introduces another
crucial architectural abstraction called the Software Component (SWC) which
can be defined as follows.

Definition 2 In AUTOSAR, a software component ȳ = V(x̄), transforming
inputs x̄ to outputs ȳ, is a container for the application logic of the whole, or
one part, of a vehicle function. As the basic unit of application software, it
implements algorithmic aspects of the function using a set of C files. Reflecting,
again, the diversity of in-vehicle functionality, inputs x̄ and outputs ȳ of the
SWC span a wide variety of domains.

It is with the definition of the AUTOSAR SWC that we truly enter a space
where vehicle application software is properly abstracted. The impact of this
development becomes clear upon revisiting the definition of the vehicle function
(Definition 1). It may be clear that an automatic control function can encompass
multiple physics, but the AUTOSAR SWC boils down all its application soft-
ware into a set of C files. It is, however, important to note that it is not necessary
to host the application software of an entire vehicle function in a single SWC.
Considering that end-user functions like suspension control or lane keeping are
fairly large and are themselves implemented using a number of discrete oper-
ations, AUTOSAR implicitly views an application as a composition of SWCs.

Definition 3 An AUTOSAR software application ȳ = W(x̄) realizes all soft-
ware functionality of a vehicle function by composing one or more software
components W = ◦Vi, i ≥ 1, spread across one or more ECUs.

The compositional nature of an AUTOSAR application is depicted in Figure 2.3
using the example of the windshield wiper application. An automatic variant
of this application consists of a rain sensor which detects a precipitation event,
upon which the wiper motor is actuated. Using the virtualization provided by
the RTE, the software aspects of this function can be collectively realized by
multiple SWCs, in a manner that is largely decoupled from individual ECUs. As

20 CHAPTER 2. BACKGROUND

shown in this example, a SWC for handling the rain sensor may be deployed in a
separate ECU, perhaps one that is on the roof of the cab of the truck. The core
algorithm for wiper control could be another SWC deployed, say, on a central
computing ECU. Then, the SWC for handling the wiper motor may be deployed
on yet another ECU that handles IO in the cab. Together, all these SWCs, come
together to orchestrate the automatic windshield wiper control function. While
composing SWCs to realize a function is standard practice, it is important
to note that one SWC may not exclusively map to one vehicle function. For
instance, in addition to automatic windshield wiping, RainSensorHandler,
may also be reused for, say, automatically closing an open roof hatch.

Figure 2.3: Composing multiple SWCs in the AUTOSAR application layer to
realize one vehicle function

The E/E system with its combination of ECUs and AUTOSAR has easily
been the heart of the software defined vehicle of the past decade. While it
has reaped many successes, its limitations are also becoming apparent. For
instance, it is easy to recognize that classic AUTOSAR, with its event-triggered,
function-oriented model, is mainly designed for control-centric domains. It is,
therefore, not directly suitable for a service-oriented, request/response model
that is preferable for information-centric domains. Further, while it may vir-
tualize hardware, several aspects of SWC deployment in AUTOSAR need to
be frozen at design time, drastically reducing its flexibility. For this, and many
other reasons, the AUTOSAR consortium has itself proposed an adaptive2

version that addresses many of these issues. Today, the automotive industry
is already moving towards a reality where classic AUTOSAR is all but one
embedded middleware platform [40], sharing space with others like adaptive
AUTOSAR, automotive Linux, or even edge middleware which directly in-
terfaces on-board applications with services hosted on the cloud. This also
means that AUTOSAR SWCs will be only a subset of all application software
in future vehicles. Automotive software may have been on a long journey
towards prominence and, since the vehicle is only expected to become more
software defined, the journey will continue. But, for the purposes of this work,

2https://www.autosar.org/standards/adaptive-platform

2.2. FOUNDATION MODELS IN DEEP LEARNING 21

it is sufficient to trace the journey up to this point. Deep learning based
tools and methods developed in this work for easing the design and testing of
vehicle application software can be readily examined from the standpoint of
the AUTOSAR SWC. With forthcoming chapters describing these methods
in detail, let us move the discussion forward to provide some background on
the discipline of deep learning and, particularly, on foundation models which
is the primary tool used in this work to ease automotive software engineering.

2.2 Foundation models in deep learning

The artificial intelligence renaissance in the 2010s is attributable to three
main factors – our increasingly digitalized and networked existence which
produces enormous amounts of data, the reducing cost and increasing power
of computing platforms like the Graphical Processing Unit (GPU), and the
development of a class of learning algorithms, termed deep learning. Deep
learning is a machine learning technique that, at its foundation, composes an
elaborate hierarchy of simple concepts to learn a complex concept [25]. Like any
other machine learning technique, such learning takes place by understanding
patterns that manifest in data, with the active guidance of a set of training
objectives. Computationally, this hierarchy of concepts is usually realized
using a Deep Neural Network (DNN), which is a stacked composition of simple
non-linear functions, each of which transforms its inputs into a form that is
more refined to help solve the task at hand. Each layer is composed of several
parameters which are learned by a backpropagation mechanism based upon
minimizing a differentiable loss function on a large dataset [25]. A famous
early application of this seemingly simple formula is the AlexNet [41] image
classification model, which dramatically outperformed competing approaches to
win the 2012 edition of the ImageNet [42] challenge. In predicting the labels of
images with unprecedented (at the time) accuracy, it accomplished a feat that
no other hand-coded symbolic algorithm, or even any other machine learning
approach, had managed. AlexNet proved to be an early demonstration of the
many hallmarks of deep learning – a large training set, the use of efficient yet
powerful computations like convolution coupled with rectifying non-linearities,
parallel training on multiple GPUs, and – perhaps more importantly – an
uncanny tendency to improve benchmarks with little regard to the nature of
the problem. Through the decade that followed, the increasing availability of
data along with improvements in DNN architectures, training methods, com-
putational platforms, and several other factors, has resulted in deep learning
techniques achieving successes across domains as varied as art and drug design.
In yet another extension to a new domain, as our research objectives state, this
work applies deep learning in automotive software engineering, in an attempt
to ease the design and testing of vehicle application software.

22 CHAPTER 2. BACKGROUND

2.2.1 Domains, tasks and supervision in deep learning

The spectacular successes of deep learning is most visible through the complex
tasks that it has successfully managed to automate. The AlexNet case of classi-
fying images is only one example. Another example in the vision domain would
be the YOLO series of models [43] for recognizing and localizing objects in im-
ages. In the language domain, a litany of models3 has been steadily improving
benchmarks in translating text from one natural language to another. In the life
sciences, the AlphaFold series of models [44] created a sensation by improving
benchmarks in performing predictions on protein structure. One theme that
pervades all these examples is the fact that they were able to take a big data,
deep learning approach to perform tasks that were hitherto difficult to automate
using hand-crafted algorithms. Perhaps the most sensational example, as yet,
could be the ChatGPT4 chatbot model that is capable of having free text conver-
sations on a wide variety of topics. Having caught the imagination of society at
large, the popular impact of ChatGPT may be hard to dispute. What is perhaps
less known is that this chatbot has not been built from scratch and is, in fact,
based upon one variant in the GPT-3 [45] series of foundation models. Extend-
ing far beyond this particular example, the phenomenon of foundation models
have introduced a revolutionary paradigm where models for automating sophis-
ticated tasks can be achieved more efficiently using pre-trained building blocks.

Fully supervised training for task specialists – One way to understand
foundation models would be to contrast its characteristics with models that
automate specific tasks, examples of which we saw in the previous paragraph.
Let us now do such a contrastive examination using a simple example in the
natural language domain – the task of sentiment classification [46]. As shown in
Figure 2.4, this task can be described as detecting the sentiment expressed in one
or more lines of text which, in its most basic form, could be positive or negative.
A popular version of this task is classifying the sentiment of movie reviews,
which can utilize the specially curated IMDB dataset [47]. This dataset consists
of around fifty thousand data samples of the form S = {(x1, y1), ((x2, y2), ...},
where each English language review xi is annotated with a binary label yi ∈
{0, 1} of whether the sentiment expressed is positive or negative. Using this
dataset, it is possible to train a DNN FT (2.1) that automates the task of
sentiment classification. Training such a DNN involves two essential steps, the
first of which would be to construct the network. Any DNN is a composition
of several layers, each of which is a collection of differentiable5 non-linear
operations with learnable parameters. It is precisely this composition of layers
that allows the network to recognize a complex concept like sentiment by
learning a hierarchy of simpler concepts in language syntax and semantics.
For ease of design, the DNN FT is often composed as two main blocks (2.2).
The first block is the encoder ET which, by composing layers el, l ∈ 1, ..., L,
concentrates the bulk of the intelligence for inferring the sentiment in the input
xi. The encoder output is then fed into a simpler head network HT , which
summarizes the inferred sentiment as an interpretable binary label ŷ. Having

3http://nlpprogress.com/english/machine translation.html
4https://openai.com/blog/chatgpt/
5In this context, we mean differentiable almost everywhere

2.2. FOUNDATION MODELS IN DEEP LEARNING 23

assembled the network, the next step is to train it by minimizing the loss or error
L (2.3) between model’s sentiment predictions on reviews in the training set and
the corresponding ground truth label. These steps, used to train the sentiment
classifier, constitute the stereotypical fully supervised training paradigm [48].

ŷi = FT (xi) (2.1)

ŷi = HT (ET (xi)), ET = ◦Ll=1el (2.2)

FT = argmin
F̂T

E(xi,yi)∈S L(F̂T (xi), yi) (2.3)

Figure 2.4: An example of sentiment classification

The benefit in training the sentiment classification model FT is that it automates
what is a fairly complex task, but training with full supervision does incur costs.
First, this model is a specialist in the sentiment classification task alone. If the
task is slightly shifted from identifying sentiment to that of identifying emo-
tions [49] – like joy, surprise, anger, etc. – the model FT , in the absence of major
adjustments, becomes unsuitable. As tasks, emotion and sentiment classification
may be distinct, but it is also clear that there is a significant overlap between
them. If we restrict our example to an English language setting, at the very least,
both of them need to understand the syntax and semantics of the same language.
In the attempt to recast FT for emotion classification, one can train it from
scratch using, say, the GoEmotions [50] dataset which curates English language
sentences and assigns emotion labels from 27 possible options to each sentence.
While this gives us an emotion classification specialist, it is easy to see that
training afresh on emotion detection overwrites all knowledge gained by FT , in-
cluding aspects of language awareness which could have been reused for the new
task. Later, if we need to shift the task further to, say, detecting sarcasm [46],
training from scratch would, again, be largely redundant. The second major cost
incurred in this process is the need for an annotated dataset to train this model.
The effort involved in curating something like the IMDB dataset, having people
read reviews and make a conclusion about the sentiment, is significant. On top
of the inevitable ambiguity in the labeling process, the effort only multiplies
if the labeling needs to be more detailed than a simple binary indicator.

Self-supervised pre-training for domain generalists – Alternatively, let
us consider the popular BERT [51] language model, whose potential is best
understood by examining its training corpus and one of its two training objec-
tives. Let us denote this model as FD and compose it in the same encoder and
head pattern (2.4) as the task specialist that we saw before. Unlike the anno-
tated dataset used in the previous case, the corpus used to train this model is
S = {x1, x2, ...}, a mass of unlabeled text data from multiple sources including

24 CHAPTER 2. BACKGROUND

Wikipedia. In the absence of labels, BERT trained by asking it to complete a
series of cloze tests6, where the task is to predict hidden words based upon the
context. As shown in Figure 2.5, the premise of the task is exceedingly simple.
Cloze involves taking a training sample xi ∈ S and creating a corrupted version
mi, where a random subset of J tokens are masked out. Upon presenting the
masked input mi, the task that the model needs to accomplish is to correctly
predict the tokens that should appear in masked positions. The model is trained
to do this task by minimizing the error L (2.5) between the tokens predicted
by the model in masked positions and the ground truth in the same positions.

x̂i = FD(mi) = HD(ED(mi)) (2.4)

FD = argmin
F̂D

Exi∈S L(F̂D(mi)[j], xi[j]) , j ∈ J (2.5)

Figure 2.5: An example of the cloze task

It is clear that the cloze task, unlike sentiment classification, is simply too
general to have many practical applications. Yet, when trained on millions of
paragraphs of text data from Wikipedia and other sources, it is precisely the gen-
eral nature of this task that renders BERT as a foundation language model. Put
simply, as the model learns to correctly predict tokens in masked out positions
in millions of cloze challenges during training, it indirectly gains a statistical
understanding of the syntax, semantics, and even some underlying knowledge
in the English language text with which it is trained. This is why, training with
generalist objectives like cloze is typically referred to as pre-training. Thus,
while cloze itself may have no practical utility, the knowledge of a vast domain
that it induces in the model is readily reusable for virtually any task in the same
domain. Sure enough, using the well-known approach of transfer learning [52] –
a process which we will examine shortly – BERT has been reused to train task
specific models that address the previously discussed examples like sentiment
and emotion detection [53]. If we now contrast the BERT model FD with the
sentiment classification model FT , some important characteristics of foundation
models emerge. First, foundation models are not task-specific, which may seem
meaningless except for the fact that their core purpose is to seed task-specific

6https://en.wikipedia.org/wiki/Cloze test

2.2. FOUNDATION MODELS IN DEEP LEARNING 25

models in the domain. Second, these models are typically trained on a computa-
tionally simple training objective. The cloze training steps of masking a fraction
of the input and measuring errors in masked positions are not especially compli-
cated. A vital complement to the computationally simple training objective is
the typically large dataset the model is trained on, which is the third main char-
acteristic. The simplicity of the objective and the scale of training with millions
of samples go hand-in-hand to induce general knowledge in a domain. Finally,
to stay true to its task agnostic nature, a vast amount of knowledge needs to be
induced, and this is directly reflected in the number of learnable parameters in
the model’s layers. Depending upon configuration, the original BERT model has
100-300M learnable parameters [51]. Recent years have seen the introduction
of billion-parameter models with GPT-3 [45] being a prominent example.

If BERT’s reuse in a family of related tasks is one indication of the potential
of foundation models, a far more dramatic showcase would be ChatGPT which
is built, among other things, upon the domain understanding of English (and
other languages) in GPT-3. While enhanced with other training, inheriting
language skills and general knowledge from a large training corpus lies at the
very foundation of the chatbot’s ability to be conversant in a variety of topics.
The language domain may have been the forerunner in mainstreaming the
reuse of models with general domain understanding, but the deep learning
community quickly grasped that the phenomenon need not be restricted to
this domain alone. It did not take long for models with such capabilities to be
introduced in domains like computer vision [54] and molecular chemistry [55].
Recognizing their special characteristics in being able to spawn countless task
specialists, a new term – foundation models – was prominently adopted in [28]
to refer to them. Explaining their reasoning for introducing this term, [28]
identify at least two main factors that characterize foundation models.

• Foundation models are general-purpose models in a given domain, that are
meant to be reused or adapted to several downstream tasks in its domain

• Correlating with the generality of their purpose, such models are trained
self-supervised on datasets that represent their domain

In its short, yet eventful, history, deep learning has itself gone through several
disruptions. Foundation models, and the reuse of knowledge that they enable,
certainly rank among them.

2.2.2 Benefits and costs of supervised task specialization

Fine-tuning for efficient task specialization – While the importance and
utility of foundation models is beginning to be better understood, current
practice mostly leans away from directly using them for specific tasks7. Rather,
the generally accepted way is to use a foundation model FD as a seed to create

7A new paradigm, ‘pre-train and prompt’ is upending this typical approach. We discuss
its implications, comparing it with our approach, in Chapter 12

26 CHAPTER 2. BACKGROUND

a fine-tuned task specialist FT . Let us take a moment to examine typical fine-
tuning (Figure 2.6) by considering English language sentiment classifier as the
task specialist FT that we need to achieve. Considering that BERT is a readily
available repository of knowledge in this domain, it is a natural candidate for the
seed model FD. With the foundation model being composed of encoder (ED)
and head (HD) blocks, the first step in fine-tuning is to strip away the head
block and discard it. As we noted earlier, the job of the head network is mainly
to funnel the model’s learning into a particular task. Since the pre-training task
was cloze, the funneling provided by the BERT head network HD is not particu-
larly useful for the new sentiment classification task. What is useful is the BERT
encoder block ED that actually holds the domain knowledge, which is precisely
why we retain it. The next step in fine-tuning is to take the BERT encoder ED
and composing it with a new head network HT , that is meant to repurpose the
pre-trained knowledge for the new task. Thus, with ED derived from BERT,
FT = HT (ED(x)) can be trained as a sentiment classifier using the supervised
training approach described previously in (2.3). Since this reconfigured training
process receives a head start from the pre-trained BERT encoder, this process is
referred to as fine-tuning. This recipe, therefore, constitutes a different training
paradigm – pre-train and fine-tune – which is an efficient alternative to fully
supervised training. In some cases, the pre-trained block is frozen – prevented
from being modified – during training. In this case only the head, which has far
fewer parameters, needs to be learned. One beneficial side effect of this is that
fine-tuning can work with a much smaller training set than pre-training. This
can be advantageous because task specific fine-tuning usually needs annotated
data which, as we noted earlier incurs significant cost. Since fine-tuning needs
a relatively smaller dataset, the annotation effort may be manageable.

Figure 2.6: A typical fine-tuning process

Representation learning as a key enabler – Fine-tuning is much more
efficient than fully supervised training from scratch from two main perspectives.
First, only the head HT of the task specialist FT needs to be learned, and this
contains relatively fewer parameters. Second, the generalist knowledge of the
domain that reused encoder ED learns to represent, is useful for more than one
task in the domain. In order to understand the importance of representation, let
us probe the fine-tuned model FT = HT (ED(x)) further. When a movie review

2.2. FOUNDATION MODELS IN DEEP LEARNING 27

x is fed forward through the network, the information it contains is sequentially
refined layer by layer, until its sentiment ends up as a label at the output of the
head. Apart from the input and output which, in this case, are human-readable,
any intermediate prediction in the forward pass is an abstract vector of real num-
bers. Taking advantage of the two-block composition, let us tap into the network
to capture the abstract output of the encoder block e = ED(x). In the context
of language modeling especially, this is commonly referred to as an embedding
of the input x. It is a vector that captures pertinent details about the input x
at this stage in the network so that it can eventually complete the ultimate task
it was trained upon. But, if we recall the discussion in the previous section, the
training objective of BERT (of which ED is the encoder) is the very general cloze
task. The generality cloze forces BERT to embed the input into a semantically
rich, yet relatively compact, representation. This representation, in being able
to generalize across tasks like sentiment, emotion, or sarcasm detection, plays
a crucial role in the success of the pre-train and fine-tune training paradigm.
Further, considering that BERT is normally trained for the specific purpose
of seeding task specialists downstream, its head HD is usually meant to be
discarded. This necessarily means that the objective of BERT is to learn ED, a
model that embeds or represents text inputs. Put otherwise, the express purpose
of training encoder models like BERT can be seen as representation learning.

The intermediate representation, or embedding, e may hold a lot of information,
but not all of it is necessary to assign a sentiment label. In fact, the need for the
task-specific head HT arises because the intermediate embedding e is far too
rich and entangled to directly use for sentiment classification. While fine-tuning,
by using a pre-trained model as a seed, does reduce the training effort, many
of the previously identified costs in training a task specialist remain. The
supervised training step can take place with a relatively smaller dataset, but
there is, nevertheless, a need to annotate which incurs significant cost. Also,
being trained on a dataset with binary annotations, the sentiment predicted by
the head falls only into one of two predefined categories. Additional nuance in
the prediction comes at the cost of additional annotation in the training data.

2.2.3 Flexibly applying foundation models for tasks

So far, we have seen two main paradigms for training models that solve tasks.
The first is the fully supervised paradigm where the entire model is trained
from scratch using annotated data. The second is pre-train and fine-tune,
where a foundation model is pre-trained self-supervised, after which, a task
specific head is trained supervised. The latter approach may be more efficient
since parameters are inherited, but it continues to rely upon supervision. Since,
as we have repeatedly noted, such supervision is challenging to achieve in
software engineering tasks, we ask ourselves – can we simply not rely upon rich
representations learned by foundation models to solve tasks? It turns out that
there are interesting precedents that point to an affirmative answer.

Pre-train and calculate – If we are to rely only upon abstract representa-
tions learned by foundation models to solve tasks, we clearly need to turn to

28 CHAPTER 2. BACKGROUND

properties that hold in this space. Fortunately, neural network embeddings
like e belong to a vector space where several interesting properties apply. One
well-known property is that of representational similarity, which essentially
holds that embeddings that are close to each other in vector space tend to be
semantically similar in the input space [56]. That is, given two inputs x1 and
x2, the learning process tends to place their embedding vectors e1 = ED(x1)
and e2 = ED(x2) close together in the embedding space if they happen to
convey a similar meaning. This simple detail not only underpins representation
learning, which is crucial to the very concept of the deep neural network,
but also opens up several avenues for solving tasks. Semantic search is one
example of a task which can be solved using the principle of representational
similarity, without resorting to a fine-tuned task specialist head. In its most
simplistic form, given a corpus S = {x1, x2, ...xN} of sentences and a query
q ∈ S, semantic search can be defined as a task of finding the sentence h ∈ S \ q
such that h is closest in meaning to the query. If we use embeddings of the
language model ED as the index for the search, then one straightforward way
to conduct the search would be h = argminxi∈S\q d(ED(q), ED(xi)). Since
embeddings of semantically related sentences should ideally be close in vector
space, an appropriate distance measure d can be used to find the sentence
whose embedding is closest to that of the query. Practical semantic search may
not always use raw language model embeddings, but comparing embeddings
in vector space is a common minimum [57]. The example of semantic search
reveals how properties of neural network representations can be repurposed
for predictive tasks using simple and transparent vector arithmetic.

Using this example as inspiration, going beyond full supervision and pre-train
and fine-tune, we use pre-train and calculate as the paradigm for solving soft-
ware engineering tasks. The theme of this approach, as charted in Section 1.3
(also see Figure 1.3), is to pair a domain generalist foundation model with a
rule-based procedure. This procedure extracts predictions using simple and
principled vector arithmetic. Representational similarity, which we saw in the
semantic search example, is only one among many properties that can be used
for extracting predictions. The technique that we use in Part I for design
compliance assessment is based upon the principle of embedding regularity.
This property refers to the observation that the embeddings of inputs related
by the same concept tend to be arranged in a recognizable geometry [56]. Vec-
tor operations that we use for predicting design compliance therefore centers
around measuring the alignment with the expected geometry. In Part II, where
we deal with test stimulus generation, we turn to two well-recognized properties
of DNNs and their embeddings. The first is the property that interpolation be-
tween embeddings leads to samples that proportionally combine semantics [58].
The second is that most practical DNNs are differentiable, which means that
gradient descent can be used to identify inputs that satisfy specified conditions
at the output of a DNN. After describing how we utilize all these properties to
solve software engineering tasks in the first two parts, Part III jointly recounts
them to distill our common recipe for building predictive engineering tools
using pre-train and calculate. Developing such a principled toolkit for operating
in the embedding spaces of foundation models is one way to subvert the cost
involved in learning a task specialist in a supervised setting. Since the cost of

2.2. FOUNDATION MODELS IN DEEP LEARNING 29

supervision under the current practice of automotive software engineering is
substantial, such a toolkit not only offers a cheaper but, as we shall soon see,
a much more nuanced alternative for task automation. An added advantage
is that rule-based predictive steps built upon properties like representational
similarity are much more transparent and explainable in comparison to a fine-
tuned head. Such transparency increases the likelihood that engineers use these
trained tools with confidence. Applying this principled approach to automate
tasks in software design and testing, tools and methods we develop help address
critical needs for the successful delivery of the next wave of automotive software.

30 CHAPTER 2. BACKGROUND

Part I

Easing the process of
software design compliance

31

Chapter 3

Automotive software design

Designing a vehicle function like air suspension or emergency braking may need
to take into account all constituent physics but, as we saw in Chapter 2, the
E/E system and, particularly, the layered AUTOSAR architecture allows us
to focus upon its software in a relatively independent manner. This separation
allows us to apply a software engineering approach to develop AUTOSAR ap-
plications, including the act of designing it. But where does the software design
activity begin? Following the process sequence in V, compiling requirements for
application software is certainly one starting point, but as traced extensively
earlier, there is ample support available from orthogonal system thinking. Here,
the E/E system architectural element of the AUTOSAR software application
(Definition 3) especially holds promise. Let us now probe the potential of the
software application as a starting point for the software design activity by
visualizing its definition in the form of a relationship diagram (Figure 3.1).

Figure 3.1: The relationship between AUTOSAR applications, software com-
ponents and modules

As seen in the figure above, the AUTOSAR software application incorporates
simple, yet durable, tools for software design. For instance, by allowing an
application to be realized using multiple SWCs, the AUTOSAR SWC serves as
a crucial pathway for decomposing application logic. Such a decomposition pro-
cess helps prevent the application code from agglomerating into unmanageable
monoliths. Also, the ability of AUTOSAR SWCs to collaborate in realizing vehi-
cle functionality – which we saw in the windshield wiper example in Figure 2.3 –

33

34 CHAPTER 3. AUTOMOTIVE SOFTWARE DESIGN

allows the separation of concerns. The ability to compose allows us to write sepa-
rate SWCs for sensing, processing, and actuation. This also lays the foundations
for reuse where, should a similar sensor be used in a different application, the as-
sociated SWC can be reused. By thus offering several advantages, it may seem as
if there is enough substance in the AUTOSAR software application as an entity
to shoulder the design process. The catch, however, is that among the design
semantics shown in Figure 3.1, only the decomposition process is codified. All
other benefits are only implied. Put otherwise, AUTOSAR restricts itself mainly
to defining the SWC and its composition into software applications. Designers
are free to compose them in any manner, including using ways that do not really
achieve any of the benefits enumerated earlier. More generally, while E/E sys-
tem thinking helps establish a useful architectural baseline consisting of ECUs,
reference topologies, and AUTOSAR with its various abstractions, additional
support is needed to use these concepts and derive a viable software design.

3.1 Patterns for designing vehicle application
software

Even if it is common to use the terms interchangeably in day-to-day engineering,
it is important to recognize that the architecture and design of vehicle appli-
cation software are distinct activities. Here, [13] is helpful in identifying their
respective characteristics and their inter-relationship. It describes software
architecture as very much a big-picture process, helping make choices that
define the boundaries of the eventual design. Architectural choices are usually
codified and communicated as principles, rules, and structures which can serve
as starting points for the design activity. The layered AUTOSAR architecture,
and the SWC abstraction, are cases in point. Software design, on the other
hand, involves composing and specializing necessary architectural principles
and structures to propose a design, while ensuring that the boundaries set by
the overall architecture is respected. Thus, [13] makes it clear that architecture
is mainly about setting the rules at a high level, while design is about following
them at a low level. Considering this dichotomy, it is perhaps reasonable to
conclude that the software application and the SWC are at too high a level of ab-
straction to solely shoulder the design process. Additional guidance is necessary
to translate high level ideas to low level details. While this guidance can come
from several avenues, a particularly helpful tool that helps translate principles
of software architecture into tangible design solutions is the design pattern.

Design patterns, as the classic definition1 goes, are solutions that can be reused
for commonly occurring problems in software design. Simply put, within most
software engineering communities, as design problems are encountered and
solved, engineers are highly encouraged to document both. Needless to say, a
wide range of pattern catalogs have accumulated to aid the design of vehicle
application software. For example, [59] catalogs patterns for model-based
application development, while [60] and [61] curate patterns for solving safety

1https://en.wikipedia.org/wiki/Software design pattern.html

3.1. PATTERNS FOR DESIGNING VEHICLE APPLICATION SOFTWARE 35

and security-related design problems respectively. Also, vehicle application
software is almost always embedded software, which means that a sweeping
catalog of design patterns [62] for embedded software is always available for
reuse. Such a rich palette of catalogs undoubtedly provides much needed
system thinking to move towards detailed design, but examples listed above
arguably tilt towards core application logic. Meaning, they pay more attention
to designing the functional and non-functional properties of the logic contained
in a SWC, but they do not necessarily consider the structure and organization
of the SWCs themselves. Sure enough, patterns do exist that address this
aspect and, since this is of primary interest to this work, let us discuss it further.

Need for design guidance in the AUTOSAR application layer – There
is one issue in the AUTOSAR application layer that is crucial to note, and it can
be understood by revisiting Figures 2.2 and 2.3. Together, these figures reveal
the mixed approach to software architecture taken by AUTOSAR. The former
reveals a layered approach from hardware up to the RTE, which virtualizes
the hardware. But, as the latter reveals, beyond the RTE, there is a subtle
shift from a layered architecture to a component based architecture [38]. That
is, in the application layer, the AUTOSAR standard does not define much
more than the SWC abstraction, taking no stance on how these components
should be arranged. The minimalist approach may be understandable in what
is, after all, an industry standard adopted on a large scale, but the component
based architecture causes considerable anxiety in the community of automotive
software developers and architects [40]. This is simply because, there is little
guidance on how to structure and arrange what can be a vast network of SWCs.

Using Figure 3.2, we now illustrate possible issues caused by a lack of clear
guidance on SWC organization. This figure shows a system with five different
applications and, for ease of reasoning, we assume that they are realized using
one SWC each. Let us begin with lane keeping assistance, which helps the driver
stay within the lane by detecting lane markings using a camera. Further, let
us assume that the design has packaged basic camera processing functionality
with the lane detection logic. This is typical when the complete package has
been purchased from one vendor. The absence of a clear separation between
lane detection and camera processing logic can, however, disturb the overall
system. If a pedestrian detection application – which also needs camera data
– is now introduced, there is unnecessary coupling with lane detection simply
because the latter has inadvertently become the source of all camera data. This
can lead to further complications if there is a need to, say, introduce a vehicle
variant that excludes lane keeping assistance but retains the legally mandated
pedestrian detection application. With the wrongly coupled design, there is no
choice but to extricate camera processing from lane keeping, usually at a heavy
cost, and reuse it for pedestrian detection. Without taking extra care, the
component-style architecture specified by AUTOSAR can have such unintended
consequences. Alternatively, if there had been strong design guidance that called
for a clean separation between low level device functionality and core application
logic, such issues may be avoidable. Having followed such a guideline, the
example in Figure 3.2 avoids unnecessary coupling between emergency braking
and adaptive cruise control by designing a separate radar processing block. The

36 CHAPTER 3. AUTOMOTIVE SOFTWARE DESIGN

need for constant guidance in navigating an essentially flat structure is precisely
what keeps software architects anxious. Worst case, even global tight couplings
emerge. In our example, pedestrian and lane detection, emergency braking,
and cruise control all need to know the ego vehicle speed. It is not uncommon
to see practical designs where a speed estimation application is directly coupled
to serve all others – otherwise recognizable as the infamous spaghetti design.

Figure 3.2: Possible (dis)organization in the absence of clear design patterns

With some potentially alarming design concerns on the horizon, AUTOSAR
itself provides some guidelines for organization. The AUTOSAR design pattern
catalog [63] is one example which addresses some of these issues. One pattern in
this catalog encourages the creation of one dedicated SWC for each sensor and
actuator, which abstracts all of its hardware details. Another pattern encourages
the use of arbiter SWCs which mediate between multiple requesters or providers.
Its primary intention may be to resolve conflicting requests, but it may indirectly
introduce separation of concerns, helping reduce dependencies. The AUTOSAR
design pattern catalog certainly helps address crucial issues but, in addressing
three specific concerns, it is fairly limited. Additional guidance is also available
in the form of AUTOSAR application interface standards2. These standards
define external interfaces for routinely offered applications like windshield wiper,
seat adjustment, etc. A focus on the external interface, however, only has an
indirect interface on SWC structure. In parallel, efforts have also been under-
taken outside the AUTOSAR consortium, with vehicle manufacturers defining
additional patterns to solve other design issues. One such design pattern,
specified by system architects at the Volvo Group, is Controller-Handler which
encourages control logic to be distinct from device handling logic, introducing
some layering in the otherwise flat vehicle application software. Since this work
focuses extensively on this pattern, we discuss it in detail in Chapter 4.

Armed with a healthy collection of design pattern catalogs, designing the soft-

2https://www.autosar.org/standards/application-interface

3.2. LIMITS OF TRADITIONAL DESIGN COMPLIANCE ASSESSMENT 37

ware of an end-user function seems less daunting. Starting with requirements,
with the aid of ample system thinking in the form of architectures, design
patterns and many more ideas, a viable design should be achievable. At which
point of time it becomes pertinent to consider the question – how do we ensure
that the subsequent implementation indeed complies with the specified design?

3.2 Limits of traditional design compliance as-
sessment

The objective of software design, as derived from the waterfall V process, is to en-
sure that the implementation downstream is able to sufficiently address require-
ments defined upstream. As we also saw previously, concerns that vehicle appli-
cation software needs to address can be quite diverse, covering aspects like safety
and cybersecurity, in addition to the quality and structure of the code itself. In
the effort to address them all, it is not uncommon that the design itself includes
a hefty list of guidelines, and requirements that need to be fulfilled. Understand-
ing the impact of all of this on the implementation process is therefore crucial.
At one level, there is a need to ensure that there are no major flaws in the design
itself. Methods like [64,65] help evaluate the viability of high level architectural
principles, using which the design is derived. The design itself can be subjected
to analysis using, for example, Failure Modes Effects and Analysis (FMEA)
which assesses the risk of failures. At another level, there is the additional need
to ensure that the implementation actually complies with the specified design.
Sometimes, as noted earlier, demonstrating compliance may even be mandated
by regulation. Even otherwise, ensuring that the implementation complies with
the specified design guidelines eases continuous evolution of the software system,
which is necessary for delivering functionality at high cadence and quality.

The challenges involved in the process of assessing design compliance can be
examined through two main aspects. Loosely defined, the first aspect would
be the ease of formalizing design requirements. The reasoning here is that
if the design can be formalized as an algorithm, then it may be possible to
construct an automatic static analysis procedure to check design compliance.
The MISRA C3 standard, which is a set of coding guidelines for safety critical
systems serves as a good example here. For example, one MISRA C requirement
is that a function cannot call itself. Practically, it is also possible to formal-
ize an algorithm that spots recursive functions, which means that verifying
compliance with this requirement can be automated. The second important
aspect for design compliance is the level of ambiguity in judging compliance.
If we take the same MISRA C requirement, it is clear that if a function indeed
makes a recursive call, it unambiguously violates the requirement. Meaning,
that an automatic compliance checking process can conclude with a true/false
answer. Since MISRA C requirements are generally both formalizable and can
be unambiguously judged, popular static analysis tools like Klocwork4 come

3https://www.misra.org.uk/misra-c2012-amd3-published/
4https://help.klocwork.com/current/en-us/concepts/home.htm

38 CHAPTER 3. AUTOMOTIVE SOFTWARE DESIGN

pre-packaged with compliance checking tools for this standard.

Unsurprisingly, there are several cases in automotive software engineering
where formalizing design requirements is difficult, and compliance judgment
is ambiguous. This can be illustrated by returning to the example in Figure
3.2, where a better design is achieved if application and low level device logic
are sufficiently decoupled. In the specific case of the lane keeping, this can
translate to a requirement is that the application logic should not contain video
processing code. Since (non-) compliance with this requirement is only visible
in freely definable variable and method names in the code, any formalization
is bound to be brittle. Moreover, it is also easy to see that there are several
ambiguities that compromise the judgment of compliance. If lane keeping code,
say, crops the image to focus on an area where lane markings are likely to be
visible, is that considered to be basic video processing? Since there is sufficient
margin for ambiguity in answering this question, the assessment of compliance
cannot always result in a firm true/false answer.

To reiterate, if design requirements can be formalized and compliance assess-
ment is unambiguous, it is possible to use a rule-based algorithmic approach for
automating this assessment (Figure 3.3). If the ease of formalization reduces
and if the ambiguity of assessment increases, both of which are all too common,
there is a need for further intelligence and nuance during assessment. Under cur-
rent practice, such nuance is mainly supplied by human code reviewers. Manual
review can notice subtle indications in code for compliance, and an experienced
reviewer can always weigh it against standard practice to make fine judgments
on compliance. In fact, a study conducted in [66] concludes that during code
review, the essential dialog between reviewers and coders centers around design.
The problem, of course, is not only that manual review is time-consuming, its ef-
fectiveness depends, among other things, upon the experience [67–69] of the par-
ticipants. The nuance supplied by reviewers – often the result of several years of
programming and design – is not easy to cultivate and preserve. However, in the
current era of big code, advances in deep learning and neural language process-
ing open up the possibility that nuanced, but time-consuming, manual review
can be automated. Thus, when the difficulty of formalizing design requirements
and the ambiguity of assessing compliance increase, we reason (Figure 3.3) that
it is beneficial to take a learning approach for automating design review.

3.3 Towards a deep learning approach for de-
sign compliance

Given an AUTOSAR software application ȳ = W(x̄), we seek to automatically
assess whether the set V = {V1,V2, ...,VN},W = ◦Ni=1Vi of SWCs which
realize this application, complies with the expectations of a design pattern
D. If this pattern D is difficult to formalize and is ambiguous when judging
compliance, both of which are not unusual, the design review task firmly lies
beyond the conceptual boundary in Figure 3.3 within which rule-based checking
is viable. The currently viable alternative of manual design review may have

3.3. TOWARDS A DEEP LEARNING APPROACH FOR DESIGN COMPLIANCE 39

Figure 3.3: As the difficulty in formalizing design requirements and the ambi-
guity in compliance assessment increase, the availability of big code enables a
deep learning approach for automating design review

limitations, but it does point to vital ingredients for a deep learning approach to
automate design review. After all, the manual review process, which builds upon
two closely related factors – domain expertise which, in turn, leads to nuanced
judgments – is quite effective. The issue, of course, is that in the high cadence
process that automotive software engineering aspires to, purely manual review
cannot wield these crucial factors at scale. However, if discussions in Section
2.2 are any indication, both factors can be addressed using a tool derived from
a foundation model that has domain expertise in vehicle application software.

Expert reviewers are likely to have spent a significant amount of time being
involved in the process of engineering automotive software, helping them learn
fine details of design. If not direct experience in the automotive domain, at
the very least, expert reviewers are likely to be familiar with closely related
disciplines like embedded software engineering or general C programming. Such
experience in individual engineers may be a prized asset, but the emergence
of big code – source code from thousands of software engineering projects –
means that a bulk of this collective experience is available as data. If millions
of pages of text can help train natural language domain generalists like BERT
and GPT-3, it stands to reason that millions of files of source code can train

40 CHAPTER 3. AUTOMOTIVE SOFTWARE DESIGN

analogous domain generalists in programming language [70]. In fact, recent
advances show that foundation language models trained on source code have
served as able building blocks for automating tasks as complex as code com-
pletion and summarization [27]. Not only does this bode well for our quest to
automate design reviews, it also serves as an important source of inspiration.

Foundation models trained on vehicle application software may very well provide
the breadth of domain expertise but, in order to automate design compliance
assessment, we need the complementary depth of task specialization. Here, as
have repeatedly noted, it may not be viable to train a true/false classification
head using labeled data. The example in Figure 3.2 shows that an assessment
of whether a given implementation of AUTOSAR application software complies
with a specific design pattern does not always end up with a true/false answer.
Even if the label is not binary, as we reason in the next chapter, it is arguable
that boiling down design compliance assessment to a small set of discrete labels
can be restrictive. Stated simply, in a task as complex as design review there
can be many shades of gray. This is why, instead of training a classifier using
annotated data, we use a ‘pre-train and calculate’ approach to measure design
compliance using principled vector arithmetic on language model embeddings.
Not only does this avoid the considerable cost of annotation but, as demon-
strated shortly, also helps conduct automatic design reviews with levels of
nuance comparable to human reviewers. Minimizing the effort spent on manual
design review, methods we develop help speed up the automotive software engi-
neering process. This helps achieve the larger objective of increasing the cadence
and the quality of deliveries, required by the next wave of automotive software.

Chapter 4

Defining a system for
design compliance
assessment

‘If you think good design is expensive, try bad design’, goes the adage. While
this observation can headline any design effort, it is certainly a prime motivator
in the design of software. Very generally, the process of software design attempts
to envision a software solution that meets a given set of requirements [71]. This
view, as traced in the previous chapter, continues to hold firm even in the
world of automotive software engineering. The classic V engineering process
undertakes the design activity using a combination of tools including principles,
models, and patterns of architecture and design, etc., that instructs top-down,
the eventual implementation of software. Meeting core business requirements
may be its primary objective, but software design often aspires further. It tries
to address several non-functional concerns and increase the likelihood that the
solution operates and evolves sustainably [72]. The expanded set of concerns
inevitably complicates the design process, which now becomes an act of trading-
off concerns in multiple dimensions, under the shadow of constant uncertainty.

When reasoning a foray of the big data, deep learning approach into the design
arena in the previous chapter, we also noted that neural language models pre-
trained on large source code corpora have started becoming building blocks for
automating a variety of complex programming tasks like code completion and
program repair ([73,74], for example). If such programming tasks, which often
require nuanced judgment, can be automated, can a similar approach be applied
to automate design tasks? We now take initial steps towards answering this
question by investigating a use case in automotive software design compliance.
In doing so, we introduce innovations that help automate a crucial and time-
consuming design review task, easing the process of software design.

41

42 CHAPTER 4. DEFINING A SYSTEM FOR DESIGN COMPLIANCE ASSESSMENT

4.1 The ‘language’ of design in code

The application of neural language models for automating programming tasks
is fundamentally based upon the naturalness hypothesis [70], which recognizes
that software is a form of human communication. As presciently observed in
the concept of ‘literate’ programming in [75], instead of simply viewing it as an
entity that instructs a computer, a program can also be seen as a document that
communicates with fellow engineers what we expect the computer to do. This
subtle shift in perspective enables us to view programs as yet another communi-
cation medium, possessing similar statistical properties as natural language text.
As traced exquisitely in [70], this means that neural Programming Language
Models (PLMs) pre-trained on code corpora, can exploit such infused elements
of human communication to learn a statistical model of programming, just like
their natural language counterparts. Such knowledge lies at the foundation
of a PLM’s ability to automate complex programming tasks. In our attempt
to extend PLMs for automating design-related tasks, we therefore start by
considering whether design information is also naturally communicated in code.

Echoing the core tenets of literate programming, no matter the domain, any list
of properties that characterize well-written code would note that it should be
properly structured, readable, and clear. Stated otherwise, code as a software en-
gineering artifact should aspire to be self-explanatory. Which brings up the ques-
tion - what is the intent behind infusing explanatory elements in source code?
Apart from promoting intellectual understanding, programmers generally choose
to augment self-explanation in code so that fellow-programmers find it easy to ex-
tend. A basic explanatory technique like using well-worded program statements,
in a clearly evident sequence, accompanied by lucid natural language comments
clearly helps code extension in relatively local scopes. In parallel, carefully
wording and characterizing entities like methods, modules, or classes, and the
ways in which they relate, interact, and are packaged, promote more global ex-
tension. Infusing such explanation, which is largely complementary to program
logic, clearly achieves many of the same objectives of a top-down design exercise.
In fact, the co-evolution of design and solution – the ‘code as design’ approach
– is itself a natural byproduct of using high-level programming languages [76].

The naturalness hypothesis, if stated differently, recognizes that source code
is naturally bimodal. That is, code – when sufficiently well-written – has
at least two recognizable channels namely (1) the algorithmic channel that
is machine comprehensible and (2) the explanatory channel that is human
comprehensible [70]. Then, if the naturally bimodal nature of code is jointly
considered with the preceding reasoning about design being a natural part
of code, it is reasonable to conclude that its explanatory channel is likely
to include information about design. Put simply, irrespective of whether it
emerges bottom-up as a result of programming or top-down as a result of an
upstream design process, elements of software design occur naturally in source
code. Given that (1) PLMs successfully understand statistical properties of
natural programming, and (2) elements of design occur naturally in source code,
we reason that PLMs pre-trained on large code corpora are likely to understand
elements of design. It is easy to see that such a reasoning has tremendous

4.2. STATING THE PROBLEM OF DESIGN COMPLIANCE 43

potential to serve our larger quest of easing the process of engineering vehicle
application software. If design knowledge that naturally occurs in big code can
be learned and wielded at scale, it can help address critical factors of experience
and nuance that is needed to automate aspects of design review. The purpose of
the forthcoming study is to both verify this reasoning and exploit its potential.

4.2 Stating the problem of design compliance

In order to help automate the complex and effort intensive process of assessing
design compliance, we envision a system S that assesses whether a set of query
programs/files Q, drawn from a corpus Q, complies with a design pattern D
specified for the corpus. The set of query programs Q, as we shall soon see,
are implementations of software components that collectively realize one or
more on-board vehicle functions. Building upon the reasoning that naturally
occurring design knowledge in large code corpora can be learned and utilized,
we further envision that the system S uses a PLM F trained on large code
corpora as the primary tool. Finally, as denoted in (4.1), we require that a
score m calculated by the system provides a measure of compliance.

m = S(Q, D; F), Q ⊆ Q (4.1)

By thus measuring the compliance of code with a set of design principles,
codified as a design pattern (Figure 4.1), the system that we envision should
be able to assist, if not automate, manual design review. To construct and
evaluate such a system, we pose the following research questions.

Figure 4.1: We envision a design compliance assessment system S that can
assist or automate manual design review with nuance

RQ1 – Can the system S for assessing design compliance be constructed using
a neural language model trained on code?

RQ2 – Does the assessment improve when the PLM is explicitly provided with
information relevant to design pattern D?

RQ3 – Can the measure m be communicated in a way that makes it easy for
an architect to understand the compliance of Q with D?

44 CHAPTER 4. DEFINING A SYSTEM FOR DESIGN COMPLIANCE ASSESSMENT

As described in forthcoming chapters in Part I, results from this study show that
it is indeed possible to construct such a system for measuring design compli-
ance. Such a neural language modeling approach to automatically assess design
compliance has the potential to improve the chances of quickly identifying (and
subsequently correcting) design violations, thus promoting faster, yet sustain-
able, evolution of the code base. Clearly, this can help achieve properties of
increased cadence and quality required for the next wave of automotive software.

4.3 The corpus and design pattern studied

The Truck Application Software corpus – To begin understanding the
system that we envision, let us first examine the corpus Q from which query
programs are drawn. In this study, we use Truck Application Software (TAS), a
corpus of ∼5k files of C-language code, that implements in-vehicle functionality
for the Volvo Group’s truck platforms. As an unvarnished corpus of vehicle
application software, principles of software design adopted in TAS stem mainly
from AUTOSAR. This, as noted in Section 2.1, means that the fundamen-
tal unit of application software that TAS contains, and the principal design
abstraction that it builds upon, is the SWC. The collection of ∼200 SWCs
in TAS implement tens of applications that deliver crucial end-user value to
customers. This is why considerable measures need to be taken to ensure that
the application software system, which these SWCs represent, is designed to
evolve sustainably. Foremost among the design priorities is the regulation of
dependencies between SWCs. When dependencies are sufficiently regulated,
existing components can be modified, and new components can be introduced,
with minimal disturbances to the overall system. Such regulation also ensures
that scenarios like the spaghetti coupling illustrated in Figure 3.2 are avoided.
The minimalist stance taken by AUTOSAR, however, means that there are not
many safeguards in the essentially flat organization of components in its appli-
cation layer that help minimize unnecessary dependencies. In order to fill this
gap, software architects at the Volvo Group have defined Controller-Handler
(CH), which is the design pattern D which we focus upon in this study.

The Controller-Handler design pattern – One simple way to illustrate
this design pattern would be by considering an example application in TAS –
roof hatch control – and its design. Trucks are sometimes equipped with a hatch
on the roof (Figure 4.2), which the driver can control to adjust the flow of air
and the amount of ambient light. The hatch is equipped with necessary motors
that effect this control based upon driver input. The key design principle, used
in TAS, to implement such a function is the separation of the core logic for
hatch adjustment, the Controller, from the logic that handles the motors, the
Handler. The main reason behind calling for such separation is to decouple
hardware, specifically sensors and actuators, from the control logic.

An illustration of the otherwise proprietary roof hatch control application, one
that follows the CH pattern, is shown in Listings 4.1 and 4.2. The controller
(Listing 4.1) begins by reading the driver’s request into a Request Type object.

4.3. THE CORPUS AND DESIGN PATTERN STUDIED 45

Figure 4.2: Adjustable roof hatch in a Volvo FH truck

In this example, we only show two possible requests, RoofHatch rqst Open

and RoofHatch rqst Close. Upon reading the request, the controller maps
them respectively to Open and Close commands of type RoofHatch Command.
The command is then transmitted to the handler through the AUTOSAR
RTE using an RTE write call. It is important to note that the controller only
contains code for reading the driver input and issuing commands for operating
the roof hatch. The code for issuing commands in activateMotors includes
additional logic to (1) avoid indefinitely issuing the same command, and (2)
prevent a rapid reversal of motor state which could cause undesirable inductive
effects. Once the controller issues the command, the corresponding handler
(Figure 4.2) reads it using an RTE read call, and actuates the motor accordingly.
Specifically, the motor is controlled using Rte call, which operates digital
output pins IOHW ON or IOHW OFF where the motor is physically wired. The
essence of separating controller and handler software components is revealed
by the nature of the handler code. The motor used for adjusting the roof hatch
is physically located somewhere close to the hatch itself and is hardwired to
pins on an ECU located in the vicinity. The handler, therefore, needs to be
deployed on this particular ECU and use the designated pins to control the
motor, imposing strict conditions on deployment. In contrast, the application
logic in the controller – having been decoupled from the motor hardware –
is not bound to a specific ECU and has relative freedom of deployment. A
virtualized RTE that allows seamless communication between SWCs deployed
on different ECUs is therefore an important element in realizing such a design.

1 // DATA TYPES

2 typedef struct {

3 RequestType_T Request_Type;

4 } RoofHatch_Ctrl_In_T;

5

6 typedef struct {

7 RoofHatch_T RoofHatch_Command;

8 } RoofHatch_Ctrl_Out_T;

9

46 CHAPTER 4. DEFINING A SYSTEM FOR DESIGN COMPLIANCE ASSESSMENT

10 // VARIABLES

11 static RoofHatch_T m_previousCommand;

12 static RequestType_T m_previousRequestType;

13 static Counter_T m_protectionCounter;

14

15 // PRIVATE FUNCTION PROTOTYPES

16 static void readAllData(RoofHatch_Ctrl_In_T *a_in);

17 static void writeAllData(const RoofHatch_Ctrl_Out_T *a_out);

18

19 // PRIVATE FUNCTIONS

20 static void readAllData(RoofHatch_Ctrl_In_T *a_in)

21 {

22 Std_ReturnType readStatus;

23

24 readStatus = Rte_Read_Request_Type_Request_Type (&(a_in ->

Request_Type));

25 if (readStatus != RTE_E_OK) {

26 a_in ->Request_Type = m_previousRequestType;

27 }

28 }

29

30 static void writeAllData(const RoofHatch_Ctrl_Out_T *a_out)

31 {

32 (void)Rte_Write_RoofHatch_Command_RoofHatch_Command(a_out ->

RoofHatch_Command);

33 }

34

35 static void inactivateMotors(RoofHatch_Ctrl_Out_T *a_out)

36 {

37 m_protectionCounter = 0;

38 m_previousCommand = NO_COMMAND;

39 a_out ->RoofHatch_Command = NO_COMMAND;

40 }

41

42 static void activateMotors(RoofHatch_T cmd , RoofHatch_Ctrl_Out_T *

a_out)

43 {

44 if(m_previousCommand == cmd){

45 if(m_protectionCounter > THRESHOLD){

46 m_previousCommand = NO_COMMAND;

47 a_out ->RoofHatch_Command = NO_COMMAND;

48 }else {

49 m_protectionCounter ++;

50 a_out ->RoofHatch_Command = m_previousCommand;

51 }

52 }else {

53 if(m_protectionCounter > THRESHOLD){

54 a_out ->RoofHatch_Command = m_previousCommand;

55 }else {

56 m_protectionCounter =0;

57 m_previousCommand = cmd;

58 a_out ->RoofHatch_Command = cmd;

59 }

60 }

61 }

62

63 // PUBLIC FUNCTIONS

64 FUNC(void , RTE_ROOFHATCHCTRL_APPL_CODE) RoofHatch_Ctrl_Init(void)

65 {

66 m_previousCommand = NO_COMMAND;

67 m_protectionCounter = 0;

68 }

4.3. THE CORPUS AND DESIGN PATTERN STUDIED 47

69

70 FUNC(void , RTE_ROOFHATCHCTRL_APPL_CODE) RoofHatch_Ctrl_run(void)

71 {

72 RoofHatch_Ctrl_In_T m_in;

73 RoofHatch_Ctrl_Out_T m_out;

74

75 readAllData (&m_in);

76

77 if(m_in.Request_Type == RoofHatch_rqst_Open){

78 activateMotors(OPEN ,&m_out);

79 }else if(m_in.Request_Type == RoofHatch_rqst_Close){

80 activateMotors(CLOSE ,&m_out);

81 }else {

82 inactivateMotors (&m_out)

83 }

84

85 writeAllData (&m_out);

86 }

Listing 4.1: An illustration of a possible roof hatch contoller implementation

1 // DATA TYPES

2 typedef struct {

3 RoofHatch_T RoofHatch_Command;

4 } RoofHatchHdlr;

5

6 // PUBLIC FUNCTIONS

7 FUNC(void , RTE_ROOFHATCHHDLR_APPL_CODE) RoofHatch_Hdlr_Init(void)

8 { }

9

10 FUNC(void , RTE_ROOFHATCHHDLR_APPL_CODE) RoofHatch_Hdlr_run(void)

11 {

12 RoofHatchHdlr Handler_obj;

13

14 Handler_obj.RoofHatch_Command =

Rte_Read_RoofHatch_Command_RoofHatch_Command (& Handler_obj.

RoofHatch_Command);

15

16 if (Handler_obj.RoofHatch_Command == OPEN){

17 (void)Rte_Call_RoofHatchHdlr_Actuator_setOpen(IOHW_ON);

18 (void)Rte_Call_RoofHatchHdlr_Actuator_setClose(IOHW_OFF);

19 }else if(Handler_obj.RoofHatch_Command == CLOSE){

20 (void)Rte_Call_RoofHatchHdlr_Actuator_setOpen(IOHW_OFF);

21 (void)Rte_Call_RoofHatchHdlr_Actuator_setClose(IOHW_ON);

22 }else{

23 (void)Rte_Call_RoofHatchHdlr_Actuator_setOpen(IOHW_OFF);

24 (void)Rte_Call_RoofHatchHdlr_Actuator_setClose(IOHW_OFF);

25 }

26 }

Listing 4.2: An illustration of a possible roof hatch handler implementation

Such an act of decoupling has several implications on the implementation, de-
ployment, and installation of applications like roof hatch control. First, the act
of decoupling controller from handler logic allows a more efficient use of the gen-
erally limited computational resources available on-board. The motor control
logic in the handler, which is typically some form of on/off toggling or pulse-
width modulation, is not very compute intensive and can be placed on resource
and cost-efficient I/O ECUs. The controller logic, though not very intensive in

48 CHAPTER 4. DEFINING A SYSTEM FOR DESIGN COMPLIANCE ASSESSMENT

this case, can be pooled with other applications in relatively powerful computa-
tional ECUs. Concentrating computational logic into a low number of general
purpose embedded computers is increasingly being recognized not only as being
cost-efficient system but an act that hastens the cadence of delivering new func-
tionality [77]. Designing applications using the CH pattern clearly helps achieve
this. Second, decoupling the controller from the handler is necessary to support
a wide variety of product configurations required to fit several transport oper-
ations and market segments. Take, for instance, the cab of the truck where the
roof hatch is installed. Based upon whether it is sold in Europe or North Amer-
ica, the design of the cab of Volvo Trucks differs significantly (Figure 4.3). Then,
depending upon the specific cab geometry, motors may have different alignments
and may need to articulate the hatch differently. If the roof hatch application
is properly designed by decoupling controller logic from the handler logic, then
the variability in cab geometry only affects the handler. The controller remains
intact and can be simply reused across both variants. Third, if the roof hatch
control application properly implements CH, it simplifies making changes in
the system. If a new actuation technology arises and a new kind of motor is
introduced, most of the impact should be limited only to the handler logic.

Figure 4.3: Variation in cab geometry in Volvo Truck products offered in North
America (left) and Europe (right)

We may have used roof hatch control as an example, but it is clear that many of
the design issues that we discussed are applicable to pretty much any control ap-
plication that uses sensors and actuators. Considering the amount of automatic
control functions in Volvo Trucks, it turns out that CH is the most prevalent
design pattern used in the TAS corpus of vehicle application software. This is
precisely why we focus upon this pattern when developing our automatic com-
pliance assessment system. Formally (see Figure 4.4), the CH pattern advocates
the implementation of an in-vehicle control application using a set of SWCs P =
{C,H1, H2, ...,HN}. Here, the Controller component C, implements the core
control logic, while Handler components Hi implement hardware-specific logic.
In practice, since the handler components are usually independent of each other,
the CH design pattern can be defined as applying to each pair P = (C,Hi) of
controller and handler SWCs used to realize the overall application. Apart from
roof hatch control, applications in TAS that adopt this design pattern include
washer and wiper control, exterior lights control, and mirror heating control.

4.3. THE CORPUS AND DESIGN PATTERN STUDIED 49

Figure 4.4: Controller-Handler software design pattern for automotive control
systems

While the reasoning behind the CH pattern is intuitive, compliance with the pat-
tern is not always simple. In the roof hatch example, if we focus upon the motor
handling and application logic alone, it may be easy to conclude that the former
goes into a handler SWC and the latter into a controller SWC. If we expand the
focus to, say, the electrical safety logic in the activateMotors function, there
is no easy answer on how this can straddle the CH divide. Placing all electrical
safety logic in the handler may fit well with its hardware-centric profile, but this
could lead to some safety logic being duplicated across several handler variants.
This could be one reason why, like our example, such code could be placed in
the controller. Another reason for doing so could be that electrical safety needs
to factor other aspects in the system that lie far beyond the scope of motor con-
trol. More generally, considering the fact that the CH pattern is defined fairly
loosely – as most design patterns are – there is sufficient room for ambiguity in
interpretation. It is also important to note that tightening the definition may
not always be useful. Worst case, patterns that are rigidly defined may simply
not have enough margin for practical implementation and may simply remain
unused. With a need to provide sufficient margin for flexibility, there is always
bound to be some ambiguity in design patterns. This, as we noted in the previ-
ous chapter, is what makes design compliance complex. During manual review,
experienced architects can not only hone in on issues that are known to be con-
tentious, but they can also weigh it against relevant practice to make nuanced
judgments about compliance. In our attempt to measure design compliance
using a PLM, we consciously try to reflect some of these important factors.

50 CHAPTER 4. DEFINING A SYSTEM FOR DESIGN COMPLIANCE ASSESSMENT

Chapter 5

Building a system for
design compliance
assessment

Having fixed the query corpus Q as TAS, and the design pattern D as Controller-
Handler for the study, we restate our objective. We aim to construct a system S
that assesses whether an ordered pair Q = (X,Y), X, Y ∈ Q of SWCs comply
with the Controller-Handler design pattern. Though either of the SWCs in this
pair can be realized using multiple software modules (or programs), at this point
it is simpler to consider the case where each SWC is realized as one program. We
relax this condition at a later point. The following sections describe the process
of constructing the compliance assessment system S that we envision in (4.1).

5.1 Constructing a system for assessing design
compliance

Pre-training a PLM – In this work, we consider a program X = (t1, t2, ..., tN)
to be a source code file containing a sequence of tokens ti. We then define a PLM
to be a language representation model of the form F : XM → X pre-trained as a
masked language model, first introduced in BERT [51]. One practical issue that
we face when building language models is that the program, which is fed-forward
into the model, is a discrete sequence of words. DNNs like the Transformer
encoder in BERT, on the other hand, only accept vectors (or more generally
tensors) as inputs. Unlike image or time series data, which are usually easy to
vectorize, the process of vectorizing programs is relatively complex. Since vec-
torization is an important step that allows DNNs to process data modalities that
are not naturally vectors, it is useful to briefly examine the steps we use to vec-
torize code. As shown in Figure 5.1, we follow a two-step vectorization process

51

52 CHAPTER 5. BUILDING A SYSTEM FOR DESIGN COMPLIANCE ASSESSMENT

prescribed, among others, by [78]. First, the raw code is subjected to a tokeniza-
tion process to split it into a sequence of word tokens. A naive version of tok-
enization would be to treat every character sequence separated by a whitespace
as a token. This, however, turns out to be quite inefficient in our case because
code tokens tend to agglomerate multiple words. In Figure 5.1, the highlighted
token pagesetl map is one example. Taken separately, its subwords page, set ,
and map are likely to appear frequently in a code corpus. The combined sequence,
on the other hand, can be rare. This is why contemporary language processing
pipelines turn to subword tokenization, with Byte Pair Encoding (BPE) [79] be-
ing a popular way to achieve this. Using an iterative process that computes the
frequency of subwords and their combinations, BPE splits rare words into fre-
quently occurring subwords. In the example, pagesetl map is split into four sub-
words page, set, l , map. Tokenization using BPE thus results in a compact
vocabulary, or a dictionary, of possible code tokens, where common subwords
appear intact while larger words are broken into constituent subwords. Such a
split, which results in a granular set of commonly occurring subwords, also helps
the model to generalize. When testing with unseen code it is quite likely that the
model comes across a rare agglomerated word which did not appear in the train-
ing corpus. In such cases, tokenization into subwords increases the chance that
the subwords themselves are part of the training vocabulary. Upon tokenization,
the second preprocessing step is to substitute each subword with its (integer)
dictionary subword entry. Then an embedding layer, which is essentially a
learnable look-up table, at the input of a DNN converts these integer sequences
into semantically consistent real-valued vectors. Going beyond code tokens, the
main intention behind this examination is to point out that, by adopting an
analogous process, other domains can be similarly vectorized and fed-forward
into DNNs. This is especially noteworthy for automotive software engineering
where artifacts beyond code, like commit histories, UML models, network
topologies, etc., are involved. With appropriate vectorization, a deep learning
toolkit could very well be applied to solve problems in all these data modalities.

Figure 5.1: The two-step process of vectorizing source code

After tokenization and binarization the program X = (t1, t2, ..., tN) is now in

5.1. CONSTRUCTING A SYSTEM FOR ASSESSING DESIGN COMPLIANCE 53

a format that can be readily processed by a DNN. Then, as we previously saw
with a natural language example in Figure 2.5, borrowing a proven technique in
training foundation models of language, the core task we use for pre-training the
PLM is cloze or Masked Reconstruction (MR) shown in (5.1)1. In this task, the
PLM is provided a masked program XM which, using the BERT masking recipe,
is produced by replacing a uniform randomly selected fixed fraction of tokens in
X with a mask token t. The model is then tasked to recover tokens in masked
positions, as a result of which it learns contextual meanings of programs.

MR(X;F) = F(XM)[j] == X[j], j ∈ J
J = {i : ti = t, ti ∈ XM}

(5.1)

Since our aim is to assess design compliance in TAS, which is a C-language
corpus, we pre-train a monolingual PLM on C code. As pre-training corpus
P , we use ∼75M files of C code derived from the GitHub public dataset2. The
model is then pre-trained by minimizing the objective shown in 5.2.

F := argmin
F̂

EX∈P MR(X; F̂) (5.2)

The larger system S that we envision in (4.1) aims, of course, to assess whether
a pair of programs Q complies with the CH design pattern D. Practically, how-
ever, feeding an entire program into the PLM is an issue because C programs
tend to be long. The average length of a C program is ∼5k subwords in the
GitHub corpus and ∼7k subwords in the TAS corpus. The Transformer archi-
tecture [80], which is the mainstay of several previously reported foundational
PLMs like CodeBERT [81], is typically configured to handle input sequences
of length 512-1024. This is because the vanilla self-attention mechanism is
of quadratic compute and memory complexity, which makes it impractical
for longer input sequences. To be able to assess long programs, we therefore
base the PLM F on the more efficient Reformer [82] architecture. Combining
locality-sensitive-hashing and reversible residual layers, the Reformer handles
long sequences much more efficiently. By configuring the input sequence length
to 8192, we are able to feed around 80% of programs in the TAS corpus into
the Reformer-based F intact, with manageable memory and computational
complexity. Programs longer than 8192 tokens are truncated to this length.
The Reformer encoder F of ∼180M parameters with 6 self-attention layers
(each with 8 heads) was trained from scratch on 16 Nvidia Tesla V100 GPUs
until the MR accuracy on a validation set of 5k files reached 95.12%.

Assessing compliance by manual review – Recalling the CH design pat-
tern described in Section 4.3, let us now consider how a human architect would
assess whether a query pair (X,Y) of programs complies with this pattern. The
architect would normally do this by reviewing the code (or the ‘naturalness’) of
the programs and assess whether X and Y respectively embody the core princi-
ples of a controller and its associated handler. It is, however, important to note

1In practice, a differentiable cross-entropy loss is used
2https://console.cloud.google.com/marketplace/details/github/github-repos

54 CHAPTER 5. BUILDING A SYSTEM FOR DESIGN COMPLIANCE ASSESSMENT

that the CH pattern defines expectations jointly on the pair and not on the con-
troller and handler programs individually. One simple illustration of the joint
nature of expectations is that commands issued by the controller are received
and processed by the handler, and not the other way around. The handler may,
however, respond to certain commands in order to, say, report status. There-
fore, in order to check properties jointly, an intermediate step that architects
inevitably take is to juxtapose related parts from the pair (often mentally) and
then conduct the assessment. We find it useful to refer to such a juxtaposition
as XY – the ‘jointness’ of the two programs. It is on this representation XY that
the architect assesses whether principles of the CH pattern are complied with.

On this abstract, joint, and mentally held, representation, there are several
markers of (non-)compliance that architects could look for. If we use the illustra-
tive roof hatch code in Listings 4.1 and 4.2 as an example, signs of violation that
architects anticipate include checking if the controller code makes references
to actuators, IO, PWM, etc. A corresponding violation could be the handler
including, say, code that reads driver commands. Architects can also check if
the interface for the handler is a pure abstraction of the hardware interface for
the hatch motors and does not contain extra logic, for instance, to protect the
motors from over usage. Logic of this nature is better placed in the controller.
This simple list of markers, while certainly not exhaustive, is sufficient to
illustrate the sheer range of concerns that need to be addressed. Not only is
manually assessing the jointness XY for signs of deviation clearly difficult, but
there are several factors that complicate the process further. First, any instance
of the CH pattern is certain to contain code that falls outside the purview of
the pattern itself. Roof hatch control could also include code for diagnostics
or logging, aspects of which are less relevant to the CH design pattern. The
presence of code which undertakes activities other than controlling or handling
means that an architect will have to identify and assess tenets of the pattern
in a noisy or diluted context. Second, as a relatively loose pattern, CH can be
realized in several styles. An architect would therefore need to judge whether
a given style of implementation is legitimate. Third, it is practically difficult to
construct an ideal realization against which the query programs can be assessed.
Usually, the architect relies on a subjective mental model of the pattern, which
is not only difficult to explicitly state, but also affects the objectivity of the
assessment. Addressing these concerns requires nuanced judgment, which is
precisely what a human expert applies. In using a PLM as an alternative to
a human expert, we now describe how we address some of these concerns.

Assessing compliance using program embeddings – The main tool we
use for PLM-based compliance assessment is the program embedding eX which,
as we saw in the discussion on representation learning in Section 2.2, is a
vector representation of the program X that reflects its semantic properties.
However, as shown in [83], there are different ways to extract embeddings from
contextual language models, each capturing different aspects of information.
After some trial and error, we empirically decide to use the normalized output
of the final (6th) layer of F , shown below, as the program embedding.

5.1. CONSTRUCTING A SYSTEM FOR ASSESSING DESIGN COMPLIANCE 55

eX =
F6(X)

||F6(X)|| (5.3)

The PLM F is pre-trained on the masked reconstruction task on millions of
program examples. It is therefore reasonable to expect that the embedding eX
is a fairly robust representation of the program X and is insensitive to minor
semantic variations. Thus, the process of assessing whether (X,Y) complies
with the CH pattern is done, not in the code space, but in a vector space using
embeddings (eX , eY). While this pair of embeddings sufficiently represent the
programs individually, an additional representation is needed to address the
joint perspective XY . One simple model to capture the jointness of a pair of
programs would be the offset, or the difference vector, between their embeddings.

rXY = eY − eX (5.4)

At this point in the discussion, a pertinent question to pose would be – why
choose the difference vector, and not some other representation, to capture
jointness? The answer, as we have alluded to earlier, is that this choice of rep-
resentation is inspired by the principle of embedding regularity. Regularity in
language representation refers to the property that embeddings of pairs of inputs,
related by the same concept, are usually arranged in a recognizable geometry.
Most famously, [84] studied this property on embeddings of analogous pairs of
words. Consider pairs of words (Man,Woman) and (King,Queen), which are
related by the same concept – each word in a pair is the male/female form of
the other. Given such a quartet of related words, [84] showed that the word2vec
language model learns embeddings such that eKing− eMan+ eWoman ≈ eQueen.
That is, language models tend to reflect a proper understanding of the analogical
relationship between pairs of words by arranging their embeddings in a parallelo-
gram (Figure 5.2). Going beyond words, [85] observed that embeddings of pairs
of sentences that are related by the same concept show a similar parallelogram
geometry. Extrapolating this observation beyond words and sentences, we hy-
pothesize that embedding regularity extends to programs. We know that (X,Y)
are query programs, and we seek to assess their compliance with the CH design
pattern. Let us also assume that we have access to some benchmark implemen-
tation of the CH pattern (X ,Y), where Y is a perfectly compliant handler to
the controller X . Then, if the query program Y is a similarly compliant handler
to its paired controller X, then it is reasonable to expect that embeddings of the
quartet (X,Y) and (X ,Y) form a parallelogram (Figure 5.2). Conversely, if the
difference vector rXY also serves as an effective offset for the benchmark CH pair,
meaning if eX + rXY ≈ eY , then (X,Y) aligns with the benchmark implemen-
tation of CH. This reasoning, based upon the principle of embedding regularity,
provides sound premise for choosing the difference vector as the joint represen-
tation for programs (X,Y). It is important to note that, even standalone, the
difference vector rXY is a representation of jointness that is as reasonable as
any other. The fact that it plays a pivotal role in the geometry of embedding
regularity lends additional credence. This is the principled reasoning that drives
the choice of the difference vector rXY as a joint representation, and alignment
with the parallelogram geometry as the measure compliance assessment.

56 CHAPTER 5. BUILDING A SYSTEM FOR DESIGN COMPLIANCE ASSESSMENT

Figure 5.2: Extending embedding regularity from words to programs

Practical assessment of compliance using regularity – We may have ar-
rived at a joint representation in a principled manner, but the problem, of course,
is the construction of a benchmark. Should there exist a benchmark vector r,
drawn perhaps from the ideal implementation (X ,Y), capturing the required
level of jointness as prescribed by the CH design pattern, then the assessment of
design compliance reduces to checking the alignment between rXY and r in the
embedding space. Put otherwise, if r serves as an effective offset vector between
the embeddings of the pair of programs (X,Y), i.e., if (5.5) is satisfied, then
this pair comes close to realizing the principles specified by the CH pattern.

êY := eX + r ≈ eY (5.5)

Clearly, we do not have access to the ideal implementation of CH, and the
corresponding ideal representation of jointness r. Therefore, as a practical
alternative, we assess compliance with the average realization of the CH pattern,
extracted from a set of known instances. That is, given a set V = {(C,H)}Ni=1

of program pairs from the TAS corpus that are known to implement the CH
pattern, we define a benchmark of average jointness (5.6), that averages offset
vectors from pairs in V . If this benchmark serves as an effective offset for
query programs (X,Y), satisfying (5.5), then this pair comes close to realizing
the average implementation of the CH pattern seen in |V | known instances.
Apart from being an intuitive and practical benchmark that captures the
average state of implementing the CH pattern, by pooling common traits from
known instances, r serves as a stronger signal for the CH pattern compared to
individual instances, where signatures of the pattern are likely to be diluted.

r :=
1

|V |
∑

(C,H)∈V

eH − eC (5.6)

5.1. CONSTRUCTING A SYSTEM FOR ASSESSING DESIGN COMPLIANCE 57

As shown using an example in Figure 5.3, serving as an offset vector from eX , if
r is able to predict a handler embedding êY that is reasonably close to its actual
counterpart eY , programs (X,Y) are likely to comply with the CH pattern.
Such closeness between êY and eY is easily measurable using the cosine similarity
between these two vectors. With this method, the assessment system for the
CH design pattern D, originally envisioned as (4.1), can be rewritten as follows.

m = S((X,Y),D; F , V) =
eY · (eX + r)

||eY ||2 ||eX + r||2
(5.7)

Figure 5.3: The alignment between the actual handler embedding eY and the
predicted one eX + r reflects compliance. Vectors eW , eZ illustrate embeddings
of programs W,Z ∈ Q

Using cosine similarity as the metric measure – standard practice for comparing
language model embeddings – results in −1 ≤ m ≤ 1. Then, m ≈ 1 means
that the predicted handler embedding êY closely aligns with that of the actual
handler eY , indicating compliance. Thus, as a way to assess compliance with the
CH design pattern, we substitute a complex code review process with a vastly
simpler comparison of embeddings extracted from a neural language model.

Easing interpretation of compliance – With cosine similarity, while it
is clear that m = 1 indicates perfect compliance, m = 0 indicates marked
non-compliance respectively, and m = −1 indicates compliance, but with the
pair (X,Y) ordered incorrectly, such perfect scores are rare. Scores in between,
which are most likely in practice, are difficult to interpret. In order to provide
an intuitive human-readable assessment, we convert similarity m into a rank
k. The discrete rank k means that the predicted handler embedding is the kth

most similar to that of the actual handler when compared to the embeddings
of all other programs in the TAS corpus. The best indicator of compliance is
a rank of k = 1 when, among all programs in the TAS corpus Q (excluding
the controller X) there is no better handler than Y for the controller X, as
assessed by the benchmark r. Conversely, a rank of |Q| − 1 means that the
predicted embedding is least similar and any other program in the TAS corpus
is a better handler than Y . This is the worst indicator of compliance. While
the rank may be a more interpretable measure, its value is now dependent
upon the spread of embeddings around eY . In the example shown in Figure

58 CHAPTER 5. BUILDING A SYSTEM FOR DESIGN COMPLIANCE ASSESSMENT

5.3, even if the prediction is reasonably good, it is of rank k = 2, since there
is another program Z ∈ Q, whose embedding is closer to that of the actual
handler program Y . If there is considerable clustering in the close neighborhood
of eY , then even a good prediction is unlikely to result in a rank close to 1.
We therefore use a simple rule of thumb, where if the predicted embedding lies
within 10% of embeddings most similar to eY , we define the assessment l =
True that the query (X,Y) complies with the CH pattern. If the predicted
embedding lies among those of 90% of the least similar programs, we label the
pair as non-compliant. The discrete rank k, in addition to a true/false binary
assessment of compliance l, eases human comprehension of our PLM-based pro-
cess of assessing design compliance. Putting all of this together, the complete
process of compliance assessment is described in Algorithm 1. Since this is a
procedure that measures design compliance, we refer to it as DECO.

Algorithm 1: Procedure for measuring design compliance, DECO

Parameters :Test input (X,Y), PLM F , TAS corpus Q, known instances
of the CH pattern V

1 Function M(eA, eB):
2 m = eA.eB

||eA||2 ||eB ||2
3 return m

4 Function S(X,Y ;F , V):
/* Note: eX = F6(X)/||F6(X)|| */

5 r = 1
|V |
∑

(C,H)∈V eH − eC
6 c = [M(eZ , eX + r) : Z ∈ Q \ {X}]
7 k = indexof (sort(c), M(eY , eX + r)) // rank

8 l = k ≤ 0.1 ∗ |Q| // binary assessment of compliance

9 return k, l

5.2 Experiments in assessing design compliance

Query (X,Y) and benchmark programs V – The objective of the DECO
algorithm is to check whether a pair of query SWCs (X,Y) complies with
the average realization of the CH pattern seen in a separate set V of known
instances. With the help of architects who are familiar with the TAS corpus, we
first identified 21 known instances of the CH pattern and curated them into a set
V . Then, we designed a controlled experiment by selecting two types of queries.

• The positive query – where the query Q+ ∈ V is known to be an implemen-
tation of the CH pattern that is likely to satisfy the condition specified in
(5.5). Meaning, Q+ is a pair of programs that DECO is expected to evaluate
with a rank k close to 1 and a binary compliance assessment of l =True. The
benchmark set in this case is V = V \ {Q+}, which is all known instances of
the pattern excluding the instance chosen as the test input.

• The negative query – where the query Q− ∈ Q\V is known to not implement
the CH pattern and is therefore unlikely to satisfy (5.5). Therefore, DECO

5.2. EXPERIMENTS IN ASSESSING DESIGN COMPLIANCE 59

should ideally evaluate this query with a rank k close to |Q| − 1 and a binary
compliance assessment of l =False. Here, the benchmark set V = V includes
all known instances of the CH pattern in the TAS corpus. Since we expect
negative queries to perform poorly during the assessment, they help establish
a baseline for the evaluating the accuracy of the assessment process.

Consider a pair of SWCs (C,H) ∈ V, that is known to implement the CH
pattern. While it is most straightforward to implement each SWC in the pair
as one program, this is not always practical. As discussed previously, and as
shown in Figure 3.1, some SWCs include a lot of functionality in which case it is
necessary to split its code into several programs or files. Practically, therefore,
the SWCs are of the form C = {C1, C2, ..., CM} and H = {H1, H2, ...,HN},
each of them being implemented using multiple programs. This complicates
the assessment process since the system S is designed only to handle a pair
of programs and not a pair of sets. A simple way to circumvent this limitation
is to ‘unroll’ the set V into a Cartesian product set as follows.

V∗ = {(c, h) : c ∈ C, h ∈ H : (C,H) ∈ V} (5.8)

For every known instance of the CH pattern (C,H) ∈ V , the product set V∗ pairs
each program in the controller SWC C with every program in the handler compo-
nentH. This process results in a total of 63 pairs, which we used as likely queries
in our experiments. By drawing queries Q+ ∈ V∗, the advantage is that we
exhaustively present all combinations in a paired form that is suitable for assess-
ment using (5.7). The disadvantage is that, even if at the component level every
pair (C,H) ∈ V is a known instance of the CH pattern, not every pair (c, h) ∈ V∗
at the program level is a ‘true’ controller-handler pair that implements ele-
mentary aspects of the CH pattern. Considering that several instances of the
CH pattern are implemented using multiple programs and that the assessment
system is currently designed to work only with a pair of programs, we accept
the risk and loosen the definition of the CH pattern. Every pair in the product
set V∗ is considered as a true pair and is presented as a positive case for testing,
while also being used to calculate r. Negative queries Q− are simply drawn by
picking two random programs from TAS as long as neither of them appear in V∗.

The PLM F – As the heart of the automated compliance assessment sys-
tem, the neural PLM F can be seen as the machine counterpart of a human
architect who conducts the same assessment manually. With such an analogy,
we now reason about the level of information with which F is trained and its
relation to the quality of assessment. The model pre-trained using (5.2) on a
C-language corpus extracted from GitHub – which we now denote as FA – is
a C-programming expert. Using this model is akin to asking a human expert
in C-programming, but one who has no experience in automotive application
design and development, to assess compliance with the CH pattern. While it is
not impossible for such an expert to conduct this assessment, it is reasonable
that an awareness of relevant domain and design concepts would ease the
process. To a C-programming expert, we contend that such awareness can be
introduced in three stages. The first stage would be to increase awareness about
the automotive-domain, i.e. the pattern of token usage (its naturalness) in its

60 CHAPTER 5. BUILDING A SYSTEM FOR DESIGN COMPLIANCE ASSESSMENT

application code. Second comes design-related knowledge, mainly the concept
of SWCs, which is fundamental to the definition of the CH pattern. Third,
would be the concept of controllers and handlers, the subjects of assessment.
Like [86], we achieve the first stage – improving domain-familiarity – by simply
continuing to pre-train FA on code from TAS. The second stage requires induc-
ing the knowledge of a SWC – a set of programs that jointly realize functionality.
We do this by first assembling a set C = {(A,P,N)}Mi=1 of programs from TAS,
such that A and P belong to the same SWC, while N belongs to a different
SWC. Then, we use the triplet loss to cluster embeddings of programs that
belong to a SWC, while keeping those of programs from different SWCs further
apart. To simultaneously ensure that this SWC-based clustering does not
majorly disrupt the embedding geometry, and to impart domain familiarity, we
combine the MR task on the TAS corpus with SWC-clustering as shown below.

FB = argmin
F

E(A,P,N)∈C TR(A,P,N ; F) +MR(A; F)

TR(A,P,N ; F) = max[(||eA − eP ||2 − ||eA − eN ||2), 0]
(5.9)

The resulting fine-tuned model FB is thus more familiar with domain and
design concepts related TAS in comparison to FA. For the third stage of
inducing knowledge about controller and handler programs, we follow a similar
approach of encouraging the PLM to respectively cluster these programs by
type. To achieve this, we assemble (1) a set DC = {(C1, C2, A)}Mi=1 with C1

and C2 being controllers and A being a non-controller program from the TAS
corpus, and (2) a set DH = {(H1, H2, B)}Ni=1, with H1 and H2 being handler
programs and B being a non-handler program. We then fine-tune FB using
the triplet loss on the combined set D = DC ∪DH , resulting in a model FC
that is aware of the concept of controllers and handlers.

FC = argmin
F

E(A,P,N)∈D TR(A,P,N ; F) +MR(A; F) (5.10)

By assessing design compliance using models FA, FB, and FC , respectively
representing increasing awareness of concepts relevant to the assessment, we an-
alyze the influence of such awareness. This assessment is conducted on an equal
number of positive (Q+) and negative (Q−) queries. For each query, results are
collected in terms of a discrete rank and a binary label (see Algorithm 1). Also,
since we introduce steps that train PLM variants F on TAS code, we will hence-
forth refer to a PLM as tasnet. For ease of reference, we also include the variant
FA under the tasnet umbrella, though it is trained only on GitHub code.

Discriminative performance of DECO – The primary tool which we use
for analyzing the results of the controlled experiment are the labels l collected
for each query. This binary label indicates whether the query has been eval-
uated by the DECO algorithm to comply with or deviate from the CH pattern.
The controlled experiment using positive and negative queries, which are known
to comply and deviate from the pattern, allows the collection of results of
each of these cases into lists L+ and L− respectively. Thus, true positive (TP)
assessments are those labels in L+ that evaluate to True and false negatives

5.2. EXPERIMENTS IN ASSESSING DESIGN COMPLIANCE 61

(FN) are those that evaluate to False. False positive (FP) and true negative
(TN) assessments are similarly identifiable from L−, as shown below.

TP : {l | l == True, l ∈ L+} FN : {l | l == False, l ∈ L+}
FP : {l | l == True, l ∈ L−} TN : {l | l == False, l ∈ L−}

(5.11)

Using this, we build the confusion matrix (Table 5.1) and performance metrics
of the assessment process (Table 5.2). These metrics help us answer the research
questions posed in our problem statement.

Table 5.1: Compliance assessment – confusion matrix1,2

Queries
Prediction (l) FA FB FC

True False True False True False
True (L+) - 63 22 (0.35) 41 (0.65) 37 (0.59) 26 (0.41) 50 (0.80) 13 (0.20)

False (L−) - 63 8 (0.13) 55 (0.87) 7 (0.11) 56 (0.89) 4 (0.06) 59 (0.94)

1 Confusion matrix on labels L+ and L− calculated according to Eq.5.11
2 For definition of each label l ∈ L+orL− refer to Algorithm 1

Table 5.2: Compliance assessment – performance metrics
Metric with FA with FB with FC

Accuracy 0.611 0.738 0.860

Recall 0.349 0.587 0.790

Precision 0.733 0.840 0.920

F1 score 0.473 0.691 0.850

Table 5.2 shows encouraging signs DECO is able to successfully discriminate
known compliant instances of the CH pattern from known non-compliant ones.
Even with the base tasnet variant FA, which is pre-trained purely on non-
automotive code, the system is capable of identifying instances of the CH
pattern with a precision of more than 0.70. As also seen in Table 5.1, with
a high True Negative Rate (TNR) (0.87), the system is particularly adept at
correctly identifying non-compliant instances of the pattern. The main concern,
seen from the same table, is of course the very high False Negative Rate (FNR)
of 0.65. That is, the system built using FA is misclassifying a majority of known
instances of the CH pattern as non-compliant. The high FNR, in turn, lowers
the accuracy, precision and F1 score. Thus, while the performance of design
compliance assessment using FA is encouraging, it remains unsatisfactory. We
reason that there are three main factors that could explain the high FNR. The
first is the product set V∗, which considers all possible pairs of programs from
applications that are known instances of the CH pattern. The introduction of
doubtful pairs could taint both the average jointness benchmark r and whether
a positive test input is genuinely so. The second reason could be the lack of fa-
miliarity with TAS domain and design in FA, due to which program embeddings
are arranged in such a way that the benchmark vector r does not serve as a good
offset. The third reason could be some weakness in assessment using the average

62 CHAPTER 5. BUILDING A SYSTEM FOR DESIGN COMPLIANCE ASSESSMENT

jointness benchmark r. Results from testing with tasnet variants FB and FC
show that it is less likely to be due to a weakness in the assessment approach.

Having been pre-trained only using the GitHub corpus, one weakness in FA is
that it is less aware of domain and design-related specializations in the TAS cor-
pus. This is precisely why we train variants FB and FC by explicitly providing
this information. Assessment using FB , which learns domain-specific natural-
ness and the concept of SWCs used in the TAS corpus, leads to a strong reduc-
tion of the FNR to 0.41. The consequent improvement in the F1 score to 0.7 is
also noteworthy. This clearly indicates that inducing the knowledge of SWCs
directly leads to an improvement in the quality of assessment. Using model FC –
which is trained to understand controller and handler programs – for the assess-
ment leads to yet another strong reduction in the FNR to 0.2, due to which the
precision and F1 score commendably increase to 0.92 and 0.85 respectively. The
clustering objectives (5.9 and 5.10), are therefore likely to have resulted in an ar-
rangement of embeddings that better satisfies (5.6). These observations clearly
indicate that using a PLM with an increased level of awareness about the domain
and its design results in a much more accurate assessment. Even with a marked
improvement in the quality of assessment, the FNR remains a concern. To
analyze this, there is a need to go beyond binary assessment to a finer method.

Calibrating DECO with expert review – Analyzing the binary labels of
compliance (L+ and L−), using the confusion matrix and metrics derived from it,
helps evaluate the performance of the assessment system. While this is necessary
to build confidence in the system, from the perspective of an architect or
developer, it is equally important to understand why the system assesses a query
as complying or deviating from the CH pattern. Since this requires much more
nuance than a binary label, we turn to the rank k to gain a finer interpretation of
the assessment. Specifically, we analyze the distribution of K+ and K− of ranks
respectively collected for positive and negative queries. For brevity, we confine
our analysis to the best performing system that uses tasnet variant FC . First
we begin by visualizing the spread of ranks shown in Figure 5.4. Inspecting the
spread of ranks for the positive cases K+, allows us to demarcate three intervals
of ranks where results cluster. Next, we sample queries from each interval
and have them assessed by architects who are familiar with TAS. The manual
assessment of sampled queries follows an approach similar to the one described
in Section 5.1. Using expert review we calibrate the results of the PLM-based
compliance assessment system within each interval as described below.

• Interval 1 (ranks 1-100) – The interval where a majority of positive cases
cluster, it consists mostly of queries that are assessed by architects to be good
implementations of the CH design pattern. Some are even judged to be text-
book cases with the right interface and responsibility split between controller
and handler programs. The best ranking instances in this interval are also those
which exhibit bidirectional exchange of information between the two programs.
The exchange follows standard practice of using the AUTOSAR RTE (refer
Section 2.1), seen in their use of RTE read and RTE write methods (refer to
roof hatch example in Listings 4.1 and 4.2). Cases that perform relatively worse
within this interval (rank close to 100) are observed to implement unidirectional

5.2. EXPERIMENTS IN ASSESSING DESIGN COMPLIANCE 63

Figure 5.4: Calibrating the results of assessment into interpretable intervals
using expert review

interaction, where the controller only reads from the handler, which is perfectly
legitimate. Therefore, expert review generally considers test inputs that rank in
this interval to be compliant with the CH pattern, with no need for refactoring.
This is further strengthened by the fact that not a single negative test case is
ranked by the system as being in this interval.

• Interval 2 (ranks 100-1000) – Expert review indicates that positive queries
in this interval show subtle deviations from the standard implementation of the
CH pattern. One deviation is that, while the responsibility split is correct, the
controller and handler programs do not interact directly with each other. The
actual interaction, in this case, usually happens through some other program
in the controller SWC, which is excluded due to the constraint that the system
operates only on pairs of programs. This is, therefore, not a genuine violation
and results simply due to a limitation in the system. More significantly, the
other observed deviation is where there is direct interaction, but it does not
take place through the AUTOSAR RTE. This is a subtle deviation which could
benefit from refactoring. The fact that the assessment system consistently
places such cases in the second interval is an encouraging observation. How-
ever, the deviations observed by expert review in this interval also seem to
be characteristics observable in pairs of programs that are not controllers or
handlers. For instance, it is plausible that random sampling from the relatively
small TAS corpus results in a pair of non-interacting programs, one of which
contains some application-like code and the other containing some code related
to hardware. This could explain why some negative cases end up being ranked
in this interval. In general, when the system ranks a query in this interval,
it could be a candidate for refactoring. However, it is best if the automated
assessment is manually verified to ensure that it is a genuine case.

64 CHAPTER 5. BUILDING A SYSTEM FOR DESIGN COMPLIANCE ASSESSMENT

• Interval 3 (ranks 1000-5000) – Very few positive cases rank in this interval.
In some cases, the query programs ranked in this interval implement diagnostic
routines and not application logic. In others, the controller program is very
small, containing only a few lines of code. Generally, therefore positive cases
seem to rank in this interval because they are marked outliers compared to the
average CH implementation. A cause for concern is the handful of cases which
are genuine false negatives and are, in fact, assessed to be good implementa-
tions of the CH pattern. Moreover, a query ranked in this interval seems to
deviate from the average implementation to such an extent that it is barely
distinguishable from random queries drawn from TAS. A result in this interval
therefore requires manual review by an expert.

Thus, the greatest advantage of the system is its ability to identify genuine
compliance with the CH pattern. Such cases, as verified by experts, rank in
the first interval. Also, its tendency to rank subtle variations – possible can-
didates for refactoring – in the second interval shows its ability make nuanced
judgments. Finding such deviations is a strong indicator of its practical utility.
The inconclusive nature of results in the third interval, and the presence of
some negative cases in the second, indicate the boundaries of this process.

Overall observations – First, queries that fall within the first two intervals
are remarkably similar in character, meaning that observations apply quite
consistently to cases within a given interval. This reflects the consistency of
automated assessment using the average jointness benchmark. Second, this
consistency eases practical use because when a query ranks within an interval, we
have a reasonably good idea why this happens. This means that any subsequent
design intervention can be precisely targeted to rectify suspected deviations.
Third, the calibration process makes it possible to decide the conditions under
which an architect must intervene. Ranks in the first interval do not require
human verification, while those in the second and (especially) third intervals
need active intervention. These observations thus point to the ingredients of
a protocol for interpreting the results and, thus, practically using the system.

However, we also observe a few caveats in the process which we now list. First,
under the current process, the benchmark r needs to be recalculated whenever
there is a new instance of the CH pattern. Since this is not a computationally
heavy process, we do not rate this as a major concern. An alternative would be
to fix ‘golden’ instances of the pattern so that the benchmark r is itself fixed.
While choosing such instances, it is important to ensure that legitimate vari-
ations are included. It would also be necessary to periodically audit the golden
instances to ensure that they are up-to-date with the latest understanding of the
pattern. Second, the DECO ranking process depends upon all programs in the
TAS corpus, meaning that the addition of new programs needs a recalibration
of the results. In the worst case, the inclusion of a new set of highly specialized
programs could severely disrupt the calibration. However, it is important to
note that such risks are inherent to any benchmark that is derived from an
evolving corpus. Third, there is a need to better understand the relationship
between pattern compliance and rank. Consider the test input with a rank close
to 100 (and thus in interval 1), but deviates from the textbook implementation

5.2. EXPERIMENTS IN ASSESSING DESIGN COMPLIANCE 65

because here the controller only reads from, and does not write to, the handler.
Such a deviation seems sufficient for ∼100 programs in the TAS corpus to come
in between the predicted and actual handler embeddings. While the empirical
calibration process allows us to circumvent this, it is essential to understand
the nature of intervening program embeddings. This is an investigation that
we prioritize for future work. Overall, results from this study demonstrate
a promising method to construct an automated system for measuring design
pattern compliance using neural language models trained on source code.

66 CHAPTER 5. BUILDING A SYSTEM FOR DESIGN COMPLIANCE ASSESSMENT

Chapter 6

Discussions

6.1 On research questions

Let us now discuss how the design compliance assessment system built using
tasnet and DECO measure up to the research questions posed in Section 4.2

RQ1: assessing design compliance using neural PLMs – The discrim-
inative performance of DECO, measured in Section 5.2, strongly indicates that
a system for assessing design compliance can indeed be constructed using a
neural language model trained on nothing but source code. After all, (variants
of) tasnet, which is a BERT-like encoder trained progressively on GitHub and
TAS code, lies at the heart of the assessment process. The ability of tasnet
in being able to represent programs in a fairly large domain is the very start-
ing point of the compliance assessment process. Using program embeddings,
produced by tasnet, the design review activity shifts from the space of code
tokens to that of semantic vector representations. Though the translated space
of representations is abstract, the DECO algorithm ensures that compliance
assessment conducted in this unintelligible space is simple and principled. The
application of principled vector arithmetic begins with choosing the difference
vector as the joint representation of the pair of query programs. This, as
described in Section 5.1 is inspired by the principle of embedding regularity
that a set of embeddings related by the same concept tend to have a predictable
geometric arrangement. Then, as a benchmark for comparison, DECO uses the
average difference vector of a set of program embedding pairs that are known
to comply with the design pattern in question. With numerous difficulties in
constructing a viable benchmark, the concept of average jointness employed
in DECO is simple and durable. As a vector representation of the average or
typical implementation of a design pattern, the concept of average jointness
also has sound semantics. Practically, this means that DECO simply measures
the alignment between the query implementation and an abstract ‘mainstream’
implementation. Such semantics is straightforward for developers and reviewers
to comprehend. Put together, this examination amounts to an assessment that

67

68 CHAPTER 6. DISCUSSIONS

tasnet and DECO constitute a method that is able to viably assess design
compliance using neural PLMs and simple vector arithmetic.

RQ2: assessment using PLMs with increased knowledge – Results in
Section 5.2 show an incontrovertible trend – as we step through the three
tasnet variants, with sequentially increased exposure to the TAS domain, the
discriminative performance of DECO improves. This amounts to a firm answer
that the performance of design compliance assessment does improve with do-
main familiarity. This sequential approach to increasing domain awareness is,
as noted in Section 5.2, based upon the intuition that human engineers them-
selves go through a similar learning process. Automotive (embedded) software
engineers typically go through the cycle of gaining familiarity with general C
programming, followed by learning the specificities of automotive or AUTOSAR
programming. Increased exposure to AUTOSAR programming inevitably leads
to comprehension of the finer elements of AUTOSAR software design. Basing
the three-step training of tasnet variants on this intuition seems to have yielded
desired results. This also shows that when combining tasnet with DECO, the
relevance of the semantics captured by the program embedding matters greatly.
Put otherwise, when stepping through different tasnet variants, the DECO
procedure remains unchanged. In being able to better capture relevant seman-
tics, the variant FC is able to produce better performance. This, of course,
does not mean that DECO is a silent participant in the process. Acts like
averaging the jointness vectors of the benchmark set, using discrete ranks, and
calibration by expert review, can be reasoned as operations that compensate
for shortcomings in proper semantic representation. Clearly, it is the combined
effect of representational quality and principled vector arithmetic that leads
to an assessment of design compliance. In this combination, improving domain
awareness in the tasnet model has a measurable effect on performance.

RQ3: easing interpretation of assessment – While the embeddings of
query programs are clearly abstract, every step that DECO takes in processing
them is transparent and explainable. Using the difference vector, as we have
already noted, is derived from the observation of embedding regularities. Av-
erage jointness, the benchmark for comparison, is also based on an intuitive
reasoning that averaging tends to strengthen the signal of the design pattern,
simply because this is the main concept that relates program pairs in the bench-
mark set. Even the comparison between the query and benchmark jointness,
essentially a real-valued similarity measure, is converted into a discrete rank
for interpretability. Given a pair of query programs (X,Y) a rank of k = 1,
indicates that no other program comes close to the predicted handler than the
actual handler Y . Even a rank of, say, k = 3 is useful because it conveys that
the predicted handler looks more like the program Z that is third closest to the
expected handler. Engineers are free to analyze Z to see if this prediction is of
any significance. For instance, Z may share some, but not all, characteristics
with Y , and an insight into the shared characteristics could be valuable. This
adds another layer of interpretability – the possibility of understanding the rank
of a prediction by examining programs that correspond to this rank. Finally, the
act of calibrating ranks with expert review further simplifies the interpretability
of the overall assessment. Using the intervals drawn by calibration, engineers

6.2. ON TECHNIQUES EMPLOYED 69

are able to gain deeper insights into the prediction, including the possible
reason for (non-)compliance. We can, therefore see that interpretability per-
meates through the entire predictive chain beyond tasnet. The use of simple,
transparent, and principled predictive steps, as pointed out in Section 1.3, is
what sets this approach apart from routine fine-tuning using annotated data.

6.2 On techniques employed

Observing versus utilizing embedding regularities – That a large part of
the reasoning behind DECO is drawn from the property of embedding regularity
is quite clear. In fact, the entire reasoning behind DECO can be reinterpreted
from the perspective of embedding regularity alone. If tasnet learns to cor-
rectly encode the jointness that underlies the CH design pattern, embeddings
of pairs of programs (C1, H1) and (C2, H2) that implement this pattern should
approximate a parallelogram. In which case, eC2

+(eH1
−eC1

) ≈ eH2
must hold,

which is a special case of the average jointness benchmark with one known
pattern instance. If this parallelogram geometry consistently holds across
several instances of the pattern, the average jointness vector r naturally serves
as an effective offset between the program embeddings of any given instance
(X,Y). Further, since regularity is essential for compliance using r as the offset,
we reason that clustering objectives (5.9 and 5.10) strengthens it, improving the
quality of the assessment process. Additionally, [87] formalized the idea of test-
ing the regularity of one pair of related words using the average offset of other
pairs of similarly related words – a technique that they refer to as 3CosAvg.
Their use of the average offset closely reflects our construction of the average
jointness r as the benchmark for assessment. While the connection with regular-
ity bolsters the credibility of DECO, there is an interesting question to ponder –
is the controlled experiment in Section 5.2 an act of confirming embedding regu-
larity, or is it an act of using regularity to make predictions? Clearly, both these
aspects are entangled. Meaning, only if regularity in program embeddings is ob-
servable, can this regularity be used for assessing compliance. It is fair to reason,
therefore, that the controlled experiments that we conduct jointly studies both
aspects. As an act of evaluating regularity, these experiments are similar to the
seminal study in [84] which investigates regularity of word embeddings. How-
ever, unlike typical studies on regularity reported in literature, we repurpose
the property for predictive purposes. It is however, important to note our study
evaluates regularity only from the perspective of the CH relationship. In order
to comprehensively evaluate regularity in program embeddings, other relation-
ships also need to be studied, and this is an interesting avenue for future work.

The quality of program embeddings – The system we construct for as-
sessing compliance with a design pattern is built upon program embeddings,
which are vector representations of programs extracted from tasnet variants F .
The quality of the assessment process is therefore highly dependent upon the
quality of the representation. For instance, when discussing RQ3, we noted that
exposure to data (code) in the TAS domain plays a pivotal role in improving
the quality of representation and, eventually, the performance of assessment.

70 CHAPTER 6. DISCUSSIONS

Apart from data, another important factor that influences this quality, is surely
the objective that is used to train the model itself. PLMs used in our study are
primarily trained using the masked reconstruction, or cloze, task shown in (5.2).
The simplicity of the MR task is undoubtedly its key advantage. However, a
major shortcoming of the BERT masking recipe is that, by uniformly choosing
15% of the tokens to be masked, only tokens that are numerically abundant
– but semantically less significant (like ;) – are more likely to be masked. In
order to successfully reconstruct a token like ; it is often sufficient to simply
learn concepts in a local scope, like the likelihood of the end of a statement.
Thus, with the model rarely being tasked with reconstructing tokens that are
semantically significant, it is relatively less equipped to learn global concepts
like design. This could explain why the base model FA, which is pre-trained
only using MR, performs worst. This weakness of MR is well-documented in lit-
erature and several interesting alternatives have been proposed that encourage
the model to learn more global concepts. One option is to modify the masking
recipe like [88], which masks selected phrases and [89], which masks larger
spans of tokens. Another option is to use [90] and [91], which task a model to
detect replaced, permuted, inserted, or deleted tokens. As tasks that are more
complex than reconstructing simple tokens, they encourage the model to gain
a deeper understanding of program contexts. Another interesting alternative
class of training objectives are those that selectively obfuscate tokens. For
instance, a de-obfuscation objective proposed by [92] obfuscates class, method,
and variable names before tasking the model to recover them. Since the suc-
cessful completion of this task requires a deeper and broader understanding of
the program, they may lead to embeddings that are better suited for a design
assessment. While we reason the fine-tuning objectives that improve domain
and design-related awareness (5.9 and 5.10) are likely to remain important,
setting a task that is more complex than MR may result in a much more
powerful base model FA. We leave this investigation for future work.

Training beyond code – Our results clearly show that it is possible to con-
struct a system for assessing design compliance using PLMs trained on source
code. However, we do not necessarily advocate a code-only training approach
for imparting design knowledge. In addition to source code, automotive soft-
ware engineering, which follows the AUTOSAR standard, captures additional
engineering information using the standard ARXML modeling language. From
the perspective of design awareness, would it therefore be helpful to explicitly
train tasnet with ARXML models? The answer depends, of course, upon
whether such models provide additional design awareness. If most of the in-
formation in ARXML models is likely to be replicated in code, then using
them for training is unlikely to enhance design understanding. On the other
hand, if design models do contain some information not discernible in code,
it may indeed be helpful to additionally train with such information. Assessing
the usefulness of engineering information in ARXML for design compliance
assessment is an investigation that we leave for future work.

6.3. RELATED WORK 71

6.3 Related work

To the best of our knowledge, our work is the first attempt to apply neural
language models for measuring design compliance. In software engineering, our
work closely relates to the task of design pattern detection. A recent survey
of this area [93] reveals that around 20% of reported methods take a machine
learning approach, mostly using classical algorithms. Examples include [94]
which compares pattern instances by modeling them as graphs, and [95] and [96]
which use artificial neural network and random forest models respectively to
classify pattern instances. We reason that the key advantage of our use of neural
language models is the level of nuance that it can apply to judging design. A
BERT-like PLM, which has been shown to learn nuanced contextual information,
could be vital for assessing design, where firm judgments are rare. Also, unlike
the majority focus on pattern detection, we develop a technique for measuring
compliance with a given pattern, including steps to identify the source of
deviation. Moreover, our study focusing upon embedded control systems would
also be a useful addition to an area that mostly focuses on object-oriented design.

As discussed in detail in Section 6.2, our approach to compliance assessment
closely relates to the property of linguistic regularity observed in neural natural
language models [84]. Most experiments, as surveyed in [97], study this prop-
erty as a way to evaluate the quality of word embedding models. Few of them
apply this property in a predictive setting by framing an analogy completion
task where, given a triplet (A,B,C), they predict D such that (A,B) and
(C,D) are analogical pairs. Studies [98] and [99] approach this task respectively
using popular word2vec and GloVe embedding models, while [100] uses sense
embeddings derived from word2vec. An example of the property being studied
in a specialist domain is [101] which fine-tunes GloVe on a corpus related to
radiology and uses its embeddings for the analogy completion task. Similar
to our departure from word embedding models, [102] studies this property
in pre-trained contextual neural language models. The work we survey can
therefore be seen to relate to parts of our assessment system, but we build
a pipeline that not only analyzes embedding regularity but also interprets it
within the context of software and its design. In doing so, we also tie the
property of embedding regularities to a concrete application.

6.4 Congruence with research objectives

In developing a system that automatically assesses design compliance, innova-
tions introduced in this chapter take significant strides in addressing the first
research objective (see Section 1.2) of easing the process of software design
compliance. First, the design pattern that we choose to work with – Controller-
Handler – is the linchpin of the TAS corpus in terms of design. This means that
tasnet combined with DECO, which assess compliance with the CH pattern,
addresss the most important software design practice used in engineering the
flagship product of a major commercial vehicle manufacturer. Second, the

72 CHAPTER 6. DISCUSSIONS

compliance assessment system is defined in such a manner that the pattern
D itself is configurable. In fact, the choice of the design pattern for compliance
assessment is only made when assembling the benchmark set V . Meaning,
the system S becomes a mechanism to assess compliance with the CH design
pattern simply because we populate V with CH pairs. If the assessment process
needs to address some other design pattern, one may just need to revise the
benchmark set with examples from the new pattern. This means that as long
as we are dealing with AUTOSAR software components, which is a significant
proportion of vehicle application software, our system should be extendable
to similar design compliance tasks. Finally, we also reason that the mechanism
is extendable beyond TAS into other automotive, or even non-automotive, do-
mains. As long as a representative code corpus exists, the two-step adaptation
process which we describe in (5.9) and (5.10), with some modifications perhaps,
can be applied to the new domain. After which, an appropriate benchmark set
of programs can be chosen to automate a design review task in the new domain.

6.5 Congruence with the solution approach

On the big data, deep learning approach – Analyzing how innovations in-
troduced in design compliance assessment measure up to the solution approach
that we charted in Section 1.3, let us begin with Part A. There, we state that we
take a big data – in this case big code – approach to solve practical tasks in au-
tomotive software design. If we look at the TAS corpus in isolation, it is easy to
see that the ∼5k files of source code that it contains certainly do not amount to
big code. At first glance, this is of genuine concern because in order to teach the
nuances of vehicle application software to a model, there needs to be a sufficient
mass of examples. However, the lack of mass in one domain can be compensated
by genuinely big code in a closely allied domain. Noting that vehicle application
software is, after all, C code, we turn to the GitHub public dataset where there
are millions of examples in C programming. Put together, as our results show,
GitHub and TAS corpora constitute enough mass to induce sufficient knowledge
in tasnet to solve design compliance assessment. It is important to emphasize
this point because, while automotive big data is a reality, the phenomenon is
not uniformly observable in all its disciplines. In areas that lack big data, it may
be a viable option to borrow from neighboring domains where data is abundant.
Further, the crux of a task like design review lies in interpreting expressions in
code – its naturalness – and weighing its suitability against required practice.
Considering the richness with which ideas are expressed in code, one can only
automate design review if a machine model of code awareness which is compa-
rably rich to that seen in human engineers is constructed. Here, in agreement
with many other examples reported in literature, deep learning proves its worth
by inducing such awareness in a fairly complex domain using big code.

On the use of foundation models – Once the big code corpus is assembled,
we take the fairly well-trodden path of using the cloze or masked reconstruction
task to pre-train tasnet variants. In that sense, the base variant FA that
we pre-train with the GitHub corpus bears the conventional image of the

6.5. CONGRUENCE WITH THE SOLUTION APPROACH 73

foundation model that we refer to in Part B of the solution approach. Training
steps (5.9) and (5.10) that progressively induce domain specific knowledge,
however, represent a subtle shift in training strategy. Encouraging the model to
cluster programs in its embedding space, by considering their design properties,
is an innovation that turns out to be effective. As we reasoned in Section
6.2, such an arrangement of embeddings is likely to have assisted the design
review task considerably. Even if we shift the training strategy with the use
of clustering objectives, the key factor to note is that the training still remains
self-supervised. This way, the domain-adapted tasnet variants FB and FC
still satisfy the definition for foundation models specified in [28].

On pre-train and calculate – One of the core tenets of the approach that
we adopt here is that foundation models can be used for solving tasks in
automotive software engineering without the use of a supervised training step.
If anything, discussions in this chapter show that the stance of avoiding explicit
task supervision is no mere pretext and reflects the necessities in solving
software engineering tasks. A task like assessing the compliance of vehicle
application software with the CH design pattern is not well served by a binary
answer. There are far too many ways in which implementation can deviate from
ideal design, and not all of them are unjustified. In fact, as we discuss with
the calibration exercise in Section 5.2, the ability of the assessment to reveal a
variety of deviations is precisely what is needed. Rank intervals that correlate
with possible deviations, is a far more nuanced analytical tool than binary labels.
The act of calibration, as discussed earlier, does incur costs, but it is arguably
less expensive than forcing architects into a labeling exercise that classifies
compliance into a limited set of categories. Even more importantly, the DECO
compliance assessment procedure that we propose in Algorithm 1 is based
on simple, principled, rule-based vector arithmetic. Not only does this literal
alignment with the ‘pre-train and calculate’ approach make the compliance
assessment transparently interpretable, but it is also the result of a chain of
reasoning (Section 5.1) that is sound and can be subjected to scrutiny. None
of these properties are readily applicable to a task-specific head that is trained
using explicit supervision. Thus, in avoiding supervised task specialization
we simultaneously avoid steep costs of annotation and enrich the nuance of
prediction, both of which work to the advantage of engineering necessities.

On evaluating the quality of design compliance assessment – Evaluat-
ing the quality of automatic design compliance assessment using the tasnet

language model and the DECO algorithm is critical for successful application
with trust and confidence. Before briefly re-examining the evaluation strategy
that we undertake, we first establish some useful context. Under the current
state of practice in the automotive industry, as traced in Chapter 3, the as-
sessment of design compliance is largely manual. Design review of embedded
application software is usually reserved for experts, and it may take several
years for engineers to develop such expertise. Besides, under current practice,
software development teams are distributed, making it difficult to coordinate
the review process, demanding even more time from experts. There is, therefore
a clear need for capable, standardized methods for conducting automatic design
compliance assessment, and the tasnet – DECO combination caters to this

74 CHAPTER 6. DISCUSSIONS

need. As described in Chapter 5, we take a two-level approach to evaluate the
quality of automatic assessment, a recap of which is presented below.

1. As a first level, the TAS corpus and its labeled instances of CH pairs provides
a ready benchmark for testing the accuracy of DECO.

2. Using true instances of compliance as positive cases and randomly paired in-
stances as negative cases, we evaluate the binary discriminative performance
of DECO using a standard confusion matrix.

3. Compliance with the CH pattern is, however, not a strictly binary affair,
which is why the second level of evaluation examines nuance in assessment.

4. Using expert review, we examine the rank – a raw measurement of geomet-
rical alignment – and identify clusters where rank values denote specific
nuances in (non-)compliance recognized by experts.

5. Such an expert review process simultaneously verifies the capabilities of
automatic assessment and calibrates it for better interpretability.

Evaluating the quality of assessment both at the levels of accuracy and nuance
increases the confidence with which this method can be applied to automate
design compliance. However, as previously noted, there remain limitations
which need to be addressed. Though the DECO algorithm is designed to
be extendable to other design patterns, this capability needs to be studied
further. Particularly challenging could be cases where design patterns apply
to more than two source modules, which may require an extension beyond
the parallelogram geometry. Another aspect to address would be the evolving
interpretations of design patterns. It is quite common for automotive software
to be developed, or at least maintained, across several years. This increases
the likelihood that definitions of design patterns evolve. The calibration of
benchmarks across different versions of interpretations is another limitation
which needs to be addressed. Despite such limitations, the neural language
model coupled with the rule based mechanism that we develop introduces a
useful and much-needed alternative to manual design review.

In summary, chapters in Part I demonstrates how neural language models
trained on source code can be used to measure whether a set of programs
comply with desired design properties. Compliance is measured by inspecting
the geometrical properties – specifically the regularity – of query program
embeddings. Our work also includes techniques that significantly improve the
accuracy of the assessment by explicitly providing the model with domain and
design-related information. We also present how the model predictions can be
incorporated into a design review methodology in order to provide valuable
feedback to automotive software architects. Overall, methods introduced in
this chapter have the potential to significantly reduce the time taken for design
review and therefore help achieve the overall objective of increasing the cadence
of automotive software engineering without compromising quality.

Part II

Easing the process of
virtual software testing

75

Chapter 7

Virtual automotive
software testing

Having discussed the process, challenges, and the neural language model-based
tool that we develop to ease the design of automotive application software,
let us turn our attention to the second area of focus in this work – testing
this software. In helping decide the content, structure, and composition of
SWCs, the design process reasons about the application mainly from an internal
perspective. Testing, on the other hand, has the responsibility of ensuring
that the application indeed realizes all the required functionality, no matter
the specific form of its design or implementation. Thus, testing can be seen
as taking more of an external perspective, reasoning about the properties of
an application by looking at it from the outside. Therefore, in order to trace
the journey of the testing activity, a helpful starting point would be to begin
with the external interface of an AUTOSAR application. After all, it is only
through this interface that one can interact with, and also test, the application.

A good first glimpse of the external interface emerges upon examining Defini-
tion 3 of the AUTOSAR application. Since AUTOSAR views the application
ȳ = W(x̄) as a function, the vector of inputs x̄ and outputs ȳ form its interface.
The interface is denoted as vectors simply because practical AUTOSAR appli-
cations have several inputs and outputs. The AUTOSAR term for each element
in the input or output of a SWC is signal. Since the application is inherently
a composition of one or more SWCs, the interface of input and output signals
applies recursively to every SWC in the composition. The importance of signals
in the application software system can be highlighted using the example in
Figure 7.1, which illustrates parts of a braking application.

In this example, a BrakePedalHandler SWC samples the brake pedal and sends
its state as a signal brake pedal position to the BrakeBlendingController

SWC. In order to distribute the driver’s brake request among different brake
actuators, the blending SWC computes the brake pressure to be applied at
various retarders in the pneumatic circuit. Assuming that the brake system is

77

78 CHAPTER 7. VIRTUAL AUTOMOTIVE SOFTWARE TESTING

Figure 7.1: Example AUTOSAR application with signals being exchanged
between software components

designed with one actuator SWC per axle, then the right front pressure and
left front pressure signals are routed to a FrontAxleBrakeHandler SWC.
Having been so commanded, using signals, to apply specific amounts of pressure,
FrontAxleBrakeHandler operates the necessary actuators to fulfill the com-
mand. This example helps illustrate that signals constitute the connective tissue
in helping SWCs collaborate to realize a larger function. As a clear element
of significance in the E/E system, it is helpful to define the signal as follows.

Definition 4 A signal (s, x),x ∈ R is the instantaneous snapshot of one as-
pect of vehicle state s ∈ S, with a set of possible states S. Signal values are
usually observable at the input or output of an AUTOSAR SWC.

A signal is a key-value pair of a state label and value, observed at a given time.
For example, brake pedal position : 20% at 07 : 42 : 17 UTC is a signal. It
captures the instantaneous state of the brake pedal, presumably by observing
the output port of the BrakePedalHandler SWC. Often, especially if the name
of a signal is understood, a signal is simply represented by its value x. With
signals at its input and output, the SWC can be essentially seen as a unit that
transforms one set of signals into another. Thus, while signals embody vehicle
state in the E/E system, SWCs embody behavior by actively manipulating state.

Signals as the gateway for simulation – The delineation of an external
interface of signals underpins a fundamental precept of virtually testing a SWC.
No matter their physical or statistical complexity, signals are the primary means
through which a SWC experiences the behavior of its dependencies. From the
perspective of a SWC, therefore, plausibly replicating signals in its interface
is largely synonymous with simulating its dependencies. Now, upon identifying
the external interface of a SWC, the act of testing can be boiled down to simply
simulating or crafting input signals that probe a particular aspect of behavior,
and verifying it by asserting expectations on the output signals. After all,
exploiting the AUTOSAR application layer abstraction to treat the SWC in
relative isolation does serve well in simplifying the design and implementation
of vehicle application software. Can we not extend such isolationism to testing

7.1. SIMULATION FOR TESTING VEHICLE APPLICATION SOFTWARE 79

too? Not always, because, if we widen the focus beyond a single SWC and its
signal interface, as shown in Figure 7.2, a complex network of dependencies
emerges. Given any SWC, it is likely that one part of its input consists of signals
routed from a set of upstream SWCs, while another part consists of sensors
used to monitor some local phenomenon. Correspondingly, some of its output
signals are intended to inform or command downstream SWCs, while others
may control an actuator. If the SWC orchestrates closed loop automatic control,
there is the added element of feedback, where additional sensors are used to
measure the consequences of a control action and is routed into the set of input
signals. Thus, if a tester were to craft realistic input signals to test the SWC, the
crafted signals need to plausibly imitate the behavior of upstream dependencies.

Figure 7.2: A SWC and its dependencies. SWCs v−n and vn refer to upstream
and downstream dependencies respectively

7.1 Simulation for testing vehicle application
software

The distinct realities of testing vehicle application software, in contrast to design-
ing it, can be examined by returning to the V model and its entangled process
and decomposition sequences. Beginning with the perspective of decomposition,
in the well-abstracted space for application software defined by AUTOSAR, let
us consider the merits of testing one SWC in isolation. If we turn to the example
in Figure 7.1, it is straightforward to note that there are indeed advantages in
testing the behavior of the BrakeBlendingController SWC as a standalone
unit. Any algorithm for distributing a brake request to several retarders is bound
to be complex, and unit testing at the SWC level surely aids its development.

80 CHAPTER 7. VIRTUAL AUTOMOTIVE SOFTWARE TESTING

The downside, however, is that testing BrakeBlendingController alone, with-
out including closely dependent SWCs like the upstream BrakePedalHandler

and the downstream FrontAxleBrakeHandler may fail to reveal errors in the
larger braking application. In the larger vehicle system, moreover, we know
that software alone is not sufficient to realize the complete braking application.
In order to test the complete application, we need to proceed further upward
the V to also integrate non-software elements like the pneumatic circuit, the
brake actuator, and eventually all associated dependencies in the vehicle. Only
by testing the braking application with all its dependencies, software or not,
can one be truly confident about its quality. This introduces a dilemma because
having specified and implemented a vehicle application, if we can only verify it
by integrating all the way up, we end up in a true waterfall V process. This may
deliver functionality with quality, but the time and cost involved is prohibitive.

Since the low cadence of a waterfall V is clearly unaffordable, the automotive
industry has been steadily trending towards incremental software development,
enabled by continuous integration and verification [16]. It is important to ensure
that the testing activity is not confined purely to software, but it is equally
important to include just the right mix of dependencies to ensure that testing
is reasonably independent, quick, controllable, and repeatable. If we take the
braking example, one way to set up a test rig would be to integrate all its SWCs
and ECUs, restricting dependencies to mainly the electrical and electronic
realms. This enables rapid updates to be made in, say, the brake blending
algorithm with reasonable confidence. Whether to include the pneumatic circuit
and the air pumps into the rig is, however, not straightforward to answer.
Integrating them may improve the credibility and confidence of testing with
this rig, but the electromechanical and hydraulic hardware reduce the speed of
executing and debugging tests. In order to set up a viable test rig, it is therefore
important to carefully select the integration levels of its constituent components.

Options for integrating test rigs – An AUTOSAR software application can
be considered to be highly integrated if it is in a form that is closest to its final
deployment. Put simply, an application is at the highest level of integration if its
SWCs are deployed on their intended ECUs, which are in turn installed in a real
vehicle with all dependencies, and is being operated on a live mission. While the
vehicle may be the ultimate ‘rig’ for software testing, its time and cost-intensive
nature means that development is only possible at a very low cadence. Faster
loops through the engineering process require rig options where every driven mile
is not a real mile and every millisecond of software execution is far less than a real
millisecond. It also needs capabilities for systematically applying test scenarios,
including rare or dangerous conditions. Excluding avoidable dependencies, as
we have seen before, may be one way to achieve it, but this could lower the scope
and confidence in the testing process. An exciting alternative that the industry
is increasingly turning to is simulating necessary dependencies [16]. This allows
preserving the scope of testing while making it faster and flexible by replacing
real dependencies with virtual counterparts. Simulation is, therefore, a crucial
element in lowering the integration level in a test rig, because any reduction
in the level of integration can potentially be compensated by simulation.

7.1. SIMULATION FOR TESTING VEHICLE APPLICATION SOFTWARE 81

Let us now examine how simulation plays an important role in choosing the inte-
gration level of a test rig. Generally, it is useful to reason about integration levels,
as seen in Figure 7.3, along two dimensions - (i) vertical and (ii) horizontal.

Figure 7.3: Test rigs for vehicle functions and their levels of integration

Vertical integration deals with the form of the application and its execution
environment. When it comes to setting up a test rig for a vehicle function,
there are three recognized levels of vertical integration [103], arranged lowest to
highest (i) Model-in-the-loop (MIL), where a behavioral model of the function
is used, (ii) Software-in-the-loop (SIL), where the programmed version (i.e.
AUTOSAR SWCs) of the function is used, and (iii) Hardware-in-the-loop,
which uses the compiled version of the program deployed on the target ECU.
During incremental development, feature content or maturity can be arbitrary
at all these levels, and it is the form alone that decides the integration level.
Integrating at lower levels, i.e. MIL and SIL, is also referred to as virtual inte-
gration [104], since in these cases the behavior and the execution environment
are respectively simulated. A SIL rig, for instance, can provide an environment
for running SWCs directly on a developer machine. It can do this by replacing
the embedded microcontroller with a server-grade processor, and by executing
the SWCs on an AUTOSAR RTE that is ported to, say, Windows. By thus
simulating embedded OS and hardware, dependent SWCs can be integrated
purely at a software level. An immediate benefit of such virtual integration is
that software development is relatively independent of hardware development,
which usually proceeds at a slower cadence. A bigger advantage is that SWCs
in the simulated environment can be executed at a faster rate than the real
execution, enabling quicker verification of a wide range of scenarios.

Horizontal integration refers to the extent of input and output dependencies
of the application included in the rig. In elucidating horizontal integration, it
helps to briefly map the range of physical phenomena with which application
software interacts. A software application resides and executes in an embedded
environment composed of AUTOSAR and an ECU. Its electronic realm can
be thought of extending up to silicon or circuit-board levels. Residing in this

82 CHAPTER 7. VIRTUAL AUTOMOTIVE SOFTWARE TESTING

electronic bubble, the function reaches out through the electrical realm of wire
harnesses to connect, in one part, with other SWCs residing in their bubbles. In
another part, they reach out to sensors and actuators, in which case the electrical
realm extends up to the sensing or actuating element. Beyond this boundary
lies the physical realm, comprising phenomena that the function interacts with.
Parts of this physical realm, like the pistons of the engine or the air bellows of
the suspension, lies within the purview of the vehicle system. Other parts, like
the road surface and maybe even the driver, lie outside. While boundaries are
fluid in practice, there are four broad levels of horizontal integration, (1) devices,
where the scope extends only to the electrical realm, (2) plant, where the scope
extends to include in-vehicle physics, and (3) environment where scope extends
to include physical dependencies external to the vehicle system, and (4) driver
where the scope also includes human interactions with the vehicle system.

For software development and testing at high cadence, there is a clear necessity
for simulating dependencies even in the horizontal dimension. Horizontally, the
direst need for virtual integration comes from the need to simulate environments
in the physical realm. As we saw earlier, the development of brake blending de-
pends (among others) upon that of the pneumatic circuit, and including it in a
simulated form can help increase the credibility of the rig. Unlike simulating the
embedded execution environment, the multi-physics character of dependencies
like brake pneumatics or the road surface presents unique challenges for simula-
tion. The traditional approach to simulating such multi-physics dependencies is
to model their behavior using a suitably capable formalism or framework, with
Simulink [105] or Modelica [106] being common examples. When the extent
of included horizontal dependencies is wide, manually specifying simulation
models for a wide range of phenomena becomes a formidable challenge.

7.2 Limits of traditional simulation methods

Here, we note that this work focuses exclusively on easing the testing process
by simulating horizontal dependencies from the plant all the way to the envi-
ronment. Let us therefore set aside vertical integration, which deals more with
simulating the embedded environment, and place all attention on the horizontal
dimension. The extent of horizontal integration, especially the level to which
it extends beyond the electrical realm, is only one factor that decides the
complexity of simulation. An equally important factor would be fidelity, which
is the level of detail with which the model faithfully represents the simulated
phenomena. Consider a rig for the brake blending function, where the mass
of a truck is simulated. If the simulation models ego vehicle mass and that of
the goods that it hauls, which can range from liquid nitrogen to timber, it is of
wide scope. However, if it models all inertia as a point mass, it is of low fidelity
and is only a naive representation of reality. Such a model may allow the brake
blending function to be developed at high cadence, but may not be able to cred-
ibly evaluate properties like braking distance. On the other hand, if the model
accurately captures the spatial mass distribution of important constituent parts,
it is of higher fidelity and much more realistic. Such realistic simulation in-

7.2. LIMITS OF TRADITIONAL SIMULATION METHODS 83

creases the credibility of evaluating properties, meaning that the brake blending
function can be matured to relatively high levels at high cadence using this
setup. Highly credible virtual rigs in turn help vehicle manufacturers increase
the amount of rig-based development and reduce the amount of field-testing,
helping them meet evolving market demands without compromising quality.

The price to pay in setting up a credible virtual rig is, however, the engineering
effort spent in developing credible simulation models. Manual high-fidelity mod-
eling requires expertise in multiple domains of physics and requires significant
time and effort to develop and verify. More importantly, no matter how high the
fidelity, manual modeling will inevitably make assumptions. Factors like wear
in the suspension, lubrication in the engine, and braking patterns of drivers on
country roads, are challenging to realistically model as equations. Put otherwise
(Figure 7.4), as one seeks to increase scope and fidelity to lend more credibility
to simulation, there is a limit beyond which it becomes practically difficult to
manually specify a simulation model. Beyond this limit, it may be cheaper and
more effective to use a data-driven approach and train a simulation model.

Figure 7.4: When high scope and fidelity are required, training a simulation
model may be easier than manually specifying it

84 CHAPTER 7. VIRTUAL AUTOMOTIVE SOFTWARE TESTING

7.3 A deep learning approach to stimulus gen-
eration

An AUTOSAR application ȳ = W(x̄) may have many input and output depen-
dencies, but most interactions between the application and its dependencies are
observable in the input and output signals x̄ and ȳ. Simply tapping into the
signal traffic and recording these observations raises interesting possibilities for
simulation. After all, given an application, if all traffic on its external interface
is recorded under a variety of scenarios, we arrive at a detailed representation of
its interaction with all dependencies. Also, as we noted early on, the automotive
industry is firmly in a big data existence, meaning that recording such informa-
tion is fairly routine. Surely, all this big data can be repurposed for simulation.

The time and effort involved is only one aspect of the challenges involved in hand-
crafting simulation models for test rigs. Another crucial aspect is that manual
multi-physics simulation modeling – in a manner similar to manual design
compliance assessment – builds upon tremendous engineering experience, which
is a valuable commodity. Signal traffic, which records how different systems
in the vehicle interact with each other, and with the environment, constitutes
a repository of knowledge that can powerfully complement years of engineering
experience. For instance, take x̄, the vector of input signals supplied to the
application W. This particular instance of the input can be seen as one sample
from the distribution of all possible inputs x̄ ∼ G(x̄). The underlying process
G, may it be based on physics, statistics, or any other science, is what engineers
spend years of effort developing and, in order to help virtual testing, also
modeling. Given a sufficiently large variety of signal vectors recorded from field
operations, can we not use big data to learn the original behavioral process G?
Having learned such a model, can we not use it to generate signal traffic that can
emulate the dependency G? The field of deep generative modeling [107] focuses
precisely on this kind of problem. And, since techniques from this field are
important to the innovations introduced in this work, let us briefly examine it.

Deep generative models for simulation – A deep generative model is a
DNN that is trained on big data so that it can generate new data with the same
statistics as the dataset that it has been trained on [108]. When trained well, this
DNN can credibly simulate the underlying process which created this big data.
One way to understand the potential of generative models would be to take the
example of the Generative Adversarial Network (GAN) framework [109], an
early pioneer in this field. In its simplest form, the GAN framework pits two neu-
ral networks against each other in a zero-sum game (Figure 7.5). Given, a train-
ing dataset X = {X1, X2, ...}, Xi ∼ G(X), the objective of the game is to gener-
ate fake samples X̂i ∼ G(x) which could have been plausibly drawn from the dis-
tribution G of real data. The game begins with one network – the generator (G)
– mapping a multidimensional random code zi ∼ N (0, I) into a fake sample X̂i.
The other network, called the discriminator (D) assesses the generator’s output,
evaluating the ‘realness’ of the generated samples by comparing its statistics
with that of real samples in the training dataset. The classic adversarial train-
ing process tries to achieve an equilibrium between these competing objectives

7.3. A DEEP LEARNING APPROACH TO STIMULUS GENERATION 85

by minimizing the minimax loss (7.1). This minimization seeks an equilibrium
where an optimal G produces fake samples that are realistic enough to fool D,
and an optimal D that clearly distinguishes between real and generated samples.

Lgan = min
G

max
D

EXi
log(D(Xi)) + Ezi log(1−D(G(zi))),

Xi ∈ X , zi ∼ N (0, I)
(7.1)

Figure 7.5: The Generative Adversarial Network (GAN)

GANs have been famously applied to the problem of generating images, partic-
ularly on generating images of human faces. That is, if a dataset like Faces [58]
is used to train a GAN according to (7.1), then the generator network will
eventually produce fake face images. Not only are these fake images unlikely
to be found in the training dataset but also, when trained well, should be real
enough to fool human observers. More importantly, the fact that the generator
G produces realistic face images means that it has implicitly learned to estimate
the true distribution of face structure as represented in the dataset X . The
basic GAN setup is ideal for unconditionally generating a mass of fake samples
by randomly sampling latent codes zi and mapping them into fake samples X̂i.
Refined architectures influence the space of latent codes so that images with
specific properties can be conditionally generated. A good example would be
the StyleGAN [110] series of face image generation models, where properties
like hair color, skin tone, facial expressions, etc., can be finely manipulated.

If we substitute faces with signals in the scenario discussed above, it is clear
that there are tremendous opportunities for simulation. Techniques developed
in this work, described in detail in following chapters, leverage precisely these
abilities and demonstrate how generative models trained on recorded signals can
credibly simulate the dependencies of vehicle application software. Specifically,
we train GANs on signal data so that they produce fake, yet plausibly realistic,
signal traffic. By imitating dependencies of SWCs using GANs, techniques we
introduce significantly increase the credibility of virtual testing, bringing much
needed speed and confidence to the process of developing vehicle application soft-
ware. The increase in cadence, without compromising quality, directly addresses
the essential requirements for delivering the next wave of automotive software.

86 CHAPTER 7. VIRTUAL AUTOMOTIVE SOFTWARE TESTING

Chapter 8

Defining a system for test
stimulus generation

‘If software is being tested in a running vehicle, it may already be too late’. A
quip like this is equally apt either as a quote on a coffee mug or as the headline of
a handbook, on engineers’ desks. Of course, some form of vehicle testing is nec-
essary when developing vehicle application software, but the essence of the state-
ment is hard to dispute. Perhaps no software is extensively testable in its fully
integrated form, but the costs of doing so is especially high in the automotive
industry. In introducing this work in Chapter 1, we specifically noted the variety
of applications, scenarios, and geographies in which commercial vehicles operate.
Under such circumstances, relying extensively on vehicle testing is not practical
because the material, financial, human, and maybe even environmental costs
of test-driving hundreds of thousands of kilometers can be astronomical [111].

In the preceding chapter, we traced how the industry does recognize the fu-
tility of extensive reliance on drive testing and has been actively promoting
simulation-based testing. Simulation with software-in-the-loop may allow mil-
lions of kilometers of test-driving in a largely virtual rig, but the credibility
of such a testing process relies heavily on the quality of simulation. For all
the costs that vehicle testing presents, it does retain considerable allure. Even
if vehicle application software has been extensively tested under simulated
conditions, automotive software engineers, not to mention product owners and
managers, may not be fully confident in their delivery until they witness its op-
eration during drive tests [15]. It is therefore necessary for any testing strategy
to find a balance between vehicle-centric and simulation-centric approaches that
combines each of their strengths [15,112,113]. The emergence of big data, as we
reasoned in the previous chapter, opens up exciting possibilities for elevating
the role of simulation. In this chapter, we begin exploring the use of deep
generative models, trained on recorded signals, as a simulation tool for testing.

87

88 CHAPTER 8. DEFINING A SYSTEM FOR TEST STIMULUS GENERATION

8.1 A wealth of operational scenarios in signals

In Section 7.3, we noted that the external signal interface of an AUTOSAR SWC
ȳ = V(x̄) is useful for testing in at least two ways. First, the external interface is
the most natural mechanism for probing and examining SWC behavior. Second,
observing signal traffic on this interface, under real operating conditions, recipro-
cally provides useful insights into SWC behavior. In order to better understand
the latter perspective, it is useful to define a new data structure, the signal trace.

Definition 5 A signal trace XN
T ∈ RN×T represents the transition of N signals

over a duration of T time steps, where N,T ∈ Z+. Implicit in this definition
is that all N signals are sampled at some fixed rate which, in our case, is 1 Hz.

A signal trace that includes the input and output signals of a SWC represents
one instance of its observable behavior, including elements of feedback, during a
certain time window. For instance, the trace in Figure 8.1 captures one observa-
tion of brake blending behavior. It shows how, upon pressing the brake pedal, a
brake blending algorithm distributes the braking torque between the engine re-
tarder and pneumatic service brakes. Thus, for credible simulation-based testing,
especially for low-level control software like brake blending, test setups need to
generate signal transitions like the example in the figure at a deep level of detail.

Figure 8.1: A trace of 3 signals capturing brake blending behavior

Today’s SIL test rigs simulate these transitions by manually specifying explicit,
domain specific, mathematical rules in the form of plant models. Worse, there
are cases where signal traces are not really produced by models and are hand-
crafted. Either as simulation models or signals themselves, hand-crafting may
work well when testing individual SWCs, where plant models need to simulate
transitions of only a handful of signals. As the scope expands to testing larger
sub-systems of SWCs, under the influence of realistic driving, manual modeling

8.2. STATING THE PROBLEM OF STIMULUS GENERATION 89

takes significant effort. This is because, during a driving maneuver that lasts
several minutes, the continuous, multidimensional vehicle state-space undergoes
complex transitions, many of which are difficult to model.

Owing primarily to the time-critical nature of several vehicle functions, most of
them are executed periodically at a fixed rate of, say, 10Hz. This, in turn, means
that the flow of signals between various parts of the system is also periodic.
Under such conditions, it is possible to tap into the signal traffic to capture N
signals in this system as a trace over a duration of T steps. Such a trace provides
remarkably detailed information about the operational behavior of this system
and has become the de facto structure for recording vehicle operation data. If
many such signal traces are recorded from vehicles operating under a variety of
scenarios, a new big signal data regime emerges. Earlier, we saw that deep gen-
erative models like GANs, when trained on a sufficiently large dataset, implicitly
learn to model the underlying process that produced the training data and can
be used for finely controlled generation of realistic fakes. This observation, as
we soon show, is extendable to the domain of vehicle signals. GANs trained on
large datasets of signal traces learn to model the behavior of vehicle systems.
Trained GANs can then be sampled for the controlled generation of fake, yet
plausibly realistic, instances of vehicle behavior in the form of signal traces,
which can serve as valuable stimuli for testing vehicle application software.

8.2 Stating the problem of stimulus generation

In order to begin the process of envisioning a system S for stimulus generation,
let us revisit a SWC V and its dependencies, which we saw earlier in Figure
7.2, and rearrange it into a slightly different form (Figure 8.2). As a scoping
measure, we set aside output dependencies of the SWC, and focus solely on
its input. In addition, we also set aside elements of feedback, routed from the
output to the input. While the new scope does exclude a notable proportion of
SWCs, the level of exclusion is not drastic. Simply because not all SWCs, even
those involved in control functions, implement closed-loop feedback. If we refer
back to the braking system example in Figure 7.1, we see that the separation of
concerns is hierarchical. From the perspective of BrakeBlendingController,
which issues the command, it is the job of the brake handler to accomplish
required actuation. This means that only the FrontAxleBrakeHandler SWC,
which adjusts pneumatic pressure, is likely to implement closed-loop control.
Moreover, as we have seen in Part I, a hierarchical or layered approach to
control is essential from a software design perspective. Thus, even with refine-
ment, BrakeBlendingController falls within the scope, and testing it with
generated traces of brake pedaling at its input, is of enormous value. However,
elements of feedback are an important aspect of vehicle behavior, and must
eventually be incorporated into the stimulus generation process. Addressing
this gap is therefore a crucial avenue for future work. As a final act of refine-
ment, we subsume all input dependencies into the super-dependency g, which
now channels all input signals into a trace XN

T that is applied to the SWC
V . Since the number N and duration T of traces are usually well-understood

90 CHAPTER 8. DEFINING A SYSTEM FOR TEST STIMULUS GENERATION

in the context, we simplify the notation of a trace to X. An individual trace
can be considered as one instance X ∼ G(X) drawn from the distribution of
possible traces that is output by the super dependency g. The primary aim
of the stimulus generation system S, as shown in Figure 8.2, is to plausibly
substitute the input dependency g and generate traces X̂ ∼ G(X) that imitate
the characteristics of the original dependency, as seen in recorded data. Fol-
lowing the reasoning that deep generative models estimate the underlying data
distribution to generate realistic fake data, we envision the primary tool in the
stimulus generation system to be a GAN G. A prerequisite for training the
GAN is to assemble a dataset X = {X1, X2, ...}, Xi ∼ G(X) of signal traces
recorded from the external interface of the real dependency g.

Having discussed the outputs and process of stimulus generation, we then con-
sider what is perhaps its least apparent aspect – its input. Once it is trained on
a dataset of recorded traces X , the easiest way to use the GAN would be to sam-
ple it randomly to generate a mass of simulated traces. The problem, of course,
is that such unconditional sampling may not at all help the overall test objective.
After all, in the real world, testers tap into extensive domain knowledge to
condition the test stimuli in accordance with the objective. A comparable con-
ditioning mechanism is therefore an essential element in the stimulus generation
system that we envision. For the moment, let us simply state that stimulus
generation will be based on a condition c ∼ C, where C is the distribution of pos-
sible conditions. This study suggests a few alternatives to condition the stimulus
generation process, and we will examine them in forthcoming chapters. With
the requirement of conditional sampling, there is a need to slightly revise the
GAN. In order to encode the condition c into the stimulus generation process, we
include an encoder network and denote the GAN as a pair of networks E and G.

Figure 8.2: We envision a stimulus generation S that can plausibly replicate
the input dependencies of a SWC V

Putting all of this together, the data-driven, deep learning system that we
envision for generating plausibly realistic test stimuli can be concisely denoted
as follows.

8.3. THE SYSTEM OF SIGNALS AND SOFTWARE STUDIED 91

X̂ := S(c, V ; E , G), c ∼ C, X̂ ∼ G(X), X ∈ X (8.1)

Helping us guide the construction and evaluation of this system, we pose the
following research questions.

RQ1 – Can the system S for plausibly realistic stimulus generation be con-
structed using a deep generative model trained on signal traces?

RQ2 – How can testers gain confidence that the stimuli generated by the
system are plausibly realistic?

RQ3 – How can testers control the generation process so that generated stimuli
help achieve their test objective?

RQ4 – Can the stimulus generation process be further refined given explicit
knowledge about the code under test?

As the following chapters reveal, results from this study show that such a system
for realistic test stimulus generation can indeed be constructed. By helping
avoid laborious effort in manually specifying physical dependencies with high
scope and fidelity, generative models trained on big signal data present a viable
data-driven alternative. Trained stimulus generation models have the potential
to significantly improve the credibility of simulation-based testing, allowing us to
reduce the reliance on vehicle testing. Faster testing loops in credible virtual test
rigs clearly help increase the cadence of software engineering, without compro-
mising the quality, easing the delivery of the next wave of automotive software.

8.3 The system of signals and software studied

The traces X considered – The primary role of the system for stimulus
generation, that we envision, is to realistically substitute the vehicle subsystem
g which is an input dependency for SWCs under test. In this study, the vehicle
system that we choose to broadly focus upon is the powertrain of the vehicle.
Also known as the driveline or the drivetrain, the powertrain bears overall
responsibility of propelling the vehicle forward. Since it is a core vehicle subsys-
tem that strongly influences a major proportion of vehicle application software,
several test rigs are incomplete without including a model of the powertrain as a
dependency. The powertrain, which is itself composed of a variety of subsystems
spanning multiple sciences, is clearly complex, but if we refer back to the brake
system example that we sketched in Figure 8.1, its behavior can be represented
by a carefully selected trace of signals. Consider the trace X := XN

T in Figure
8.3 which depicts transitions of N = 2 signals – engine speed, and vehicle speed
for a duration of T = 512s. Of course, many more properties are required to
describe the behavior of the powertrain with high fidelity, but the interplay
between these two signals captures the mechanics of the powertrain with a fairly

92 CHAPTER 8. DEFINING A SYSTEM FOR TEST STIMULUS GENERATION

wide scope. Capturing the state of the most important component of the pow-
ertrain – the engine – and the resultant speed with which it propels the vehicle,
these two signals provide a reasonable snapshot of the dynamic state of the
vehicle. As a starting point, we limit the system of signals to engine and vehicle
speed alone, meaning that the stimulus generation system S generates traces
that capture the interplay between these signals in a plausibly realistic manner.

Figure 8.3: A trace of 2 signals capturing powertrain behavior

With the number of signals chosen for this study seeming small, we first clarify
that most characteristics of the test stimulus generation system that we develop
can be readily examined using a minimal set of signals. More importantly, while
it is natural to think that simulation at high fidelity requires many more signals,
it must be noted that there is always cost involved in choosing to include signals.
In a trace XN

T , such cost can be analyzed in terms of two important aspects,
the number of signals N and the duration T , because recording each second of
each signal incurs cost. Since signals are recorded by tapping into the external
interface of SWCs, the first element of cost would be to expose signals externally.
The true purpose of signals is to provide a channel for SWCs to collectively
realize functionality. Recording it as data is an incidental act of repurposing. If
an interesting signal is not available in the SWC interface, code needs to be up-
dated to expose the signal, which is a significant cost. Even if a signal is exposed,
another element of cost would be to include it in a recording campaign. Given
the finite amount of resources like network bandwidth and storage, not every
exposed signal can be recorded. Thus, while a rich system of signals improves
the fidelity of modeling, the richness of information needs to be traded off with
the costs involved in recording them. One important reason that this study
focuses upon vehicle and engine speed is that they are key pieces of information,
globally used in large parts of vehicle application software. This means that they
are freely exchanged between SWCs and can be recorded at reasonable cost.

In addition to the cost of recording, including more signals introduces other con-
cerns, especially in the process of generating test stimuli. In fact, to illustrate
one such concern, and how we mitigate it, we introduce an additional signal

8.3. THE SYSTEM OF SIGNALS AND SOFTWARE STUDIED 93

– selected gear – later on. Preliminarily limiting the system of signals to vehicle
and engine speed, as a prerequisite for constructing the GAN that underpins
this system, we assemble the dataset X as ∼100k 512s-long traces consisting
of these two signals, recorded from 19 buses, of similar configuration, over a
3-5 year period. Samples from the training dataset are shown in Figure 8.4.

vehicle_speed engine_speed

Figure 8.4: Samples from the dataset of signal traces

The nature of the SWC V considered – Having listed the two signals which
will be generated and applied as test stimuli, let us shift the focus downstream
to the subject of application – the SWC V . As we noted earlier, the system of
signals that we choose in this study – vehicle speed and engine speed – are useful
for many applications. Apart from propulsion, the engine is the source of all elec-
trical and mechanical power used internally in the vehicle. For instance, SWCs
that control pumps and motors in applications like cab climate control and power
steering, which uses power originating from the engine, need to be informed
about the engine speed. This also applies to SWCs managing external machines
(like a concrete mixer) that take-off mechanical power1 from the engine. Another
example would be the brake system, where slip control SWCs use the engine
speed to assess whether the vehicle is trying to accelerate. The other signal, ve-
hicle speed, is such a critical piece of information that this signal is routed to nu-
merous SWCs on the vehicle. If we take the TAS corpus of truck software that we
studied in Chapter 4, the vehicle speed is routed to a staggering number of con-
stituent SWCs. It is equally important to note that many of these SWCs listen
to these signals in an open-loop manner, directly influencing neither. Put simply,
generating traces consisting of just two signals – engine and vehicle speed, the en-
visioned stimulus generation system S helps test any open-loop SWC that takes
one or both of these two signals as inputs, and there several SWCs that qualify.

1https://en.wikipedia.org/wiki/Power take-off

94 CHAPTER 8. DEFINING A SYSTEM FOR TEST STIMULUS GENERATION

Chapter 9

Building a system for
sampling test stimuli

Upon defining the stimulus generation system S, we proceed to build it in
two different configurations, the first of which is described in this chapter.
We refer to the first configuration as logan, – a portmanteau of ‘logs’, the
popular term automotive engineers use for recorded signal traces, and GAN, the
technique that we use for generating test stimuli. The logan system is designed
for the context of black box stimulus generation, meaning that it generates
traces without using any information about the actual software V under test.
Forthcoming sections describe how the system is constructed, trained, and
subsequently sampled to enable controlled generation of realistic test stimuli.

9.1 Constructing a system for sampling stimuli

Defining conditions c for stimulus generation – How do automotive soft-
ware engineers specify test cases? Of course, this question does not have one
answer. Unit tests for SWCs, attempting to achieve code coverage of individual
functions, closely resemble unit tests written for any other embedded C code.
Many of its dependencies would be mocked, inputs would be targeted to cover
a particular branch of code, and expectations on outputs would be asserted.
When the level of integration goes up and entire SWCs, or systems of SWCs, are
tested, an interesting pattern begins to emerge. Since the external interface of
SWCs consists of signals, the act of testing pretty much boils down to specifying
signal traces to stimulate the input and asserting expectations on the SWC’s
output signal traces. This observation should come as no surprise because the
stimulus generation system that we envision (Figure 8.2) itself attempts to gen-
erate a signal trace. Interestingly, the prevalence of using signal traces as test
specifications extends even up to the vehicle level. Perhaps the most striking ex-
ample of this mechanism would be standardized drive cycles which are literally

95

96 CHAPTER 9. BUILDING A SYSTEM FOR SAMPLING TEST STIMULI

specified as a trace of vehicle, sometimes including engine, speed(s). Take the
Worldwide Harmonized Light Vehicles Test Procedure (WLTP) [114], specified
for benchmarking emissions and fuel consumption in cars. Attempting to simu-
late typical car driving, one version of the test specifies a drive cycle in the form
of a 30-minute vehicle speed trace shown in Figure 9.1. Standards aside, spec-
ifying drive cycles for testing is common in day-to-day automotive engineering.
For instance, engineers at Volvo use typical trips between selected cities in Swe-
den as a drive cycle to benchmark fuel consumption of long-haul trucks. When
such drive cycles are tested under simulation, necessary conditions are simply
specified as signal traces. With trace-based specification of test conditions being
highly prevalent, we make the natural choice of considering the condition c, used
as input for the stimulus generation system S, as being just another signal trace.

Figure 9.1: An example of a standardized drive cycle expressed as a vehicle
speed trace

There is yet another factor that justifies the choice of framing test conditions
as signal traces. If we examine Figure 8.2, the super-dependency g that we
aim to simulate is an agglomeration of SWCs. This means that the input
interface of g would be signals and its traffic can itself be represented as signal
traces. Conditions can therefore be imagined to be outputs c ∼ H(c) of a
process h that is upstream to g. While this strengthens the notion of specifying
conditions as signal traces, it is not always helpful to literally replicate the
original inputs of g as the condition. Especially, if we note in our case g broadly
refers to the powertrain, requiring conditions to replicate powertrain inputs
actually increases the burden of test specification. Instead, we use a simpler
approach where, in order to generate a trace X̂j ∼ G(X), the condition is
simply a real trace drawn from the same distribution c := Xi ∼ G(X).

At first glance, it may seem counterintuitive that both the condition c and
the output X̂ of the logan system are traces containing the same signals.
However, basing one test condition upon another is a fairly standard practice in
automotive software engineering. Before examining this using an example, we
introduce some useful terminology. Vehicles often execute recognizable driving
patterns, and we refer to a family of similar patterns as a driving scenario.
One example of a driving scenario would be takeoff, where the vehicle starts
rolling and subsequently begins to cruise. Depending upon a variety of factors
like vehicle mass, road inclination, surface and traffic conditions, there are

9.1. CONSTRUCTING A SYSTEM FOR SAMPLING STIMULI 97

several ways of executing takeoff. We refer to one specific execution of a driving
scenario as a driving maneuver. Each trace X, by now a familiar construct
to us, therefore depicts one maneuver. Figure 9.2 captures ∼10-minute long
maneuvers of takeoff and stop scenarios using the vehicle speed and engine speed
signals. Takeoff, for instance, is interesting because during its execution, apart
from several core control actions, additional ones like automatic engine start,
cabin heat circulation, and parking brake release are activated. Testing the
behavior of such functions under many possible instances of takeoff can therefore
be of great value. This is where the approach of specifying conditions c as traces
brings benefits. One can set the condition c := Xi as one instance of takeoff,
perhaps the same takeoff instance shown in Figure 9.2, and task the stimulus
generator to improvise new traces that possess the essential characteristics of
takeoff. Putting together the prevalence of the signal trace as a mechanism for
test specification, the fact that improvising one trace from another is valuable for
testing and that a time series trace is a fairly routine data structure that DNNs
can process, our choice of specifying conditions as trace seems quite sound.

Figure 9.2: Examples of traces depicting maneuvers of a vehicle taking off and
stopping

A strategy for conditionally sampling stimuli – In choosing to apply
the condition c as yet another trace, the generative model that we envision
in logan can be framed as a trace → trace mapping. If we refer back to the
discussion in Section 7.3, we see that the vanilla GAN is much more suitable for
an unconditional latent code → trace mapping, converting an abstract random
code zi into a trace X̂i. In order to explicitly model the condition, the vanilla
GAN architecture (Figure 7.5) needs slight modification. As shown in Figure
9.3, with the inclusion of an additional encoder network E , stimulus generation
becomes a two-step process where (1) the encoder E takes a condition ci as input
and maps it into a latent code zi, and (2) the generator network G maps the code
zi into a trace X̂i. Now, if the condition ci := Xi is defined as a signal trace, we
seem to be proposing what is essentially an auto-encoding structure, mapping
a trace Xi into a reconstructed version of itself X̂i. This is clearly of little use
for test stimulus generation because, once testers have an interesting takeoff
or stop trace Xi as a seed condition, why would they want to reconstruct the
same trace? What is more useful, as we pointed out shortly before, would be to
generate a trace X̂j , which is a variation of the condition Xi, but still preserving
some of its essential characteristics. To achieve this efficiently, we undertake
a two-step process depicted in Figure 9.3. First, we indeed train logan as an
auto-encoder, mapping a condition ci := Xi to a reconstructed version of itself
X̂i. Since we do not always know a priori the nature of the variation X̂j that

98 CHAPTER 9. BUILDING A SYSTEM FOR SAMPLING TEST STIMULI

testers want to generate, training a direct mapping from Xi to X̂j is far from
straightforward. On the other hand, from a training perspective, auto-encoding
is a cheap self-supervised process to achieve mapping within the same domain of
traces. Second, after training an auto-encoding GAN, we frame the conditional
generation of related traces as a sampling problem. Specifically, we use the
property of representational similarity which we first saw in Section 2.2. In
the auto-encoder configuration G(E(Xi)), the latent code zi = E(Xi) is the
intermediate output of a composition of neural networks. This way, it is no more
than a vector in a multidimensional embedding space, where representational
similarity holds. This means that closely located latent codes zi and zj map to
tracesXi andXj that are likely to be semantically similar. Applying this insight,
upon using the encoder to map the condition into a latent code zi = E(Xi), we
use some rule-based vector arithmetic r to map a new latent code zj = r(zi).
The newly mapped code zj is then fed into the generator network to produce a

trace X̂j = G(zj). This way, due to the rule-based mapping r in vector space,

we are able to efficiently arrive at a trace X̂j which is a well-defined variation
of the condition Xi, making it more useful as test stimulus.

Figure 9.3: The logan test stimulus generation framework

Training logan – Even if the heart of the stimulus generation system is the
E ◦G auto-encoding process, it is not viable to train it simply as a reconstructing
pair of networks. In a classic auto-encoder, the training process increases the
likelihood that the mapping Xi → zi → X̂i is achievable. Here, we have the
additional requirement that a latent code zj , that is closely related to the
encoded latent code zi = E(Xi), can also be plausibly mapped into a realistic
sample. To achieve smooth generation in a larger distribution of latent codes,
the network G needs to be a true generator that can generally map latent
codes sampled from a given distribution into traces. Put otherwise, logan
must simultaneously achieve both auto-encoding and generation.

Actually, the importance in organizing a useful latent space is evident even in
the vanilla GAN training objective that we saw in (9.2). Each training step
samples codes zi ∼ N (0, I) and maps these codes into generated samples. In
doing this repeatedly, the generator G(zi) should ideally generalize to map
any code sampled from the distribution N into realistic samples. One way to
combine auto-encoding with generation would be to ensure that the latent codes
zi = E(Xi) also follow the same distribution N . This way, the generator G can
map latent codes no matter if they have been sampled from N , or encoded by
E . In fact, the Variational Auto-encoder (VAE) [115], a generative modeling
framework that was proposed contemporaneously with the GAN, introduces a

9.1. CONSTRUCTING A SYSTEM FOR SAMPLING STIMULI 99

technique to achieve this. Unlike the GAN which sets up an adversarial game
between the (G,D) pair of networks in Figure 9.3, the VAE relies purely on the
(E ,G) pair. This way, it bears closer resemblance to the classic auto-encoder,
but with important modifications. Instead of mapping a sample into a latent
code, the encoder is trained to output the parameters of a distribution µi, σi =
E(Xi). Then, the latent code is sampled from a distribution with the encoded
parameters zi ∼ N (µi, σi). One crucial advantage of this modification is that
an additional training objective can be posed so that the distribution N (µi, σi)
can be matched to, say, the standard normal distribution N (0, I). This, in
effect, achieves the organization of the latent space that we seek. The overall
training objective of the VAE, as shown in (9.1), combines two sub-objectives.

zi ∼N (µi, σi), µi, σi = E(Xi)

Lrec = ||Xi − G(zi)||2
Lkl = KL[N (µi, σi ∗ I), N (0, I)]

Lvae = min
E,G

EXi
(Lrec + Lkl),

(9.1)

In the absence of a discriminator, the reconstruction loss Lrec echoes the classic
auto-encoder and simply minimizes the difference between input and generated
samples. The distribution matching Lkl minimizes the Kullback-Leibler (KL)
divergence1 between the distribution of encoded parameters and the standard
normal distribution. Put together, it does seem like the VAE offers both the
essential elements that we seek – auto-encoding and smooth generation in an
organized latent space. One drawback, however, is that the element-wise recon-
struction error Lrec, that the VAE uses, has been observed to produce samples
of poorer quality. The GAN, which uses a dedicated discriminator network D
to assess the quality of generation has been seen to produce better samples.
Making precisely the same chain of reasoning, the VAE/GAN framework [116]
combines both, and we mainly base logan on this combined framework.

Considering the new auto-encoding structure, which is a departure from the
vanilla GAN, the original adversarial objective (7.1) needs to be slightly mod-
ified. Instead of sampling latent codes from the standard normal distribution,
it is drawn from the distribution whose parameters are output by the encoder.

Lgan = min
G

max
D

log(D(Xi)) + Ezi log(1−D(G(zi))), zi ∼ N (µi, σi) (9.2)

Next, noting the shortcomings of element-wise reconstruction, VAE/GAN pro-
poses an alternative where reconstruction is conducted on features extracted
from the discriminator. That is, instead of minimizing the differences between
the real and generated samples, VAE/GAN suggests that the differences between
their features, drawn from the lth layer of the discriminator, be minimized.

1https://en.wikipedia.org/wiki/Kullback-Leibler divergence

100 CHAPTER 9. BUILDING A SYSTEM FOR SAMPLING TEST STIMULI

Lrec = ||Dl(Xi)−Dl(X̂i)||2, X̂i = G(zi) zi ∼ N (µi, σi) (9.3)

Finally, preserving the KL loss for distribution matching, the VAE/GAN
framework proposes that the encoder, generator, and discriminator networks
be trained end-to-end as follows.

Llogan = min
E,G

max
D

EXi
(Lgan + Lrec + Lkl) (9.4)

Upon trial-and-error in architecture selection, the encoder, decoder/generator,
and discriminator are designed as 4–layer 1D convolutional neural networks
with a kernel size of 8. Then, using the ∼100k traces of vehicle and engine speed
signals that we collect in the dataset X , we train the VAE/GAN end-to-end
using the objective (9.4). Among suggestions in [58] to improve stability of
GAN training, using the Adam optimizer with a learning rate of 2 · 10−4 and
a momentum of 0.5 greatly helped in achieving training convergence, while the
recommendation of using LeakyReLU and tanh activations did not. Based on
visual inspection, ReLU and sigmoid activations are found to produce samples
of better quality, perhaps because of a significant amount of baseline-zero values
in recorded signals, when the buses were turned off.

Evaluating logan – Naturally, one important aspect to consider during the
construction of logan is the evaluation of generated samples. Since its eventual
purpose is to serve as a virtual alternative to real SWC dependencies, signal
traces that it generates should be plausibly realistic. In fact, evaluating the
quality of generation becomes important even during training because the
training process itself can be stopped only if the model is observed to be
producing plausibly realistic traces. After training, when the GAN is sampled
for test stimuli, techniques for evaluation continue to be important for measuring
the quality of generated traces that are to be applied as test stimuli. Evaluating
the quality of samples generated by GANs is an active area of research, with
several new measures being routinely proposed. However, as pointed out in [117],
most of the proposed techniques for evaluating GAN samples focus on the
image domain, rendering them largely unsuitable for our purposes. In addition,
with the growing use of neural language models for text generation, there are
also a raft of techniques (examples in [118]) being reported for evaluating the
quality of generated text, but these too are not directly reusable in our context.
With a relative lack of readily available techniques that evaluate the quality
of generated time series, and specifically signal traces, we resort to the basics.

Similarity as plausibility – the principle for evaluation – The mecha-
nism that we adopt for evaluation is a two-sample test, where the quality of
generation is evaluated by taking samples of real and generated traces and com-
paring their statistics. The fact that our primary strategy is one of conditional
sampling, however, allows us to make useful adaptations. As sketched in Figure
9.3, the process that we adopt for conditional sampling involves encoding2 a

2The actual encoding process is zi ∼ N (µi, σi), µi, σi = E(Xi), but we use zi = E(Xi)
for notational simplicity

9.1. CONSTRUCTING A SYSTEM FOR SAMPLING STIMULI 101

trace zi = E(Xi), choosing another code in its latent neighborhood zj = r(zi),

and decoding it into a new trace X̂j = G(zi). The evaluation that we seek may

be whether X̂j is plausibly realistic but, since this process is seeded by the
condition Xi, let us instead consider the question – given the input Xi, is the
model’s reconstruction X̂i = G(E(Xi)) of sufficiently good quality? Using a
measure M(Xi, X̂i) that compares the similarity between the condition and its
reconstruction, this question is reasonably simple to answer. If the answer is
yes, meaning the reconstruction is indeed similar to the original, it means that
the latent code zi, derived by encoding Xi maps to a plausibly realistic sample.
Such an observation also makes it likely that the latent code zj , as long as it

does not stray too far away from zi, also maps to a plausibly realistic trace X̂j .
We refer to this line of reasoning ‘Similarity as Plausibility’ (SAP), and this
principle underpins our approach to both evaluating the quality of generation
and the approach we develop for selective sampling. For now, we focus on
using SAP to monitor the quality of generation during the training process.

During training, using the SAP reasoning, we monitor the quality of generation
by conducting the two-sample test between a ∼10k-strong test set, randomly
held out from the dataset X , and their auto-encoded reconstructions produced
by the model. Since the task at hand is to measure the similarity between a
withheld test trace Xi and its reconstruction X̂i, a simple distance measure like
L1 may suffice as the metric M . Plain distance measures, however, compare val-
ues element-wise, and do not specifically focus upon larger spatial and temporal
trends in the signal trace. Therefore, instead of distance measures we turn to
measures of similarity that look beyond element-wise comparison. Traces X are
multi-variate time series, which means that we can turn to any one of the nu-
merous metrics and measures proposed [119] for comparing two time series. One
interesting example is Dynamic Time Warping (DTW) [120], which measures
the distances between two time series as a function of their (mis-)alignment in
time. Further, considering that traces are of fixed duration (of 512 s), they can
be treated in an image-like fashion, and a metric like Structural Similarity Index
(SSIM) [121] can be used to compare traces. Originally designed for measuring
similarity between two images, SSIM uses a wide range of statistics like the
mean, variance, and covariance between the two inputs to compute a measure
of perceptual similarity. When using DTW and SSIM to evaluate the quality
of reconstruction, the latter is preferable to a certain extent because unlike
DTW, which is a distance measure, SSIM between two traces evaluates to a
real number m ∈ [0, 1]. The semantics of SSIM is therefore quite clear where
m = 0 indicates no similarity while m = 1 indicates high structural similarity.
Nevertheless, we use both metrics to monitor training because, as we soon see,
the combined picture of reconstruction quality that they present is quite useful.

Having chosen metric measures, we evaluate the quality of test set reconstruc-
tion continuously during the training process. Figure 9.4 shows the progression
of three metrics during training. From the figure we see that after a while,
reconstruction SSIM begins to settle slightly above 0.9, indicating good struc-
tural similarity in reconstruction. Not merely taking this number at face value,
we also visually inspect randomly selected test set samples to see that the
reconstruction is indeed good. An extra element of confidence is that when

102 CHAPTER 9. BUILDING A SYSTEM FOR SAMPLING TEST STIMULI

SSIM settles around 0.9, we also see that the DTW begins to settle at 2. In
addition to these objective metrics of comparison, we also find it useful to mon-
itor the quality of reconstruction using the subjective measure of Lrec defined
in (9.3). This measure, which compares the difference between the abstract
features of real and reconstructed test samples extracted from the lth layer of
the discriminator, is a statistical measure of similarity that the training process
is tasked to minimize. When all three similarity measures stabilize, which hap-
pens around 15000 training steps (or batches), we have triple confirmation that
the model is able to plausibly reconstruct test samples, and we stop training.
This, according to the SAP principle enhances the likelihood that conditional
sampling using this trained GAN should also lead to plausibly realistic traces.

0 2500 5000 7500 10000 12500 15000 17500 20000
iteration

0.5

0.6

0.7

0.8

0.9

1.0

SS
IM

ssim
dtw
similarity_metric

1

2

3

DT
W

70

72

74

76

78

80

82

84

sim
ila

rit
y_

m
et

ric

Figure 9.4: Monitoring the quality of generation during training by measuring
the similarity between a test set and its reconstruction

We have thus seen how the SAP principle helps judge the quality of generation
and the overall convergence of the process of training logan. In following
sections, we show how this principle continues to crucially guide the sampling
process, helping build confidence in the plausibility of generated stimuli.

9.2 Experiments in sampling stimuli

Selective sampling to address the problem of plenty – A blunt statement
of the power of a GAN is that it can generate realistic samples, but an infinite
number of them. Even a cursory glance at the original GAN (Figure 7.5), which
maps a continuous space of latent codes to samples, makes this clear. The prac-
tical issue in sampling, therefore, is one of choice. The provision of a condition
trace Xi to seed the generation process is a good start, but improvising further
to produce related traces X̂j presents challenges. Considering representational
similarity in the latent space, a simple formula for improvisation may be, as
shown below, to sample in the ε-neighborhood of an encoded condition trace.

9.2. EXPERIMENTS IN SAMPLING STIMULI 103

zεi = {z ∈ Z : ‖zi − z‖2 ≤ ε}, zi = E(Xi)

X̂j = G(z), z ∼ U [zεi]
(9.5)

Sampling in the latent neighborhood of a condition trace is a simple mechanism
for ensuring that generated traces are closely related to the condition, bringing
much needed selectivity. While sampling in zεi does not really eliminate the
issue of infinite options, a more important issue is the choice of ε. Choosing
a small value might mean that generated traces are far too similar to the
condition and are not valuable as improvised stimuli. Conversely, choosing a
large value may render the condition irrelevant because generated traces are far
too dissimilar. Moreover, sampling in a large ε space is, to some extent, exactly
the opposite of what the SAP principle calls for. In regions too far away from
the condition trace, it may not be viable to base the plausibility of generation
on the fitness of reconstructing the condition trace. We reason, therefore, that
using a single condition trace may not be adequate to sufficiently bound an
infinitely large latent space. Instead, we contend that it is more useful to
elevate the geometry from a single point in the latent space to, say, a line.

Metric-based linear interpolation in the latent space – Let us now
consider the case of using not one, but two traces X1 and X2 as conditions, and
the two variants of stop scenarios, shown in Figure 9.5, serve as appropriate
candidates. The first trace depicts a maneuver where the vehicle smoothly
comes to a stop, while in the second trace, the vehicle is much more jerky
in stopping. One interesting approach for testing would be to apply traces
inbetween these two maneuvers as test stimuli. Unlike the case of using a single
condition, by setting two traces as firm boundaries for the stimulus generation
process, the intent of the tester is much more clear. Then, as notably shown
by [58] in the context of images, we use the property of interpolation in the latent
space to achieve semantic combination. That is, by interpolating a latent code,
say, z12 = 0.5 ∗ (z1 + z2), the midpoint on the straight line between z1 = E(X1)
and z2 = E(X2), we can generate a sample X̂12 = G(z12) (see Figure 9.5) that
mixes the characteristics of X1 and X2. Clearly, this is of valuable assistance for
stimulus generation. The tester may have set two recorded traces as boundaries
for stimuli, but logan is able to improvise a novel intermediate maneuver that
is not recorded. This is an efficient and valuable process for augmenting test
maneuvers in a controlled fashion, and vector arithmetic in the GAN latent
space achieves this trivially. If we can interpolate new maneuvers, an obvious
extension would be to ask – can we sample many more traces in between
the two conditions to effectively ‘sweep’ this bounded test space? A straight
line between codes z1 and z2 is a much more bounded space, but it is also a
continuous one, where infinite points can be sampled. For further selectivity
in sampling, we introduce a technique for Metric-based Linear Interpolation
(MLERP), whose core innovation is to achieve selective sampling by jointly
considering two spaces – the latent space z and the trace space X. Prior to
presenting the algorithm itself, we first introduce its underlying reasoning.

Interpolation in the latent space z may achieve interesting semantic combination,
but it takes place in an abstract space that is unintelligible to testers. Testers are

104 CHAPTER 9. BUILDING A SYSTEM FOR SAMPLING TEST STIMULI

Figure 9.5: Recorded maneuvers of smooth (X1) and jerky (X2) stopping, and
a generated trace combining both characteristics

more familiar with the space of traces X, and their ultimate objective remains
choosing traces that can serve as valuable test stimuli. In order to allow testers
operate in the much more familiar trace space, while still using the power of
latent representations in the background, a joint reckoning of both spaces is nec-
essary. To help bridge these two spaces, the essential operation in the MLERP
algorithm remains linear interpolation in the latent space, combining latent
codes of conditions X1 and X2 according to the proportion p, as shown in (9.6).
With this, as shown below, conditionally sampling logan effectively reduces
to choosing values in the space p ∈ [0, 1], which we will refer to as the p-space.

z = p · E(X2)+(1− p) · E(X1), 0 ≤ p ≤ 1

X̂ = G(z)
(9.6)

As this sampling, with infinite possibilities, takes place in p-space, the question
that testers face is, which among these are interesting, and plausible, to select as
test stimuli? Since it is clearly difficult to visually inspect generated traces for
suitability and plausibility, we propose the use of a metric M to quantitatively
compare the properties of generated traces with those of a condition trace.
While the introduction of a metric to guide the sampling process marks the
beginning of the construction of MLERP, using metrics for comparing real and
generated traces should be recognizable to us. It is, in fact, the core tenet of
the SAP principle that we defined in the previous section for evaluating the
quality of generated stimuli. While SAP calls for the use of a metric like SSIM

9.2. EXPERIMENTS IN SAMPLING STIMULI 105

to evaluate the similarity between a test set and its reconstruction, MLERP ex-
pands its use to conditional sampling. Even in the straight line between points
z1 and z2, a much more bounded latent space, MLERP imposes an additional
measure of selectivity and plausibility by ensuring that generated traces follow
a verifiable metric relation with one of the condition traces. Continuing to use
SSIM as the metric M for comparison, and one of the condition traces X2 as
the reference for comparison, the metric evaluation shown below evaluates the
structural similarity between the reference trace a generated trace X̂.

m = M(X2, X̂), X̂ = G(z) (9.7)

With the latent code z having been sampled according to (9.6), we have made a
clear link between the GAN latent space, which is not interpretable, and a metric
space which is very much interpretable. A value of m = 0.5 in the metric space
means that the generated trace is halfway similar in structure when compared
with the reference trace X2. On the other hand, p = 0.5 simply indicates that
the resulting latent code z is halfway in between reference latent codes. It
does mean that z combines semantics equally in the latent space, but it is not
always clear which characteristics end up being combined. Using the shorthand
m-space to refer to this interpretable metric space, we quickly realize that this
space is also bounded. A choice of p = 0 means that the generated trace is X̂1, a
reconstructed version of the first reference trace X1. Similarly, a choice of p = 1,
generates X̂2, a reconstruction of X2. Then, the boundaries of the m-space is
given, according to (9.7), by m1 = M(X2, X̂1) and m2 = M(X2, X̂2). Within
this bounded metric space, as shown in Figure 9.6, the strategy we choose in
designing MLERP is to direct sampling in the p-space in such a way that it
leads to any smooth change of metrics in the m-space that the tester desires.

Figure 9.6: The essence of MLERP is that (1) testers specify a sequence of
metrics that generated traces are expected to follow, (2) the algorithm finds
corresponding codes in latent space that leads to the required metric variation

Reflecting this intent, the MLERP algorithm (Algorithm 2), requires testers to
specify an increasing sequence of metric measures ms, which generated traces
are required to follow. A simple example, as shown in Figure 9.6, would be to

106 CHAPTER 9. BUILDING A SYSTEM FOR SAMPLING TEST STIMULI

Algorithm 2: MLERP

Input :Trajectory ms desired in the metric space, oversampling ratio s
Output :Traces X̂ with metrics that comply with the specified trajectory

1 z1 ← E(X1), z2 ← E(X2) # boundaries in latent space

2 X̂1 ← G(z1), X̂2 ← G(z2) # boundaries in generated trace space

3 m1 ←M(X2, X̂1), m2 ←M(X2, X̂2) # boundaries in metric space
4 N ← len(ms)
5 ps ← linspace(0, 1, N) # naive sampling
6 qs ← linspace(0, 1, s ·N) # oversampling
7 for q ∈ enumerate(qs) do
8 zq = q · z2 + (1− q) · z1
9 mq ←M(X2,G(zq))

10 ind← argmini∈[0,...,N](|ms[i]−mq|)
11 p← ps[ind], zp = p · z2 + (1− p) · z1
12 mp ←M(X2,G(zp))
13 if mq < mp then
14 ps[ind]← q
15 end

16 end

set ms = linspace(m1,m2, N), dividing the m-space into N equal partitions.
With this, the tester is stating the intent that N traces need to be generated,
and they are all required to linearly increase in SSIM from m1 to m2. Noting
that the condition traces are two instances of the stop scenario, the linear
m-space partitioning expresses the tester’s requirement that generated traces
change smoothly in SSIM from the first to the second stop maneuver. Of
course, one can use linear interpolation in the latent space, according to (9.6),
to generate N intermediate traces, but there is no guarantee that generated
traces follow the metric trajectory ms specified by the tester.

Now, we highlight a few observations. First, as shown in (9.6) and (9.7), the
operations that map the latent p-space to the interpretable m-space are linear
interpolation, the generator network G and the comparison metric M . Second,
all these operations, including the DNN G and the SSIM metric M , are contin-
uous functions. Third, knowing that the boundaries 0 and 1 in the p-space map
to boundaries m1 and m2 in m-space, the intermediate value theorem3 holds
that any desired intermediate metric value ms between the limits of m-space
is reachable from the p-space. Put together, these three observations direct
the design of the MLERP algorithm. Now, linear interpolation by naively
partitioning the p-space into N points (Line 5) may not achieve the desired
metric trajectory ms, but it nevertheless sets a baseline. Knowing that there
are points in the p-space that are guaranteed to map to required metrics in
m-space, we increase the partitioning in the p-space by a factor of s (Line 6)
to create a denser sequence of points qs for linear interpolation in the latent
space. Then, by iterating through the denser sequence qs, MLERP selects
traces generated from the oversampled latent space that follow the metric
trajectory better than the naively sampled sequence ps. Note that, due to the

3https://en.wikipedia.org/wiki/Intermediate value theorem

9.2. EXPERIMENTS IN SAMPLING STIMULI 107

intermediate value theorem, given a high enough oversampling factor, we are
bound to discover points in the p-space that map to generated traces which,
in turn, match any metric trajectory ms specified by the tester.

For our specific case of generating intermediate traces between the two stop
maneuvers X1 and X2 shown in Figure 9.5, the result of using MLERP is
shown in Figure 9.7(a). In this figure, we show three columns, the first of
which marked lerp shows traces generated using naive linear partitioning in
p-space. As also shown in Figure 9.7(b) such naive linear interpolation neither
leads to a smooth nor a predictable change in the metric space. If we now
turn our attention to the mlerp linear column of generated traces, at first
glance, we may not be able to spot major differences from naive interpolation.
However, if we look at its metric trajectory, we can see that the generated
traces closely approximate the linear increase in SSIM that the tester requires.
Using metric-guided sampling, we therefore show that generated traces are
verifiably plausible and finely selectable, providing a much-needed tool that
allows testers to improvise realistic unrecorded stimuli with fine-grained control.
The sequence of traces in the mlerp linear column indicates that MLERP
can be used to generate a properly reasoned and controlled series of traces,
which can in turn be applied as stimuli for testing vehicle application software.

If we examine, once again, generated traces in Figure 9.7(b), there is a third
mlerp sigmoid column. This, as shown in the corresponding metric variation
in Figure 9.7(b), shows that MLERP can adapt to trajectories more complex
than linear partitioning in metric space. Here, samples are specified to follow
the trajectory of a sigmoid function, producing more samples around m = 0.5
than the linear case. This is yet another demonstration of the fine-grained
control that MLERP offers testers. It also goes without saying that the metric
M for evaluating properties in the trace space can also be changed, as long as it
remains a continuous function. Finally, it is important to note that MLERP is
computationally heavier when compared to naive interpolation. One indication
of the increased computational load is the oversampling ratio, where MLERP
iterates through s times as many latent codes as the naive case. The choice
of s, which is essentially the level by which the sampling space is enlarged,
also needs to be tuned according to the desired trajectory. In the examples we
show, the linear trajectory in metric space was achieved using oversampling by
a factor of 15, while the sigmoid trajectory required a factor of 30. In any case,
the computational cost of oversampling can be minimized by generating traces
once and reusing it for many test runs, a common practice in regression testing.

Thus, the logan system with the MLERP technique for selective stimulus
generation is the culmination of three major developments. First is the GAN
itself, that is trained on signal traces, which provides a platform for generating
fake, yet plausibly realistic, signal traces that can be applied as test stimuli.
Second, the concept of choosing one or more reference traces, in combination
with conditional sampling in the latent space, allows testers to efficiently impose
granular levels of control in the stimulus generation process. Third, MLERP
provides another level of control, allowing testers to use a metric and automat-
ically select traces that are both plausibly realistic and useful for a particular

108 CHAPTER 9. BUILDING A SYSTEM FOR SAMPLING TEST STIMULI

lerp mlerp_linear mlerp_sigmoid
x1

Ge
ne

ra
te

d
se

qu
en

ce
s

x2

(a) Generated traces

x1 x2
Generated sequences

0.80

0.83

0.85

0.88

0.90

0.93

0.95 lerp
mlerp_linear
mlerp_sigmoid

SS
IM

(b) SSIM of generated traces

Figure 9.7: Generating intermediate samples between two stop maneuvers X1

and X2 using naive linear interpolation (lerp), MLERP with linear increase in
SSIM s=15 (mlerp linear), and MLERP with sigmoid increase in SSIM and
s=30 (mlerp sigmoid)

test. Together, these developments present a viable platform for controlled
generation of realistic stimulus that improves the credibility of virtual testing.

Chapter 10

Building a system for
searching test stimuli

Having described the first configuration of the envisioned stimulus generation
system, we now proceed to describe the second. We refer to the new config-
uration as silgan, or ‘software-in-the-loop’ GAN, which introduces two main
innovations. First, it simplifies the specification of condition traces c, easing
stimulus generation even with an expanded number of signals in traces. Next,
unlike logan which is a black box stimulus generator, silgan uses information
about software under test V to actively guide the stimulus generation process.
We now proceed to describe how silgan is constructed, trained, and applied.

10.1 Expanding the set of signals

Implications in expanding the system of signals – So far, we have seen
experiments where traces of two signals – engine and vehicle speed – have
been generated as potential test stimuli. Attempting to simulate elements of
powertrain behavior, as acknowledged in Section 8.3, these two signals offer a rel-
atively limited picture. For credible testing in a virtual rig, there may be a need
to expand the scope of simulated behavior beyond just these two signals. One
straightforward way to expand scope is to expand the trace itself and include
more signals that capture additional aspects of powertrain behavior. In fact, we
had previously stated our intention to conduct such an exercise in Chapter 8,
expanding the trace to add one more signal, selected gear. We now undertake
this expansion. Returning to the dataset X of recorded traces that was used
to train logan, we include the selected gear signal in each trace. Traces remain
T = 512s long but now contain N = 3 signals, and one example of the newly
expanded trace is shown in Figure 10.1. The added selected gear signal, depict-
ing the state of the transmission, does provide extra insights into powertrain
behavior. Unrelated to the expansion in signals, we also take the opportunity to

109

110 CHAPTER 10. BUILDING A SYSTEM FOR SEARCHING TEST STIMULI

increase the size of the training set to ∼200k samples. While we had pointed out
earlier that expanding the list of signals always incurs cost, we had mostly dis-
cussed costs associated with recording them. We now additionally consider the
impact of an expanded system of signals in the process of training and sampling
generative models. In some ways, including more signals has minimal impact on
training the GAN. An expanded set of signals does mean that logan needs to
be retrained, but if we revisit the network architecture and training objectives
discussed in Section 9.1, we can see that neither is particularly vulnerable to the
number of signals in traces X. Then, since the DNNs in the GAN need to deal
with more signals, it is advisable to increase the number of learnable parameters
(like the number of layers). This, in turn, increases compute and memory costs
of training, but only marginally. While a relatively meager expansion in the
system of signals may not significantly affect GAN training, we reason that
the effect on GAN sampling, especially conditional sampling, can be acute.

Figure 10.1: A trace of 3 signals capturing powertrain behavior

In the MLERP algorithm, the primary mechanism used for conditional sampling
are condition tracesX1 andX2, which we use to bound the latent sampling space
to a straight line. Clearly, increasing the number of signals in each trace bears
no additional burden on such a conditioning technique. The larger problem,
however, centers around the selection of traces that can be used as conditions.
All experiments in test stimulus generation that we have seen so far assume
that testers have curated interesting traces – like start and stop maneuvers –
that can be applied as conditions. Unfortunately, such curation is not unlike
annotation and can take significant effort. If conditional sampling of test stimuli
were to depend upon curated traces alone, then the effort involved in curation
becomes a major impediment in the overall process of stimulus generation.
There is one alternative to curating traces, a technique that we have briefly
come across in earlier discussions, and that is handcrafting signal traces. When
it comes to testing, there is some contention between using handcrafted and
curated traces as stimuli. It is useful to spend a moment examining it because
at the heart of this contention lies the issue of an expanding set of signals.

Even if it is a technique that scales poorly, testers routinely handcraft signal
traces as test specifications. There is, in fact, a simple reason for this preference
– handcrafting has the ability to capture the tester’s intent clearly, especially

10.1. EXPANDING THE SET OF SIGNALS 111

when real-life recorded counterparts of intended test conditions are rare. Take
the WLTP drive cycle, an example of which we saw in Figure 9.1, which is
essentially a handcrafted trace of the vehicle speed signal. A standardized test
cycle like this is unlikely to occur in real-life driving and, unless it comes from
vehicles in a test track, it is near-impossible find such a maneuver in recorded
traces. In order to construct such benchmark cycles, especially if it is expressed
as a single signal (vehicle speed in the WLTP example), handcrafting may
actually be most suitable. Now, if the number of signals expands by two or
more, the explosion of possible multidimensional temporal transitions makes
handcrafting far more difficult. Taking our newly expanded list of signals as
an example, it may be quite impractical to jointly handcraft transitions of
vehicle speed, engine speed, and selected gear, keeping all their correlations
intact, beyond a fairly limited duration. Even if one tried to handcraft such
a multi-variate trace, it may end up being a fairly poor imitation of the actual
trace. Thus, for traces with two or more signals lasting hundreds of seconds,
even if it bears extra cost, testers are better off avoiding handcrafting in favor
of using curated traces. Even if it depends upon curation, the logan system in
fact offers a way to at least keep the curation effort manageable. A GAN that
does trace→trace mapping can augment a limited set of curated traces. If such
a complex mapping is achievable, can we not use the capabilities of generative
models to directly map handcrafted imitations into realistic traces? And, in
doing so, can we not bridge the two contending schools of test specification?

Specifying conditions as template traces – The difficulty in handcrafting
a realistic trace arises from two problems - (i) the need to specify detailed short
and long term transitions of each constituent signal, and (ii) capturing possible
inter-signal dependencies. What would help, therefore, is a specification mecha-
nism that ignores details and focuses only on the basic profile of the trace. Here,
we propose piece-wise linear approximation as a simple way to avoid specifying
transient details of a signal. The resulting template, as shown in Figure 10.2
serves as a rough, intuitive sketch of the long-term signal profile. Linear approx-
imation may have simplified handcrafting one signal, but how do we scale to
a multi-variate case? Sketching one template for each constituent signal is one
option but, even with templates, the challenge of keeping their correlations plau-
sible still remains. Having witnessed the capabilities of conditional generation
in a GAN, we propose a much simpler approach of specifying a driving scenario
by sketching a template for any one constituent signal. Then, we train a GAN
to directly map a univariate template into a realistic multi-variate trace. This
completely eliminates the need to address inter-signal dependencies in specifying
conditions, something that scales well to an expanding set of signals. As seen in
Figure 10.2, this also means that a tester can choose to define a takeoff scenario
by specifying only a vehicle speed template. The same tester can choose to
define a cruise scenario by only specifying a template for the engine speed. This
flexibility allows test case design to focus on a single chosen control signal, fur-
ther reducing the specification effort. Then, as we soon show, we simply train a
generative model to restore the details of the sketched signal, and also generate
realistically inter-related accompanying signals. A method, which takes a hand-
crafted univariate template as input and generates a realistic multivariate trace
as output surely bridges the two contending techniques of test specification.

112 CHAPTER 10. BUILDING A SYSTEM FOR SEARCHING TEST STIMULI

0.0

0.5

1.0 Takeoff Cruise
veh eng gear

0 512
seconds

0.0

0.5

1.0 Vehicle speed template

0 512
seconds

Engine speed template

Figure 10.2: Recorded driving maneuvers (a) and corresponding templates (b).
Signal values normalized

More broadly, we reason that handcrafted templates may very well constitute a
generally reusable mechanism for defining scenarios of vehicle operation. As sur-
veyed in [122], recent years have seen many proposals that help specify scenarios
for testing automotive software systems. However, a major limitation that they
share is a focus on specifying scenarios only in terms of high-level driving char-
acteristics. For example, popular ontologies like [123] describe driving scenarios
mostly in terms of tactical aspects like avoiding obstacles or changing lanes.
Such proposals may have been used to analyze and test driver assistance or
autonomous driving controllers (for example, [124]), but their focus on tactical
scenarios comes at the cost of operational granularity. Vehicle control software
at the operational level, i.e. those for functions like fuel injection or automatic
gear shifting, react to transitions of a multitude of internal vehicle systems
that are often of little concern at the tactical level. Testing these controllers
under different driving scenarios would therefore require that testers are able to
specify operational scenarios at a granular level of detail. Templates can serve
as a powerful tool to specify such operational scenarios. The template of engine
speed, something that often falls outside the scope of existing scenario specifica-
tion frameworks, can capture the operational perspective that is greatly needed
for testing the majority of vehicle application software. Also, by specifying long-
range driving scenarios at a level of detail suitable for testing entire sub-systems
of SWCs, templates are also different from alternative proposals like [125], which
focus on specifying test scenarios for individual software routines. While tem-
plates clearly have the potential to ease the specification of vehicle operation sce-
narios, it is equally important to note that the idea of a template is deeply entan-
gled with the idea of a generative model. Restoring the details that the template
eschews is quite complex and is difficult to achieve using rule-based algorithms.

10.2. EXPANDING THE SYSTEM FOR GENERATING STIMULI 113

10.2 Expanding the system for generating stim-
uli

Using templates, instead of traces, for conditional sampling significantly changes
the process of stimulus generation. It is, therefore, time to upgrade the pre-
viously discussed logan, to the new configuration silgan. The ‘sil’ in the new
system primarily refers to the software-in-the-loop paradigm where simulation
models, including the trained variant we develop, are predominantly used. The
‘sil’ prefix is poised to take much more significance since, as shown shortly, we
actually connect vehicle application software in a feedback loop with a GAN.

Translating templates to traces – Let us define the domain of univariate
template conditions as C and, reusing the notation of the training dataset,
that of N -dimensional traces as X . Let Pn(cn) denote the distribution of
templates for the nth signal of the N -dimensional system, and P (X) denote
the distribution of traces. Denoting the duration of templates and traces by T ,
a template cn ∼ Pn(cn), is a time series in R1×T , while a trace X ∼ P (X) is
a time series in RN×T . The objective is to learn the template→trace mapping
that can translate a template cn into a realistic trace X̂ ∼ Pn(X|cn), that is
faithful to the specified profile in the nth signal and generates plausible related
variations for all (N − 1) other signals. Translating a template into a trace
may be complex but, given a recorded trace X, piecewise linear templates
c(N) = (c1, ...cN) for all N signals can be automatically extracted using rel-
atively simple procedures. Upon smoothing a signal using windowed mean
and 1-D Sobel1 filtering, we simply extract the template as flat regions around
major points inflection, with straight-line edges connecting these regions (refer
Figure 10.2). Using extracted templates, we restructure the training data
into a set of pairs (c(N), X) of templates cn ∼ Pn(cn) and recorded traces
X ∼ P (X) they were extracted from. Technically, pairing templates with
traces makes this labeled data, where templates count as annotations. It is,
however, easy to see that the template extraction process is trivial and poses
costs so minimal that the labeling process can still be reasoned to fall under the
self-supervised regime. In using this paired training set, it is important to note
our assumption that templates specified by a tester can be plausibly sampled
from the distribution of extracted templates Pn(cn). Finally, since a template
cn is always associated with n, the signal which it approximates, for ease of
notation, we cease associating it, or any of its mappings, explicitly with n.

Designing and training silgan – With the task of trace→trace mapping,
originally defined for logan, changing into a more complex template→trace
mapping, the silgan network layout needs redesign. As shown in Figure 10.3,
the updated network design is more elaborate, involving a forward and reverse
process, amounting to five networks and almost as many intermediate steps.

Perhaps the easiest way to deconstruct this network is to first examine the
forward process which closely reflects the network design of logan. Given a
template c as input, a translated maneuver X̂ is expected to realistically render

1https://en.wikipedia.org/wiki/Sobel operator

114 CHAPTER 10. BUILDING A SYSTEM FOR SEARCHING TEST STIMULI

Figure 10.3: The silgan network for template-based stimulus generation

the template c as its nth signal. Since c and X̂ clearly share some characteristics,
let us define Z as a latent intermediate domain that encodes this shared infor-
mation. Let E : C → Z be a learnable encoder that maps a template into this
domain. However, the translated maneuver X̂ is also required to render realistic
transitions of all other signals. Let us therefore define another latent domainW
as the source of all this additional information. Allowing the learning process
to optimally structure its information, codes from this domain are sampled as
w ∼ N (0, I). The translation process can then be completed by defining a learn-
able generator G : Z ×W → X , that produces a translated trace by combining
information from both latent domains. This completes the generation (or trans-
lation) part of the forward process, which can be formally denoted as follows.

X̂ = G(z, w), z = E(c), w ∼ N (0, I) (10.1)

Technically, the encoder also needs to know n, the signal for which c serves
as a template, but we ignore this for notational simplicity. Then, in order to
ensure that the translated maneuver X̂ is realistic, just like the logan setup,
we use a discriminator D to assesses the realism of translated traces. Though
we could have adapted the adversarial objective defined for logan for the new
setup, we make an important adjustment. The logan objective (9.4), reflecting
the original GAN adversarial objective, trains the discriminator as a classifier.
That is, the discriminator takes a set of traces at its input and labels them
as either real or fake. As pointed out in [126], training the discriminator as a
classifier has a few drawbacks, the most important of which is that of vanishing
gradients. Due to the very nature of the binary-cross entropy loss used to train
the classifier, as soon as the discriminator successfully classifies an image as real
or fake, it begins to provide weaker feedback (gradients) to the training process.
This eventually ends up affecting the quality of generation. In order to alleviate
this problem, we use an alternate least-squares discriminator [127] objective
which trains the discriminator as a regressor. Using a mean squared error to
calculate the loss between the discriminator’s assessment and the ground truth
0(fake) and 1(real) labels, the discriminator is able to provide useful feedback
(stronger gradients) even if a generated sample has been assessed to be on the
correct side of the decision boundary. This approach has been observed to
make GAN training far more stable, resulting in generated samples of better

10.2. EXPANDING THE SYSTEM FOR GENERATING STIMULI 115

quality. The modified adversarial objective the forward process is shown below.

LGen = Ec,w (D(X̂)− 1)2

LDis = EX (D(X)− 1)2 + Ec,w D(X̂)2
(10.2)

The description of the forward process that we have seen so far may seem to
largely conform with the logan approach, differing only in fine details. How-
ever, as shown in Figure 10.3, the biggest difference is the multi-modality in
translation. That is, upon encoding a template into z, the generator network
G can combine it with different codes w to produce different traces, all of
which satisfy the profile requirements set by z. Such a technique of defining
disentangled, partially shared, information domains for multi-modal domain
translation, first proposed in [128], has profound implications for stimulus
generation. Not only does silgan allow minimally defined templates to be
translated into realistic traces, but it also provides an additional degree of
variety in improvising signals whose profile is not bound by the template.

Noting the rich promise of multimodal translation, we now highlight a potential
pitfall which can limit this capability. Normally, the adversarial loss alone is
sufficient to ensure both translation into a realistic maneuver and adherence to
the profile in the template. However, we find that this adherence is sensitive to
random seeding and therefore not always achievable. A stronger imposition of
adherence while translating template c, can come in the form of a pairing loss,
shown below. This loss encourages the translated trace X̂ to closely resemble
the corresponding real trace X that the template is extracted from. Now, it
is important to note that strict reconstruction, forcing the template to map to
one particular translation, clearly restricts the diversity inherent in multimodal
transition. Use of this loss term, should therefore follow careful consideration.

LPair = Ec,w,X || X̂ −X ||1 (10.3)

Having traced the forward process, let us now examine the reverse process in
silgan, starting with why it is useful. When using a GAN to translate from one
domain into another, prior work has shown that the quality of translation can
be improved by encouraging cycle consistency [129]. That is, having translated
template c into a maneuver X̂, it is beneficial to reverse the translation and
recover the template. We therefore define inversion networks Ē : X → Z ×W
and Ḡ : Z → C that reverse the translation. Unlike template extraction pro-
cedures used in preparing the training set which achieve the same end, this
reverse translation is differentiable. This allows the following cycle consistency
objective, the L1 loss between input and recovered templates, to back propagate
gradients from the reverse to the forward process during training.

ĉ = Ḡ(ẑ), ẑ, ŵ = Ē(X̂)

LCyc = Ec,w,X || ĉ− c ||1
(10.4)

116 CHAPTER 10. BUILDING A SYSTEM FOR SEARCHING TEST STIMULI

Further, upon close examination of the network layout in Figure 10.3, one
can notice several auto-encoding maps. The composition E ◦ Ḡ achieves a
template→template mapping, while Ē ◦ G achieves trace→trace mapping. More
interestingly, perhaps, the G ◦ Ē composition auto-encodes latent codes z and w.
As shown in [128], exploiting this latent auto-encoder, sampling these codes from
priors N (0, I) and reconstructing them is a far more simple method to organize
the distribution of the latent space when compared to the VAE approach seen in
(9.1). Thus, we additionally use the code reconstruction objective shown below.

LCrec = Ez,w ||Ē(G(z, w))− (z, w) ||1, z, w ∼ N (0, I) (10.5)

Bringing the objectives of translation, cycle reconstruction, and code reconstruc-
tion together, silgan is trained end-to-end using the following composite objec-
tive. Just like logan, each network is composed using 4 1-D convolutional layers.

Lsilgan = min
E,G,Ē,Ḡ

(LGen + LPair + LCyc + LCrec) + min
D
LDis (10.6)

Upon training, we are able to translate univariate templates into multimodal,
multi-variate traces, examples of which are shown in Figure 10.4. This, we
reason, is quite a powerful demonstration of silgan’s expanded properties of
stimulus generation. As seen in the figure, all we need to generate a rich variety
of realistic stimuli is a rudimentary sketch of one of its signals.

Figure 10.4: Examples of template to trace translation using silgan

Despite its many affinities with the logan setup, the new silgan layout differs
in significant ways, the most important of which is the nature of the E ◦ G com-
position of networks. In logan, these networks constitute an auto-encoder while
in silgan, they undertake multimodal translation. By definition, multimodal
translation means that one template can translate into multiple traces and this
means that there is no firm ground truth against which translated traces can
be assessed. This raises an important implication – in the absence of a ground
truth to assess the translation, the SAP principle for GAN evaluation is not
directly applicable. When it was originally defined for logan, SAP was based
on the presence of an auto-encoder where the ground truth for reconstruction
is readily available. This allowed us to evaluate the quality of reconstruction

10.3. EXPERIMENTS IN SEARCHING STIMULI 117

and extrapolate the judgment to near neighborhoods in latent space. In order
to better fit the realities of silgan, SAP needs to be reinterpreted. If we
take a step back and observe the complete layout, we see that there is a tem-
plate→template cycle-reconstruction process E ◦ G ◦ Ē ◦ Ḡ. Though this is not
an auto-encoder in the traditional sense, it takes a template c as input, traces
through the forward and backward processes and recovers the template as ĉ.
As an end-to-end indication of the quality of silgan, we therefore monitor the
quality of template cycle-reconstruction during training. In this reinterpretation
of SAP for silgan, the two-sample test is conducted by holding-out a test set
of ∼20k traces and corresponding extracted templates. Then during training,
the quality of cycle reconstruction is periodically measured as the average SSIM
between a test set template c and 4 cycle translations ĉ, each using a different
random code w. After training for ∼15 epochs, cycle reconstruction SSIM,
averaged over the entire test set, settles around 0.95. While such high similarity
of cycle reconstruction indicates healthy training, the quality of translation is
additionally verified by visually inspecting around hundred randomly selected
test template translations. Visual inspection of time series maneuvers con-
firms adherence to the template and plausibility of characteristic features like
correlations between vehicle and engine speed under the influence of gear shifts.

Measuring the quality of template cycle-reconstruction may be a convenient
reinterpretation of SAP, but it is, nonetheless, a weaker form of evaluation.
Cycle-reconstruction is, after all, only an auxiliary objective introduced to
improve training convergence. Upon training, the network is still meant to
be mainly used for translation, which the reinterpreted SAP does not directly
address. We noted earlier that the primary obstacle in applying SAP is the
multimodal nature of translation and the diversity of traces it generates. One
way to work around this issue is to increase the importance – essentially scale
it by a large factor – of the LPair loss defined in (10.3). The express purpose
of this loss is to encourage that the template c translates much more faithfully
into the trace X from which it was extracted. This way, there is a ground truth
X against which the translated trace X̂ can be compared and SAP becomes
eminently applicable. What we lose, in taking this approach, is the rich diversity
of multimodal translation. What we gain, is that SAP becomes applicable in a
largely intact fashion. That is, if templates are verified to translate into ground
truth traces, then it is likely that codes in the near latent neighborhood of
encoded templates are also likely to translate into plausibly realistic traces.

10.3 Experiments in searching stimuli

The potential and eventual limits of sampling – Translating templates
into traces may be a straightforward way to produce test stimuli but a much
more potent act, following the tradition of logan, would be to conditionally
sample in the latent space. With the expanded capabilities of silgan, instead
of resorting to curated traces, the boundaries for conditional sampling can be set
much more easily by sketching templates. Right from our first discussions on con-
ditionally sampling stimuli (see Section 9.2), the number of conditions, and the

118 CHAPTER 10. BUILDING A SYSTEM FOR SEARCHING TEST STIMULI

geometry of the latent subspace that they map out, loom large. When only one
condition c is specified, it maps to a single latent point z, providing little clarity
on the latent subspace within which conditional sampling should take place. Put
otherwise, a single condition is not very effective in communicating the bound-
aries of sampling. On the other hand, specifying two conditions is a far more
clear way to demarcate the boundaries of sampling. Not only is the tester clearly
communicating that only traces in-between the given conditions are of interest,
but the latent space is also bounded to a straight line. Within this bounded
space, the MLERP technique allows much more selectivity and control in sam-
pling stimuli. Now, what if the tester feels that two traces, or a straight line in
latent space, is far too narrow and would like to impose, say, three conditions?

Let us, in fact, consider the vehicle speed templates in Figure 10.5 as the triplet
of conditions that the tester would like to impose. The first (c1) is a helpful null
template where the vehicle is completely still, and the second (c2) is a takeoff
template where the vehicle stays still for half the time before beginning to
roll. The third (c3) is a variation of takeoff where the vehicle stops once before
taking off. Allowing all intermediate combinations of these three conditions,
the tester is demarcating a larger space for sampling stimuli.

Figure 10.5: Three vehicle speed templates used as conditions for sampling
stimuli

This triplet of conditions c(3) = (c1, c2, c3) maps to a triplet of codes z(3) =
(z1, z2, z3) in the latent domain Z, meaning that the latent subspace bounded
by these conditions can be imagined as a triangle. When using two conditions
with logan, we saw that linear interpolation, or sampling on the straight
line connecting the latent codes of the two conditions, results in a trace that
combines characteristics of both conditions. Surely, this property should be
extendable beyond just two codes. That is, given the triplet z(3) of latent codes,

a convex linear combination of these codes z =
∑3
i=1 pizi,

∑3
i=1 pi = 1, pi ≥ 0,

should achieve semantic combination of the three input conditions. Sampling
such codes z and companion codes w from the other latent domain W, and
decoding them using the generator X̂ = G(z, w), as seen in Figure 10.6, shows
that the property does indeed hold. Generated traces can be seen to consis-
tently combine characteristics of the null, takeoff, and stop-takeoff conditions.
Stated otherwise, this means that traces produced by sampling a code in the
latent hyper-triangle traced by the three conditions is guaranteed to generate
a trace that only combines characteristics of the three specified conditions.

Having progressively elevated the latent subspace for conditional sampling
from a single point to a line, and then a triangle, it is time to generalize this
progression. The act of specifying a set of K conditions c(K) = (c1, c2, ..., cK)
for conditional sampling results in a latent hyperplane with K vertices z(K) =

10.3. EXPERIMENTS IN SEARCHING STIMULI 119

Figure 10.6: Traces generated by simplex sampling in the latent subspace
bounded by the three vehicle speed templates

(z1, z2, ..., zK). Sampling codes on this hyperplane, each of which is essentially
a convex combination of its vertices, and decoding them produces plausibly
realistic traces that proportionally combine semantics of the K specified condi-
tions. Thus, as a tool for systematically sampling on this hyperplane, we have
generalized the p-space that we originally defined when discussing MLERP.
Sampling points on a latent hyperplane of K vertices is achieved, as shown
below, by drawing a simplex p(K) = (p1, p2, ..., pK),

∑K
i=1 pi = 1, from a

Dirichlet distribution of order K and linearly combining it with codes z(k).

p(K) ∼ Dir(K,1K), z(K) =
(
E(c1), E(c2), ..., E(cK)

)T
X̂ = G(p(K) · z(K), w), w ∼ N (0, I)

(10.7)

Specifying multiple conditions is, without doubt, a powerful technique for demar-
cating a latent subspace for conditional sampling. Testers can specify as many
conditions as necessary to precisely target a subspace that is most interesting
for the test objective in question. Further, using the simplex sampling technique
in (10.7) it is also possible to systematically explore this subspace, generating a
rich, yet targeted, variety of traces that can be applied as test stimuli. But, no
matter how smartly conditions have been chosen or how perfectly these spaces
are demarcated, if we continue to rely upon sampling as the primary technique
for exploring these spaces, we will always need to contend with the issue of infi-
nite possibilities. Even if we use techniques like MLERP to select better samples
from this space, sampling will remain a slow an inefficient technique for covering
an infinite space. If we use information about the actual test objective, can
we not search this space to hone in on interesting stimuli much more directly?

Promoting code to the foreground – When we originally defined the system
S for stimulus generation in (8.1), we made it a point to include the SWC V
that is the object of testing. Until now, however, the actual code that is under
test has been mostly in the background, and we have been solely discussing
stimulus generation from a black box perspective. We now begin to revise this
setup, albeit gently, by promoting code under test to the foreground. As we

120 CHAPTER 10. BUILDING A SYSTEM FOR SEARCHING TEST STIMULI

have previously seen in some detail, vehicle application software is often written
in C. We make a temporary exemption to present a toy example of vehicle
application software as Python code. The example that we show in Figure 10.7
is a toy version of a monitoring function. This particular function, as its name
indicates, monitors if the driver is performing an aggressive takeoff maneuver.
It does so by observing vehicle and engine speed signals to check whether the
engine largely idles before the vehicle quickly takes off and cruises at increasing
speeds. Now, a quick glance at the function is sufficient to know that it is an
example that has been contrived to work with traces generated by the GANs
that we train. Nevertheless, if we go beyond the form and look at its intent, we
will actually find that monitoring functions of this kind are quite common in
vehicle application software. Many SWCs include logic that monitors signals, for
instance, to identify and log driving maneuvers that are of interest or concern.

1 def detect_aggressive_takeoff(v, e):

2 m1 = mean(v[256:350])

3 m2 = mean(v[350:512])

4 m3 = mean(e[0:256])

5 if(0.49 < m1 < 0.51) &

6 (0.59 < m2 < 0.61) &

7 (m3 < 0.08):

8 ret1 = 1

9 else:

10 ret1 = 0

11 return ret1

Figure 10.7: A toy example of software under test. This function illustrates a
monitoring function for detecting aggressive takeoff events

Using this function to emulate code under test, let us formulate the test ob-
jective as code coverage. In this particular case, this would mean identifying
appropriate stimuli of vehicle and engine speed traces that satisfy the single
branching condition specified in this function. Turning to silgan as the source
of generated stimuli, let us also reuse the triplet of takeoff scenarios c(3) (Figure
10.5) that we discussed shortly before as the boundaries for generation. Even in
the clearly bounded latent hyper-triangle, finding stimuli that satisfy the branch-
ing condition by random sampling turns out to be impractical. In experiments
trying to achieve code coverage, we were unable to find even one matching trace
after sampling around 100k latent codes in this bounded space. Random sam-
pling to generate traces may be suitable for exploratory testing, subjecting ap-
plication software to a targeted, yet wide, range of realistic stimuli. For a much
more focused objective like code coverage, sampling is unlikely to be efficient.

Searching for stimuli with software in the loop – Inefficiency in sam-
pling stems from two main factors, (1) a latent subspace, no matter how small,
presents infinite options for sampling, and (2) in a black-box approach, where
stimuli are sampled with no awareness of code under test, there is simply no
feedback that informs whether sampled traces indeed serve as interesting stimuli.
If such feedback were available, then aimless sampling can be substituted by a
targeted procedure for searching interesting stimuli. We now describe one viable
feedback mechanism for the code coverage objective, built using fairly simple

10.3. EXPERIMENTS IN SEARCHING STIMULI 121

arithmetic. Code coverage entails satisfying branching conditions, each of which
is typically defined using a composition of boolean operations. Since these oper-
ations evaluate to only true or false, there is no real-valued indication of how
distant a test input is from making an if condition evaluate to, say, true. One
advantage that we have in the monitoring function in Figure 10.7 is that the
boolean operations in the branch condition evaluate real values. This, of course,
does not encompass the entirety of possible branching conditions, but boolean
evaluations on real valued operands are quite common in decision-making logic
found in vehicle application software. In such cases, inspired by a method
proposed in [130], we smooth discrete boolean evaluations into real-valued
measures. Setting aside boolean operators = and 6= which are not directly ap-
plicable to checking real values, atomic operations boolean operations < and >
on real operands can be readily converted into difference functions shown below.

lt(a, b) = a− b
gt(a, b) = b− a

(10.8)

When difference operations on real valued operands, defined above, evaluate to a
positive value, it is equivalent to their discrete counterparts evaluating to false.
More usefully, a large positive value indicates that the operands are quite far
away from meeting the boolean condition. Such an indication is clearly unavail-
able in the discrete case. Thus, if a branching condition evaluates lt(x, 0.49)
with x being the input stimulus, then x−0.49 >> 0 indicates that x is nowhere
near meeting this condition, which is exactly the kind of feedback that can
guide the stimulus generation process. Conversely, a negative value guarantees
that the condition has been met and is the equivalent of the discrete boolean
operation evaluating to true. Using this reasoning, a real-valued version of
the atomic boolean ¬ operator is simply achieved using arithmetic negation.

not(c) = −c (10.9)

Note that defining not as arithmetic negation restricts it to a subset of possible
solutions. That is, ¬(a < b) = a ≥ b, but not, as defined above, only finds
solutions a > b, which is still valid because = does not apply for real operands.
Finally, we round off this line of reasoning by addressing operations ∧ and ∨,
which operate both on real-valued operands and on atomic operations involving
them. Here, functions max and min serve as real-valued counterparts because
they respectively check whether all, or any, of the constituent operations to a
negative value which, as we noted earlier, is our real-valued equivalent of true.

and(c, d) = max(c, d)

or(c, d) = min(c, d)
(10.10)

Having defined such real-valued counterparts for discrete boolean operations
involving real-valued operands, one simple check of consistency is if the newly
defined operations satisfy DeMorgan’s laws. As shown below, they indeed do.

122 CHAPTER 10. BUILDING A SYSTEM FOR SEARCHING TEST STIMULI

not(and(a, b)) = −max(a, b) = min(−a,−b) = or(not(a), not(b)) (10.11)

In transforming boolean operations on real values into another real value, these
functions give continuous feedback on how distant a test input is from covering
a branching condition on real values. We therefore refer to them as coverage
indicators. Then, by traversing the abstract syntax tree of the code under test
(Figure 10.7), we replace each boolean operation in a branching condition by
a coverage indicator. In the case of compound branching conditions involving
several boolean operations, we simply and individual coverage indicators to form
a composite indicator for the branch. All these code-level modifications can be
done automatically to transform the function under test into a search function
S : X → R that, given an input trace X, provides a real-valued indication of how
distant the trace is from covering the branching condition in the function under
test (Figure 10.8). This also means that if a generated trace X̂ is applied as
input to the search function, and it evaluates to S(X̂) < 0, it is guaranteed that
the trace X̂ satisfies the branching condition defined in the test function. Thus,
to find stimuli that achieve the test objective of code coverage, we do not use the
code under test directly. Instead, we use its transformed counterpart – the search
function – that provides useful feedback to the stimulus generation process.

1 def S(v, e):

2 m1 = mean(v[256:350])

3 m2 = mean(v[350:512])

4 m3 = mean(e[0:256])

5 c0 = and(lt(0.49 , m1),

6 lt(m1, 0.51))

7 c1 = and(lt(0.59 , m2),

8 lt(m2, 0.61))

9 c2 = lt(m3, 0.08)

10 c = and(and(c0 , c1), c2)

11 return c

Figure 10.8: An automatic transformation of the monitoring function in Figure
10.7 that returns one coverage indicator per branching condition

With the search function S, the stimulus generation process has a concrete target
– identifying the trace(s) that makes S evaluate to a negative value. We refer to
a trace that satisfies the branching condition as a hit Ĥ. Having set the triplet
of templates c(3) (Figure 10.5) as the test condition, let us now trace the revised
stimulus generation approach, depicted in Figure 10.9. First, a code z is sampled
from the latent hyper-triangle demarcated by the three conditions. Second, the
generator network G maps this code (and a sampled w) into a trace X̂. Finally,
this trace is applied as input to the search function to see if the coverage indicator
S evaluates to a negative value. Now, we highlight a crucial property – upon
sampling the latent codes, both operations that follow, namely the generation
and the coverage indication, are differentiable2. This means that the search for
a hit Ĥ := X̂ | S(X̂) < 0, can be done using gradient descent in the latent space.

2max(c, d) and min(c, d) are not differentiable at c = d, but this can be disregarded for
real-valued c and d

10.3. EXPERIMENTS IN SEARCHING STIMULI 123

Figure 10.9: Traces generated by gradient descent in the latent subspace
bounded by the three vehicle speed templates

While the revised sampling operation, including the search function, may be
differentiable, the end-to-end mapping between the latent code and the coverage
indicator is likely to feature many local minima. In fact, a brief exploration
of this landscape using simplex sampling, seen in Figure 10.10 which visualizes
the value of S by location in the latent triangle, confirms this. The figure
shows the presence of large flat regions, where S hardly changes. In these
areas, where the gradient of S with respect to the position of the latent code
is virtually zero, search by gradient descent cannot take place. To address this
issue, we propose a method that combines sampling and gradient-descent to
search for test stimuli that match the test objective specified by S.

0.6 1.0
1

0.6

1.0

2

0.0

0.1

0.2

0.3

0.4

0.5

S

Simplex sampling

Gradient descent

Ĥ

c1
1

c2
1c3

1

Figure 10.10: With test conditions c(3), automatic code coverage using Algo-
rithm 3 begins with simplex sampling in the triangle with vertices z(3) in the
latent space Z. Once a promising area is found, gradient-descent takes over to
find H that satisfies the condition. For visualization in 2-d, we plot the triangle
by taking steps β1, β2 along two randomly chosen basis vectors that span its
plane. A similar search is jointly conducted in C2, but it is not visualized here.

124 CHAPTER 10. BUILDING A SYSTEM FOR SEARCHING TEST STIMULI

Algorithm 3: GRADES: Gradient descent-based search for test stim-
uli
Input :Template conditions c(K), search function S that encodes the

test objective
Output :Generated trace Ĥ satisfying the test objective
Parameters :nsim - max sampling steps, ssim - exit threshold for sampling,

ngd - max gradient descent steps, η - gradient step size

1 z(K) =
(
E(c1), ..., E(cK)

)T
2 # the sampling stage
3 for n ∈ [nsim] do
4 p(K) ∼ Dir(K,1K), w ∼ N (0, I)

5 X̂ = G(p(K) · z(K), w)

6 if S(X̂) < 0 then

7 Ĥ = X̂

8 return Ĥ

9 else if S(X̂) < ssim then
10 break

11 end

12 end
13 # the search stage
14 q(K) = logit(p(K))
15 for n ∈ [ngd] do
16 p(K) = sigmoid(q(K))

17 p(K) = p(K)/
∑K

i=1(pi)

18 X̂ = G(p(K) · z(K), w)

19 if S(X̂) < 0 then

20 Ĥ = X̂

21 return Ĥ

22 q(K) = q(K) − η∇q(K)
(S)(H)

23 w = w − η∇w(S)(H)

24 end

GRADES (Algorithm 3), the method we develop for stimulus search, takes
two inputs – the tuple of conditions c(K) and the search function S, which is
the transformed formed of the code under test V that calculates the coverage
indicator. The output of the process would be a hit Ĥ, which is a trace that is
guaranteed to cover the branch condition in code under test. Practically, this
means that the real objective of the algorithm is to find the simplex p(K) – the

location in the latent hyperplane – where the latent code decodes to Ĥ. Of
course, the procedure should also search for the companion code w in the second
latent domainW , which is necessary to complete the decoding step. The search
begins with simplex sampling for a maximum of n sim iterations in order to
survey the coverage landscape in the latent hyperplane. If the sampling process
chances upon Ĥ, the objective is achieved, ending the search. Otherwise, the
algorithm identifies a promising area, i.e. values of p(K) and w that generates

a maneuver resulting in S ≈ 0, around which finding Ĥ is likely. This is where
the threshold ssim helps where, if S(X̂) < ssim, the sampling stage exits.

10.3. EXPERIMENTS IN SEARCHING STIMULI 125

The search is then taken over by gradient descent, which attempts to iteratively
minimize S by jointly varying p(K) and w along directions of the fastest decrease
in S. Now, while doing gradient descent in latent space, special care needs to be
taken to ensure that the search does not stray beyond the bounds of the latent
hyperplane. During the sampling stage, drawing from the Dirichlet distribution
guarantees that the simplex p(K) sums up to 1, which means that p(K) · z(K) is
guaranteed to fall within the bounded hyperplane. If gradient descent is able to
modify p(K) unchecked, then there is every chance that the boundaries of the
hyperplane are violated. This is why we reparameterize p(K) using the logit

and sigmoid pair of operations. The former preserves the most promising
latent code identified by the sampling stage, and the latter ensures that the
subsequent gradient descent stays within boundaries, even when the code is
iteratively updated. This search persists for a maximum of n gd steps during
which, if S becomes negative, Ĥ has been found and the search is complete.
Otherwise, the search times out without finding Ĥ under the given test scenario.

Figure 10.10 shows the case of simplex sampling being unable to find Ĥ even
after setting nsim ≈ 100k. Combining the respective strengths of sampling and
gradient-descent, both of which use feedback from coverage indicators, it is
often sufficient to sample for 10–50 iterations, with the subsequent gradient
search taking no more than a few 10s of iterations to find Ĥ. Further, the
example monitoring function in Figure 10.7 may contain a single branching
condition, but the method can be extended to multiple independent if-else
conditions, even when they are nested. A search function, in this case, re-
turns a vector containing one minimizable coverage indicator per independent
branching condition. Due to their independence, this vector can be collectively
minimized by executing one search per coverage indicator in parallel.

Even if it is in a transformed state, connecting code under test in a feedback loop
with a GAN is where silgan truly shows its potential. With the availability
of the search function that provides differentiable feedback, the use of gradient
descent makes finding the right stimuli orders of magnitude quicker. The search
paradigm also opens up possibilities where, for instance, testers are much more
free in demarcating the limits of testing. No matter the size if the test space, a
search technique that combines sampling and gradient descent is clearly more
efficient than sampling alone. In demonstrating a search-based approach for
stimulus generation, we however discuss only a case of code coverage with
boolean operations made differentiable using coverage indicators. While the
principle of targeted, combined sampling and gradient based search of the latent
space is vital, additional measures may be necessary to scale the technique for
automatically testing code with non-differentiable intermediate operations.

Overall, building upon logan which we saw in the previous chapter, silgan
introduces three main enhancements. First, in defining templates as a mech-
anism for specifying conditions, the process of stimulus generation scales with
an expansion in the number of signals. Second, the definition of a framework to
define and operate with multiple conditions gives testers the freedom to define
the test space with arbitrary complexity. Third, by developing a mechanism
for providing a differentiable assessment of generated test stimuli, we are able

126 CHAPTER 10. BUILDING A SYSTEM FOR SEARCHING TEST STIMULI

to connect software in the loop with a GAN. Put together, the silgan toolkit
significantly improves the potential of simulation-based testing in virtual rigs.

Chapter 11

Discussions

11.1 On research questions

We now discuss how the test stimulus generation systems described in previous
chapters measure up to the research questions originally posed in Section 8.2.

RQ1: on stimulus generation using GANs – Experiments in sampling
and searching stimuli, described in previous chapters, provide compelling ev-
idence that deep generative models trained on signal traces can indeed be used
to generate test stimuli. Beginning with logan, a good first indication of the
ability to conditionally generate useful stimuli comes from the use of naive linear
interpolation in the latent space between two curated stop traces to generate a
novel intermediate trace. In trivially generating a realistic trace with a desired
profile, latent space interpolation presents itself as a tool for stimulus generation
that can be powerfully employed for testing. Then comes the MLERP tech-
nique which introduces useful refinements in latent space interpolation, helping
exercise controllability and selectivity in generating stimuli. Allowing testers to
quantitatively examine traces using an interpretable metric measure, MLERP
guarantees that generation produces stimuli that follow a sequence of metric
measures that testers specify. The silgan system further expands the toolkit for
stimulus generation by first introducing the notion of templates that vastly ease
the specification of test conditions. Largely avoiding the use of curated traces,
templates allow testers to handcraft an arbitrary number of test conditions in the
form of simple sketches of signal profiles. Mapping all the conditions to the latent
space, simplex sampling on the hyperplane bounded by conditions guarantees
that generated stimuli stay within the boundaries of test specification. Finally,
the mechanism we introduce for extracting differentiable feedback from code
under test means that test stimuli can be efficiently searched, and not only sam-
pled, within bounded latent spaces using the GRADES technique. At the core of
this steady progression of techniques lies a GAN trained on a few hundred thou-
sand recorded signal traces. The training itself uses variations of the adversarial
objective (9.2) that pits a pair of generator and discriminator networks against

127

128 CHAPTER 11. DISCUSSIONS

each other in a zero-sum game. Thanks to our strategy of conditional sam-
pling using vector arithmetic in latent space, adversarial training alone seems
sufficient for generating test stimuli. The roster of models, tools, and methods
that we demonstrate surely amounts to a definitive answer that GANs trained
on signal traces do serve as a useful framework for test stimulus generation.

RQ2: on plausible realism of generated stimuli – Perhaps the most
pressing issue encountered whenever generative models are used is whether
generated samples are plausibly realistic. The utmost importance that logan
and silgan systems pay to this issue is first revealed, perhaps innocuously, by
the fact that they mainly promote the idea of conditional sampling. In this
sampling regime, the act of generating any test stimulus X̂ actually begins with
the specification of a condition c. Of course, a practical reason why conditional
generation is essential is that testers need to be able to clearly specify expecta-
tions on the eventual nature of generated stimuli. After all, a random mass of
traces, generated without clear expectations, may not really serve as valuable
test stimuli. Since conditions are anyway necessary to usher the generation
process to satisfy the overall test objective, we repurpose them for checking
the quality of generation itself. This is the very essence of the SAP principle
that we use for measuring the quality of generation. If the condition verifiably
maps into a plausible trace, the SAP reasoning goes, then traces in the near
latent neighborhood of the condition should also map to plausible traces. This
approach, which is arguably conservative, takes no position on the quality of
an unconditionally generated trace. Rather, it ties the quality of generation
firmly with the condition itself. In the case of logan, the application of SAP
is quite straightforward since the condition c is itself a trace X. This provides
a ready-made mechanism to measure the quality of generation – the similarity
M(X, X̂) between the condition X and its reconstruction X̂. If the reconstruc-
tion is verifiably similar to the condition, then it is plausible that codes in the
near latent neighborhood of the condition also map to good quality traces. This
naturally leads to the next challenge – successfully demarcating the ‘near’ neigh-
borhood. The approach we take for demarcation is to use multiple conditions to
bound latent subspaces within which sampling can take place. If each condition
reconstructs well, then the hyperplane that they trace in the latent space may
be considered as being safe for sampling. Should this reasoning not suffice,
there is always MLERP which provides an additional layer of scrutiny. Given
a suitable metric M , MLERP selects only those codes in the latent subspace
which map to traces with a specified metric similarity. Yet again, a mechanism
for selective sampling doubles up as a mechanism for verifying plausible realism.

When upgrading to silgan, as we pointed out previously, the SAP principle
does not necessarily extend smoothly. Multimodal translation may be a key
strength of silgan, but the lack of a clear ground truth that it entails means
that SAP is not directly applicable. An option would be to curb multimodality
and force the model to faithfully translate templates to the actual traces they
were extracted from. This restores the relevance of a ground truth for transla-
tion, and SAP becomes applicable, albeit with a loss of diversity in translation.
It is also important to note that we have discussed SAP only in the sampling
context. Since silgan additionally uses the GRADES procedure for gradient

11.1. ON RESEARCH QUESTIONS 129

descent-based search in the latent space, we also need to consider the plausible
realism of traces generated by searching. One strong baseline is that the search
is being conducted within a bounded latent space. And, since this bounded
space is still the near neighborhood of conditions, SAP remains applicable. The
larger issue is that, unlike MLERP, the search process is less controlled and
can chance upon a latent code which decodes to a trace that satisfies the test
objective, but may not be plausibly realistic. In letter, the SAP principle can be
folded in as an additional objective during search, meaning that the search can
be tasked to find a trace that simultaneously satisfies the test objective while
also meeting some metric criteria. MLERP, after all, achieves this combination
in a sampling paradigm. There may, however, be practical issues in jointly
meeting both these conditions, increasing the likelihood that the search process
takes a longer amount of time to find a hit. Considering these concerns, identi-
fying an efficient and firm extension of SAP to silgan sampling and searching
regimes is an important avenue for future work. Overall, however, the strat-
egy of conditional sampling and searching, combined with SAP and MLERP,
ensures that stimulus generation is selective and that generated stimuli can be
quantitatively assessed for plausible realism by comparing them with references.

RQ3: controlling stimulus generation to meet test objectives – The
previous discussion on evaluating the quality of generated traces throws up an
interesting observation. Controlled (or selective) generation and evaluating the
quality of generation are, in fact, two sides of the same coin. The way we use
conditional sampling captures this duality best – generation is limited to a well-
demarcated space so that techniques of evaluation are easier to apply. In some
sense, the techniques that we introduce, starting from bounding the latent space
using conditions, to selective sampling, and searching, progressively make it
easier for testers to narrow down choices. Facing infinite possibilities in stimulus
generation, a strategy of narrowing down choices actually ends up improving
selectivity. Since we have already detailed mechanisms for selectivity when
discussing the previous research question, let us turn to the other important
aspect of the current research question, which is directing the selection of traces
to meet a particular test objective. When it comes to conditional sampling, it
is abundantly clear that the onus to direct stimulus generation is on the tester.
In the black box logan system, testers select conditions which bound the test
space, and, when using MLERP, also specify metric criteria which generated
traces should meet. This general recipe is quite extendable to specifying a wide
range of testing intentions. Testers may demarcate a space to broadly explore
whether the behavior of software under test is generally consistent within its
boundaries. Alternatively, if testers want to probe a specific aspect of software
behavior, the same set of tools can be reused to set a tighter test space. The use
of standard drive cycles (like WLTP) as conditions is an extreme example of the
latter category where testers are specifically interested in, say, fuel consumption
during one standard drive cycle. Either way, in the black box sampling approach,
it is the tester’s experience and expertise that guides the process of generating
stimuli. An interesting sidebar would be to deliberate whether such dependency
on the tester is advisable. In fact, when describing the research approach taken
in this work (see Section 1.3), we specifically addressed this aspect. Software
engineering activities involve humans in the loop, and needs sufficient margin

130 CHAPTER 11. DISCUSSIONS

for decision-making. Taken together, it becomes quite clear that depending
upon the tester’s agency is not only well-advised, but also essential. No matter
the suite of tools used, it is a human engineer who ultimately signs off on
a testing activity. If this engineer has not been sufficiently involved, it only
complicates the assessment of the overall testing process. Not only do the
logan and silgan systems require a tester’s active involvement, but they also
take active measures to ensure that the burden of involvement is minimized.
May it be conditions, templates, or MLERP, each instrument that we develop
for selective generation reduces the tester’s burden in some way and, in turn,
encourages their involvement. Nevertheless, if there is a need to reduce the
tester’s involvement in directing the sampling process, combining silgan, with
the gradient descent-based GRADES search technique, shows that there is scope
for further automation. The search process serves to showcase that given enough
information about the software and the test objective, the stimulus generation
process can be highly targeted. Putting all this together, we can reasonably
conclude that the spectrum of tools we introduce for stimulus generation can
be quite effective in selecting the right stimuli for the given objective.

RQ4: refining stimulus generation using code under test – Experi-
ments and discussions on stimulus generation may have been dominated by
tools for black box sampling, but Section 10.3 shows that code itself can be repur-
posed to search for the right stimuli. For an objective like code coverage, we have
seen how simple functions can be automatically converted into coverage indica-
tors in order to provide real-valued feedback to guide stimulus generation. The
linchpin in the process is the fact that the generator DNN is differentiable. The
differentiable nature of a DNN is, of course, fundamental to deep learning itself.
Descending in parameter space using the gradient of the loss function is the very
essence of neural network training, using which the backpropagation process
updates learnable parameters of the network. Unlike training, the GRADES gra-
dient descent-based search that we conduct is not in the parameter space, but in
the input space of the generator network. However, any optimizer designed for
gradient based optimization in parameter space is reusable for searching in the
input, which in this case, is the latent space. While the high dimensional param-
eter space, to a certain extent, is well-designed for gradient based optimization,
the search space for stimuli is not. This is why we additionally include a sam-
pling step to survey the search landscape to find areas where there are useful
gradients before initiating the search. Using coverage indicators and combining
the respective strengths of sampling and searching, we thus show that code
under test can be used to search for stimuli that target a specific test objective.

11.2 On techniques employed

Choice of convolutional networks – In both logan and silgan systems,
each constituent network has been designed as a Convolutional Neural Network
(CNN). Considering that the networks essentially process time series signal
traces, the choice of CNNs may seem odd. After all, CNNs are popularly consid-
ered to be much more appropriate for tasks in computer vision. For processing

11.2. ON TECHNIQUES EMPLOYED 131

sequential input, recurrent models like the Long Short-Term Memory (LSTM)
or Gated Recurrent Units (GRUs) are meant to be more appropriate. Reality,
however, belies such popular belief and, as surveyed in [131], CNNs have been
applied for time-series problems in equal measure. While the memory of the
recurrent networks is often considered to be better suited for modeling long
term dependencies, given enough capacity, CNNs have often proven adept even
when working with sequences. Moreover, CNNs, unlike recurrent networks, are
parallelizable, which has actually made them quite efficient for sequence tasks.
The clinching reasoning for choosing CNNs, however, lies in our construction of
the stimulus generation problem. Traces that we generate as stimuli are of fixed
duration, meaning that they are much more like images. This means that there
is no real necessity to treat them as sequences of indefinite length, and logan or
silgan networks can be built up as CNNs. However, whether 1-D CNN is the
most optimal architecture for designing GANs for signal traces is, to a certain
extent, an open question. It is also a question that is difficult to definitively
answer because, simply put, there are far too many choices involved in modeling
the network architecture. Even within the CNN family, there are specializations
like dilated [132], causal [133], or temporal (which combines the two) convo-
lution which have been proposed for sequence processing. Searching for the
optimal network by sweeping all these architectural and subsequent hyperpa-
rameter choices takes an inordinate amount of time and resources. Facing such
challenges, there are but two main options. The first one is to turn to techniques
of neural architecture search [134], where the search of a DNN architecture can
be modeled as a systematic search or even as an optimization problem. This
could automate modeling steps that are currently manual, but the material
costs involved in such search is not trivial. Practical compromises in conducing
architecture search usually entail restricting the search space, which could lead
to suboptimal solutions. The other option, trends of which are beginning to
emerge in deep learning practice, is to rely upon a smaller set of widely used
network architectures. Taking this cue, an interesting future extension would
be to base stimulus generators on the Transformer architecture [80]. Originally
proposed as an efficient parallel processing paradigm for univariate sequence
data (text), Transformers have come to dominate DNN modeling across data
modalities including time series [135]. In similarly basing signal trace generators
on this well reused architecture, costs involved in making architectural choices
can possibly be minimized further. Training logan and silgan using a set of
Transformer networks would be an interesting avenue for future work.

Structuring the latent space – Previous chapters, describing experiments in
searching and sampling stimuli, make the pivotal role of latent space operations
abundantly clear. We may have used conditions to demarcate the subspace
within which sampling or searching is conducted, but little effort has been spent
in consciously structuring this space. To illustrate this point, let us temporarily
set aside the stimulus generation application and examine StyleGAN [110],
the face generating GAN model which we briefly saw earlier. One of the most
important properties of this network is the seamless manipulation of specific
facial characteristics. StyleGAN, stated simply, has such a structured latent
space that the facial semantics it encodes are highly disentangled. The resultant
effect is that changing the latent code along specific dimensions leads to changes

132 CHAPTER 11. DISCUSSIONS

in specific facial characteristics, while others stay largely intact. Coming back to
logan, while its auto-encoder may create a latent space of reduced dimension,
it is not clear whether latent codes are sufficiently disentangled to finely
manipulate specific characteristics of the trace. It would be beneficial if, say,
changing the third dimension of the latent code results in traces with rapidly
increasing vehicle speed. The silgan system, on the other hand, does actively
disentangle the latent space. As seen in Figure 10.3, the template or the profile
of one signal, maps into the latent domain Z. The source of all other information
in generating the trace is the latent domain W. While this disentanglement
does ease multimodal translation, it falls well short of the kind of disentangled
manipulation seen in StyleGAN. One advantage that StyleGAN has over our
approach is that it relies on a dataset that has been annotated with great detail.
Annotated variables largely map into the latent space and serve as control
knobs for fine manipulation. Attempts to similarly annotate traces may not
go down well with testers initially but, if benefits become apparent, dedicated
efforts for annotation may very well commence. An interesting track for future
investigation would be to develop methods for latent space engineering which
introduces disentanglement without excessively relying upon labels. If the
silgan approach is any indication, there seem to be ways to achieve this.

Going beyond raw code for stimulus search – A well-engineered latent
space, as we saw in the silgan system, is conducive for gradient descent-based
search for test stimuli, as long as the right kind of feedback is available. In
the code coverage example that we showcase in Section 10.3, we were able to
provide such feedback by automatically converting branching conditions in code
under test into coverage indicators. The differentiable real-valued feedback pro-
vided by these indicators is helpful in guiding the process for searching stimuli.
However, when code under test is more elaborate than the example that we
work with, or when the test objective goes beyond code coverage, alternative
mechanisms are needed to provide appropriate feedback. More generally, the
task of stimulus search can be seen as identifying the correspondence between
the code and stimulus spaces. In the case of logan and silgan, using tech-
niques of deep generative modeling, we have DNNs that learn a representation
space for stimuli. For the test coverage objective, specifically, by converting
branching conditions into coverage indicators we were able to assemble a par-
allel representation space for code. Then, using gradient descent-based search,
correspondence between stimulus and code spaces is identified, achieving the
task of stimulus search for code coverage. Alternatively, as we saw in Part I,
techniques of neural language modeling offer a far more general approach to
learn a representation space for code. The tasnet model, which converts raw
code into program embeddings, is a perfect example. Can we not, therefore,
learn or construct a mechanism that associate representation of stimuli (learned
by GANs) and those of code (learned by language models)? Such a multimodal
approach, which jointly considers code and stimuli, is surely closer to how
engineers approach software testing in practice. More importantly, relying com-
pletely upon learned representations of stimulus and code spaces eliminates the
need to construct specialized representations like coverage indicators, allowing
stimulus search to scale beyond specific test objectives like code coverage. Com-
bining language models of code and generative models of stimuli to aid software

11.2. ON TECHNIQUES EMPLOYED 133

testing is yet another tantalizing prospect that we leave for future work.

Generative models beyond GANs – The core technique that underpins
stimulus generation using logan and silgan systems is the adversarial learning
objective (9.2) originally introduced in [109]. When it was first introduced,
GANs revolutionized generative AI and was quickly recognized as a break-
through technique [136]. Deep learning techniques, as we have repeatedly seen,
are rarely in stasis, and it should come as no surprise that vastly improved
techniques for generative modeling have risen. As surveyed in [137], the orig-
inal GAN has itself has seen dozens of variations in data modalities, training
objectives, and network composition. In fact, silgan itself adopts elements
of multimodal translation from an image-to-image translation GAN [128] in
addition to the least-squares discriminator introduced in [127]. Apart from
variations, there are many other generative modeling alternatives to GAN, an
example of which would be the VAE [138], elements of which we borrowed in
constructing logan. Apart from the GAN and VAE frameworks, as further
surveyed in [139], normalizing flows, energy-based, and autoregressive modeling
constitute further alternatives. A dramatic contemporary example for genera-
tive modeling would be the DALL-E [140] family of text-based image generation
models trained, among other objectives, using the energy-based technique of
denoising diffusion [141]. Displaying remarkable ability in translating natural
language text prompts into high quality images, DALL-E, along with Chat-
GPT, has fast become the byword for the capabilities of modern AI in popular
imagination. The point of this discussion may be to elucidate that there are
numerous alternatives to GANs, but the larger question, of course, is their
implication on generating signal traces as test stimuli. The logan and silgan

systems use a combination of GAN and VAE techniques but, considering the
phenomenal successes of the more recent diffusion models, an interesting experi-
ment would be to see if newer techniques can be applied to stimulus generation.
In undertaking such extension, one important aspect to consider would be the
strategy of conditional sampling in the latent space, which our approach of
stimulus generation crucially depends upon. This strategy imposes an encoder-
decoder architectural style which, in turn, exposes a latent space that can be
manipulated. Stated otherwise, our strategy fundamentally bases itself upon
so-called latent space models, and using alternative generative techniques need
to factor this. An encouraging observation is that most approaches, including
diffusion and autoregression, do offer mechanisms to model and manipulate
a latent space [142]. Another interesting possibility, thanks to the emerging
interest in dialog systems or chatbots, would be the use of text prompts in-
stead of traces or templates as conditions. Apart from opening up alternative
proposals of expression, text prompting moves conditioning logic from a latent
space to the input space. This could help avoid the dependency on latent space
models for stimulus generation. On the other hand, whether the signal trace
can be effectively substituted by a natural (or formal) language description is
an open question. We leave all these interesting considerations for future work.

134 CHAPTER 11. DISCUSSIONS

11.3 Related work

Analogous to the logan approach, GANs, following its introduction, have been
applied for synthetic data generation in a variety of domains. Reflecting our
scope, we focus on surveying reports of continuous-valued sequence generation
and highlighting the following aspects – (i) the model architecture and (ii)
measures to check plausibility of generated samples. Using a recurrent GAN,
generation of real-valued medical time-series was demonstrated by [143], where
two plausibility measures were shown. One is measuring Maximum Mean
Discrepancy (MMD) [144] between populations of real and synthetic samples,
and the other to train a separate model using synthetic/real data and evaluate
it using real/synthetic data. Using a recurrent architecture, [145] demonstrated
music generation, with generated samples evaluated using observable features
such as polyphony and repetitions. From an application perspective, [146] comes
close, where a recurrent GAN was applied to generate time series of automotive
perception sensors, for simulation-based verification. Plausibility is shown using
the Jensen-Shannon (JS) divergence, as a measure of symmetric relative entropy
between populations of real and generated samples. A combined Long-Short
Term Memory (LSTM) and Mixture Density Network (MDN) GAN for gener-
ating sensor data has been shown by [147], where GAN loss and discriminator
prediction are used as evaluation measures. Convolutional GANs have been ap-
plied for sequence generation in [148] and [149]. Both of them apply MMD and
Wasserstein-1 [150], while the latter additionally applies classical machine learn-
ing methods like k-means clustering to measure plausibility. Beyond deep gener-
ative models, purely statistical methods of generating and evaluating time series
(examples [151] and [152]) have been reported. However, such methods are, in
the existing literature, inherently dependent on features selected by a domain ex-
pert. In comparison, the GAN approach provides the capability to learn the nec-
essary features automatically, thus being able to optimally adapt to the dataset
on which it is applied. Then, analogous to the template→trace domain adapta-
tion/translation approach taken by silgan, previous work has employed domain
adaptation to extract physiologically invariant features in a clinical setting [153]
and the creation of a dataset invariant to specific characteristics of individual
blast furnaces [154]. While parallels to the silgan translation approach are rare
in the domain of time series, certain aspects have analogies in the image domain.
Examples include sketch to image [128,129,155], and image outpainting [156].

Previous work on deep learning for test case generation includes text generation
for testing mobile apps [157], and protocol frame generation for testing process
control equipment [158]. Parallel work on dynamic software testing, includes
identifying worst case branching for stress testing [159] and GUI testing for
apps [160]. Unlike these methods which target specific aspects of testing in
different domains, by introducing techniques for specification, generation, and
test automation, we demonstrate an end-to-end framework for virtually testing
vehicle application software. Finally, while we show a simple example of using
GANs for stimulus search, in extending our work to more general cases, previous
work on ways to smooth boolean conditions [130,161] may be helpful.

11.4. CONGRUENCE WITH RESEARCH OBJECTIVES 135

11.4 Congruence with research objectives

The logan and silgan systems, with associated methods for sampling and
searching for test stimuli take significant strides towards addressing the second
research objective (see Section 1.2) of easing the process of virtually testing
vehicle application software. First, in choosing a system of signals that capture
the essential behavior of the powertrain of the vehicle, we train GAN systems
that simulate this behavior. Considering the importance of the powertrain in
the larger scheme of automatic control, the fact that these systems simulate the
behavior of such a critical dependency makes it useful for testing a significant
proportion of vehicle application software. Second, the stimulus generation
systems that we develop are largely agnostic to the set of chosen signals. This
means that training GANs that simulate other dependencies can be straight-
forwardly accomplished by choosing a new set of signals. Third, the methods
for conditional sampling and searching that we introduce allow fine-grained
control of the stimulus generation process. This means that human engineers
retain firm control of the testing process, while the GAN systems reduce their
burden in specifying or even handcrafting test stimuli in detail. Fourth, the
fairly strict adherence to the SAP principle means that testers are able to verify
the plausible realism of generated stimuli using metrics of their choice. Finally,
we reason that tools and methods for stimulus generation that we develop can
extend into testing software in non-automotive or even non-embedded domains.
As long as software can be tested using multivariate time series, the GAN
systems we develop remain applicable. With sufficient modification, extension
into data modalities other than time series also remains possible.

11.5 Congruence with the solution approach

On the big data, deep learning approach – Beginning with Part A of the
research approach charted in Section 1.3, let us analyze how the stimulus gen-
eration systems that we develop measure up against the big data, deep learning
approach that it declares. With the core objective being the generation of fake,
yet realistic, signal traces that can act as test stimuli, the choice of a deep learn-
ing technique like GANs is well justified. After all, deep generative modeling
has a good, if not unparalleled, track record in producing realistic fakes. As we
ourselves have noted in previous discussions, deep generative techniques have im-
proved to such an extent that the generation of synthetic data across modalities
is very much a reality. When it comes to the big data perspective, however, it is
fair to ask whether a training dataset of a few hundred thousand samples is truly
large. The relative paucity of data is only emphasized when compared to the
hundreds of millions of samples used for training tasnet. First, it is important
to state that the smaller training dataset used for training logan and silgan

does not necessarily reflect a general lack of vehicle signal data. With millions
of connected vehicles plying the streets of the world, there is ample potential to
assemble truly large signal datasets. Nevertheless, it is also important to recog-
nize that datasets of natural language, programming language, pictures, video,

136 CHAPTER 11. DISCUSSIONS

etc., remain significantly larger and will likely maintain an edge in abundance in
the near future. There is, quite simply, much more of these kinds of data being
exchanged on global communication networks than vehicle signal data. These
observations, combined with the fact that the tech industry far outstrips the
automotive industry in promoting the creation and curation of data, make the
relative smallness of signal data more conspicuous. This chain of reasoning only
reinforces the urgency with which the automotive industry needs to treat data
as a valuable asset. If the use of a training dataset with a few hundred thousand
samples is able to produce encouraging results, the use of hundreds of millions
of samples – as seen in parallel application domains – will only improve them.

On the use of foundation models – If we refer back to tasnet, it is clear that
this programming language model aligns perfectly with the generally accepted
idea of a foundation model. A transformer encoder with millions of parameters,
trained on a large corpus using the cloze objective checks all the boxes of the
archetype foundation model. Do logan and silgan, with their hundreds of thou-
sands of parameters and training samples, qualify as foundation models? We
reason that they actually do. If we refer back to the seminal discussion on foun-
dation models [28], the only firm definition it ventures is that these models are
trained self-supervised. The adversarial objectives (9.4 and 10.6) used to train
logan and silgan, are stellar examples of self-supervised training. Even if we go
beyond the letter of the definition, the larger purpose of foundation models is to
be generalists, capable of being adapted to multiple tasks in a domain. The fact
that we pretty much use the same model to sample and search for test stimuli am-
ply indicates its versatility, burnishing its credentials as a foundation model. In
fact, one of the earliest applications of GANs [58] showed that, after adversarial
training, the discriminator can be repurposed as a classifier. Last, but certainly
not least, [28] itself identifies GANs as a viable family of foundation models, espe-
cially in the vision domain. We, of course, repurpose the technique to train foun-
dation models of signal traces and use it downstream as a stimulus generator.

On pre-train and calculate – Not only do logan and silgan qualify as foun-
dation models for signal traces, but the MLERP and GRADES algorithms show
that they can be readily repurposed for stimulus generation using rule-based
vector operations. The pairing of logan and MLERP show that conditional
sampling, with selectivity and measurable plausibility, is achievable using trivial
interpolation in the latent space. The fact that MLERP is based upon the well-
observed property of latent interpolation for semantic combination makes its
construction principled. Parallelly, the combination of silgan with GRADES
show that stimuli for specific test objectives can be found by a simple procedure
for searching in bounded latent subspaces. Using the property that the genera-
tor in silgan is differentiable, and a specially designed differentiable technique
for coverage indication, GRADES shows that gradient descent-based search can
automatically find appropriate stimuli. Put simply, both these pairings serve as
excellent examples of ‘pre-train and calculate’, the paradigm for prediction that
we set forth in Section 1.3 for solving tasks in automotive software engineering.
Moreover, two crucial aspects of predictions in this paradigm – nuance and
relative transparency – are also clearly visible. In either GAN framework,
testers have the flexibility to finely adjust the test space, allowing them to

11.5. CONGRUENCE WITH THE SOLUTION APPROACH 137

use their experience and design nuanced test conditions based upon the code
under test. Here, silgan, with the introduction of templates significantly
eases specification of testing conditions. Other tools which testers can use to
tweak the process include the choice of the metric measure in MLERP and the
coverage indicator in GRADES. Finally, the rule-based MLERP and GRADES
algorithms, based upon principled operations, are patently transparent. An
interesting question to consider at this point is whether stimulus generation
can in fact be solved using the stereotypical paradigm of explicit supervision.
Whether test stimulus generation lends itself to a regime of supervised task
specialization hinges upon the nature of the test objective. Given some code,
if the objective is to explore its behavior under a wide range of scenarios,
testers are better served by a general stimulus generator that is untethered
to code. This way, testing is more directed by the tester’s own understanding
of expected behavior and the GAN systems that we train are perfectly suited
for this purpose. There are, however, cases where the test process is much
more code dependent. The case of code coverage, which we saw in the context
of stimulus search, is a good example. With code coverage, since there is a
much more direct mapping between the code and a set of stimuli that satisfies
branching conditions, one can contemplate a supervised regime. One could
possibly curate pairs of code and corresponding stimuli that is guaranteed to
cover branching conditions in this code. Using this paired dataset, a model can
be trained to take code as input and predict a set of stimuli that satisfy coverage.
However, it does not take much effort to note that the cost of such curation
is enormous. Attempting to pair code with stimuli, not only do we impose the
need for curation, but we are also asking engineers to match curated traces
with code. Short of code-stimuli pairing with enormous effort, it is nevertheless
interesting to explore the possibility of directly mapping code and stimulus
spaces. As we noted shortly before, the tasnet model does learn to represent
the space of code while the GAN models do this for the space of stimuli.
Rather than embarking upon a supervised mapping of code to stimuli, as we
previously noted, connecting latent spaces of code and stimulus representations
in a preferably unsupervised manner, is an interesting avenue for future work.

On evaluating the quality of test stimulus generation – Evaluating the
quality of generative models is always challenging and the evaluation of logan
and silgan models, and the associated MLERP and GRADES algorithms, is no
exception. Before a recap of how we address evaluation, however, it is important
to clarify some context. Under current state of practice in the automotive indus-
try, as traced in Chapter 7, techniques for generating test stimuli are severely
limited. At one level, there are cases where multi-physics simulation models
are themselves used for generating stimuli. While this is positive, physics-based
simulation models bring their own set of limitations. We have already noted
that developing such models requires tremendous amount of time and specialist
expertise. In many cases, once developed, they are also difficult to extend.
A typical example would be incorporating weather conditions in driveline or
vehicle dynamics models. The physics-centric approach in developing these
models often clashes with the statistical approach in modeling weather, slowing
down their integration. At another – far more serious level – is the problem that
a vast proportion of test stimuli is hand-crafted. While stimuli may be specified

138 CHAPTER 11. DISCUSSIONS

using programming or scripting languages, the fact remains that testers are
often hand-crafting signal transitions for testing software in virtual rigs. Being
a slow and laborious process, hand-crafting increases the likelihood of not cover-
ing scenarios, while the inevitable atrophy means that tests do not keep up with
changes in functionality. There is, therefore, a clear need for more proficient
methods of stimulus generation, and the capabilities of logan and silgan

cater to this clear demand. Having said that, it is equally important to ensure
that stimuli generated by these GANs are of good quality. As traced through
Chapters 9 and 10, our approach for measuring the quality of generation is
similarity as plausibility. We briefly re-examine the SAP approach here.

1. Under SAP, generation using GANs is always conditional, where conditions
are themselves recorded (or ground-truth) traces.

2. New traces are generated by sampling (or searching) in latent subspaces
demarcated by the conditions. This makes generated traces follow the
characteristics of conditions.

3. When sampling, we only choose generated traces that are verified to have
proportionally similar characteristics to ground truth conditions.

4. As long as generated traces are verified to follow these similarity constraints,
we reason that the generated traces are plausibly realistic.

Put simply, the conservative SAP strategy undertakes trace improvisation
rather than outright novel trace generation. Generated traces always share
characteristics of recorded traces, and they are verified to do so. Such a strategy
of only generating traces that do not stray too far away from the characteristics
of recorded traces is clearly limited. But, this is the trade-off that we make
to ensure that the generated traces are plausibly realistic. The SAP approach
therefore takes a relative approach for evaluating quality or realism, by always
comparing generated traces to semantically close recorded (or ground-truth)
traces. Ideally, however, there needs to be an absolute measure for evaluating
the quality of generation. Limits to the relative approach are apparent - it does
not provide a direct mechanism to check whether a generated trace generalizes
well-beyond the distribution of recorded traces it is trained upon. Any dataset
of recorded datasets will have gaps in coverage. Due to the considerable costs of
recording campaigns, it will be impossible to record every vehicle variant in all
possible operating conditions. It is only when a model is shown to reasonably
generalize beyond gaps in recording do we have true simulation capabilities.
One option for absolute evaluation would be to test the properties of gener-
ated traces using a physics-based simulator. Such an approach would need
to find ways to reconcile limitations like the physics simulator not modeling
all phenomena represented in the trace. Another interesting avenue would be
to make the GAN aware of the underlying physics. Recent years have seen
substantial progress in making neural networks physics aware [162]. Using
these techniques to make logan and silgan aware of the physics of in-vehicle
dependencies could be useful for improving absolute quality. We leave the
investigation of such absolute verification mechanisms for future work. Despite

11.5. CONGRUENCE WITH THE SOLUTION APPROACH 139

the limitations of our relative approach to evaluation, the GAN models and the
sampling approaches we develop cautiously elevates the state of practice and
introduces a necessary alternative to current methods of generating stimuli.

In conclusion, chapters in Part II demonstrate how deep generative models
trained on signal traces can be used to simulate software dependencies in a
virtual test rig. By constructing GANs with accessible latent spaces, we exploit
properties of DNN embeddings – notably latent space interpolation for semantic
combination – to develop methods for controllable stimulus generation. Further,
exploiting the differentiable nature of a DNN itself, we demonstrate a method
to place software-in-the-loop with the GAN to ease the search of test stimuli.
Thus, methods introduced in these chapters have the potential to significantly
ease the process, and improve the credibility, of virtual software testing. This
allows the software testing process to reduce its dependency on vehicle testing,
increasing the cadence of software engineering without compromising quality.

140 CHAPTER 11. DISCUSSIONS

Part III

Principled operations in
vector space

141

Chapter 12

Vector operations - a joint
re-examination

In the epic journey that is the development of vehicle application software, this
work has focused upon the activities of design and testing. The former paves the
way for implementation by clarifying the broader principles which code should
follow when realizing functionality. Upon, or even during, implementation,
the latter verifies whether the code manages to fulfill intended functionality.
Practically, at least in the automotive context, disciplines of design and testing
do contrast strongly. Since automotive software design is mostly about defining
the nature of code, it is practiced in the industry predominantly as a software
discipline. Meaning that design practitioners are usually software engineers
who use tools and methods – like design patterns – that are recognizable in
the general practice of developing software. For example, a design pattern like
Controller-Handler (see Chapter 4) allows a common approach to designing
the structure and content of software, largely independent of whether the
system it operates is, say, air suspension or battery monitoring. Since we are
discussing vehicle control software, however, it is always important to remind
ourselves that the larger application includes mechatronic hardware elements in
addition to software. This is why testing, as we noted earlier, cannot always be
isolated to code and therefore bears a much more multidisciplinary character.
Depending upon the specific system that the software controls or monitors,
concerns from several disciplines begin to be included into the testing process.
For instance, testing battery monitoring software is as much about physics and
chemistry as it is about software engineering. The sizeable contrast between
the automotive software testing and design disciplines have sparked fields of
research, industry niches, and professional careers specializing in either one
of them. Yet, in our own tryst with these contrasting disciplines, previous
chapters show that we have been able to address both using a unified recipe of
principles, tools, and methods, which we subsume under the term ‘pre-train and
calculate’. The focus of this chapter is to recount and re-examine this recipe,
and elucidate the elements which unify them. In doing so, we demonstrate

143

144 CHAPTER 12. VECTOR OPERATIONS - A JOINT RE-EXAMINATION

how a minimal set of principles utilize powerful representations learned by
foundation models to solve practical software engineering tasks in a largely
rule-based manner, without needing to resort to expensive supervision.

12.1 Learning representations of domains

The first step in our common recipe for addressing software design and testing
tasks is identifying the domains of information that we choose to work with. In
Part I, which deals with the design activity, we focus on source code, and in Part
II, dealing with testing, we work with signal traces. As modes of information,
code and signal traces are quite disparate. The former is a univariate sequence
of discrete tokens, which combine elements of formal and natural language.
The latter is a real-valued, multi-variate time series of fixed duration, depicting
some aspect of vehicle operation. However, as we noted in Section 2.2, dealing
with disparate domains is among the greatest strengths of deep learning. At
its most fundamental level, any DNN is a computational graph that transforms
one vector (or tensor) to another. So, as long as data from some domain is
representable as a vector, it can be processed by a DNN. Real-valued time series
signal traces are inherently vectors, but a sequence of code tokens is clearly not.
This is why, as explained in Section 5.1, raw code is subjected to a tokenization
process which converts discrete code tokens into vectors. From the perspective
of a DNN, upon vectorization, the mechanism for processing inputs from do-
mains as disparate as code and signal traces are practically indistinguishable.
Let us therefore denote either vectorized domain – source code or signal traces
– as X , where each element X ∈ X := Rn is an n-dimensional vector.

Then, the second step in our common recipe is to train a foundation model
E : X → Z, which maps the input domain X into one or more abstract domains
Z. In our case, foundation models are, of course tasnet for the domain of source
code, and logan or silgan for the domain of traces. For ease of expression
we will refer to logan and silgan jointly as xgan. In the abstract domain of
representations, each element z ∈ Z := Rm is an m-dimensional vector, which
captures necessary information from the input vector X that is useful for a down-
stream task. Now, it is interesting to ask ourselves – why is this transformation
necessary? As pointed out in [163], practical predictive tasks may actually need
to work on specific aspects, and not always on all the information, encoded in the
raw input vector X. Instead of hand-crafting algorithms that extract necessary
information from the input based upon the task at hand – an effort-intensive
approach – self-supervised training helps learn representations with minimal
human effort. Further, since foundation models, and the representations that
they learn, are expected to cater to innumerable tasks downstream, this self-
supervised training step is usually referred to as pre-training. With the network
E encoding the input domain into an abstract domain of representations, we refer
to it as an encoder. In learning to represent our two domains of interest – source
code and signal traces – we use two different pre-training objectives. For tasnet,
which learns representations of code, we use the cloze or Masked Language
Modeling (MLM) objective, which we detail in Chapter 4. In contrast, for xgan,

12.1. LEARNING REPRESENTATIONS OF DOMAINS 145

which learns representations of signal traces, we use the adversarial objective
detailed in Chapter 9. In adversarial learning, it is important to note that the en-
coder network alone is not sufficient. Since the essence of adversarial training is
to pit a generator (which generates fake samples) against a discriminator (which
assesses generated samples), we chain the xgan encoder with two additional
networks. The generator G : Z → X , which is a decoder network that maps
representations back into the input domain, and a discriminator D : X → {0, 1},
which assesses whether generated samples belong to the input domain.

Straightaway, as visualized in Figure 12.1, similarities in representational ap-
proaches for compliance assessment and stimulus generation become obvious.
Both tasnet and xgan use encoder networks to map their respective input do-
mains into an abstract representation space. In the former case, representations
are referred to as (program) embeddings, while they are referred to as latent
codes in the latter case. The choice of names is simply a matter of tradition, re-
flecting preferred nomenclature of the language modeling and GAN communities.
The terms themselves can be used interchangeably. More importantly, in either
case, the character of the encoded representation vector z is the same. Based
upon the guidance provided by the pre-training objective, z distills semantically
important information from the input. The pivotal role that latent vectors plays
in design compliance assessment and in stimulus generation is clearly visible
in discussions in preceding chapters, and also in forthcoming sections which
recount them. Having noted the similarity between tasnet and silgan, let us
also briefly highlight their differences. The primary application of tasnet is to
take a pair of programs as input and predict a compliance score. Such a task,
like stereotypical image classification, is discriminative in nature, which is why
an encoder alone suffices. The xgan networks, with their objective of simulating
multi-physics vehicle dependencies, need to generate realistic traces as stimuli.
Since this use case requires explicit generative capabilities, an encoder alone
does not suffice. In order to endow generative capabilities using the adversarial
objective, xgan is extended to include a generator G and a discriminator D.

Figure 12.1: A joint visualization of the layout of tasnet and xgan networks

An interesting corollary to consider is whether these two approaches used for
representation learning can be interchanged. That is, does it make sense to
learn a program embedding model using the adversarial objective and a signal
trace encoder using the cloze task? Indeed, as seen in [164], GANs have been
used for source code generation and, as reported in [165], cloze has been used to

146 CHAPTER 12. VECTOR OPERATIONS - A JOINT RE-EXAMINATION

learn time series representations. While it seems like interchanging pre-training
objectives is possible, we reason that it is inefficient to do so for the tasks
at hand. Since design compliance assessment is a clearly discriminative task,
training it as a conditional GAN with the xgan layout is wasteful. We only
need the encoder for compliance assessment, which means that the generator
and discriminator need to be discarded after training. Contrarily, using cloze
for training time series representations produces an encoder alone. Since we
need generative capabilities, we may as well add extra networks and train them
end-to-end using the adversarial objective. Of course, alternative objectives
and model architectures are possible for learning representations of either code
or traces, and we have already discussed them in detail in preceding chapters.
So far, we have seen the first two steps in our common recipe – identifying
the input domain and training a foundation model to construct a representa-
tion space for the chosen input domain. Then, depending upon the specific
task, the next step in the recipe is to choose appropriate vector operations in
representation space to calculate necessary predictions in a rule-based manner.

12.2 Regularity for design compliance

In Part I, where we assess design compliance of vehicle application software, X
is the domain of source code and E is the programming language encoder model
tasnet. Given a pair of programs (X1, X2), X1, X2 ∈ X , the objective is to
assess whether they jointly comply with the principles of the Controller-Handler
(CH) design pattern. With the task being conducted on a pair of inputs, one
immediate need is to define a representation that jointly captures necessary prop-
erties of both inputs. As discussed in Chapter 5, the representation we choose to
capture such jointness is the difference vector r = z2 − z1, zi = E(Xi) between
their embeddings. Using the difference vector between input embeddings spot-
lights a key component of our recipe, which is the use of simple vector operations
in representation space to solve predictive tasks. However, Figure 12.2, which vi-
sualizes the jointness vector, clearly shows that r is not the only way to capture
jointness. The vector q, the midpoint between input embeddings, is at least one
an alternative representation of jointness. In fact, as we will revisit shortly, the
midpoint q is one joint representation that we use for conditional sampling in the
stimulus generation use case. Why, then, do we choose the difference vector r as
a representation of program jointness? The answer to this question highlights an-
other key component of our recipe – the operations we use to extract predictions
are both simple, and based upon well-founded properties in representation space.

During discussions in Chapter 5, we noted that the key reasoning behind
choosing the difference vector as a representation of jointness is the principle of
embedding regularity. Following the introduction of some of the earliest neural
language models, one important study [84] observed that pairs of analogous
concepts are likely to form a parallelogram in the representation space of
language models. Briefly, given pairs of pairs (X1, X2) and (X3, X4), where
constituents of each pair are related by the same concept, their embeddings
approximate a parallelogram. In the case of [84], the subject of analysis was

12.2. REGULARITY FOR DESIGN COMPLIANCE 147

Figure 12.2: Two simple techniques that we use for joint representations. The
difference vector r, which we use for compliance assessment with tasnet and
the interpolation q, which we use for conditional generation using xgan

a quartet of words (King, Queen) and (Man, Woman), with each pair of words
having the same relation – words in a pair are the male/female form of each
the other. In our case of design compliance assessment, we analyzed a quar-
tet of programs like (MirrorHeating, PassMirrorHeater) and (CabTiltLock,
CabTiltLockMotor) related by the same concept – the rules of the CH design
pattern. This is why the bedrock principle of the DECO algorithm to mea-
sure design compliance (Algorithm 1) is to assess whether the parallelogram
geometry is observable in the program embedding space. Given a quartet of
embeddings, a straightforward way to verify the parallelogram geometry is to
check whether z3 + (z2 − z1) ≈ z4. Note that a key element in conducting this
check is the difference vector r = (z2 − z1), which is what we use as a represen-
tation for the jointness of the pair of programs (X1, X2). Using the difference
vector as a representation of jointness, based upon the property of regularity
in language embeddings, DECO simply uses the level of alignment with the
parallelogram as a measure of compliance. Adding to the fact that we construct
a predictive model using trivial vector arithmetic, the fact that we repurpose
a well-observed property like regularity makes our approach principled and
explainable. In contrast, a task specific model trained with explicit supervision
not only incurs significant cost, but is always likely to be more of a black-box.

Beyond [84], the property of regularity has been consistently observed in word
embedding models like [56,166,167], and also in contextual language models
that embed more than one token [85,168]. So common, in fact, is this empirical
observation, that assessing regularity has emerged as a method to evaluate lan-
guage model training [97]. Our work simply extends this empirical observation
beyond word and sentence embeddings and applies it to language models of
vehicle application software. Apart from empirical studies, numerous efforts
have also been undertaken to understand explain regularity from a theoretical
perspective. As noted in one relatively recent analysis [169], explanations of em-
bedding regularity have been attributed to several causal factors including the
intrinsic algebraic structure of embeddings, the notion of paraphrasing where
related terms can be interchangeably used, and the co-occurrence of related

148 CHAPTER 12. VECTOR OPERATIONS - A JOINT RE-EXAMINATION

terms in training corpora. Like many other properties of trained DNNs, a firm
theoretical basis of embedding regularity remains to be found. The fact that
empirical observation of regularity is constantly supplemented by theoretical
examination bodes well for the application of this property to predictive tasks.

12.3 Interpolation for stimulus sampling

If we now come to Part II, where we simulate dependencies of vehicle application
software in a virtual rig by generating test stimuli, the domain X represents sig-
nal traces. Unlike the simpler network layout of tasnet, the encoder E is only
one of several networks in xgan. But, just like the method for measuring design
compliance, the latent space to which the GAN encoder E encodes is pivotal to
our approach of conditional generation. A basic form of conditional sampling
used in xgan involves setting two conditions X1 and X2, which are signal traces
themselves, and tasking xgan to generate a novel trace that combines the seman-
tic properties of condition traces. Echoes of vector operations used in the previ-
ous design compliance use case are hard to miss, with the immediate need being
the construction of a joint representation of the two condition traces. Where we
used the difference vector r as the joint representation for design compliance,
the midpoint vector q (Figure 12.2) serves as a better representation of jointness
for conditional sampling. While the choice of r is inspired by the property of
embedding regularity, the choice of q for conditional sampling is based upon the
property of latent interpolation for semantic combination. As noted in Chapter
9, among the first to observe this property was an experiment in [58], which
conducted a ‘walk’ in the latent space between two codes to produce semantic
intermediates. In the experiment they conducted, the input was two images and
intermediate codes, produced by linear interpolation between latent codes of
the inputs, were observed to proportionally combine the semantic properties of
the inputs. That is, when these intermediate codes are decoded, they produce
novel images that smoothly combine characteristics of the two input images.
Since producing a novel intermediate between two trace conditions is highly
beneficial for virtual software testing, we use the linear interpolation q between
latent codes of conditions as the primary mechanism for joint representation.

While the property of latent interpolation for semantic combination serves as our
main tool for conditional stimulus sampling, methods we present in Part II ex-
tend this property in several ways. The MLERP algorithm is a good example of
extension, where interpolation is jointly conducted in two spaces – the abstract
latent space of logan, and a user-specified metric space. Not only does this ease
the tester’s effort in selecting interesting samples, but the use of a metric to com-
pare generated traces with a reference trace directly measures the quality of gen-
eration. The silgan framework further extends interpolation in two ways. First,
it allows interpolation to take place in a representation space of handcrafted
templates, before translating them into realistic traces. The logan model, in
contrast, only employs interpolation in a (variational) auto-encoder setting. Sec-
ond, silgan generalizes interpolation from a straight line to a hyperplane of K
vertices in the latent space. Just like interpolation between two latent codes, any

12.4. GRADIENT DESCENT FOR STIMULUS SEARCH 149

latent code z on this hyperplane is a convex combination of the latent vertices,
which means that it proportionally combines semantic properties of K (or an
arbitrary number) of conditions. Clearly, these extensions of the latent interpo-
lation property constitute a powerful toolkit for conditional stimulus sampling.

Mirroring the observational record of regularity in language models, the property
of interpolating latent codes in achieving semantic combination has been con-
sistently observed in generative models. While first observations like [58] were
reported on generative models in image domains like human faces, this property
has also been observed in generative models of text [170], video [171], protein
structures [172], etc. Our work applies and extends this principle in the domain
of time series signal traces. Unlike embedding regularity, which is rarely used in
predictive contexts, it is much more common to see latent space interpolation
used for predictive tasks. GAN inversion [173] is one example of an entire field of
research that focuses upon using latent space operations to achieve conditional
generation. In addition to empirical observations made on GANs trained in dif-
ferent domains, latent space interpolation has also been subjected to theoretical
analyses. As pointed out in two examples [174, 175], theoretical inquiries focus
mostly on understanding the geometrical nature of the latent space itself and
the semantic import of taking different trajectories in this space. While linear in-
terpolation may be the most commonly used method, spherical and normalized
interpolation [175] are viable alternatives. The study in [175] also observes that
there is no perfect option, with the effectiveness of the interpolation technique
depending upon the domain. Investigating whether alternative interpolation
techniques improve the quality of conditional generation is an interesting avenue
of future work. Thus, in addition to embedding regularity, latent space interpola-
tion constitutes the second major property of representation spaces that we use
for sharp predictive tasks in our work. Apart from being based on trivial vector
arithmetic, the well-attested ability of GAN latent space interpolation to achieve
semantic combination means that our approach for generating test stimuli is ex-
plainable, and based upon repeatedly observed properties of generative models.

12.4 Gradient descent for stimulus search

Besides sampling, one other technique which we introduced in Part II for condi-
tional stimulus generation is searching in the latent space. The act of defining
multiple conditions may bound the space for stimulus sampling, but any xgan

latent subspace offers infinite possibilities for stimuli. This makes any sampling
technique, even highly selective ones like MLERP, relatively inefficient. As an al-
ternative to sampling, we therefore defined the GRADES algorithm which, given
a test objective, conducts gradient descent-based search in a demarcated latent
subspace to automatically and efficiently find necessary stimuli. In previous sec-
tions, we recounted that the DECO and MLERP algorithms, used respectively
for design compliance assessment and test stimulus sampling, are based upon
well-observed properties of representation space. GRADES, on the other hand,
is derived from an elementary property of DNNs themselves. Most practical
DNNs, especially the generator network G in xgan which maps the latent space

150 CHAPTER 12. VECTOR OPERATIONS - A JOINT RE-EXAMINATION

to the domain of signal traces, are differentiable. The differentiable nature of
a DNN is, in fact, a property that is fundamental to training using backpropa-
gation. Descending in the network’s parameter space, using the gradient of the
loss function, remains the primary technique for finding network parameters
that help achieve the training objective. While the differentiability of practical
DNNs is primarily applied for gradient descent in parameter space, we repurpose
this property to conduct gradient descent in latent space to search for stimuli.

As seen in Figure 12.1, the latent space Z is at the input of the generator
network G. The objective, in the case of GRADES, is to find latent codes which
produce a trace (or a hit) that satisfies a branching condition in the code under
test. This way, searching in the latent space using gradient descent is essentially
an act of optimizing the input of the generator network, in order to achieve
some objective at its output. Such a gradient descent-based approach for input
optimization is, in fact, a technique that has been previously used for numerous
applications. Arguably, the best known application of gradient-based input
optimization in deep learning is the search for adversarial examples. A seminal
experiment in [176] on image classification networks showed that, given an input
X, for which the network assigns the correct label, gradient descent can be used
to find a minimally perturbed version of the input X ′, that causes the network
to drastically misclassify. One remarkable aspect of this experiment is that the
search can be constrained so that perturbation in X ′ is barely perceptible and,
to the average human eye, X ′ looks exactly like X. Yet, this imperceptible
perturbation seems sufficient to cause the image classifier to emphatically
mislabel the perturbed input. Since they are deliberately optimized to induce
faulty behavior, such inputs have been called adversarial inputs, and gradient
descent based optimization in the input space has proven to be highly effective
in identifying them. The study in [176] has since sparked an entire research
discipline of identifying adversarial techniques to both attack and defend trained
DNNs, in an attempt to understand and improve the robustness of trained
networks [177]. The probing capabilities of input optimization has also been
used as a tool to explain the predictions of the network [178]. Put simply, the
gradient of the input with respect to the output is a rudimentary measure of
the sensitivity of network predictions. The gradient of the input with respect to
the output has therefore been used as a building block to construct techniques
of explanation which attribute network prediction to salient parts of the input.
Taking inspiration from adversarial inputs and gradient-based attribution, in
our approach to search for the right stimuli, we simply reappropriate gradient
descent-based input optimization and apply it to the latent space of xgan.

It is important to note, however, that our extension of gradient-based input opti-
mization to xgan for stimulus search required substantial innovation, the first of
which was the definition of coverage indicators. Any act of gradient-based input
optimization needs a differentiable objective to guide the search. In the basic
case of adversarial examples, the objective is to achieve erroneous prediction
– a relatively straightforward condition at the classifier’s output. In the case of
stimulus search, however, we do not set an objective directly on silgan output,
meaning the traces it generates. Instead, the objective for latent optimization
is based upon the code to which generated traces are applied as stimuli. Code,

12.5. REPRESENTATIONAL SIMILARITY AS SUBSTRATUM 151

like the toy function we saw in Figure 10.7 is rarely differentiable. Therefore,
targeting code coverage, we defined real-valued equivalents of discrete boolean
operations and transformed raw code into a search function, which outputs a dif-
ferentiable coverage indicator. The availability of such a search function is a pre-
requisite to using GRADES. Even with a concrete target to achieve – searching
for a hit that makes the search function evaluate to a negative value – GRADES
undertakes additional adjustments. The search landscape, or the mapping
between latent codes and coverage indication, is far from optimal for gradient
descent. As shown in Figure 10.10, there are large regions in latent subspace
where the coverage indicator remains practically unchanged, providing either
weak or zero gradients with respect to the latent code. This is why GRADES
first samples the landscape to identify regions where strong gradients are avail-
able before deferring to gradient descent. Thus, while gradient based input
optimization may be a well-known technique, the notion of coverage indicators
and the technique of sampling before search introduced in GRADES are needed
to bridge the gap and produce a viable technique for stimulus search. Overall, in
basing GRADES upon gradient descent in the latent space, we use yet another
property that is well-understood and repeatedly used in deep learning, bolster-
ing the soundness and explainability of our approach for searching stimuli.

12.5 Representational similarity as substratum

In Parts I and II, techniques that we develop to ease the design and testing of ve-
hicle application software repeatedly refer to one more fundamental property of
embedding spaces – representational similarity. Stated simply, representational
similarity means that if X1 and X2 are semantically close in the input space,
then their representations z1 = E(X1) and z2 = E(X2) are likely to be geomet-
rically close in the space of vector embeddings. So far, in recounting DECO,
MLERP and GRADES, we have mainly portrayed these algorithms as being
respectively based upon properties of embedding regularity, latent interpolation,
and DNN differentiability. What we highlight now, is that the property of rep-
resentational similarity is an equally crucial component in all three approaches.

In DECO, we may have begun by using the average difference vector as the
benchmark for jointness. Immediately afterwards, the mechanism that we
use for checking the alignment between the query and benchmark jointness
is measuring the similarity between predicted and actual handler embeddings.
That is, to see if the query programs are compliant with the CH pattern, we
check if the predicted handler embedding, calculated using the benchmark, is
semantically similar to the actual handler embedding. Further, the succeeding
operation of converting this similarity measure into a discrete interpretable
rank is also based upon similarity. Instead of simply measuring the semantic
similarity of the predicted handler embedding with the ground truth handler
embedding alone, it is measured against all programs in the test corpus. The
index of the ground truth handler in the sorted list of similarity measures
serves as the rank. The rank, in turn, plays a crucial role in the calibration
exercise which demarcates the three intervals for judging compliance. In the

152 CHAPTER 12. VECTOR OPERATIONS - A JOINT RE-EXAMINATION

sequence of steps used to assess design compliance, representational similarity
plays a central role in all but one step, which is a resounding measure of its
importance to DECO. Moving on to MLERP, though we do not directly mea-
sure semantic similarity of latent codes during conditional sampling, the notion
of representational similarity looms large. To some extent, semantic combina-
tion achieved by latent space interpolation is derivable from representational
similarity. Given this property, the spatial separation between two points in
latent space should reflect the semantic similarity of their counterparts in input
space. Then, a point midway on the straight line connecting two latent codes is
likely to represent a sample that is half as similar as either input. Generalizing
beyond two codes, points on a latent hyperplane, just like points on a line, are
convex combinations of their vertices, and are bound by semantic similarity to
proportionally combine their characteristics. Results in Section 10.3, where we
randomly sample a latent hyper-triangle, support this reasoning. Not only is
this reasoning relevant for conditional sampling, but it also extends to searching.
In GRADES, we take special care to restrict the search to the latent hyperplane
demarcated by conditions. A point outside the hyperplane is not a convex
combination of its vertices, and is no longer bound by semantic similarity
to combine the characteristics of specified conditions. With representational
similarity strongly underpinning latent interpolation, the extent to which we
rely upon interpolation for conditional sampling and search sufficiently high-
lights the indirect, yet important, role played by this property in our stimulus
generation enterprise. Simply put, all three algorithms that we develop to solve
tasks in software design and testing depend, at some level, upon this important
property. It is also useful to note that, just like the properties of regularity and
interpolation, representational similarity has also been subjected to empirical
and theoretical scrutiny. As described in one recent analysis [179], such studies
focus upon aspects like understanding the mechanics of learning representations,
and identifying appropriate methods for measuring representational similarity.

12.6 Put together, pre-train and calculate

As a final act of re-examination, let us review the three techniques that we
develop for solving tasks in automotive software design and testing.

1. To assess compliance of vehicle application software with the CH design
pattern, we use (a) tasnet, a foundation language model for automotive
software, and (b) DECO, a rule-based mechanism which assesses embedding
regularity in tasnet representation space to measure compliance.

2. To generate realistic stimuli for testing vehicle application software in vir-
tual rigs, we use (a) logan, a foundation GAN model of signal traces, and
(b) MLERP, a rule-based mechanism which primarily uses latent space
interpolation for conditionally sampling stimuli.

3. To search for realistic stimuli that satisfies a test objective like code coverage,
we use (b) silgan, a foundation GAN model that translates templates to

12.7. WHAT ABOUT PRE-TRAIN AND PROMPT? 153

signal traces, and (b) GRADES, a rule-based algorithm that mainly uses
gradient descent in latent space to search for appropriate stimuli.

As a distillation of the common recipe that we use for solving software engineer-
ing tasks, this three-point review speaks for itself. The predictive approach that
we employ has two essential steps (a) a foundation model pre-trained on the do-
main of operation, and (b) a rule-based algorithm that calculates a prediction us-
ing simple vector operations. Together, they constitute ‘pre-train and calculate’,
the paradigm that we originally set forth in Section 1.3 as the main approach
we use to solve automotive software engineering tasks. Studies in Parts I and II,
along with their re-examination in this chapter, clearly demonstrates that this
paradigm successfully automates complex tasks in automotive software design
and testing, the overall objective which we set in Section 1.2. Thus, pairing pre-
trained foundation models with rule-based ‘heads’ for calculating predictions
institute a viable model for unsupervised task specialization in software engi-
neering. Moreover, this approach is vastly more nuanced than stereotypical fully
supervised training, or fine-tuning, which use supervision to predict a relatively
rigid discrete set of labels. Predictions with ‘pre-train and calculate’, in contrast,
are much more nuanced, easing the application of these tools in real-world tasks
that require margins and trade-offs in decision-making. Further, the use of prop-
erties, which are empirically observed and theoretically studied, in calculating
predictions makes this approach principled, relatively transparent, and explain-
able. This increases the likelihood that engineers use these tools with confidence.

12.7 What about pre-train and prompt?

The exercise of re-examination, conducted in this chapter, helps culminate the
reasoning that ‘pre-train and calculate’ constitutes a paradigm for unsupervised,
nuanced, and explainable task specialization in automotive software engineering.
In the extended presentation of this reasoning, over several previous chapters,
we have repeatedly compared this paradigm with two dominant alternatives,
one being fully supervised training, the other being ‘pre-train and fine-tune’.
As pointed out in Section 2.2, both alternative approaches require annotation
or supervision, the former at large scale and the latter at relatively smaller scale.
Tasks in automotive software engineering, as we have repeatedly noted, do not
easily lend themselves to the rigid recipe for task specialization that either su-
pervised paradigm offers. Engineering tasks are fluid, involve several trade-offs,
and involve humans in the loop. Many tasks therefore, particularly the software
design and testing tasks that we have examined, cannot be easily depicted as
annotated datasets, precluding supervised task specialization. The alternative
‘pre-train and calculate’ approach, which we demonstrate, avoids explicit super-
vision and, using principled rule-based predictive approaches, introduces much
needed nuance and transparency. While ‘pre-train and calculate’ may have clear
advantages over supervised paradigms for solving certain types of tasks, there is
one other paradigm, something that been massively disruptive in recent years,
which is interesting to additionally consider, and that is ‘pre-train and prompt’.

154 CHAPTER 12. VECTOR OPERATIONS - A JOINT RE-EXAMINATION

When discussing foundation models in Section 2.2, we stated that these models
are typically not used directly to solve tasks. We had also qualified this state-
ment, noting that this stance has been challenged, quite successfully, by the
‘pre-train and prompt’ paradigm. Let us therefore briefly examine the essence
of this new paradigm, and we can do this by reverting to sentiment and emotion
classification tasks, which we used as running examples in Section 2.2. These
tasks involve processing a natural language sentence like ‘I miss my dog’,
and classify the attitude or feeling it conveys. On a positive/negative scale, a
stereotypical sentiment classifier would classify this sentence as conveying a neg-
ative sentiment. Similarly, an emotion classifier, using a much more elaborate
discrete scale, would classify it as conveying, say, ‘sadness’. Let us then turn to
a foundation model of natural language like BERT which, being trained upon a
large corpus of natural language text, should be able to process the sentence in
question. In fact, it is precisely this capability that makes it useful for seeding
a task specialist using ‘pre-train and fine tune’ paradigm. While BERT can
certainly be fine-tuned, can we use it without any extra training for sentiment or
emotion prediction? BERT, if we recall, has been pre-trained using the cloze ob-
jective. The model is presented a sentence with some of its tokens masked, and
is tasked to predict tokens that should appear in masked positions. After pre-
training, therefore, let us consider presenting the input ‘I miss my dog. I

feel <mask>’. Leveraging its training, BERT is likely to complete the sentence
by predicting ‘sad’. This way, without using any additional training, BERT
can be subverted into predicting the emotion of a sentence. The key element of
subversion is, of course, the ‘prompt’ that we add to the original sentence. The
cleverly worded appendage ‘I feel <mask>’ sufficiently prompts BERT to pre-
dict its emotion. The benefit of this approach is that we get a task specialist with
no extra effort – the pre-trained foundation language model suffices. The cost,
of course, is that we need to identify an appropriate prompt for the task at hand.

While cleverly prompting BERT opens up an interesting paradigm for prediction,
generative language models like GPT-3 have proven to be far more amenable
to prompting. Generative language models are typically pre-trained on the
Causal Language Modeling (CLM) objective. Under this objective, the model is
presented with a sequence of tokens and is tasked to predict tokens that should
follow. This, as can be clearly seen, is very much the pattern in which the BERT
prompt ‘I feel <mask>’ is constructed. Except that in the CLM case, there is
no need for <mask> and the model directly predicts tokens that are likely to fol-
low ‘I miss my dog. I feel’. CLM pre-training, therefore, produces mod-
els which can be prompted much more freely. One example, from [45], illustrates
this capability, where the prompt ‘Translate English to French: cheese

=>’ makes GPT-3 correctly predict the most likely subsequent token fromage.
It may have begun with simple recipes of this nature but today, the act of con-
structing prompts has become a discipline in its own right – prompt engineering.
As we speak, this discipline is pushing boundaries, constructing prompts with
cleverness and sophistication [180], extracting predictions of increasing value.

Primarily, this discussion serves to show that we now have access to a powerful
alternate ‘pre-train and prompt’ paradigm, which extracts predictions from foun-
dation models with no extra training. What, therefore, are its implications on

12.7. WHAT ABOUT PRE-TRAIN AND PROMPT? 155

the ‘pre-train and calculate’ paradigm, which we have used for unsupervised task
specialization in automotive software engineering? Let us begin by first under-
standing their similarities. Clearly, both paradigms base themselves upon pre-
trained foundation models. In both cases, the use of domain generalists provides
the necessary breadth to solve more than one task. Another aspect of similarity,
perhaps less evident, is that both of them are based upon empirically observed
properties of foundation models. In ‘pre-train and calculate’, for instance, a well-
observed property like embedding regularity has been used for assessing design
compliance. Interestingly, there are parallel well-observed properties in prompt-
ing. For example, experiments in prompting revealed that generative language
models consistently underperform tasks involving complex reasoning. In [181],
for instance, the following multistep math word problem was posed as a prompt:

Q: A juggler can juggle 16 balls. Half of the balls are golf

balls, and half of the golf balls are blue. How many blue golf

balls are there? A:

Many models, including GPT-3, responded to this prompt with wrong answers.
Astoundingly, [181] observed that simply appending the string ‘Let’s think

step by step’ to the prompt, causes the model to not only predict the correct
answer, but also provide the following step-by-step reasoning.

There are 16 balls in total. Half of the balls are golf balls.

That means that there are 8 golf balls. Half of the golf balls

are blue. That means that there are 4 blue golf balls

Though it may seem bizarrely arbitrary, this prompt is nonetheless an empir-
ically observed ‘property’ of generative large language models that can be used
for extracting predictions. In fact, [181] performed this experiment on more than
a dozen models, using about half a dozen benchmark tests, to confirm the consis-
tency and versatility of this prompt. In that sense, this prompting observation
is not materially different from the consistent observation of embedding regu-
larity in language models, which we repurpose for predicting design compliance.
Further, the example above also makes it clear that predictions can be quite de-
scriptive and self-explanatory, and prompting can be nuanced. What, then, are
the differences between ‘pre-train and prompt’ and ‘pre-train and calculate’?

The first major difference is that prompting takes place in the interpretable input
space, while calculation takes place in abstract representation space. Therefore,
no matter how clever or descriptive it is, the effectiveness a prompt is bound
to the syntactic and semantic capabilities of the formalism used for prompting.
Take the example of semantic combination, which we used in MLERP for gen-
erating novel stimuli that are semantically intermediate between two conditions.
Achieving this semantic combination in the input space of signal traces is clearly
difficult but in latent space, it is trivially achievable using linear interpolation. In
this case, the xgan representation space has traded-off interpretability in favor of
simplicity in semantically arranging and manipulating information. As a result,
a semantic combination that is difficult to express (or prompt) in input space, is
trivially accomplished in representation space. The crucial insight that can be
drawn from this is that representation space projects additional capabilities that

156 CHAPTER 12. VECTOR OPERATIONS - A JOINT RE-EXAMINATION

are not easily available in input or prompting space. The second major differ-
ence is that, currently at least, the prompting paradigm is heavily reliant upon
language. Even if a model predicts modalities other than text, the prompting
interface largely remains textual. As an example, the DALL-E image generation
model which we noted earlier, may take images at its inputs but still relies upon
text for a bulk of the prompting. How such a text-heavy prompting process
extends to a modality like signal traces, remains an open question. Exposing
a dedicated text input modality in xgan, simply for the purpose of prompting,
can incur significant cost. For instance, unlike images which co-occurs with text
quite often, cases where signals and text occur together are extremely rare. Thus,
while it is likely that prompting becomes increasingly multimodal, it remains to
be seen how prompting scales to incorporate niche modes of information, which
are specific to a discipline like automotive software engineering. Innovation of
new multimodal prompting paradigms for solving software engineering tasks
in the automotive context is a clearly interesting area for future investigation.

Also, the fact that prompting focuses on the input and calculation focuses upon
representations means that the techniques can complement each other. A com-
bination of the relative strengths of both paradigms has the potential to reveal
powerful techniques for extracting predictions. Practically, prompting has been
typically used on decoder-only generative models which do not expose a rep-
resentation space. There are, however, language models like BART [91], which
do expose a latent space. Such generative latent space models provide another
interesting future avenue for combining prompting and calculating paradigms.

Chapter 13

Explaining representation
spaces

The previous chapter recounted the ‘pre-train and calculate’ paradigm, which we
use for building tools that ease design compliance assessment and virtual testing
of vehicle application software. Key elements of the paradigm are foundation
models that learn abstract representations of input domains, and rule-based al-
gorithms that use simple vector operations in representation space. These vector
operations are themselves based upon well-observed properties of representation
spaces like semantic similarity, regularity, and interpolation. Relying upon
inherent properties of representation spaces may have allowed us to take a prin-
cipled approach to calculating predictions, but it is important to acknowledge
that representation spaces are both high dimensional and abstract. This usually
means that they do not lend themselves easily to scrutiny, making it difficult to
identify and evaluate properties upon which predictive techniques can be based.
As a result, there is a clear need to develop necessary techniques that probe
foundation models in order to better understand their properties. The previous
chapter itself points out many such techniques that attempt to explain how
properties like similarity or regularity manifest. Such explanation was crucial
to our construction of DECO, which repurposes these properties for assessing
design compliance. While such probing studies are valuable, it is important to
note that probing techniques for explaining foundation models need to address
the fact that these models have domain focus, and not task focus. In the context
of stereotypical task specialists like a cat/dog classifier, most probing techniques
([182] reviews a collection) focus on the task to explain properties more ‘locally’.
That is, given an input and a prediction made by the classifier, one common
technique for explanation is to identify parts of the input that has most influence
in causing the model to predict this label. Such an explanation can, for instance,
show that the classifier chose a cat label mainly based on the ears, eyes and
whiskers of the given cat image in the input. While such explanations are useful,
they only apply to one particular input and its prediction, which makes the
explanation local and task-specific. With foundation models having a relatively

157

158 CHAPTER 13. EXPLAINING REPRESENTATION SPACES

global domain-level focus, explanations of properties, therefore, need to go well
beyond one input and one task, to somehow address a domain as a whole.

Recent years have produced studies that focus specifically on explaining domain
comprehension, examples of which are [183], which studies properties of image
representation, and [184] which does the same in the domain of clinical health
data. In parallel, with the rapid advance of patently generalist language models,
a number of benchmarks have been introduced that probe, test, and explain var-
ious aspects of language and knowledge comprehension [118]. Taking inspiration
from such probing techniques, we now describe two studies that we ourselves con-
duct in explaining specific high dimensional abstract spaces. The first, described
in this chapter, focuses on the tasnet model and seeks to explain its adaptation
to the domain of vehicle application software. The second, described in the
next chapter, focuses on training data itself, and seeks to explain the nature of
its sample representation. At the outset, we wish to clarify that the two studies
that we describe are preliminary and are not fully explored. We mainly present
them as initial findings that could potentially be expanded in future work.

13.1 Explaining domain adaptation in tasnet

In Part I, we presented the tasnet model and its application to the task of
design compliance assessment. While describing the use case, we noted that
under current practice, assessing whether a pair of programs comply with the
principles of the CH design pattern is a manual activity that is reserved for
experienced programmers and software architects. The need for using expert
knowledge arises simply because judging compliance with CH requires specialist
understanding of different aspects of engineering vehicle application software.
This rationale is, in fact, faithfully reflected in the manner in which we train
tasnet as an approximation of this expertise. As explained in Chapter 5,
the tasnet model undergoes a three-step training process. First, the tasnet

variant FA is trained on C code from the GitHub public dataset to impart
a fundamental knowledge of C-programming. Then, FA is adapted into the
variant FB by continuing to pre-train it on the TAS corpus, according to the
training objective (5.9), so that specific knowledge of AUTOSAR application
programming is imparted. Finally, FB is adapted into FC , using the objective
(5.10), to impart knowledge of controller and handler SWCs. As also noted in the
results of the controlled experiment in Chapter 5, proceeding to train with the
domain specific TAS corpus clearly results in better performance on the design
compliance assessment task. When analyzing the improvement in performance
that results with domain specific training in Chapter 6, one contributing factor
that we reasoned is that the training results in an arrangement of embeddings
with better regularity. Another factor, which we reasoned, was that training
with a domain-specific corpus leads to a better understanding of the domain
itself, which results in program embeddings that better capture necessary
semantics. In this chapter, we seek to probe the latter reasoning. That is, we
seek to explain whether the tasnet variant FB is much more knowledgeable
about AUTOSAR application programming in the TAS domain, compared

13.2. RELATIVE IMPORTANCE OF TOKENS IN A DOMAIN 159

to FA. If confirmed, such an observation increases the confidence with which
tasnet can be applied for solving any task, including design compliance, in
the TAS domain. One alteration we wish to point out is that the tasnet

model, which we discuss in this chapter, has a slightly different neural network
architecture compared to the original tasnet model presented in Part I. Unlike
the original model, which uses Reformer layers in its encoder, the tasnet

model discussed in this chapter uses the vanilla Transformer layers. Using
Transformer layers, tasnet variants studied in this chapter accept a maximum
input sequence length of 1024 tokens. Apart from this, all major details,
including the training corpus and hyperparameters, are largely identical.

From previous discussions in Chapter 5, one can recall that both FA and
FB tasnet variants involve pre-training using the cloze or MLM objective.
Therefore, one simple way to test comprehension of the TAS domain is to
subject both models to a cloze test on a held out set of programs from TAS.
The results of such a test is shown in Table 13.1 clearly shows that FB , which
is fine-tuned on the TAS corpus, predicts masked tokens with 97% accuracy on
held out TAS code. In contrast, FA, which has no knowledge of TAS, exhibits
a relatively lower – but still surprisingly high – 93% accuracy in predicting
masked TAS tokens. Is this not an indication that continuing to train using
cloze on the TAS corpus imparts sufficient knowledge of the TAS domain?

Table 13.1: Mean top-1 cloze test1 accuracy
Model On the GitHub corpus2 On the TAS corpus3

FA 0.948 0.927

FB 0.914 0.972

1 By uniform randomly masking 15% of tokens
2 On held-out 5k files
3 On held-out 10% of TAS files

13.2 Relative importance of tokens in a domain

Let us examine the sufficiency of the cloze test in testing domain comprehension
using a code snippet adapted from TAS (Figure 13.1). This snippet reads
the state of charge of a battery in the vehicle. Then, let us consider three
hypothetical cloze tests conducted on this snippet, where tokens {, ==, and
signal are respectively masked individually. The first test, with { alone
masked, is primarily a test of C syntax. The second cloze test, with == masked,
goes beyond syntax and tests the model’s understanding of the flow of logic
in the snippet. However, if a token like signal is masked, then the test is
actually about a concept that is crucial in the TAS domain. The notion of
signal, as we saw earlier, is of fundamental importance to AUTOSAR, helping
transact information between SWCs. Figure 13.1, which shows how a signal is
typically read and validated, is an example of an oft-reused pattern for handling
signals. Given such an exemplary snippet, as observed in comparable settings
in [185] and [186], if tasnet is able to correctly predict a masked signal token,

160 CHAPTER 13. EXPLAINING REPRESENTATION SPACES

it demonstrates the model’s ability in understanding and summarizing the
surrounding context of reading and validating signals. Stated otherwise, if the
model correctly predicts masked instances of signal in the third cloze test, it is
a strong indication that it has understood an important programming context in
TAS. Thus, the question if the cloze test results in Table 13.1 reflects sufficient
understanding the TAS domain boils down to whether enough tokens of domain
significance are masked during the cloze test. This reasoning is also intuitive
because a human C-programmer can demonstrate an understanding of TAS
domain by showing how some of its key concepts like signal are used in practice.

Figure 13.1: An example snippet adapted from TAS that reads battery state
of charge. As indicators of knowledge in the TAS domain, highlighted tokens
in this code snippet are much more important.

In any code corpus, tokens are not uniformly abundant, with programming
language keywords occurring much more often. In TAS, for instance, the {
token occurs more than 200k times. On the other hand, a domain keyword like
signal occurs only around 12k times as a unigram and around 40k times as a
subword. This means that the uniformly random BERT masking recipe (used
for tests in Table 13.1), which is seemingly egalitarian, disproportionately masks
more numerous syntactic tokens at the expense of rarer domain keywords. Such
a skewed process is detrimental to the evaluation of domain comprehension in
many ways. First, the mean cloze test accuracy is numerically dominated by
syntactic tests. Mistakes in predicting domain keywords, which indicate a weak-
ness in domain comprehension, do not significantly influence the score. Second,
the predominant masking of syntactic tokens presents a relatively pristine code
context, making it a weaker test for domain comprehension. For instance, ap-
plying BERT masking to the code snippet in Figure 13.1 is likely to mask only a
tiny fraction, perhaps a single instance, of domain keywords like signal. If only
one instance of signal is masked, and many more of its instances are visible,
there is enough ‘leakage’ of information from the context for the model to cor-
rectly guess the masked token. With syntactic tokens being dominantly masked,
domain-sensitive hints in the context may not be significantly suppressed. Third,
masking a fixed proportion (15%) of tokens for each test is clearly narrow. If
we take the same signal token in the example above, we may sometimes need
to mask all (or 100%) of its instances for the test to be sufficiently challenging.

13.3. CONDUCTING A VOCABULARY CHALLENGE 161

Nevertheless, the cloze test remains an effective and intuitive means for eval-
uating any language model that operates with code tokens. Therefore, in order
to test the domain comprehension of tasnet, we simply realign the cloze test
by masking tokens non-uniformly based upon their importance to the domain.

13.3 Conducting a vocabulary challenge

Based upon the reasoning presented above, we conduct a modified cloze test to
check domain comprehension using the following steps.

Curating a vocabulary of domain keywords – As illustrated using Figure
13.1, even in a specialist code corpus like TAS, individual tokens are of varying
significance to the domain. Based upon their significance to the TAS domain,
we divide tokens (subwords) into three categories, (1) special tokens which
are important markers for TAS domain awareness, (2) basic tokens which are
language keywords and characters, and (3) other tokens which pools all that re-
main. Curating basic tokens in the C language is straightforward, but curating
special tokens needs some effort. Using expert knowledge available at Volvo,
we achieve this by examining the vocabulary of the TAS corpus and manually
selecting tokens of domain significance. The list of special tokens that we select
for testing TAS domain comprehension are signal, read, write, run, CAN, Rte,
call, controller, and handler. Manual curation, even with expertise in TAS,
undoubtedly tends to be subjective and non-exhaustive. However, we find that
curating this compact, yet healthy, list of domain keywords yields interesting
results. It is important to note that subwords, so curated, are treated as seed
keywords. Other subwords, in which a seed keyword is a substring, is also
included. For instance runnable, in which the seed keyword run is present, is
also included as a domain keyword. Put together, the total number of special
tokens used in our modified cloze test of domain awareness accumulates to 125.

Masking non-uniformly – In order to test domain comprehension, we then
design a recipe that masks each of the three token categories differently. First,
we minimize syntactic tests setting the masking rate for basic tokens as
MB ∼ U(0, 0.04). We then shift domain keywords to the ‘foreground’ by
masking special tokens at a rate MS ∼ U(0, 1). This ensures a full spectrum
of foreground masking, where the model is challenged with none to all the
instances of domain keywords suppressed. This then leaves other tokens, which
we mask with the rate we set MO ∼ U(0, 0.35). With the basic and other token
categories together constituting the ‘background’, MO primarily decides its
level of suppression. Put together, this recipe of non-uniformly masking tokens
based upon their domain significance results in an effective average masking
rate that is quite close to the BERT rate of 15%, with which tasnet is trained.
A comparable non-uniform masking recipe, but based upon token frequency
and not importance, was proposed by [187] for language model pre-training.

Conducting the cloze test – In each test iteration, based upon sampled
masking rates MS and MO, a fraction of foreground and background tokens

162 CHAPTER 13. EXPLAINING REPRESENTATION SPACES

in a randomly drawn test code snippet c is replaced by a mask token m. This
creates the masked code snippet cM , which is then presented as input to the
tasnet variant under test. Then, the top-1 prediction accuracy per token
category is calculated according to (13.1), by comparing the predicted token
with the masked ground truth. Accuracy scores are averaged over ∼1M test
iterations for each variant of tasnet tested. Among measured scores, the
accuracy of predicting special tokens of domain significance (uS) thus becomes
a direct measure of domain awareness.

u = Ec∈C F(cM)[k] == c[k],

k = {i : ti = m, ti ∈ cM}
(13.1)

Since our redesigned cloze test, in effect, measures a model’s capability in under-
standing the context of a curated domain vocabulary, we refer to it as the vocab-
ulary challenge. For each model, we run two instances of the challenge, setting
the length of the input code snippet Lc to 512 and 1024 subwords respectively.

13.4 Results

The results of the vocabulary challenge are summarized in Table 13.2, which
shows model performance in terms of three quantities. Two are the accuracy
of predicting basic (uB) and other (uO) tokens, where we show the lowest
accuracy among the two experiments with different Lc options. Next is the
measure (uS), the accuracy of predicting special tokens which is our primary
indicator of domain awareness. Accuracy scores are aggregated over ∼1M
iterations for each model-challenge set combination.

Table 13.2: Mean accuracy u1 on the vocabulary challenge2

Model uB uO
uS

Lc = 512 Lc = 1024
FA 0.97 0.88 0.67 ± 0.2 0.74 ± 0.2
FB 0.99 0.95 0.82 ± 0.1 0.87 ± 0.1

1 Divided by category B-Basic, O-Others, S-Special
2 On held-out 10% of TAS files

Based upon these results, we make the following observations

1. The vocabulary challenge reveals that the base tasnet variant FA, trained
only on GitHub code, is markedly weak in predicting TAS domain keywords.
As seen in the table, FA shows significantly worse awareness of the domain
(∼67%) compared to an excellent proficiency in syntax, and perhaps logic
(∼97%). When we tested domain adaptation earlier using a cloze test with
simple BERT-masking (Table 13.1), we saw an accuracy of ∼93% in predict-
ing masked TAS tokens. Clearly, the modified cloze test in the vocabulary

13.4. RESULTS 163

challenge, with non-uniform masking, reveals weaknesses in domain under-
standing which simple BERT masking, with its optimistic results, does not.

2. It is equally clear that FA does not drastically mispredict domain keywords.
For instance, by correctly predicting ∼67% of domain keywords in TAS, the
model shows noteworthy capability in handling key TAS contexts.

3. Doubling the length Lc of the code snippet shows a marked improvement in
predicting domain keywords. This is intuitive, since the model has a better
chance of understanding and summarizing the domain context if it has
access to more information. However, it is important to note that even with
a token length of 1024, it is inevitable that domain contexts are unfavorably
truncated, adversely limiting the prediction of keywords. This is one key
observation that justified the choice of a different architecture in the tasnet

model in Part I, one that allowed us to increase the context length to 8192.

4. Continued pre-training on the TAS corpus is the single most important factor
in improving the prediction of domain keywords. In the tasnet variant FB ,
the improvement in keyword prediction accuracy from ∼67% to ∼82% is
substantial. With double the context length, the accuracy improves to ∼87%.

While continuing to pre-train on the TAS corpus and doubling the context length
seem to reveal better domain awareness, one concern is that the variance in the
accuracy of predicting domain keywords is significant (0.1 < 1σ < 0.2). Partic-
ularly, if the accuracy of prediction is negatively correlated with the foreground
masking rate, it is an indication of weaker domain awareness. Stating this differ-
ently using the example in Figure 13.1, such negative correlation is akin to saying
that tasnet is more likely to predict masked instances of signal only if a signif-
icant proportion of fellow-special tokens – more likely other instances of signal
itself – are left unmasked. Ideally, with good domain awareness, even if a signif-
icant proportion of keywords are masked, the model should be able to use back-
ground information to understand the context. To confirm if foreground mask-
ing does indeed have a strong influence in the prediction of domain keywords,
we analyze the respective influence of various factors on the prediction accuracy
of special tokens. Two of these are the masking rate of special tokens MS , or the
foreground masking rate, and the background masking rate MBO, the combined
masking rate of basic and other tokens in the snippet. The third is uBO, the
background prediction accuracy. As a simple indicator of influence, over ∼1M
trials of the vocabulary challenge on each model, we measure the Pearson cor-
relation coefficients of three test quantities (MS ,MBO, uBO) with the accuracy
of predicting of special tokens uS . Though they capture only linear influence,
correlation coefficients shown in Table 13.3 reveals interesting observations.

1. For the base variant FA with Lc = 512, a correlation of ∼-0.8 with MS

indicates that domain keywords tend to be correctly predicted only when the
foreground masking rate is low. That is, when the model does predict cor-
rectly, it is mostly due to cues ‘leaked’ from the foreground instead of context
gleaned from the background. A close to zero correlation with both back-
ground masking rate and accuracy, MBO and uBO reinforces that prediction

164 CHAPTER 13. EXPLAINING REPRESENTATION SPACES

Table 13.3: Correlation1 of the accuracy of predicting design keywords (uS)
with key test factors2

Model Lc Ms uBO MBO

FA
512 -0.79 0.09 -0.07
1024 -0.77 0.09 -0.07

FB
512 -0.72 0.17 -0.14
1024 -0.70 0.16 -0.13

1 Pearson correlation coefficient
2 Lc: length of code snippet, MS : foreground mask-
ing rate, MBO: background masking rate, uBO: back-
ground prediction accuracy

of special tokens is minimally affected either by the quantity of background
masking or by the model’s accuracy in predicting them. The disproportion-
ate dependence on foreground information indicates a relatively weak and
shallow understanding of the domain. Doubling the length of the context to
Lc = 1024 slightly reduces the influence of the foreground masking. While
this minimally favorable development may account for the relatively small im-
provement in prediction accuracy, foreground dependence remains significant.

2. Upon fine-tuning with TAS, for FB , correlation with the foreground mask-
ing rate drops to ∼-0.7. There is a corresponding increase in background
dependence, both on its masking rate and prediction capability. With
increased familiarity in the target domain, when the model is challenged
with the vocabulary challenge, the model is beginning to depend more on
the background to solve it. This reveals better domain awareness. Dou-
bling the context, further induces a slight reduction on the influence of
foreground masking. Thus, while this attribution exercise confirms an un-
favorable dependence on foreground information, fine-tuning on the corpus
and increasing the context size does alleviate it.

In summary, encouraging signs of domain awareness from the vocabulary chal-
lenge are that the base variant FA is not drastically weak in predicting domain
keywords. Increased familiarity in the TAS domain, and increasing the input
context seen by the model reveal increased domain awareness. Overall, these
observations indicate that the training step that adapts the base variant FA to
FB results in a measurable improvement in domain awareness. Despite these
positive observations, it is also clear that there is room for improving the level of
domain awareness beyond the ∼87% accuracy of predicting domain keywords.

13.5 Discussion

Subjecting tasnet to a vocabulary challenge is one example of how global
properties of a foundation model can be understood by subjecting it to a probing
test. In this case, the property under investigation is tasnet’s comprehension
of the TAS domain. The method of investigation is to subject model variants

13.5. DISCUSSION 165

to a modified version of the cloze test. The modified challenge prioritizes the
masking of specially curated domain keywords, and checks if the model under
test sufficiently understands the domain context to correctly predict keywords.
The test, as analyzed in the previous section, reveals that continuing to pre-train
on the TAS corpus does induce significant improvement in domain awareness.
We now discuss the implications of this analysis on some important factors.

On design compliance assessment – In many ways, the primary subject
of analysis in the vocabulary challenge is the training step (5.9), which adapts
variant FA to FB. In this chapter, we have seen that this step induces an
improved awareness of the TAS domain, measured by a better comprehension
of domain keywords like signal and Rte. In parallel, as seen in Table 5.2, this
training step also results in better performance in the task of design compliance
assessment. Taking these parallel observations together, it is plausible to reason
that increased domain awareness is a causal factor for improved performance in
compliance assessment. At first glance, such a reasoning may seem superfluous
but, in order to understand its significance, it is helpful to recount the nature of
DECO. In the compliance assessment process conducted in DECO, the predomi-
nant focus is upon the arrangement of embeddings. The fact that the algorithm
is based upon embedding regularity only serves to amplify its geometrical aspect.
This may, however, communicate the impression that it is the arrangement
alone, and not the semantic quality of the embedding, that leads to better perfor-
mance. The vocabulary challenge, however, clearly reveals that adaptation from
FA to FB leads to both a better program embedding, and a better arrangement
of embeddings. Thus, rather than either individual factor, it is their combina-
tion that is likely to have led to better compliance assessment. The reasoning
that increased domain awareness leads to better compliance assessment also
correlates with intuition. After all, a human engineer, who possesses a better
knowledge of the TAS domain, is likely to better equipped to assess compliance
with CH, which is a pattern that regulates key concepts in the TAS domain.

On the pre-training objective – In attempting to reveal domain awareness
in tasnet, the construction of the vocabulary challenge begins by pointing
out a weakness in BERT masking. The simple recipe of uniform randomly
masking 15% of tokens specified for BERT, and adopted for tasnet, results
in a masking regime that is heavily skewed by the frequency of tokens in the
pre-training corpus. Since syntactic tokens occur far more frequently than
semantically important tokens, BERT masking tends to favor the former. If,
as reasoned previously, this leads to weaker assessment of domain awareness
during testing, does it not induce an equivalent weakness during training?
When training, if semantically important tokens are not masked often, the
model is clearly not being sufficiently challenged to predict tokens of import.
This, in fact is the stance taken by [187], which proposes a masking recipe that
is sensitive to the frequency of token occurrence. Should we not, therefore,
deprecate BERT masking in favor of stronger alternatives? The issue, here, is
that BERT masking may indeed provide a weaker signal during training, but its
overwhelming advantage is that it is simple to apply at scale. Language model
pre-training, as we have witnessed, can involve corpora consisting of billions
of tokens. Pre-training at such a large scale is well-served by a masking recipe

166 CHAPTER 13. EXPLAINING REPRESENTATION SPACES

that is simple and scalable. A masking recipe that is, say, cognizant of token
frequency, needs one full pass through the corpus at worst case. While there are
means to achieve this more efficiently, considering the scale of pre-training, the
cost of incorporating token frequency in the masking recipe, may be substantial.
The simplicity of BERT, on the other hand, allow us to tolerate and compensate
for some of its weaknesses. In fact, this observation is repeatedly reflected in
practice where, even recently announced encoder foundation language models
like [188], continue to use the BERT masking recipe for pre-training.

On pre-train and calculate – The vocabulary challenge also has positive
implications for the ‘pre-train and calculate’ paradigm which we employ for un-
supervised task specialization. One fundamental component of the paradigm is
the availability of a foundation model that faithfully and efficiently represents se-
mantics of inputs from a domain. Stated otherwise, only if the embedding is well-
constructed can it be properly applied for predictions using rule-based calcula-
tions. A probing test like the vocabulary challenge, which explains the quality of
adaptation to the domain of interest, gives an indication to the quality of the se-
mantics captured by the embedding. In the case of tasnet, for instance, the fact
that the vocabulary challenge reveals a healthy level of adaptation to the TAS do-
main means that the model represents data in this domain with quality. Embed-
dings of good quality, as revealed by the performance of the design compliance as-
sessment task, leads to better predictions using rule-based calculations. Simulta-
neously, the revelation that there is room for improvement in domain adaptation
is equally valuable because concerted efforts can be undertaken to address gaps.

Related work – In evaluating tasnet using the vocabulary challenge, we
reuse several techniques from the area of Natural Language Inference (NLI),
a comprehensive survey of which is presented in [189]. Such techniques seek to
evaluate (or train) specific aspects of natural language understanding. NLI eval-
uation, just like our approach, typically involves the curation of a challenge set,
a prediction task (including cloze), and an evaluation measure. NLI approaches
comparable to ours include [190] which uses the cloze test on curated English
language sentences to check the subject-verb agreement. Another example
is the story cloze test [191], which is a benchmark for evaluating narrative
structure learning. Closer to our setting, [192] tests a bimodal model of natural
and programming language by similarly curating and masking a selected set
of keywords, though without taking token frequency into consideration.

13.6 Future extension

While the vocabulary challenge reveals useful information about the level of
domain adaptation in tasnet, it is clear that this challenge merely scratches the
surface. Considering that tasnet is a foundation language model for automo-
tive software, and the range of tasks to which it can be possibly applied, many
more benchmarks are required to better characterize its properties. An inspiring
benchmark that we can look up to would be HELM [118], which is arguably the
current gold-standard for evaluating large language models. By the sheer num-

13.6. FUTURE EXTENSION 167

ber of properties that it evaluates, it sets a high bar to emulate. If not HELM
which, after all, tests general natural language understanding, we can instead
turn to comparable domain-specific benchmarks. Good examples are the ones
used in [193] for evaluating a language model for finance, [194] which measures
comprehension of biomedical language, and [195] which benchmarks a variety of
coding tasks. In startk contrast to any of these examples, there is clear lack of
sufficient benchmarks for evaluating models of automotive natural and program-
ming language. More generally, the fact that language modeling in the automo-
tive domain is very much in its infancy means that substantial work is needed to
identify and define benchmarks in this area. Many challenges are likely to crop
up when attempting to define such benchmarks. Information modalities used in
automotive software engineering go beyond just code and accompanying natural
language documentation. Code, in automotive software engineering, exists in an
ecosystem that includes formal descriptions of software architecture, test cases
at different levels of integrations, ECU configurations, vehicle configurations,
etc. A holistic benchmark of language models of vehicle software thus needs to
holistically consider the larger multidisciplinary world in which software is devel-
oped. Developing such a holistic benchmark and, thereby, a language model that
spans the breadth of knowledge in the automotive domain is a crucial avenue
for future work. In undertaking this long, yet ultimately useful and necessary
journey, a test like the vocabulary challenge is a starting point as healthy as any.

168 CHAPTER 13. EXPLAINING REPRESENTATION SPACES

Chapter 14

Explaining sample
representation in data

The previous chapter describes a technique which can be used to explain an
abstract high-dimensional space of representations, but this chapter considers
explaining a different high-dimensional space – data. A large dataset may not al-
ways be abstract but, in the deep learning context at least, is almost always high-
dimensional. The code corpora used to train tasnet consists of millions of files,
with thousands of tokens each. Comparably, the dataset of signal traces used to
train xgan contains hundreds of thousands of minutes-long multi-variate time
series. Surely, these are very good examples of large high-dimensional datasets.
In training any DNN, a fundamental reality is that the choice of the ‘right kind’
of data plays an important role in ensuring that the model, with which this data
is trained, is able to generalize. For instance, having trained tasnet on GitHub
and TAS corpora, can we expect it to generalize to software engineering tasks in
industrial process control? We could perhaps venture an answer to this question
if we knew whether code from the process control domain is included in the
training corpus. Setting aside the difficulty in drawing firm boundaries between
domains, when it comes to a specialist corpus like TAS, we can conclude with
high confidence that it does not include process control code. Can we come to a
similarly confident conclusion for the GitHub corpus that contains hundreds of
millions of files of source code? Clearly difficult. As training corpora in different
domains rapidly expand, understanding the diversity of data that they represent
becomes a challenge. Without a firm grip on the diversity represented in data, it
is not easy to reason about the generalization of models trained with this data.

In order to help understand sample representation in datasets, in this chapter,
we present a study that examines the diversity of representation in a reasonably
large dataset. Departing from our world of software engineering and its informa-
tion domains of source code and signal traces, we conduct the study on a dataset
of simple geometric images of hand-drawn circles and squares. The rationale be-
hind the departure is that the relative simplicity of information contained in this

169

170 CHAPTER 14. EXPLAINING SAMPLE REPRESENTATION IN DATA

image dataset provides a measure of control in conducting the study. Forthcom-
ing sections present our experiments and findings, after which we discuss implica-
tions and extensions to information domains in automotive software engineering.

14.1 Interpretable assessment of sample repre-
sentation

Let us begin with a brief illustration of concerns in sample representation using
the proximate application area of driver assistance or self-driving functionality.
Relying upon images from cameras is standard practice for applications in
this area. Consider, therefore, a traffic dataset S of images Xi ∼ P (X|Y) and
annotations Yi ∼ P (Y). A major practical concern in such datasets is whether
it adequately represents corner cases like intersections with stop signs, round-
abouts with five exits, etc. With the true/target distribution of traffic scenes
P (X,Y) clearly containing instances of such cases, any under-representation in
S can be broadly framed as shortcomings in data collection and processing, oth-
erwise known as sample selection bias [196]. Given that the dataset is eventually
used to train a model that is deployed in a safety-critical system, engineers
may actively seek to properly comprehend and account for such bias. But how
does one express such bias in human interpretable terms? One clue comes from
annotations Yi ∼ P (Y). In typical traffic datasets, Y encodes object class labels
and bounding box positions. If necessary and feasible, Y can be expanded to
contain information such as location, lighting conditions, weather conditions,
etc. When Y is adequately detailed, the distribution of annotations PS(Y)
clearly becomes a reasonable, low-dimensional, and therefore a human inter-
pretable measure of sample representation in S. Now, such a notion can also be
reversed to specify a distribution of annotations PT (Y), expressing the sample
representation that is expected in the dataset. While the target distribution of
annotations P (Y) may be unknowable, PT (Y) is an explicit declaration of the
sub-space that the dataset is expected to cover at the minimum. If S is equiv-
alently labeled, then selection bias (and thereby sample under-representation)
is simply given by the mismatch between expectations PT and reality PS . In
practice, however, due to the effort and expense involved in labeling, S may
either lack labels or may be completely unlabeled, meaning that PS(Y) is often
unavailable. Combining simulation, outlier detection, and input attribution, we
show that it is possible to explain sample representation in a comprehensible
low-dimensional form, even when annotations are not explicitly available in S.

Delving into the less-explored area of explaining sample representation in a
dataset, this chapter demonstrates a method that (1) explains sample repre-
sentation in interpretable terms for annotated data, and (2) uses parametric
simulation and outlier detection to do the same for non-annotated data. Such
explanations helps engineers better understand data as a crucial ingredient of
the training process. Downstream, this helps them re-asses data collection meth-
ods and to verify, reason, or argue about – at times a requirement for standards
compliance [197] – the overall dependability of models trained with this data.

14.2. EXPLAINING SAMPLE REPRESENTATION USING ANNOTATIONS 171

14.2 Explaining sample representation using an-
notations

Visualizing sample representation – We now introduce a simple running
example of examining sample representation in a dataset S containing images of
two hand-drawn shapes1 – circles and squares (Figure 14.1). With the shape as
the sole available label, one can define S = {(Xi, Y

1
i)}, i = 1...N , where Xi is a

grayscale image of size (128, 128) and Y 1
i ∈ K = {0, 1} is the shape label, corre-

sponding to circle and square respectively. Understanding sample representation
in this dataset may be necessary when it is a candidate for training a model that,
for example, either recognizes or generates shapes. To ensure dependable model
performance, system designers may want to confirm that images of adequate
variety are represented in S. In a dataset of grayscale geometric shapes, it is
intuitive to analyze sample representation in terms of concerns such as the size
and position of the shapes on the image canvas, and the average brightness of
pixels in the shape. All these concerns can be captured by defining a 6-d anno-
tation vector Y = (Y 1, ..., Y 6), including shape-type, which is known. With U
denoting the discrete uniform distribution, designers can begin with defining an
expected spread of shape-size using a latent label Y S ∼ U{30, 120}, denoting the
side-length in pixels of a square box bounding the shape. This can be followed
by defining expectations on the spread of (i) the top-left corner of the bounding
box, Y 2, Y 3 ∼ U{0, 128−Y S}, (ii) the bottom-right corner of the bounding box
Y 4, Y 5 ∼ U{Y S , 128}, and (iii) the average pixel brightness Y 6 ∼ U{100, 255}.
Put simply, PT (Y) expects shapes of a specified range of sizes and brightness to
be uniformly represented in the dataset S. All positions are also expected to be
uniformly represented, as long as the shape can be fully fit in the image canvas.

1 0 1 0

0 1 1 1

Figure 14.1: Samples from the dataset S. Only the class label Y 1 is available

To illustrate the idea of explaining sample representation using annotations, an
automatic labeling scheme Yi = L(Xi) is used to produce complete 6-d annota-
tions for Xi. For circles and squares, it is easy to define a scheme that looks at
the extent of the shape and draws bounding boxes. The average brightness is

1Collected from Quick, Draw! with Google – https://quickdraw.withgoogle.com/data

172 CHAPTER 14. EXPLAINING SAMPLE REPRESENTATION IN DATA

given by the mean of non-zero pixels in the canvas. The availability of labels Yi
helps assemble the actual distribution of samples in the dataset PS(Y), allowing
direct comparison with expectations PT (Y). Jointly visualizing label distribu-
tions for each shape (Figure 14.2) shows that, along all design concerns Y j , the
spread of PT (marked black) is much wider than the very narrow PS (marked
red). This shows that, while PT expects shapes of a broad range of sizes, posi-
tions and brightness to be represented, PS is clearly biased and massively over-
represents large and bright shapes located in the center on the canvas. As long
as the annotation vector Y is of manageable length, joint visualization becomes
an interpretable qualitative explanation of sample representation in the dataset.

0.0

0.3

P(
Yj |Y

1
=

0) V2 0.60
Y2

V3 0.47
Y3

V4 0.59
Y4

V5 0.47
Y5

V6 0.75
Y6

0 800.0

0.3

P(
Yj |Y

1
=

1) V2 0.57

0 80

V3 0.45

0 80

V4 0.57

0 80

V5 0.45
PT

PS

120 200

V6 0.76

Figure 14.2: Explaining sample representation

5.0 2.5 0.0 2.5 5.0 7.5
0.0

0.2

0.4

0.6
No overlap, V = 1

0 2 4 6
0.0

0.2

0.4

0.6
Perfect overlap, V = 0

0 2 4 6
0.0

0.2

0.4

0.6
Containment, V = -0.48

2.5 0.0 2.5 5.0 7.5
0.0

0.2

0.4

0.6
Partial overlap, V = 0.35

PX

PY

Figure 14.3: Illustration of V (PX , PY)

Quantifying sample representation – By framing sample selection bias,
and thereby sample under-representation, as the mismatch between expected
and true label probability distributions, it becomes possible to quantify it using
measures of statistical similarity. Choosing the right measure, however, requires
a proper understanding of the nature of each distribution. Having calculated
it using true labels of each sample, it is clear that PS(Y) represents the actual
sample distribution in S. The distribution of expectations PT is of a slightly
different nature and, to better understand it, let us consider the expectation
PT (Y 6) = U{100, 255}, placed on the representation of average brightness
of shapes in the dataset. While the expectation on brightness being spread
between specified lower and upper limits is strict, imposing the spread to be
uniform is arbitrary. This is a deliberate measure of simplification to ease the

14.3. EXPLAINING SAMPLE REPRESENTATION USING SIMULATION 173

considerable burden in modeling expectations PT , and let it simply convey the
critical range of interest in the target distribution. Put simply, expected sample
representation is primarily encoded by the support (14.1) of PT . By specifying
strict support, but arbitrary distribution of mass, sample representation can
be quantified as the level of overlap between the actual sample distribution PS
and the expected sample representation PT . To achieve this, we propose an
overlap index V (PX , PY) (14.2), which is a measure of whether the supports
of two distributions are similar. Denoting set difference as the operator ∆ and
1-d Lebesgue measure2 (length) of a set as λ, V is essentially the Steinhaus
distance [198] with an added term I to make −1 < V < 0 indicate containment
of PY within PX . When not contained, for some positive likelihood in both dis-
tributions, as illustrated in Figure 14.3, V = 0 when they exactly overlap, V = 1
when they do not overlap, and 0 < V < 1 when the overlap is partial. Indices
V j(PT) (14.3) quantitatively measure the level of overlap between true and
expected distributions for each label. Complementing the visual explanation,
overlap indices 0.4 < V j(PT) < 1 seen in Figure 14.2, indicate that there is
only slight partial overlap between expectations and reality, confirming notable
sample selection bias and, therefore, significant sample under-representation.

RX = {x ∈ R : PX(x) > 0} (14.1)

V (PX , PY) = I
λ(RX ∆ RY)

λ(RX ∪ RY)
, I =

{
−1 RY ⊂ RX
+1 otherwise

(14.2)

V j(P) = V (PS(Y j |Y 1), P (Y j |Y 1)), j = 2...6 (14.3)

It is therefore clear that, given the expected representation and actual distri-
bution of labels in the dataset, it is possible to comprehensibly explain sample
under-representation both visually and quantitatively. However, the overlap
index, which eschews mass and uses only support, is an incomplete measure
of sample selection bias, the pros and cons of which we discuss later.

14.3 Explaining sample representation using sim-
ulation

The dataset S contains information Xi in the image domain, while lacking
information Yi in the annotation domain. Expectations, on the contrary, are
expressed using annotations Ŷi ∼ PT (Y), but lacks images. It is this gap in
information that prevents estimation of sample under-representation by direct
comparison. There are two possible ways to bridge this gap, one of which is the
labeling scheme Yi = L(Xi) introduced earlier. Another way could be to use
the labels as parameters to generate images X̂i = G(Ŷi), which is essentially
parametric simulation. In this case of circles and squares, it is possible to use
a graphics package3 to draw shapes using size, position, and brightness labels
as parameters. We, in fact, choose this simple dataset because both labeling
and simulation of samples are easy, helping illustrate both ways of bridging the

2https://en.wikipedia.org/wiki/Lebesgue measure
3We use OpenCV – https://opencv.org/

174 CHAPTER 14. EXPLAINING SAMPLE REPRESENTATION IN DATA

gap and cross-checking the plausibility of estimating sample representation. In
many practical cases, however, the right method to bridge the gap is difficult
to judge since the relative expense is domain and problem specific. Addressing
those instances where unlabeled data is available and labeling is expensive, we
now show that it is possible to bridge the gap using simulation. This is done
using a two-step process, described below, of (i) detecting outlier annotations
and (ii) estimating marginal sample representation.

Step 1 - Detecting outlier annotations – Let us consider a simple question
– to a dataset that mainly contains large, centered shapes, do simulated small
off-centered shapes appear as outliers? In order to explore the essence of this
question, we pose the following outlier hypothesis.

A test annotation Ŷi, that is unlikely to be observed in S, maps to a simulated
test sample X̂i = G(Ŷi), that appears as an outlier to S.

If the outlier hypothesis does hold, the problem of detecting sample selection
bias turns into one of detecting outlier images. In order to test this hypothesis,
we construct an outlier detector ES (Figure 14.4) that samples test annotations
from PT and maps them into images using a simulator, creating a test set T =
{(X̂i, Ŷi)}, i = 1...M (examples in Figure 14.5). We may now have simulated
samples, but how do we check if they appear as outliers to the real dataset S?
Following [199], we simply use a classifier F (X) = PS(Y 1|X; θ), trained on the
dataset S as the core means of detecting outliers. At the outset, such a classifier
F takes an input and predicts if it is a circle or a scare. Now, if a simulated
circle or square image X̂i is applied as input, and if it actually happens to be an
outlier, the essence of the findings in [199] is that the classifier F should predict
the label of the outlier input with less certainty. In this case of a binary classifier
F , the output is a 2 dimensional vector F (X̂i) = [S0, S1], such that S0 +S1 = 1.
Here, S0 is the classification score of the input being a circle, while S1 is its
assessment of the input being a square. A simple sign of predictive uncertainty
is a prediction F (X̂i) = [0.5, 0.5], when the classifier provides no clear indication
of the category to which the input belongs. A lack of certainty makes it likely
that the input X̂i itself is an outlier, which is an observation that is clearly
useful for testing the outlier hypothesis. Following this reasoning, the complete
detector of outlier annotations ES is formally described below in (14.4).

Si = ES(Ŷi, F, T) = max
k∈K

exp(Fk(G(Ŷi))/T)∑
k∈K

exp(Fk(G(Ŷi))/T)
, Ŷi ∼ PT (Y),K = {0, 1}

(14.4)

Ŷ − = {Ŷi : PS(Ŷi) = 0}, Ŷ + = {Ŷi : PS(Ŷi) > 0} (14.5)

Here Fk is the logit score for the kth label and T is the temperature parameter
which, as shown later, eases the detection process. With F using a softmax
output layer to produce the 2 dimensional prediction, we use maximum softmax
score as the measure of certainty. If this maximum softmax score is close to
1, it means that the classifier is certain about its prediction, and the input is

14.3. EXPLAINING SAMPLE REPRESENTATION USING SIMULATION 175

unlikely to be an outlier. Contrarily, if the maximum score is 0.5, then the
model is less certain and the input is likely to be an outlier. Put simply, with
sets of outlier and familiar annotations (14.5), the outlier hypothesis asserts
that a good detector ES assigns low scores Si for outlier annotations Ŷ − and
high scores for familiar ones Ŷ +.

Simulator (G) Classifier (F)Ŷi ∼ PT (Y) max Si

T

X̂i

Figure 14.4: Detecting outlier annotations

1,24,5,120,101,100 0,14,20,118,124,205 0,35,1,79,45,203 1,78,40,114,76,120

1,19,31,87,99,100 1,88,40,120,72,154 0,55,74,85,104,213 1,16,11,125,120,181

Figure 14.5: Samples X̂i from the test set T

To test the outlier hypothesis, we train four variants of the classifier F , all of
which follow the VGG architecture [200]. The variants mainly differ in the
number of layers, with VGG05 (5 layers) and VGG13 (13 layers) being the
shallowest and deepest respectively. Each F is trained4 for 5 epochs on S with
50k samples using the Adam optimizer [138] to achieve validation accuracy (on
a separate set of 10k samples) greater than 97%.

While measures of certainty are central to our process of outlier detection, [201]
shows that deep neural nets tend to predict with high confidence. That is, if a
sample X̂1 is not an outlier and evaluates to a certainty score of, say, S1 = 0.993,
an outlier X̂2 could evaluate to a score S2 = 0.989. In this case, the model is in-
dicating that X̂2 is indeed an outlier, but by a very narrow margin. Considering
the emphatic confidence with which neural networks normally predict, raw max-
imum softmax scores are poor measures of predictive certainty. One a simple
way to mitigate this is temperature scaling, i.e. setting T > 1, in (14.4). As seen
in Figure 14.6(a), scores Si are tightly clustered at T = 1 with relatively low
variance, which makes it difficult to identify differences in predictive certainty

4Each classifier trains within 10 – 15 minutes on an NVidia GTX 1080 Ti GPU

176 CHAPTER 14. EXPLAINING SAMPLE REPRESENTATION IN DATA

between familiar and outlier annotations. There is, however, a range of temper-
atures at which scores are better spread and can exaggerate these differences.
While a temperature that maximizes the variance of the score distribution seems
appropriate, as seen in Figure 14.6(a), scaling also reduces its mean. Therefore
a safeguard may be necessary to prevent the mean certainty score from reducing
to a level that questions the confidence of predictions. These twin requirements
can be achieved by the search objective (14.6), which ensures a good spread
in scores Si, while keeping its mean close to the chosen safeguard ST .

T ∗ = argmin
T

LT − LV , LT =
(
µS − ST

)2
LV =

∑M
i=1

(
ES(Ŷi, F, T)− µS

)2

M
, µS =

∑M
i=1ES(Ŷi, F, T)

M

(14.6)

1 25 50
Temperature

0.5

1.0

M
ea

n
of

 S

mean
variance

0.00

0.02

Va
ria

nc
e

of
 S

(a) Effect of temperature scaling on the distribution of uncer-
tainty scores F=VGG13

VGG05 VGG07 VGG09 VGG11 VGG13
Classifier configuration

0.6

0.8

1.0

AU
RO

C

AUROC Test Acc.

0.90

0.95

1.00

Te
st

 A
cc

.

(b) AUROC for detecting outlier annotations per classifier at
T = T ∗ and ST = 0.7

Figure 14.6: Testing the novelty hypothesis

Upon temperature scaling with T ∗, which exaggerates the spread of certainty
scores, the effectiveness of the detector ES in separating outlier annotations
Ŷ − from familiar ones Ŷ + can be measured using the Area Under Receiver
Operating Characteristic (AUROC). This is shown for each F , averaged over
5 separate training runs, in Figure 14.6(b). Based on an informal grading
scheme for classifiers using AUROC score suggested in [199]5, detectors using

5Quality of classification based on AUROC score - 0.9—1: Excellent, 0.8—0.9: Good,

14.3. EXPLAINING SAMPLE REPRESENTATION USING SIMULATION 177

VGG05 and VGG07 receive a ‘fair’ grade in identifying outlier annotations,
while the deeper networks get ‘good’ grades. The best outlier detectors, with
AUROC ≈ 0.85, are those with F as VGG09 and VGG13. These results clearly
endorse the viability of the outlier hypothesis that simulated images that are
under-represented in S, in terms of specified design concerns, appear as outliers
to the right classifier trained on S. While PS , derived from labeling, is used
as a benchmark to test the outlier hypothesis, it is important to observe that
(i) classifiers that are good at outlier detection are, as seen in Figure 14.6(b),
those that have the highest accuracy in predicting shape labels on the test set
T , and (ii) the temperature T ∗, at which the classifiers become good outlier
detectors, depends only upon the statistical properties of scores Si. Together,
these observations mean that a good detector of under-represented annotations
can be assembled using only simulation, without any need for labeling.

Step 2 - Estimating marginal sample representation – As presented
in Section 14.2, we seek to comprehensibly explain sample representation in
the dataset S of geometric shapes on the basis of intuitive design concerns
like size, position, and brightness. However, the detector ES that we have
constructed can only assess whether a single combined 6-d test annotation
is an outlier. It is much more useful if we were to break down the sample
representation and explain it in terms of all required design concerns. To
independently assess sample diversity in terms of each label, we turn to tech-
niques of input attribution. Given the detector ES , attribution techniques
estimate the contribution of each input label Ŷ ji to its outlier score Si. Among
proposed methods for input attribution [202], one promising framework is
Shapley Additive Explanations (SHAP) [182]. Using principles of cooperative
game theory, SHAP estimates marginal influence φji (14.7), which indicates

how label Ŷ ji independently influences the uncertainty score Si.

Si = ES(Ŷi, F, T) = φ0 +

6∑
j=2

φji (14.7)

In satisfying an additive property, SHAP values are also semantically intuitive.
A negative SHAP value φji indicates that the label Ŷ ji has a negative influence on

the score Si. Correspondingly, a positive or zero value of φji indicates positive or

neutral influence on the score. For instance, let Ŷ 6
1 = 255 be the pixel brightness

of the simulated circle X̂1. If this label maps to a positive SHAP score, it means
that an increase in the certainty of predicting this simulated shape, in relation
to all other predictions, can be attributed this particular value of brightness.
According to the outlier hypothesis whose validity we just confirmed, this means
that it is likely that bright circles are highly likely to be represented in the
dataset S. This is precisely the kind of explanation of sample representation that
is both clear and useful. Therefore, more generally, SHAP value φji > 0, which

indicates that the individual label value Ŷ ji tends to improve Si, becomes an indi-
cator of that label being represented in S. Through a campaign directed by the
test set T , which systematically covers the specified range of scenarios PT , non-
negative SHAP values identify sample representation in the dataset S in terms of

0.7—0.8: Fair, 0.6—0.7: Poor, 0.5—0.6: Fail

178 CHAPTER 14. EXPLAINING SAMPLE REPRESENTATION IN DATA

each individual label. This can be seen in Figure 14.7(a), where label values with
a high incidence of non-negative SHAP values (marked black) are likely to be rep-
resented in S. Thus, by simply measuring the incidence of non-negative SHAP
scores, we are able to explain that the dataset S mainly represents relatively
large, centered, and bright circles and squares. Put otherwise, we have arrived at
a comprehensible explanation that small, off-center, and dim shapes are not well
represented in S. Further, in order to express it as a distribution, we convert a
SHAP based measure into a likelihood. The likelihood of test label Y j = l, Y j ∼
PT being represented in the set S is simply the proportion of test labels Ŷ ji , in
a sufficiently small interval δ around l, whose SHAP values are non-negative.

P+
T (Y j = l |Y 1 = k) =

|{Ŷ ji : φji ≥ 0, Ŷ ji ∈ Y l}|
|{Ŷ ji : φji ≥ 0}|

, j = 2...6, Ŷi ∈ Ŷ

Y l = {l − δ, l + δ}, Ŷ = {Ŷi : Ŷ 1
i = k}, k ∈ K

(14.8)

0.1

0.0

(Y
j),

Y1
=

0

Y2 Y3 Y4 Y5 Y6

0 80

0.1

0.0

(Y
j),

Y1
=

1

0 80 0 80 0 80 120 200

(a) Sample-representation from SHAP scores

0.0

0.3

P(
Yj |Y

1
=

0)

Y2 Y3 Y4 Y5 Y6

0 800.0

0.3

P(
Yj |Y

1
=

1)

0 80 0 80 0 80

P +

P

120 200

(b) Marginal sample representation

Figure 14.7: Explaining sample representation using simulation (F=VGG13,
T = T ∗, ST = 0.7)

Assessing the explanation – By expressing expected diversity PT in terms
of specified design concerns, we thus use a two-step process to identify sample
representation. Using a simulated test set, we calculate representation using
non-negative influence on predictive certainty. From the original broadly spread
expectations PT (Figure 14.2), the process correctly eliminates a significant
amount of outliers in each label dimension, producing P+

T (Figure 14.7(b)).

14.4. DISCUSSION 179

P+
T shows label values likely to be observed in the dataset S and has a roughly

similar spread as the actual distribution PS . Also, using a test set with M=10k
samples, the process estimates sample representation in a much larger dataset
with N=50k samples. Introduced originally in Section 14.2 to quantify bias
between expected and actual distributions of annotations, the overlap index
V is also suitable for measuring similarity between P+

T and PS . This helps
quantify the effectiveness of estimating sample representation using simulation.
The visual observation that P+

T is a better estimate of true sample distribution,
compared to the broad range of expectations PT , is confirmed by better a mean
overlap score V j(P+

T) (see Table 14.8), over all labels and shapes, compared to
mean V j(PT). While this holds true for both classifier instances shown in the
table, the detector using F=VGG13 at T = T ∗, which has the best AUROC
score in detecting outliers, produces the closest estimate with a mean overlap
score of 0.27. VGG05, with poorer AUROC, has a weaker average overlap score
of 0.39. The close correlation between AUROC and V further confirms the
plausibility of estimating marginal sample representation using SHAP scores.
This shows that, while facing an expensive labeling process, with the right means
of parametric simulation, one can conduct a campaign from a low-dimensional
space of specified design concerns to estimate sample representation in a given
dataset and comprehensibly explain sample selection bias.

14.4 Discussion

Under-representation and outlier detection – A good outlier detector
ES of under-represented samples must blur the distinction between simulated
and real images while emphasizing the distinction between over and under-
represented images. Figure 14.6(b) shows both conditions are jointly achievable,
with classifiers that have a high test set accuracy, and therefore generalize well,
also having better AUROC scores in detecting representation. However, as seen
in Figure 14.9, using regularization measures like batch normalization layers
after each convolutional block, while improving test accuracy, reduces AUROC
scores for all classifier instances. This is probably because it tends to blur [203]
both forms of distinction. The figure also shows that dropout increases the test
accuracy without any major effect on AUROC scores, giving no special domain
separation advantage in detecting under-representation. Among the classifier
configurations investigated here, vanilla VGG, with the strongest correlation
between AUROC and test set accuracy, is observed to best addresses both
forms of domain distinction.

The importance of effective simulation – It is crucial to note that high
test accuracy reflects the combined effect of plausible simulation and good gener-
alization. It is equally essential, therefore, that the simulator produces samples
that are plausibly real. Ensuring effective simulation, while supporting a variety
of parameters, is undoubtedly a challenge for realistic datasets with richer
content. As noted earlier, while this is domain and problem dependent, for
images at least, rapid advancements in the quality and range of graphics tools
([204], [205]), potentially makes effective simulation plausible. However, with no-

180 CHAPTER 14. EXPLAINING SAMPLE REPRESENTATION IN DATA

T P Y 1 V j(P) Mean
V j(P)j=2 3 4 5 6

- PT
0 0.60 0.47 0.59 0.47 0.75

0.57
1 0.57 0.45 0.57 0.45 0.76

T ∗

ST = 0.7

P+
T
F =VGG13

0 0.49 0.14 0.17 0.35 0.55
0.27

1 -0.19 0.26 0.16 0.17 0.56
P+
T
F =VGG05

0 0.47 0.33 0.29 0.44 0.60
0.39

1 0.31 0.34 0.27 0.25 0.56

1

P+
T
F =VGG13

0 0.49 0.30 0.40 0.15 0.69
0.36

1 0.30 0.28 0.21 0.13 0.69
P+
T
F =VGG05

0 0.22 0.14 0.54 0.47 0.65
0.43

1 0.57 0.29 0.56 0.15 0.70

Figure 14.8: Quantitative bias estimation

VGG05 VGG07 VGG09 VGG11 VGG13
Classifier configuration

0.5

0.7

1.0

AU
RO

C

VGGBN AUROC VGGDO AUROC VGG AUROC

0.9

1.0

Te
st

 a
cc

.

VGGBN ACC. VGGDO ACC. VGG ACC.

Figure 14.9: Effect of regularization on AUROC

table progress in techniques that automate parts of the labeling process [206], it
is also important to assess whether labeling is cheaper for the dataset in concern.

Improving estimation of representation – Figure 14.7(b) shows that while
the estimated sample representation P+

T comes close, it does not overlap per-
fectly with the true label distribution PS . As quantified in Table 14.8, even
the best detector (F=VGG13 at T = T ∗) has a mean overlap index of 0.27
indicating relatively close, but only partial, overlap on average. At the indi-
vidual label level, index values show varying accuracy in support-matching.
The representation of pixel brightness 0.5 < V 6(PT) < 0.8 is consistently
underestimated, while those of bounding box coordinates are better estimated.
It is however clear from Table 14.8 that temperature scaling (T = T ∗ vs 1)
and deeper classifiers (F =VGG13 vs VGG05) improve estimation, indicating
that more sophisticated techniques of predictive outlier detection, like methods
in [207], can improve estimation.

Balancing detail in specifying expectations – The level of detail specified
in the expectations PT plays a key role in deciding the cost and benefit of
explaining sample representation. An overly detailed breakdown of design
factors involves significant engineering effort, degrades interpretability, and
overlooks the remarkable benefits of generalization offered by deep learning.
But well-balanced expectations can provide valuable insight into training data.
Take an application like self-driving vehicles, where engineers actively seek
a certain level of understanding of operational scenarios [208] to ensure safe

14.5. RELATED WORK 181

operation. Such understanding can be exploited to systematically explain,
analyze, and manage the data used to train models deployed in the system,
thereby improving overall confidence in its dependability. While balancing
details in the specification may not always be easy, one advantage of this
method is that it is semi-supervised. Annotations included in the analysis
impacts only the simulated test set T and has no effect on the actual dataset S.

14.5 Related work

Sample selection bias – Sample selection bias has been addressed in existing
literature from the perspective of domain adaptation [209]. Previous methods
to mitigate sample selection bias have mainly attempted to modify the training
procedures or the model itself to yield classifiers that work well on the test
distribution. Methods such as importance re-weighting [210], minimax opti-
mization [211], kernel density estimation [212] and model averaging [213] all
fall in this category. While these methods can yield classifiers that are able to
generalize, the accuracy can suffer when the two distributions differ greatly in
the overlap of their support or in the distribution of their mass. Our immediate
goal, on the other hand, does not seek to obtain a classifier that generalizes,
but instead we seek to obtain a high level understanding of the deficiencies of
our training data and where the bias stems from. This goal does not necessarily
require a full specification of P (Y), instead we work with the weak proxy of
PT (Y) which attempts to match P (Y) only through the support. However,
by eschewing mass-modeling, we gain a few advantages, one of which is the
reduced effort in defining expectations. More importantly, since several existing
methods for correcting sample selection bias work only if the support of PT
is included in that of PS and our method of explanation tests precisely for
this condition. Overlap indices V j(PT) ≤ 0 guarantees that the support of the
biased distribution includes that of the expectations and correction measures
like importance re-weighting are applicable. If 0 < V j(PT) ≤ 1, expanding the
diversity of data collection is unavoidable. Thus seeking to understand and
explain the data set can allow for an improved understanding of the validity
for methods that directly impacts the generalization performance.

Understanding sample representation – Besides clustering approaches
[214] and feature projection methods such as t-SNE [215], previous research into
providing a high level understanding of the training set has, for example, applied
tree-based methods to detect regions of low point density in the input space [216].
High-dimensional explanations in the input space, however, adversely affects
interpretation, and ways to extend these methods to yield explanations using an
interpretable low-dimensional space of annotations are not immediately clear.

Bias estimation using simulation – Closer to our purpose are the meth-
ods [217] and [218] which detect inherent biases in a trained model using
parametric simulation and Bayesian optimization. While their goal is to find
input samples where the model is locally weak, our goal is to ensure that a
given dataset meets global expectations defined by a test set. This can verify

182 CHAPTER 14. EXPLAINING SAMPLE REPRESENTATION IN DATA

that a system is dependable for all considered scenarios, like [219], which is
a standardized set of tests. However, in reformulating bias detection as outlier
detection, our method – unlike the aforementioned methods – trades-off the
ability to detect unknown unknowns [220] in favor of a faster, global evaluation
of bias. Combining our global and their local approaches may, therefore, help
ensure better overall dependability.

Shapley-based outlier detection – Previous work using Shapley values for
outlier detection, such as [221] and [222], focus mainly on providing interpretable
explanations for why a data point is considered to be an outlier. It may also be
possible to extend their data-space explanations to the annotation-space, like we
do, using parametric simulation. However, pixel-wise reconstruction error has
well-known drawbacks in capturing structural aspects of data [116]. It is there-
fore not immediately clear whether their use of auto-encoder reconstruction error
is as good at detecting structural under-representation as our technique of using
predictive certainty, which is calculated from the feature space of a classifier.

14.6 Future extension

We may have demonstrated a technique to explain sample representation in
a dataset of hand-drawn shapes, but the larger question is whether such a
technique viably extends to the domains and datasets that we have used to
solve tasks in automotive software engineering. Since we use two domains of
information, code and signal traces, to train two kinds of foundation models,
tasnet and xgan, we analyze extending this technique to either domain.

Extension to signal traces and xgan – The training corpus used to train
xgan contains a few hundred thousand signal traces drawn from a set of vehicles.
In this dataset, however, we do not have a clear idea whether trips of sufficient
variety are represented. For instance, it may be of interest to know if there are
enough trips with vehicles making rapid starts and stops, both on flat roads
and on winding roads that go uphill. Such scenarios may be of interest because
of, say, the sensitivity of the engine start functionality under repeated use.
Without explicit labels, it can be challenging to identify whether these kinds of
trips are available in the dataset. The sample representation technique that we
present in this chapter can conceivably be extended to measure such represen-
tation. One crucial element of our explanation technique is the availability of
a discriminator trained on the data that is being scrutinized. Fortunately, in
xgan, we in fact have a readily available option – the discriminator of the GAN
itself. In the adversarial learning objective used to train xgan, the discriminator
is specifically tasked to identify the realism of generated samples. It is therefore
possible to show simulated samples of desired profile to the discriminator to
obtain a measure of realism. This brings us to the next requirement of our
sample representation technique, which is the availability of a parametric sim-
ulator. Here, while we may not have a parametric mechanism for generating
traces, we do have silgan which can generate traces based upon handcrafted
templates. If we recall the discussion in Chapter 10, a template is a piece-wise

14.6. FUTURE EXTENSION 183

linear approximation of one signal in a trace. A parametric mechanism for
drawing, say, vehicle speed templates with a configurable number of starts
and stops, is quite feasible. In fact, this is not all that different from the
parametric mechanism that we use for drawing geometric shapes. Thus, by
building a parametric method for drawing templates and translating them into
traces using silgan, the discriminator score of generated traces can be used
to explain sample representation in training data. Best case, such a pipeline
reveals under-representation of important driving scenarios, and corrective
action can be taken to compensate for it. Apart from a parametric template
generator, all other parts of the explanation pipeline are readily available from
the GAN itself. Therefore, an extension of this explanation technique to the
domain of signal traces can be readily experimented in the near-future.

Extension to software and tasnet – Analogous to the previous case, the
tasnet model has been trained on millions of files of source code, and we
similarly lack information about its sample representation. While we know that
the GitHub pre-training corpus contains hundreds of millions of files of C code,
it would be valuable to understand how much of it is, say, real-time embedded,
or safety critical code. Such insights are interesting because these are char-
acteristics that apply to an important section of vehicle application software.
However, unlike the previous case of signal traces, the sample representation
technique that we present in this chapter does not extend easily to the domain
of source code. This is mainly because, there is no readily available stereotypical
discriminator, which can be probed using code snippets to measure sample
representation. In the previous case, we had access to the GAN discriminator,
but tasnet is trained as a BERT-like masked encoder that does not output a
binary label. Further, it is quite difficult to construct a parametric generator of
code, further complicating the extension of this technique. However, instead of
directly extending the sample representation technique presented in this chapter,
it may be more interesting to draw inspiration from the vocabulary challenge
described in the previous chapter. Dispensing with a parametric generator, let
us assume that we have access to a relatively small corpus of snippets that rep-
resent a category of interest like safety-critical code. Then, following the recipe
of the vocabulary challenge, we could curate a set of keywords that capture
concepts that are essential to safety. Then, by subjecting tasnet to a cloze
challenge with the selected keywords masked, and by analyzing the distribution
of token predictions, it may be possible to distill a measure of sample represen-
tation. By thus replacing a traditional classifier with a masked language model,
and using selective masking, essential elements of the method presented in this
chapter may be extendable to explain sample representation in a code corpus.

Considering such possibilities, extending this technique of explanation to infor-
mation domains in software engineering can be an interesting avenue for future
work. The result of such extension would be a better understanding of sample
representation in datasets, in turn leading to a better reasoning about gener-
alization of models, including foundation models, trained on these datasets.

184 CHAPTER 14. EXPLAINING SAMPLE REPRESENTATION IN DATA

Chapter 15

Conclusions

The automotive industry is already in a software driven reality, and the im-
portance of software as the primary means of delivering customer value is only
set to grow. Under such conditions, it is essential that vehicle manufacturers
strengthen their ability to rapidly iterate through the software engineering
process, without compromising quality. This work focuses upon two crucial
engineering tasks of design compliance and test stimulus generation. Under
current practice, both tasks require experienced engineers to spend considerable
amount of time manually reviewing code and specifying test scenarios. Facing
significant workload, not only is manual effort error-prone, but it also ends up
reducing the cadence of delivery. In order to help mitigate these issues, this work
introduces several techniques. Using tasnet, a language model of automotive
software, we construct DECO, a rule-based algorithm that conducts compliance
assessment in the model’s representation space. The DECO algorithm is itself
based upon the well-observed property of embedding regularity in language
models, which holds that inputs related by the same concept follow a predictable
geometry in representation space. Then, targeting test stimulus generation, we
turn to GANs as a technique for learning underlying phenomena in signal traces
that capture in-vehicle behavior. Using logan, a GAN trained on time-series
signal traces, we demonstrate conditional generation of realistic stimulus. Here,
the rule-based MLERP algorithm uses the property of latent interpolation for
semantic combination to achieve controllable and verifiable stimulus generation.
Finally, to make stimulus generation efficient, we introduce a technique for
searching stimuli based upon the test objective. We demonstrate this using
silgan and GRADES, a rule-based algorithm that exploits the end-to-end differ-
entiability of DNNs in the GAN. We then go on to show that this combination of
foundation models and principled rule-based algorithms constitutes a ‘pre-train
and calculate’ paradigm for solving tasks. Requiring no explicit supervision,
that this approach helps setup predictive models that are far more nuanced and
transparent. Further, since ‘pre-train and calculate’ is heavily dependent upon
properties in the abstract representation spaces, we present preliminary studies
that characterize and explain high-dimensional vector spaces. Overall, tools
and techniques developed in this work have immense potential to improve the

185

186 CHAPTER 15. CONCLUSIONS

cadence and quality of automotive software development, helping achieve the
pressing need in the automotive industry of rapid delivery of reliable software.

15.1 Future work

Previous chapters have pointed out several interesting avenues for future work,
and we catalog and recount salient instances here for convenience. In Part I,
where we explored the design compliance use case, possible future investigations
include investigating compliance with design patterns other than Controller-
Handler, using alternatives to the simple and semantically weaker cloze pre-
training objective, and using artifacts beyond code to induce design knowledge
in tasnet. The DECO algorithm can also be probed further to understand why
relatively smaller violations leads to large variations in predicted rank. Then,
in Part II, where we explored stimulus generation, apart from moving to the
much more mainstream Transformer architecture, the use of alternative deep
generative modeling techniques like diffusion is one avenue for future work. Fur-
ther, taking inspiration from state-of-the-art techniques for realistic generation
of human faces, we identified latent space engineering in xgan as a topic that
requires future attention. When it comes to stimulus search, we use a rule-based
mechanism to convert code under test into coverage indicators. Future work
can investigate if coverage indicators can be substituted by embeddings of code
under test, making it much more scalable. In Part III, where we recounted
‘pre-train and calculate’, we noted that combining its essential principles with
the complementary ‘pre-train and prompt’ approach could lead to a powerful
paradigm that leverages the relative strengths of both. Further, we only present
preliminary studies in explaining high-dimensional spaces, both of which can be
extended. The vocabulary challenge, which we develop for testing domain famil-
iarity in tasnet needs to be part of a larger set of benchmark tasks. Developing
a suite of tasks for evaluating language models of automotive software is a crucial
task for the future. Then, techniques for explaining sample representation have
only been studied on a simple dataset of images. Extending this toolkit to a
dataset of signal traces would be valuable. More generally, while this work inves-
tigates design and testing tasks, automotive software engineering is replete with
many more. Extending our techniques to other engineering tasks is only likely
to further ease the development of the next generation of automotive software
with high cadence and quality. Finally, it would also be interesting to extend the
‘pre-train and calculate’ paradigm to see if the rule-based calculation of nuanced
predictions is applicable to domains beyond automotive software engineering.

Bibliography

[1] L. L. Bello, R. Mariani, S. Mubeen, and S. Saponara, “Recent advances
and trends in on-board embedded and networked automotive systems,”
IEEE Transactions on Industrial Informatics, vol. 15, no. 2, pp. 1038–
1051, 2019.

[2] V. Trucks, “Volvo fh driver guide,” 2023. [Online]. Available:
https://driverguide.volvotrucks.com/lang/en/chassi/A0000FH/home

[3] C. Ebert and J. M. Favaro, “Automotive software,” IEEE
Softw., vol. 34, no. 3, pp. 33–39, 2017. [Online]. Available:
https://doi.org/10.1109/MS.2017.82

[4] U. Nations, “682050,” 2023. [Online]. Avail-
able: https://www.un.org/development/desa/en/news/population/
2018-revision-of-world-urbanization-prospects.html

[5] P. Wallin, S. Johnsson, and J. Axelsson, “Issues related to development
of E/E product line architectures in heavy vehicles,” in 42st Hawaii
International International Conference on Systems Science (HICSS-42
2009), Proceedings (CD-ROM and online), 5-8 January 2009, Waikoloa,
Big Island, HI, USA. IEEE Computer Society, 2009, pp. 1–10. [Online].
Available: https://doi.org/10.1109/HICSS.2009.276

[6] S. Khastgir, S. Birrell, G. Dhadyalla, and P. Jennings, “The
science of testing: An automotive perspective,” in WCX World
Congress Experience. SAE International, apr 2018. [Online]. Available:
https://doi.org/10.4271/2018-01-1070

[7] C. Salzmann and T. Stauner, Automotive Software Engineering.
Boston, MA: Springer US, 2004, pp. 333–347. [Online]. Available:
https://doi.org/10.1007/1-4020-7991-5 21

[8] B. Gallina and M. Nyberg, “Reconciling the ISO 26262-compliant
and the agile documentation management in the Swedish context,”
in CARS 2015 - Critical Automotive applications: Robustness &
Safety, M. Roy, Ed., Paris, France, Sep. 2015. [Online]. Available:
https://hal.archives-ouvertes.fr/hal-01192981

[9] “Systems and software engineering – system life cycle processes,” Inter-
national Organization for Standardization, Standard, 2015.

187

https://driverguide.volvotrucks.com/lang/en/chassi/A0000FH/home
https://doi.org/10.1109/MS.2017.82
https://www.un.org/development/desa/en/news/population/2018-revision-of-world-urbanization-prospects.html
https://www.un.org/development/desa/en/news/population/2018-revision-of-world-urbanization-prospects.html
https://doi.org/10.1109/HICSS.2009.276
https://doi.org/10.4271/2018-01-1070
https://doi.org/10.1007/1-4020-7991-5_21
https://hal.archives-ouvertes.fr/hal-01192981

188 BIBLIOGRAPHY

[10] “Information technology — process assessment — process assessment
model for software life cycle processes,” International Organization for
Standardization, Standard, 2021.

[11] I. C. on Systems Engineering, Ed., INCOSE Systems Engineering Hand-
book, 2015, vol. 4.0.

[12] “Road vehicles - functional safety - part 9: Automotive safety integrity
level (asil)-oriented and safety-oriented analyses,” International Organi-
zation for Standardization, Standard, 2011.

[13] M. Staron, Automotive Software Architectures - An Introduction, Second
Edition. Springer, 2021. [Online]. Available: https://doi.org/10.1007/
978-3-030-65939-4

[14] A. Strasser, B. Cool, C. Gernert, C. Knieke, M. Körner, D. Niebuhr,
H. Peters, A. Rausch, O. Brox, S. Jauns-Seyfried, H. Jelden, S. Klie, and
M. Krämer, “Mastering erosion of software architecture in automotive
software product lines,” in SOFSEM 2014: Theory and Practice of
Computer Science - 40th International Conference on Current Trends
in Theory and Practice of Computer Science, Nový Smokovec, Slovakia,
January 26-29, 2014, Proceedings, ser. Lecture Notes in Computer
Science, vol. 8327. Springer, 2014, pp. 491–502. [Online]. Available:
https://doi.org/10.1007/978-3-319-04298-5 43

[15] H. Altinger, F. Wotawa, and M. Schurius, “Testing methods used in
the automotive industry: Results from a survey,” in Proceedings of the
2014 Workshop on Joining AcadeMiA and Industry Contributions to Test
Automation and Model-Based Testing, ser. JAMAICA 2014. New York,
NY, USA: Association for Computing Machinery, 2014, p. 1–6. [Online].
Available: https://doi.org/10.1145/2631890.2631891

[16] H. Kaijser, H. Lönn, P. Thorngren, J. Ekberg, M. Henningsson, and
M. Larsson, “Towards Simulation-Based Verification for Continuous
Integration and Delivery,” in ERTS 2018, ser. 9th European
Congress on Embedded Real Time Software and Systems (ERTS
2018), Toulouse, France, Jan. 2018. [Online]. Available: https:
//hal.archives-ouvertes.fr/hal-02156371

[17] G. Wang, A. Gunasekaran, E. W. Ngai, and T. Papadopoulos, “Big
data analytics in logistics and supply chain management: Certain
investigations for research and applications,” International Journal of
Production Economics, vol. 176, pp. 98–110, 2016. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0925527316300056

[18] J. Bosch and H. H. Olsson, “Digital for real: A multicase study on the
digital transformation of companies in the embedded systems domain,”
J. Softw. Evol. Process., vol. 33, no. 5, 2021. [Online]. Available:
https://doi.org/10.1002/smr.2333

[19] H. H. Olsson and J. Bosch, “From opinions to data-driven software
r&d: A multi-case study on how to close the ’open loop’ problem,” in

https://doi.org/10.1007/978-3-030-65939-4
https://doi.org/10.1007/978-3-030-65939-4
https://doi.org/10.1007/978-3-319-04298-5_43
https://doi.org/10.1145/2631890.2631891
https://hal.archives-ouvertes.fr/hal-02156371
https://hal.archives-ouvertes.fr/hal-02156371
https://www.sciencedirect.com/science/article/pii/S0925527316300056
https://doi.org/10.1002/smr.2333

BIBLIOGRAPHY 189

40th EUROMICRO Conference on Software Engineering and Advanced
Applications, EUROMICRO-SEAA 2014, Verona, Italy, August 27-29,
2014. IEEE Computer Society, 2014, pp. 9–16. [Online]. Available:
https://doi.org/10.1109/SEAA.2014.75

[20] M. O’Neil, X. Cai, L. Muselli, F. Pailler, and S. Zacchiroli, The copro-
duction of open source software by volunteers and big tech firms. News
Media Research Centre, University of Canberra, 2021.

[21] R. Inc. (2022) The state of enterprise open source: A red hat
report. [Online]. Available: https://www.redhat.com/en/resources/
state-of-enterprise-open-source-report-2022

[22] G. Inc. (2022) Octoverse 2022: 10 years of track-
ing open source. [Online]. Available: https://github.blog/
2022-11-17-octoverse-2022-10-years-of-tracking-open-source/

[23] R. Alt, J. M. Leimeister, T. Priemuth, S. Sachse, N. Urbach,
and N. Wunderlich, “Software-defined business,” Bus. Inf. Syst.
Eng., vol. 62, no. 6, pp. 609–621, 2020. [Online]. Available:
https://doi.org/10.1007/s12599-020-00669-6

[24] M. Vechev and E. Yahav, “Programming with “big code”,” Foundations
and Trends® in Programming Languages, vol. 3, no. 4, pp. 231–284,
2016. [Online]. Available: http://dx.doi.org/10.1561/2500000028

[25] Y. LeCun, Y. Bengio, and G. E. Hinton, “Deep learning,”
Nat., vol. 521, no. 7553, pp. 436–444, 2015. [Online]. Available:
https://doi.org/10.1038/nature14539

[26] S. Dong, P. Wang, and K. Abbas, “A survey on deep learning and
its applications,” Computer Science Review, vol. 40, p. 100379, 2021.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S1574013721000198

[27] Y. Yang, X. Xia, D. Lo, and J. C. Grundy, “A survey on deep learning
for software engineering,” CoRR, vol. abs/2011.14597, 2020. [Online].
Available: https://arxiv.org/abs/2011.14597

[28] R. B. et al., “On the opportunities and risks of foundation
models,” CoRR, vol. abs/2108.07258, 2021. [Online]. Available:
https://arxiv.org/abs/2108.07258

[29] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Transac-
tions on Knowledge and Data Engineering, vol. 22, no. 10, pp. 1345–1359,
2010.

[30] J. Schaeuffele and T. Zurawka, Automotive Software Engineering, Second
Edition. SAE International, sep 2016.

[31] A. Haghighatkhah, A. Banijamali, O. Pakanen, M. Oivo, and
P. Kuvaja, “Automotive software engineering: A systematic mapping
study,” J. Syst. Softw., vol. 128, pp. 25–55, 2017. [Online]. Available:
https://doi.org/10.1016/j.jss.2017.03.005

https://doi.org/10.1109/SEAA.2014.75
https://www.redhat.com/en/resources/state-of-enterprise-open-source-report-2022
https://www.redhat.com/en/resources/state-of-enterprise-open-source-report-2022
https://github.blog/2022-11-17-octoverse-2022-10-years-of-tracking-open-source/
https://github.blog/2022-11-17-octoverse-2022-10-years-of-tracking-open-source/
https://doi.org/10.1007/s12599-020-00669-6
http://dx.doi.org/10.1561/2500000028
https://doi.org/10.1038/nature14539
https://www.sciencedirect.com/science/article/pii/S1574013721000198
https://www.sciencedirect.com/science/article/pii/S1574013721000198
https://arxiv.org/abs/2011.14597
https://arxiv.org/abs/2108.07258
https://doi.org/10.1016/j.jss.2017.03.005

190 BIBLIOGRAPHY

[32] “Road vehicles - cybersecurity engineering,” International Organization
for Standardization, Standard, 2011.

[33] D. Reinhardt and M. Kucera, “Domain controlled architecture - A new
approach for large scale software integrated automotive systems,” in
PECCS 2013 - Proceedings of the 3rd International Conference on Per-
vasive Embedded Computing and Communication Systems, Barcelona,
Spain, 19-21 February, 2013, C. Benavente-Peces and J. Filipe, Eds.
SciTePress, 2013, pp. 221–226.

[34] R. Mutschler, O. Trost, and J. Crepin, “Agile methodologies in
the development of automotive embedded software,” ATZelectronics
worldwide, vol. 15, no. 7, pp. 44–49, Jul 2020. [Online]. Available:
https://doi.org/10.1007/s38314-020-0225-z

[35] J.-P. Steghöfer, E. Knauss, J. Horkoff, and R. Wohlrab, “Challenges
of scaled agile for safety-critical systems,” in Product-Focused Software
Process Improvement, X. Franch, T. Männistö, and S. Mart́ınez-Fernández,
Eds. Cham: Springer International Publishing, 2019, pp. 350–366.

[36] S. Jiang, “Vehicle e/e architecture and its adaptation to new technical
trends,” in WCX SAE World Congress Experience. SAE International,
apr 2019. [Online]. Available: https://doi.org/10.4271/2019-01-0862

[37] A. Bucaioni and P. Pelliccione, “Technical architectures for automotive
systems,” in 2020 IEEE International Conference on Software
Architecture, ICSA 2020, Salvador, Brazil, March 16-20, 2020. IEEE,
2020, pp. 46–57. [Online]. Available: https://doi.org/10.1109/ICSA47634.
2020.00013

[38] S. Bunzel, “AUTOSAR - the standardized software architecture,”
Inform. Spektrum, vol. 34, no. 1, pp. 79–83, 2011. [Online]. Available:
https://doi.org/10.1007/s00287-010-0506-7

[39] “Specification of operating system,” AUTOSAR, Standard, 2018. [Online].
Available: https://www.autosar.org/fileadmin/standards/classic/4-4-0/
AUTOSAR SWS OS.pdf

[40] A. Magnusson, L. Laine, and J. Lindberg, “Rethink EE architecture
in automotive to facilitate automation, connectivity, and electro
mobility,” in Proceedings of the 40th International Conference on
Software Engineering: Software Engineering in Practice, ICSE (SEIP)
2018, Gothenburg, Sweden, May 27 - June 03, 2018, F. Paulisch
and J. Bosch, Eds. ACM, 2018, pp. 65–74. [Online]. Available:
https://doi.org/10.1145/3183519.3183526

[41] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural
Information Processing Systems 25: 26th Annual Conference on Neural
Information Processing Systems 2012. Proceedings of a meeting held
December 3-6, 2012, Lake Tahoe, Nevada, United States, P. L. Bartlett,
F. C. N. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, Eds.,

https://doi.org/10.1007/s38314-020-0225-z
https://doi.org/10.4271/2019-01-0862
https://doi.org/10.1109/ICSA47634.2020.00013
https://doi.org/10.1109/ICSA47634.2020.00013
https://doi.org/10.1007/s00287-010-0506-7
https://www.autosar.org/fileadmin/standards/classic/4-4-0/AUTOSAR_SWS_OS.pdf
https://www.autosar.org/fileadmin/standards/classic/4-4-0/AUTOSAR_SWS_OS.pdf
https://doi.org/10.1145/3183519.3183526

BIBLIOGRAPHY 191

2012, pp. 1106–1114. [Online]. Available: https://proceedings.neurips.cc/
paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html

[42] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE conference on
computer vision and pattern recognition. Ieee, 2009, pp. 248–255.

[43] T. Diwan, G. Anirudh, and J. V. Tembhurne, “Object detection using
yolo: challenges, architectural successors, datasets and applications,”
Multimedia Tools and Applications, Aug 2022. [Online]. Available:
https://doi.org/10.1007/s11042-022-13644-y

[44] J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger,
K. Tunyasuvunakool, R. Bates, A. Ž́ıdek, A. Potapenko, A. Bridgland,
C. Meyer, S. A. A. Kohl, A. J. Ballard, A. Cowie, B. Romera-Paredes,
S. Nikolov, R. Jain, J. Adler, T. Back, S. Petersen, D. Reiman,
E. Clancy, M. Zielinski, M. Steinegger, M. Pacholska, T. Berghammer,
S. Bodenstein, D. Silver, O. Vinyals, A. W. Senior, K. Kavukcuoglu,
P. Kohli, and D. Hassabis, “Highly accurate protein structure prediction
with alphafold,” Nature, vol. 596, no. 7873, pp. 583–589, Aug 2021.
[Online]. Available: https://doi.org/10.1038/s41586-021-03819-2

[45] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-
Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler,
J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray,
B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever,
and D. Amodei, “Language models are few-shot learners,” in Advances in
Neural Information Processing Systems 33: Annual Conference on Neural
Information Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual, H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and
H. Lin, Eds., 2020. [Online]. Available: https://proceedings.neurips.cc/
paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html

[46] L. Zhang, S. Wang, and B. Liu, “Deep learning for sentiment analysis
: A survey,” CoRR, vol. abs/1801.07883, 2018. [Online]. Available:
http://arxiv.org/abs/1801.07883

[47] A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts,
“Learning word vectors for sentiment analysis,” in Proceedings of the
49th Annual Meeting of the Association for Computational Linguistics:
Human Language Technologies. Portland, Oregon, USA: Association for
Computational Linguistics, June 2011, pp. 142–150. [Online]. Available:
http://www.aclweb.org/anthology/P11-1015

[48] S. B. Kotsiantis, “Supervised machine learning: A review of classification
techniques.” NLD: IOS Press, 2007, p. 3–24.

[49] S. Zad, M. Heidari, J. H. J. Jones, and O. Uzuner, “Emotion detection
of textual data: An interdisciplinary survey,” in 2021 IEEE World AI
IoT Congress (AIIoT), 2021, pp. 0255–0261.

https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://doi.org/10.1007/s11042-022-13644-y
https://doi.org/10.1038/s41586-021-03819-2
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
http://arxiv.org/abs/1801.07883
http://www.aclweb.org/anthology/P11-1015

192 BIBLIOGRAPHY

[50] D. Demszky, D. Movshovitz-Attias, J. Ko, A. S. Cowen, G. Nemade,
and S. Ravi, “Goemotions: A dataset of fine-grained emotions,”
in Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, ACL 2020, Online, July 5-10, 2020,
D. Jurafsky, J. Chai, N. Schluter, and J. R. Tetreault, Eds. Association
for Computational Linguistics, 2020, pp. 4040–4054. [Online]. Available:
https://doi.org/10.18653/v1/2020.acl-main.372

[51] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: pre-training
of deep bidirectional transformers for language understanding,” in
Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7,
2019, Volume 1 (Long and Short Papers), J. Burstein, C. Doran, and
T. Solorio, Eds. Association for Computational Linguistics, 2019, pp.
4171–4186. [Online]. Available: https://doi.org/10.18653/v1/n19-1423

[52] Z. Alyafeai, M. S. AlShaibani, and I. Ahmad, “A survey on transfer
learning in natural language processing,” CoRR, vol. abs/2007.04239,
2020. [Online]. Available: https://arxiv.org/abs/2007.04239

[53] A. Chiorrini, C. Diamantini, A. Mircoli, and D. Potena, “Emotion
and sentiment analysis of tweets using BERT,” in Proceedings of the
Workshops of the EDBT/ICDT 2021 Joint Conference, Nicosia, Cyprus,
March 23, 2021, ser. CEUR Workshop Proceedings, C. Costa and
E. Pitoura, Eds., vol. 2841. CEUR-WS.org, 2021. [Online]. Available:
http://ceur-ws.org/Vol-2841/DARLI-AP 17.pdf

[54] L. Yuan, D. Chen, Y. Chen, N. Codella, X. Dai, J. Gao, H. Hu, X. Huang,
B. Li, C. Li, C. Liu, M. Liu, Z. Liu, Y. Lu, Y. Shi, L. Wang, J. Wang,
B. Xiao, Z. Xiao, J. Yang, M. Zeng, L. Zhou, and P. Zhang, “Florence: A
new foundation model for computer vision,” CoRR, vol. abs/2111.11432,
2021. [Online]. Available: https://arxiv.org/abs/2111.11432

[55] O. Méndez-Lucio, C. A. Nicolaou, and B. Earnshaw, “Mole: a molecular
foundation model for drug discovery,” CoRR, vol. abs/2211.02657, 2022.
[Online]. Available: https://doi.org/10.48550/arXiv.2211.02657

[56] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” in 1st International Conference on
Learning Representations, ICLR 2013, Scottsdale, Arizona, USA, May
2-4, 2013, Workshop Track Proceedings, Y. Bengio and Y. LeCun, Eds.,
2013. [Online]. Available: http://arxiv.org/abs/1301.3781

[57] D. Chandrasekaran and V. Mago, “Evolution of semantic similarity—a
survey,” ACM Comput. Surv., vol. 54, no. 2, feb 2021. [Online]. Available:
https://doi.org/10.1145/3440755

[58] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation
learning with deep convolutional generative adversarial networks,”
in 4th International Conference on Learning Representations, ICLR
2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track

https://doi.org/10.18653/v1/2020.acl-main.372
https://doi.org/10.18653/v1/n19-1423
https://arxiv.org/abs/2007.04239
http://ceur-ws.org/Vol-2841/DARLI-AP_17.pdf
https://arxiv.org/abs/2111.11432
https://doi.org/10.48550/arXiv.2211.02657
http://arxiv.org/abs/1301.3781
https://doi.org/10.1145/3440755

BIBLIOGRAPHY 193

Proceedings, Y. Bengio and Y. LeCun, Eds., 2016. [Online]. Available:
http://arxiv.org/abs/1511.06434

[59] F. de la Parra, “Discovery of patterns in simulink systems,” Ph.D.
dissertation, Queen’s University at Kingston, Ontario, Canada, 2017.
[Online]. Available: https://hdl.handle.net/1974/20102

[60] A. Armoush, “Design patterns for safety-critical embedded systems,”
Ph.D. dissertation, RWTH Aachen University, 2010. [Online]. Available:
http://darwin.bth.rwth-aachen.de/opus3/volltexte/2010/3273/

[61] B. H. Cheng, B. Doherty, N. Polanco, and M. Pasco, “Security patterns
for automotive systems,” in 2019 ACM/IEEE 22nd International Confer-
ence on Model Driven Engineering Languages and Systems Companion
(MODELS-C), 2019, pp. 54–63.

[62] B. P. Douglass, Design Patterns for Embedded Systems in C. Boston:
Newnes, 2011. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/B9781856177078000145

[63] “Application design patterns catalogue,” AUTOSAR, Standard, 2022.
[Online]. Available: https://www.autosar.org/fileadmin/standards/
classic/22-11/AUTOSAR TR AIDesignPatternsCatalogue.pdf

[64] R. Kazman, M. Klein, and P. Clements, “Atam: Method for
architecture evaluation,” Software Engineering Institute, Carnegie
Mellon University, Pittsburgh, PA, Tech. Rep. CMU/SEI-2000-TR-
004, 2000. [Online]. Available: http://resources.sei.cmu.edu/library/
asset-view.cfm?AssetID=5177

[65] P. Bengtsson, N. H. Lassing, J. Bosch, and H. van Vliet,
“Architecture-level modifiability analysis (ALMA),” J. Syst. Softw.,
vol. 69, no. 1-2, pp. 129–147, 2004. [Online]. Available: https:
//doi.org/10.1016/S0164-1212(03)00080-3

[66] A. Sutherland and G. Venolia, “Can peer code reviews be exploited
for later information needs?” in 31st International Conference on
Software Engineering, ICSE 2009, May 16-24, 2009, Vancouver, Canada,
Companion Volume. IEEE, 2009, pp. 259–262. [Online]. Available:
https://doi.org/10.1109/ICSE-COMPANION.2009.5070996

[67] P. C. Rigby, B. Cleary, F. Painchaud, M. D. Storey, and D. M.
Germán, “Contemporary peer review in action: Lessons from open
source development,” IEEE Softw., vol. 29, no. 6, pp. 56–61, 2012.
[Online]. Available: https://doi.org/10.1109/MS.2012.24

[68] O. Kononenko, O. Baysal, L. Guerrouj, Y. Cao, and M. W. Godfrey,
“Investigating code review quality: Do people and participation matter?”
in 2015 IEEE International Conference on Software Maintenance
and Evolution, ICSME 2015, Bremen, Germany, September 29 -
October 1, 2015, R. Koschke, J. Krinke, and M. P. Robillard,
Eds. IEEE Computer Society, 2015, pp. 111–120. [Online]. Available:
https://doi.org/10.1109/ICSM.2015.7332457

http://arxiv.org/abs/1511.06434
https://hdl.handle.net/1974/20102
http://darwin.bth.rwth-aachen.de/opus3/volltexte/2010/3273/
https://www.sciencedirect.com/science/article/pii/B9781856177078000145
https://www.sciencedirect.com/science/article/pii/B9781856177078000145
https://www.autosar.org/fileadmin/standards/classic/22-11/AUTOSAR_TR_AIDesignPatternsCatalogue.pdf
https://www.autosar.org/fileadmin/standards/classic/22-11/AUTOSAR_TR_AIDesignPatternsCatalogue.pdf
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=5177
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=5177
https://doi.org/10.1016/S0164-1212(03)00080-3
https://doi.org/10.1016/S0164-1212(03)00080-3
https://doi.org/10.1109/ICSE-COMPANION.2009.5070996
https://doi.org/10.1109/MS.2012.24
https://doi.org/10.1109/ICSM.2015.7332457

194 BIBLIOGRAPHY

[69] A. Bosu, M. Greiler, and C. Bird, “Characteristics of useful code
reviews: An empirical study at microsoft,” in 12th IEEE/ACM Working
Conference on Mining Software Repositories, MSR 2015, Florence,
Italy, May 16-17, 2015, M. D. Penta, M. Pinzger, and R. Robbes,
Eds. IEEE Computer Society, 2015, pp. 146–156. [Online]. Available:
https://doi.org/10.1109/MSR.2015.21

[70] M. Allamanis, E. T. Barr, P. T. Devanbu, and C. Sutton, “A
survey of machine learning for big code and naturalness,” ACM
Comput. Surv., vol. 51, no. 4, pp. 81:1–81:37, 2018. [Online]. Available:
https://doi.org/10.1145/3212695

[71] “Software Engineering — Guide to the software engineering body of
knowledge (SWEBOK),” International Organization for Standardization,
Geneva, CH, Standard, Sep. 2015.

[72] L. Chen, M. A. Babar, and B. Nuseibeh, “Characterizing architecturally
significant requirements,” IEEE Software, vol. 30, no. 2, pp. 38–45, 2013.
[Online]. Available: https://doi.org/10.1109/MS.2012.174

[73] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. T. Devanbu, “On
the naturalness of software,” in 34th International Conference on
Software Engineering, ICSE 2012, June 2-9, 2012, Zurich, Switzerland.
IEEE Computer Society, 2012, pp. 837–847. [Online]. Available:
https://doi.org/10.1109/ICSE.2012.6227135

[74] Y. Pu, K. Narasimhan, A. Solar-Lezama, and R. Barzilay, “sk p: a neural
program corrector for moocs,” in Companion Proceedings of the 2016
ACM SIGPLAN International Conference on Systems, Programming,
Languages and Applications: Software for Humanity, SPLASH 2016,
Amsterdam, Netherlands, October 30 - November 4, 2016. ACM, 2016,
pp. 39–40. [Online]. Available: https://doi.org/10.1145/2984043.2989222

[75] D. E. Knuth, Literate programming, ser. CSLI lecture notes series. Center
for the Study of Language and Information, 1992, vol. 27.

[76] J. W. Reeves, “What is software design,” C++ Journal, vol. 2, no. 2, pp.
14–12, 1992.

[77] V. M. Navale, K. Williams, A. Lagospiris, M. Schaffert, and M.-A.
Schweiker, “(r)evolution of e/e architectures,” SAE International Journal
of Passenger Cars - Electronic and Electrical Systems, vol. 8, no. 2, pp. 282–
288, apr 2015. [Online]. Available: https://doi.org/10.4271/2015-01-0196

[78] B. Rozière, M. Lachaux, L. Chanussot, and G. Lample, “Unsupervised
translation of programming languages,” in Advances in Neural
Information Processing Systems 33: Annual Conference on Neural
Information Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual, 2020. [Online]. Available: https://proceedings.neurips.cc/
paper/2020/hash/ed23fbf18c2cd35f8c7f8de44f85c08d-Abstract.html

[79] R. Sennrich, B. Haddow, and A. Birch, “Neural machine translation
of rare words with subword units,” in Proceedings of the 54th Annual

https://doi.org/10.1109/MSR.2015.21
https://doi.org/10.1145/3212695
https://doi.org/10.1109/MS.2012.174
https://doi.org/10.1109/ICSE.2012.6227135
https://doi.org/10.1145/2984043.2989222
https://doi.org/10.4271/2015-01-0196
https://proceedings.neurips.cc/paper/2020/hash/ed23fbf18c2cd35f8c7f8de44f85c08d-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/ed23fbf18c2cd35f8c7f8de44f85c08d-Abstract.html

BIBLIOGRAPHY 195

Meeting of the Association for Computational Linguistics, ACL 2016,
August 7-12, 2016, Berlin, Germany, Volume 1: Long Papers.
The Association for Computer Linguistics, 2016. [Online]. Available:
https://doi.org/10.18653/v1/p16-1162

[80] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you
need,” in Advances in Neural Information Processing Systems 30:
Annual Conference on Neural Information Processing Systems 2017,
December 4-9, 2017, Long Beach, CA, USA, 2017, pp. 5998–6008.
[Online]. Available: https://proceedings.neurips.cc/paper/2017/hash/
3f5ee243547dee91fbd053c1c4a845aa-Abstract.html

[81] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou,
B. Qin, T. Liu, D. Jiang, and M. Zhou, “CodeBERT: A pre-
trained model for programming and natural languages,” in EMNLP
2020, ser. Findings of ACL, vol. EMNLP 2020. Association for
Computational Linguistics, 2020, pp. 1536–1547. [Online]. Available:
https://doi.org/10.18653/v1/2020.findings-emnlp.139

[82] N. Kitaev, L. Kaiser, and A. Levskaya, “Reformer: The efficient
transformer,” in ICLR 2020. OpenReview.net, 2020. [Online]. Available:
https://openreview.net/forum?id=rkgNKkHtvB

[83] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark,
K. Lee, and L. Zettlemoyer, “Deep contextualized word representations,”
in Proceedings of the 2018 Conference of the North American
Chapter of the Association for Computational Linguistics: Human
Language Technologies, NAACL-HLT 2018, New Orleans, Louisiana,
USA, June 1-6, 2018, Volume 1 (Long Papers). Association for
Computational Linguistics, 2018, pp. 2227–2237. [Online]. Available:
https://doi.org/10.18653/v1/n18-1202

[84] T. Mikolov, W. Yih, and G. Zweig, “Linguistic regularities in continuous
space word representations,” in Human Language Technologies:
Conference of the North American Chapter of the Association of
Computational Linguistics, Proceedings, June 9-14, 2013, Westin
Peachtree Plaza Hotel, Atlanta, Georgia, USA. The Association for
Computational Linguistics, 2013, pp. 746–751. [Online]. Available:
https://aclanthology.org/N13-1090/

[85] X. Zhu and G. de Melo, “Sentence analogies: Linguistic regularities in
sentence embeddings,” in COLING 2020. International Committee on
Computational Linguistics, 2020, pp. 3389–3400. [Online]. Available:
https://doi.org/10.18653/v1/2020.coling-main.300

[86] S. Gururangan, A. Marasovic, S. Swayamdipta, K. Lo, I. Beltagy,
D. Downey, and N. A. Smith, “Don’t stop pretraining: Adapt language
models to domains and tasks,” in ACL 2020, pp. 8342–8360. [Online].
Available: https://doi.org/10.18653/v1/2020.acl-main.740

https://doi.org/10.18653/v1/p16-1162
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://openreview.net/forum?id=rkgNKkHtvB
https://doi.org/10.18653/v1/n18-1202
https://aclanthology.org/N13-1090/
https://doi.org/10.18653/v1/2020.coling-main.300
https://doi.org/10.18653/v1/2020.acl-main.740

196 BIBLIOGRAPHY

[87] A. Drozd, A. Gladkova, and S. Matsuoka, “Word embeddings, analogies,
and machine learning: Beyond king - man + woman = queen,”
in COLING 2016. ACL, 2016, pp. 3519–3530. [Online]. Available:
https://aclanthology.org/C16-1332/

[88] Y. Sun, S. Wang, Y. Li, S. Feng, X. Chen, H. Zhang, X. Tian,
D. Zhu, H. Tian, and H. Wu, “ERNIE: enhanced representation through
knowledge integration,” CoRR, vol. abs/1904.09223, 2019. [Online].
Available: http://arxiv.org/abs/1904.09223

[89] M. Joshi, D. Chen, Y. Liu, D. S. Weld, L. Zettlemoyer, and O. Levy,
“Spanbert: Improving pre-training by representing and predicting spans,”
Trans. Assoc. Comput. Linguistics, vol. 8, pp. 64–77, 2020. [Online].
Available: https://transacl.org/ojs/index.php/tacl/article/view/1853

[90] K. Clark, M. Luong, Q. V. Le, and C. D. Manning, “ELECTRA:
pre-training text encoders as discriminators rather than generators,”
in ICLR 2020. OpenReview.net, 2020. [Online]. Available: https:
//openreview.net/forum?id=r1xMH1BtvB

[91] M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, O. Levy,
V. Stoyanov, and L. Zettlemoyer, “BART: denoising sequence-to-
sequence pre-training for natural language generation, translation, and
comprehension,” in Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, ACL 2020, Online, July 5-10,
2020. Association for Computational Linguistics, 2020, pp. 7871–7880.
[Online]. Available: https://doi.org/10.18653/v1/2020.acl-main.703

[92] B. Rozière, M. Lachaux, M. Szafraniec, and G. Lample, “DOBF:
A deobfuscation pre-training objective for programming languages,”
CoRR, vol. abs/2102.07492, 2021. [Online]. Available: https:
//arxiv.org/abs/2102.07492

[93] H. Yarahmadi and S. M. H. Hasheminejad, “Design pattern detection
approaches: a systematic review of the literature,” Artif. Intell.
Rev., vol. 53, no. 8, pp. 5789–5846, 2020. [Online]. Available:
https://doi.org/10.1007/s10462-020-09834-5

[94] H. Thaller, L. Linsbauer, and A. Egyed, “Feature maps: A comprehensible
software representation for design pattern detection,” in 2019 IEEE 26th
international conference on software analysis, evolution and reengineering
(SANER). IEEE, 2019, pp. 207–217.

[95] R. Oberhauser, “A machine learning approach towards automatic soft-
ware design pattern recognition across multiple programming languages,”
in Proceedings of the Fifteenth International Conference on Software
Engineering Advances. IARIA, 2020, pp. 27–32.

[96] N. Nazar, A. Aleti, and Y. Zheng, “Feature-based software design
pattern detection,” Journal of Systems and Software, vol. 185, p. 111179,
2022. [Online]. Available: https://www.sciencedirect.com/science/article/
pii/S0164121221002624

https://aclanthology.org/C16-1332/
http://arxiv.org/abs/1904.09223
https://transacl.org/ojs/index.php/tacl/article/view/1853
https://openreview.net/forum?id=r1xMH1BtvB
https://openreview.net/forum?id=r1xMH1BtvB
https://doi.org/10.18653/v1/2020.acl-main.703
https://arxiv.org/abs/2102.07492
https://arxiv.org/abs/2102.07492
https://doi.org/10.1007/s10462-020-09834-5
https://www.sciencedirect.com/science/article/pii/S0164121221002624
https://www.sciencedirect.com/science/article/pii/S0164121221002624

BIBLIOGRAPHY 197

[97] A. Bakarov, “A survey of word embeddings evaluation methods,” arXiv
preprint arXiv:1801.09536, 2018.

[98] E. Grave, P. Bojanowski, P. Gupta, A. Joulin, and T. Mikolov, “Learning
word vectors for 157 languages,” arXiv preprint arXiv:1802.06893, 2018.

[99] S. Lim, H. Prade, and G. Richard, “Classifying and completing word
analogies by machine learning,” International Journal of Approximate
Reasoning, vol. 132, pp. 1–25, 2021.

[100] J. R. da Silva and H. d. M. Caseli, “Generating sense embeddings
for syntactic and semantic analogy for portuguese,” arXiv preprint
arXiv:2001.07574, 2020.

[101] T. L. Chen, M. Emerling, G. R. Chaudhari, Y. R. Chillakuru, Y. Seo,
T. H. Vu, and J. H. Sohn, “Domain specific word embeddings for natural
language processing in radiology,” Journal of biomedical informatics, vol.
113, p. 103665, 2021.

[102] A. Ushio, L. Espinosa-Anke, S. Schockaert, and J. Camacho-Collados,
“Bert is to nlp what alexnet is to cv: can pre-trained language models
identify analogies?” arXiv preprint arXiv:2105.04949, 2021.

[103] B. Broekman and E. Notenboom, Testing Embedded Software.
Addison-Wesley, 2002. [Online]. Available: http://www.amazon.de/
Testing-Embedded-Software-Broekman-Bart/dp/0321159861/

[104] P. Giusto, A. Ferrari, L. Lavagno, J.-Y. Brunel, E. Fourgeau, and
A. Sangiovanni-Vincentelli, “Automotive virtual integration platforms:
why’s, what’s, and how’s,” in Proceedings. IEEE International Confer-
ence on Computer Design: VLSI in Computers and Processors, 2002, pp.
370–378.

[105] S. Documentation, “Simulation and model-based design,” 2020. [Online].
Available: https://www.mathworks.com/products/simulink.html

[106] Modelica Association, “Modelica® - a unified object-oriented language
for physical systems modeling. Tutorial,” Dec. 2000. [Online]. Available:
http://www.modelica.org/documents/ModelicaTutorial14.pdf

[107] Z. Hu, Z. Yang, R. Salakhutdinov, and E. P. Xing, “On unifying
deep generative models,” in 6th International Conference on Learning
Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3,
2018, Conference Track Proceedings. OpenReview.net, 2018. [Online].
Available: https://openreview.net/forum?id=rylSzl-R-

[108] L. Ruthotto and E. Haber, “An introduction to deep generative
modeling,” CoRR, vol. abs/2103.05180, 2021. [Online]. Available:
https://arxiv.org/abs/2103.05180

[109] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. C. Courville, and Y. Bengio, “Generative adversarial nets,”
in Advances in Neural Information Processing Systems 27: Annual

http://www.amazon.de/Testing-Embedded-Software-Broekman-Bart/dp/0321159861/
http://www.amazon.de/Testing-Embedded-Software-Broekman-Bart/dp/0321159861/
https://www.mathworks.com/products/simulink.html
http://www.modelica.org/documents/ModelicaTutorial14.pdf
https://openreview.net/forum?id=rylSzl-R-
https://arxiv.org/abs/2103.05180

198 BIBLIOGRAPHY

Conference on Neural Information Processing Systems 2014, December
8-13 2014, Montreal, Quebec, Canada, 2014, pp. 2672–2680. [Online].
Available: http://papers.nips.cc/paper/5423-generative-adversarial-nets

[110] A. Bermano, R. Gal, Y. Alaluf, R. Mokady, Y. Nitzan, O. Tov,
O. Patashnik, and D. Cohen-Or, “State-of-the-art in the architecture,
methods and applications of stylegan,” Computer Graphics Forum,
vol. 41, no. 2, pp. 591–611. [Online]. Available: https://onlinelibrary.
wiley.com/doi/abs/10.1111/cgf.14503

[111] D. Zhao and H. Peng, “From the lab to the street: Solving the challenge
of accelerating automated vehicle testing,” 2017. [Online]. Available:
https://arxiv.org/abs/1707.04792

[112] V. Garousi, M. Felderer, Çağrı Murat Karapıçak, and U. Yılmaz,
“Testing embedded software: A survey of the literature,” Information
and Software Technology, vol. 104, pp. 14–45, 2018. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0950584918301265

[113] D. Verburg, A. van der Knaap, and J. Ploeg, “Vehil: developing and
testing intelligent vehicles,” in Intelligent Vehicle Symposium, 2002. IEEE,
vol. 2, 2002, pp. 537–544 vol.2.

[114] “Un regulation no. 154 - worldwide harmonized light vehicles test proce-
dure (wltp),” United Nations, Standard, 2021.

[115] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” in
2nd International Conference on Learning Representations, ICLR 2014,
Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings,
2014. [Online]. Available: http://arxiv.org/abs/1312.6114

[116] A. B. L. Larsen, S. K. Sønderby, H. Larochelle, and O. Winther,
“Autoencoding beyond pixels using a learned similarity metric,” in
Proceedings of the 33nd International Conference on Machine Learning,
ICML 2016, New York City, NY, USA, June 19-24, 2016, ser. JMLR
Workshop and Conference Proceedings, M. Balcan and K. Q. Weinberger,
Eds., vol. 48. JMLR.org, 2016, pp. 1558–1566. [Online]. Available:
http://proceedings.mlr.press/v48/larsen16.html

[117] E. Brophy, Z. Wang, Q. She, and T. Ward, “Generative
adversarial networks in time series: A survey and taxonomy,”
CoRR, vol. abs/2107.11098, 2021. [Online]. Available: https:
//arxiv.org/abs/2107.11098

[118] P. Liang, R. Bommasani, T. Lee, D. Tsipras, D. Soylu, M. Yasunaga,
Y. Zhang, D. Narayanan, Y. Wu, A. Kumar, B. Newman, B. Yuan,
B. Yan, C. Zhang, C. Cosgrove, C. D. Manning, C. Ré, D. Acosta-Navas,
D. A. Hudson, E. Zelikman, E. Durmus, F. Ladhak, F. Rong, H. Ren,
H. Yao, J. Wang, K. Santhanam, L. Orr, L. Zheng, M. Yuksekgonul,
M. Suzgun, N. Kim, N. Guha, N. Chatterji, O. Khattab, P. Henderson,
Q. Huang, R. Chi, S. M. Xie, S. Santurkar, S. Ganguli, T. Hashimoto,
T. Icard, T. Zhang, V. Chaudhary, W. Wang, X. Li, Y. Mai, Y. Zhang,
and Y. Koreeda, “Holistic evaluation of language models,” 2022.

http://papers.nips.cc/paper/5423-generative-adversarial-nets
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.14503
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.14503
https://arxiv.org/abs/1707.04792
https://www.sciencedirect.com/science/article/pii/S0950584918301265
http://arxiv.org/abs/1312.6114
http://proceedings.mlr.press/v48/larsen16.html
https://arxiv.org/abs/2107.11098
https://arxiv.org/abs/2107.11098

BIBLIOGRAPHY 199

[119] C. Cassisi, P. Montalto, M. Aliotta, A. Cannata, and A. Pulvirenti,
“Similarity measures and dimensionality reduction techniques for time
series data mining,” in Advances in Data Mining Knowledge Discovery
and Applications, A. Karahoca, Ed. Rijeka: IntechOpen, 2012, ch. 3.
[Online]. Available: https://doi.org/10.5772/49941

[120] H. Sakoe and S. Chiba, “Dynamic programming algorithm optimization
for spoken word recognition,” IEEE Transactions on Acoustics, Speech,
and Signal Processing, vol. 26, no. 1, pp. 43–49, February 1978.

[121] Zhou Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: from error visibility to structural similarity,” IEEE
Transactions on Image Processing, vol. 13, no. 4, pp. 600–612, April 2004.

[122] D. Nalic, T. Mihalj, M. Bäumler, M. Lehmann, and S. Bernsteiner,
“Sceneario based testing of autoamted driving systems: A literature
survey,” 11 2020, p. 1, fISITA Web Congress 2020. [Online]. Available:
https://go.fisita.com/fisita2020

[123] S. Ulbrich, T. Menzel, A. Reschka, F. Schuldt, and M. Maurer,
“Defining and substantiating the terms scene, situation, and scenario for
automated driving,” in IEEE 18th International Conference on Intelligent
Transportation Systems, Gran Canaria, Spain, September 15-18. IEEE,
2015. [Online]. Available: https://doi.org/10.1109/ITSC.2015.164

[124] D. J. Fremont, E. Kim, Y. V. Pant, S. A. Seshia, A. Acharya, X. Bruso,
P. Wells, S. Lemke, Q. Lu, and S. Mehta, “Formal scenario-based testing
of autonomous vehicles: From simulation to the real world,” in 23rd
IEEE International Conference on Intelligent Transportation Systems,
ITSC 2020, Rhodes, Greece, September 20-23. IEEE, 2020, pp. 1–8.
[Online]. Available: https://doi.org/10.1109/ITSC45102.2020.9294368

[125] J. Greenyer, M. Haase, J. Marhenke, and R. Bellmer, “Evaluating
a formal scenario-based method for the requirements analysis in
automotive software engineering,” ser. ESEC/FSE 2015. New York,
NY, USA: Association for Computing Machinery, 2015, p. 1002–1005.
[Online]. Available: https://doi.org/10.1145/2786805.2804432

[126] Z. Wang, Q. She, and T. E. Ward, “Generative adversarial networks
in computer vision: A survey and taxonomy,” ACM Comput.
Surv., vol. 54, no. 2, pp. 37:1–37:38, 2021. [Online]. Available:
https://doi.org/10.1145/3439723

[127] X. Mao, Q. Li, H. Xie, R. Y. K. Lau, Z. Wang, and S. P. Smolley,
“Least squares generative adversarial networks,” in IEEE International
Conference on Computer Vision, ICCV 2017, Venice, Italy, October
22-29, 2017. IEEE Computer Society, 2017, pp. 2813–2821. [Online].
Available: https://doi.org/10.1109/ICCV.2017.304

[128] X. Huang, M. Liu, S. J. Belongie, and J. Kautz, “Multimodal
unsupervised image-to-image translation,” in Computer Vision - ECCV
2018 - 15th European Conference, Munich, Germany, September

https://doi.org/10.5772/49941
https://go.fisita.com/fisita2020
https://doi.org/10.1109/ITSC.2015.164
https://doi.org/10.1109/ITSC45102.2020.9294368
https://doi.org/10.1145/2786805.2804432
https://doi.org/10.1145/3439723
https://doi.org/10.1109/ICCV.2017.304

200 BIBLIOGRAPHY

8-14, 2018, Proceedings, Part III, ser. Lecture Notes in Computer
Science, V. Ferrari, M. Hebert, C. Sminchisescu, and Y. Weiss,
Eds., vol. 11207. Springer, 2018, pp. 179–196. [Online]. Available:
https://doi.org/10.1007/978-3-030-01219-9 11

[129] J. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image
translation using cycle-consistent adversarial networks,” in IEEE
International Conference on Computer Vision, ICCV 2017, Venice, Italy,
October 22-29, 2017. IEEE Computer Society, 2017, pp. 2242–2251.
[Online]. Available: https://doi.org/10.1109/ICCV.2017.244

[130] J. L. Eddeland, K. Claessen, N. Smallbone, Z. Ramezani, S. Miremadi,
and K. Åkesson, “Enhancing temporal logic falsification with specification
transformation and valued booleans,” IEEE Trans. Comput. Aided Des.
Integr. Circuits Syst., vol. 39, no. 12, pp. 5247–5260, 2020. [Online].
Available: https://doi.org/10.1109/TCAD.2020.2966480

[131] J. C. B. Gamboa, “Deep learning for time-series analysis,” CoRR, vol.
abs/1701.01887, 2017. [Online]. Available: http://arxiv.org/abs/1701.
01887

[132] A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals,
A. Graves, N. Kalchbrenner, A. W. Senior, and K. Kavukcuoglu,
“Wavenet: A generative model for raw audio,” in The 9th ISCA Speech
Synthesis Workshop, Sunnyvale, CA, USA, 13-15 September 2016.
ISCA, 2016, p. 125. [Online]. Available: http://www.isca-speech.org/
archive/SSW 2016/abstracts/ssw9 DS-4 van den Oord.html

[133] S. Hou, W. Xu, J. Chai, C. Wang, W. Zhuang, Y. Chen, H. Bao, and
Y. Wang, “A causal convolutional neural network for motion modeling
and synthesis,” 2021.

[134] P. Ren, Y. Xiao, X. Chang, P.-Y. Huang, Z. Li, X. Chen, and X. Wang,
“A comprehensive survey of neural architecture search: Challenges and
solutions,” 2021.

[135] Q. Wen, T. Zhou, C. Zhang, W. Chen, Z. Ma, J. Yan, and L. Sun,
“Transformers in time series: A survey,” 2023.

[136] A. I. Miller, 10 Ian Goodfellow’s Generative Adversarial Networks: AI
Learns to Imagine, 2019, pp. 87–98.

[137] A. Jabbar, X. Li, and B. Omar, “A survey on generative adversarial
networks: Variants, applications, and training,” ACM Comput.
Surv., vol. 54, no. 8, pp. 157:1–157:49, 2022. [Online]. Available:
https://doi.org/10.1145/3463475

[138] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings, Y. Bengio and Y. LeCun, Eds., 2015. [Online]. Available:
http://arxiv.org/abs/1412.6980

https://doi.org/10.1007/978-3-030-01219-9_11
https://doi.org/10.1109/ICCV.2017.244
https://doi.org/10.1109/TCAD.2020.2966480
http://arxiv.org/abs/1701.01887
http://arxiv.org/abs/1701.01887
http://www.isca-speech.org/archive/SSW_2016/abstracts/ssw9_DS-4_van_den_Oord.html
http://www.isca-speech.org/archive/SSW_2016/abstracts/ssw9_DS-4_van_den_Oord.html
https://doi.org/10.1145/3463475
http://arxiv.org/abs/1412.6980

BIBLIOGRAPHY 201

[139] S. Bond-Taylor, A. Leach, Y. Long, and C. G. Willcocks, “Deep
generative modelling: A comparative review of vaes, gans, normalizing
flows, energy-based and autoregressive models,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 44, no. 11, pp. 7327–7347, 2022. [Online].
Available: https://doi.org/10.1109/TPAMI.2021.3116668

[140] A. Ramesh, M. Pavlov, G. Goh, S. Gray, C. Voss, A. Radford,
M. Chen, and I. Sutskever, “Zero-shot text-to-image generation,”
CoRR, vol. abs/2102.12092, 2021. [Online]. Available: https:
//arxiv.org/abs/2102.12092

[141] A. Ramesh, P. Dhariwal, A. Nichol, C. Chu, and M. Chen,
“Hierarchical text-conditional image generation with CLIP latents,”
CoRR, vol. abs/2204.06125, 2022. [Online]. Available: https:
//doi.org/10.48550/arXiv.2204.06125

[142] H. Cao, C. Tan, Z. Gao, G. Chen, P. Heng, and S. Z. Li, “A survey on
generative diffusion model,” CoRR, vol. abs/2209.02646, 2022. [Online].
Available: https://doi.org/10.48550/arXiv.2209.02646

[143] C. Esteban, S. L. Hyland, and G. Rätsch, “Real-valued (medical)
time series generation with recurrent conditional gans,” CoRR, vol.
abs/1706.02633, 2017. [Online]. Available: http://arxiv.org/abs/1706.
02633

[144] B. K. Sriperumbudur, A. Gretton, K. Fukumizu, B. Schölkopf, and
G. R. Lanckriet, “Hilbert space embeddings and metrics on probability
measures,” J. Mach. Learn. Res., vol. 11, pp. 1517–1561, Aug. 2010.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1756006.1859901

[145] O. Mogren, “C-RNN-GAN: continuous recurrent neural networks
with adversarial training,” CoRR, vol. abs/1611.09904, 2016. [Online].
Available: http://arxiv.org/abs/1611.09904

[146] N. M. Edvin Listo Zec, Henrik Arnelid, “Recurrent conditional gans for
time series sensor modelling,” in Time Series Workshop at International
Conference on Machine Learning, Long Beach, California, Jan. 2019.

[147] M. Alzantot, S. Chakraborty, and M. B. Srivastava, “Sensegen: A deep
learning architecture for synthetic sensor data generation,” CoRR, vol.
abs/1701.08886, 2017. [Online]. Available: http://arxiv.org/abs/1701.
08886

[148] E. Brophy, Z. Wang, and T. E. Ward, “Quick and easy time
series generation with established image-based gans,” CoRR, vol.
abs/1902.05624, 2019. [Online]. Available: http://arxiv.org/abs/1902.
05624

[149] C. Zhang, S. R. Kuppannagari, R. Kannan, and V. K. Prasanna,
“Generative adversarial network for synthetic time series data generation in
smart grids,” in 2018 IEEE International Conference on Communications,
Control, and Computing Technologies for Smart Grids, SmartGridComm
2018, Aalborg, Denmark, October 29-31, 2018, 2018, pp. 1–6. [Online].
Available: https://doi.org/10.1109/SmartGridComm.2018.8587464

https://doi.org/10.1109/TPAMI.2021.3116668
https://arxiv.org/abs/2102.12092
https://arxiv.org/abs/2102.12092
https://doi.org/10.48550/arXiv.2204.06125
https://doi.org/10.48550/arXiv.2204.06125
https://doi.org/10.48550/arXiv.2209.02646
http://arxiv.org/abs/1706.02633
http://arxiv.org/abs/1706.02633
http://dl.acm.org/citation.cfm?id=1756006.1859901
http://arxiv.org/abs/1611.09904
http://arxiv.org/abs/1701.08886
http://arxiv.org/abs/1701.08886
http://arxiv.org/abs/1902.05624
http://arxiv.org/abs/1902.05624
https://doi.org/10.1109/SmartGridComm.2018.8587464

202 BIBLIOGRAPHY

[150] S. Kolouri, S. R. Park, M. Thorpe, D. Slepcev, and G. K. Rohde, “Optimal
mass transport: Signal processing and machine-learning applications,”
IEEE Signal Processing Magazine, vol. 34, no. 4, pp. 43–59, July 2017.

[151] Y. Kang, R. J. Hyndman, and F. Li, “GRATIS: generating time series
with diverse and controllable characteristics,” CoRR, vol. abs/1903.02787,
2019. [Online]. Available: http://arxiv.org/abs/1903.02787

[152] L. Kegel, M. Hahmann, and W. Lehner, “Feature-based comparison
and generation of time series,” in Proceedings of the 30th International
Conference on Scientific and Statistical Database Management, SSDBM
2018, Bozen-Bolzano, Italy, July 09-11, 2018, 2018, pp. 20:1–20:12.
[Online]. Available: https://doi.org/10.1145/3221269.3221293

[153] P. Gupta, P. Malhotra, J. Narwariya, L. Vig, and G. Shroff,
“Transfer learning for clinical time series analysis using deep neural
networks,” CoRR, vol. abs/1904.00655, 2019. [Online]. Available:
http://arxiv.org/abs/1904.00655

[154] C. Schockaert and H. Hoyez, “Mts-cyclegan: An adversarial-based deep
mapping learning network for multivariate time series domain adaptation
applied to the ironmaking industry,” CoRR, vol. abs/2007.07518, 2020.
[Online]. Available: https://arxiv.org/abs/2007.07518

[155] P. Isola, J. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation
with conditional adversarial networks,” in 2017 IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI,
USA, July 21-26, 2017. IEEE Computer Society, 2017, pp. 5967–5976.
[Online]. Available: https://doi.org/10.1109/CVPR.2017.632

[156] M. Sabini and G. Rusak, “Painting outside the box: Image outpainting
with gans,” CoRR, vol. abs/1808.08483, 2018. [Online]. Available:
http://arxiv.org/abs/1808.08483

[157] P. Liu, X. Zhang, M. Pistoia, Y. Zheng, M. Marques, and L. Zeng,
“Automatic text input generation for mobile testing,” in Proceedings
of the 39th International Conference on Software Engineering, ICSE
2017, Buenos Aires, Argentina, May 20-28, 2017. IEEE / ACM, 2017.
[Online]. Available: https://doi.org/10.1109/ICSE.2017.65

[158] H. Zhao, Z. Li, H. Wei, J. Shi, and Y. Huang, “Seqfuzzer: An industrial
protocol fuzzing framework from a deep learning perspective,” in 12th
IEEE Conference on Software Testing, Validation and Verification, ICST
2019, Xi’an, China, April 22-27, 2019. IEEE, 2019, pp. 59–67. [Online].
Available: https://doi.org/10.1109/ICST.2019.00016

[159] J. Koo, C. Saumya, M. Kulkarni, and S. Bagchi, “Pyse: Automatic
worst-case test generation by reinforcement learning,” in 12th IEEE
Conference on Software Testing, Validation and Verification, ICST 2019,
Xi’an, China, April 22-27, 2019. IEEE, 2019, pp. 136–147. [Online].
Available: https://doi.org/10.1109/ICST.2019.00023

http://arxiv.org/abs/1903.02787
https://doi.org/10.1145/3221269.3221293
http://arxiv.org/abs/1904.00655
https://arxiv.org/abs/2007.07518
https://doi.org/10.1109/CVPR.2017.632
http://arxiv.org/abs/1808.08483
https://doi.org/10.1109/ICSE.2017.65
https://doi.org/10.1109/ICST.2019.00016
https://doi.org/10.1109/ICST.2019.00023

BIBLIOGRAPHY 203

[160] M. Pan, A. Huang, G. Wang, T. Zhang, and X. Li, “Reinforcement
learning based curiosity-driven testing of android applications,” in ISSTA
’20: 29th ACM SIGSOFT International Symposium on Software Testing
and Analysis, Virtual Event, USA, July 18-22, 2020. ACM, 2020.
[Online]. Available: https://doi.org/10.1145/3395363.3397354

[161] J. P. Inala, S. Gao, S. Kong, and A. Solar-Lezama, “REAS: combining
numerical optimization with SAT solving,” CoRR, vol. abs/1802.04408,
2018. [Online]. Available: http://arxiv.org/abs/1802.04408

[162] Z. Hao, S. Liu, Y. Zhang, C. Ying, Y. Feng, H. Su, and J. Zhu, “Physics-
informed machine learning: A survey on problems, methods and applica-
tions,” 2023.

[163] Y. Bengio, A. C. Courville, and P. Vincent, “Representation learning:
A review and new perspectives,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 35, no. 8, pp. 1798–1828, 2013. [Online]. Available:
https://doi.org/10.1109/TPAMI.2013.50

[164] Y. Zhu, Y. Zhang, H. Yang, and F. Wang, “Gancoder: An automatic
natural language-to-programming language translation approach based
on GAN,” in Natural Language Processing and Chinese Computing -
8th CCF International Conference, NLPCC 2019, Dunhuang, China,
October 9-14, 2019, Proceedings, Part II, ser. Lecture Notes in
Computer Science, J. Tang, M. Kan, D. Zhao, S. Li, and H. Zan,
Eds., vol. 11839. Springer, 2019, pp. 529–539. [Online]. Available:
https://doi.org/10.1007/978-3-030-32236-6 48

[165] G. Zerveas, S. Jayaraman, D. Patel, A. Bhamidipaty, and C. Eickhoff, “A
transformer-based framework for multivariate time series representation
learning,” in KDD ’21: The 27th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, Virtual Event, Singapore, August
14-18, 2021, F. Zhu, B. C. Ooi, and C. Miao, Eds. ACM, 2021, pp.
2114–2124. [Online]. Available: https://doi.org/10.1145/3447548.3467401

[166] J. Pennington, R. Socher, and C. Manning, “GloVe: Global vectors for
word representation,” in Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP). Doha, Qatar:
Association for Computational Linguistics, Oct. 2014, pp. 1532–1543.
[Online]. Available: https://aclanthology.org/D14-1162

[167] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching word
vectors with subword information,” Transactions of the Association for
Computational Linguistics, vol. 5, pp. 135–146, 2017. [Online]. Available:
https://aclanthology.org/Q17-1010

[168] A. Ushio, L. E. Anke, S. Schockaert, and J. Camacho-Collados, “BERT
is to NLP what alexnet is to CV: can pre-trained language models
identify analogies?” in Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing, ACL/IJCNLP 2021,
(Volume 1: Long Papers), Virtual Event, August 1-6, 2021. Association

https://doi.org/10.1145/3395363.3397354
http://arxiv.org/abs/1802.04408
https://doi.org/10.1109/TPAMI.2013.50
https://doi.org/10.1007/978-3-030-32236-6_48
https://doi.org/10.1145/3447548.3467401
https://aclanthology.org/D14-1162
https://aclanthology.org/Q17-1010

204 BIBLIOGRAPHY

for Computational Linguistics, 2021, pp. 3609–3624. [Online]. Available:
https://doi.org/10.18653/v1/2021.acl-long.280

[169] H. Chiang, J. Camacho-Collados, and Z. A. Pardos, “Understanding the
source of semantic regularities in word embeddings,” in Proceedings of the
24th Conference on Computational Natural Language Learning, CoNLL
2020, Online, November 19-20, 2020, R. Fernández and T. Linzen, Eds.
Association for Computational Linguistics, 2020, pp. 119–131. [Online].
Available: https://doi.org/10.18653/v1/2020.conll-1.9

[170] T. Shen, J. Mueller, R. Barzilay, and T. S. Jaakkola, “Educating
text autoencoders: Latent representation guidance via denoising,” in
Proceedings of the 37th International Conference on Machine Learning,
ICML 2020, 13-18 July 2020, Virtual Event, ser. Proceedings of Machine
Learning Research, vol. 119. PMLR, 2020, pp. 8719–8729. [Online].
Available: http://proceedings.mlr.press/v119/shen20c.html

[171] K. J. Shih, A. Dundar, A. Garg, R. Pottorf, A. Tao, and
B. Catanzaro, “Video interpolation and prediction with unsupervised
landmarks,” CoRR, vol. abs/1909.02749, 2019. [Online]. Available:
http://arxiv.org/abs/1909.02749

[172] V. K. Ramaswamy, S. C. Musson, C. G. Willcocks, and M. T. Degiacomi,
“Deep learning protein conformational space with convolutions and latent
interpolations,” Phys. Rev. X, vol. 11, p. 011052, Mar 2021. [Online].
Available: https://link.aps.org/doi/10.1103/PhysRevX.11.011052

[173] W. Xia, Y. Zhang, Y. Yang, J. Xue, B. Zhou, and M. Yang,
“GAN inversion: A survey,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 45, no. 3, pp. 3121–3138, 2023. [Online]. Available:
https://doi.org/10.1109/TPAMI.2022.3181070

[174] M. Y. Michelis and Q. Becker, “On linear interpolation in the latent
space of deep generative models,” CoRR, vol. abs/2105.03663, 2021.
[Online]. Available: https://arxiv.org/abs/2105.03663

[175] L. Mi, T. He, C. F. Park, H. Wang, Y. Wang, and N. Shavit,
“Revisiting latent-space interpolation via a quantitative evaluation
framework,” CoRR, vol. abs/2110.06421, 2021. [Online]. Available:
https://arxiv.org/abs/2110.06421

[176] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” in 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings, Y. Bengio and Y. LeCun, Eds., 2015.
[Online]. Available: http://arxiv.org/abs/1412.6572

[177] S. Y. Khamaiseh, D. Bagagem, A. Al-Alaj, M. Mancino, and H. W.
Alomari, “Adversarial deep learning: A survey on adversarial attacks
and defense mechanisms on image classification,” IEEE Access, vol. 10,
pp. 102 266–102 291, 2022.

https://doi.org/10.18653/v1/2021.acl-long.280
https://doi.org/10.18653/v1/2020.conll-1.9
http://proceedings.mlr.press/v119/shen20c.html
http://arxiv.org/abs/1909.02749
https://link.aps.org/doi/10.1103/PhysRevX.11.011052
https://doi.org/10.1109/TPAMI.2022.3181070
https://arxiv.org/abs/2105.03663
https://arxiv.org/abs/2110.06421
http://arxiv.org/abs/1412.6572

BIBLIOGRAPHY 205

[178] M. Ancona, E. Ceolini, C. Öztireli, and M. Gross, “Towards
better understanding of gradient-based attribution methods for deep
neural networks,” in 6th International Conference on Learning
Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3,
2018, Conference Track Proceedings. OpenReview.net, 2018. [Online].
Available: https://openreview.net/forum?id=Sy21R9JAW

[179] S. Kornblith, M. Norouzi, H. Lee, and G. E. Hinton, “Similarity
of neural network representations revisited,” in Proceedings of the
36th International Conference on Machine Learning, ICML 2019,
9-15 June 2019, Long Beach, California, USA, ser. Proceedings of
Machine Learning Research, K. Chaudhuri and R. Salakhutdinov,
Eds., vol. 97. PMLR, 2019, pp. 3519–3529. [Online]. Available:
http://proceedings.mlr.press/v97/kornblith19a.html

[180] P. Liu, W. Yuan, J. Fu, Z. Jiang, H. Hayashi, and G. Neubig, “Pre-train,
prompt, and predict: A systematic survey of prompting methods in
natural language processing,” ACM Comput. Surv., vol. 55, no. 9, pp.
195:1–195:35, 2023. [Online]. Available: https://doi.org/10.1145/3560815

[181] T. Kojima, S. S. Gu, M. Reid, Y. Matsuo, and Y. Iwasawa,
“Large language models are zero-shot reasoners,” in NeurIPS, 2022.
[Online]. Available: http://papers.nips.cc/paper files/paper/2022/hash/
8bb0d291acd4acf06ef112099c16f326-Abstract-Conference.html

[182] S. M. Lundberg and S. Lee, “A unified approach to interpreting
model predictions,” in Advances in Neural Information Processing
Systems 30: Annual Conference on Neural Information Processing
Systems 2017, 4-9 December 2017, Long Beach, CA, USA, 2017,
pp. 4765–4774. [Online]. Available: http://papers.nips.cc/paper/
7062-a-unified-approach-to-interpreting-model-predictions

[183] K. K. Wickstrøm, D. J. Trosten, S. Løkse, K. Ø. Mikalsen, M. C.
Kampffmeyer, and R. Jenssen, “RELAX: representation learning
explainability,” CoRR, vol. abs/2112.10161, 2021. [Online]. Available:
https://arxiv.org/abs/2112.10161

[184] L. Ma, J. Gao, Y. Wang, C. Zhang, J. Wang, W. Ruan, W. Tang,
X. Gao, and X. Ma, “Adacare: Explainable clinical health status
representation learning via scale-adaptive feature extraction and
recalibration,” Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 34, no. 01, pp. 825–832, Apr. 2020. [Online]. Available:
https://ojs.aaai.org/index.php/AAAI/article/view/5427

[185] U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “code2vec:
learning distributed representations of code,” Proc. ACM Program.
Lang., vol. 3, no. POPL, pp. 40:1–40:29, 2019. [Online]. Available:
https://doi.org/10.1145/3290353

[186] M. Allamanis, E. T. Barr, C. Bird, and C. Sutton, “Suggesting accurate
method and class names,” in Proceedings of the 2015 10th Joint Meeting
on Foundations of Software Engineering, ESEC/FSE 2015, Bergamo,

https://openreview.net/forum?id=Sy21R9JAW
http://proceedings.mlr.press/v97/kornblith19a.html
https://doi.org/10.1145/3560815
http://papers.nips.cc/paper_files/paper/2022/hash/8bb0d291acd4acf06ef112099c16f326-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/8bb0d291acd4acf06ef112099c16f326-Abstract-Conference.html
http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions
http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions
https://arxiv.org/abs/2112.10161
https://ojs.aaai.org/index.php/AAAI/article/view/5427
https://doi.org/10.1145/3290353

206 BIBLIOGRAPHY

Italy, August 30 - September 4, 2015. ACM, 2015, pp. 38–49. [Online].
Available: https://doi.org/10.1145/2786805.2786849

[187] A. Conneau and G. Lample, “Cross-lingual language model pretraining,”
in Advances in Neural Information Processing Systems 32: Annual
Conference on Neural Information Processing Systems 2019, NeurIPS
2019, December 8-14, 2019, Vancouver, BC, Canada, 2019, pp.
7057–7067. [Online]. Available: https://proceedings.neurips.cc/paper/
2019/hash/c04c19c2c2474dbf5f7ac4372c5b9af1-Abstract.html

[188] R. Li, L. B. Allal, Y. Zi, N. Muennighoff, D. Kocetkov, C. Mou,
M. Marone, C. Akiki, J. Li, J. Chim, Q. Liu, E. Zheltonozhskii, T. Y.
Zhuo, T. Wang, O. Dehaene, M. Davaadorj, J. Lamy-Poirier, J. Monteiro,
O. Shliazhko, N. Gontier, N. Meade, A. Zebaze, M.-H. Yee, L. K. Umap-
athi, J. Zhu, B. Lipkin, M. Oblokulov, Z. Wang, R. Murthy, J. Stillerman,
S. S. Patel, D. Abulkhanov, M. Zocca, M. Dey, Z. Zhang, N. Fahmy,
U. Bhattacharyya, W. Yu, S. Singh, S. Luccioni, P. Villegas, M. Kunakov,
F. Zhdanov, M. Romero, T. Lee, N. Timor, J. Ding, C. Schlesinger,
H. Schoelkopf, J. Ebert, T. Dao, M. Mishra, A. Gu, J. Robinson, C. J.
Anderson, B. Dolan-Gavitt, D. Contractor, S. Reddy, D. Fried, D. Bah-
danau, Y. Jernite, C. M. Ferrandis, S. Hughes, T. Wolf, A. Guha, L. von
Werra, and H. de Vries, “Starcoder: may the source be with you!” 2023.

[189] S. Storks, Q. Gao, and J. Y. Chai, “Recent advances in natural language
inference: A survey of benchmarks, resources, and approaches,” 2020.

[190] J. Wei, D. Garrette, T. Linzen, and E. Pavlick, “Frequency effects
on syntactic rule learning in transformers,” in Proceedings of the 2021
Conference on Empirical Methods in Natural Language Processing,
EMNLP 2021, Virtual Event / Punta Cana, Dominican Republic, 7-11
November, 2021. Association for Computational Linguistics, 2021, pp.
932–948. [Online]. Available: https://aclanthology.org/2021.emnlp-main.
72

[191] N. Mostafazadeh, M. Roth, A. Louis, N. Chambers, and J. Allen,
“Lsdsem 2017 shared task: The story cloze test,” in Proceedings of the 2nd
Workshop on Linking Models of Lexical, Sentential and Discourse-level
Semantics, LSDSem@EACL 2017, Valencia, Spain, April 3, 2017.
Association for Computational Linguistics, 2017, pp. 46–51. [Online].
Available: https://doi.org/10.18653/v1/w17-0906

[192] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin,
T. Liu, D. Jiang, and M. Zhou, “Codebert: A pre-trained model for
programming and natural languages,” 2020.

[193] S. Wu, O. Irsoy, S. Lu, V. Dabravolski, M. Dredze, S. Gehrmann, P. Kam-
badur, D. Rosenberg, and G. Mann, “Bloomberggpt: A large language
model for finance,” 2023.

[194] U. Naseem, A. G. Dunn, M. Khushi, and J. Kim, “Benchmarking for
biomedical natural language processing tasks with a domain specific
albert,” 2021.

https://doi.org/10.1145/2786805.2786849
https://proceedings.neurips.cc/paper/2019/hash/c04c19c2c2474dbf5f7ac4372c5b9af1-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/c04c19c2c2474dbf5f7ac4372c5b9af1-Abstract.html
https://aclanthology.org/2021.emnlp-main.72
https://aclanthology.org/2021.emnlp-main.72
https://doi.org/10.18653/v1/w17-0906

BIBLIOGRAPHY 207

[195] S. Lu, D. Guo, S. Ren, J. Huang, A. Svyatkovskiy, A. Blanco, C. B.
Clement, D. Drain, D. Jiang, D. Tang, G. Li, L. Zhou, L. Shou, L. Zhou,
M. Tufano, M. Gong, M. Zhou, N. Duan, N. Sundaresan, S. K. Deng,
S. Fu, and S. Liu, “Codexglue: A machine learning benchmark dataset
for code understanding and generation,” CoRR, vol. abs/2102.04664,
2021. [Online]. Available: https://arxiv.org/abs/2102.04664

[196] B. Zadrozny, “Learning and evaluating classifiers under sample selection
bias,” in Machine Learning, Proceedings of the Twenty-first International
Conference (ICML 2004), Banff, Alberta, Canada, July 4-8, 2004, ser.
ACM International Conference Proceeding Series, C. E. Brodley, Ed.,
vol. 69. ACM, 2004.

[197] J. Birch, R. Rivett, I. Habli, B. Bradshaw, J. Botham, D. Higham,
P. Jesty, H. Monkhouse, and R. Palin, “Safety cases and their role in ISO
26262 functional safety assessment,” in Computer Safety, Reliability, and
Security - 32nd International Conference, SAFECOMP 2013, Toulouse,
France, September 24-27, 2013. Proceedings, ser. Lecture Notes in Com-
puter Science, F. Bitsch, J. Guiochet, and M. Kaâniche, Eds., vol. 8153.
Springer, 2013, pp. 154–165.

[198] A. Gardner, J. Kanno, C. A. Duncan, and R. R. Selmic, “Measuring dis-
tance between unordered sets of different sizes,” in 2014 IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2014, Columbus,
OH, USA, June 23-28, 2014. IEEE Computer Society, 2014, pp. 137–143.

[199] D. Hendrycks and K. Gimpel, “A baseline for detecting misclassified
and out-of-distribution examples in neural networks,” CoRR, vol.
abs/1610.02136, 2016. [Online]. Available: http://arxiv.org/abs/1610.
02136

[200] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” in 3rd International Conference on
Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9,
2015, Conference Track Proceedings, Y. Bengio and Y. LeCun, Eds.,
2015. [Online]. Available: http://arxiv.org/abs/1409.1556

[201] C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger, “On calibration
of modern neural networks,” in Proceedings of the 34th International
Conference on Machine Learning, ICML 2017, Sydney, NSW,
Australia, 6-11 August 2017, 2017, pp. 1321–1330. [Online]. Available:
http://proceedings.mlr.press/v70/guo17a.html

[202] C. Olah, A. Satyanarayan, I. Johnson, S. Carter, L. Schubert, K. Ye,
and A. Mordvintsev, “The building blocks of interpretability,” Distill,
2018. [Online]. Available: https://distill.pub/2018/building-blocks/

[203] Y. Li, N. Wang, J. Shi, J. Liu, and X. Hou, “Revisiting batch
normalization for practical domain adaptation,” in 5th International
Conference on Learning Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Workshop Track Proceedings. OpenReview.net, 2017.
[Online]. Available: https://openreview.net/forum?id=Hk6dkJQFx

https://arxiv.org/abs/2102.04664
http://arxiv.org/abs/1610.02136
http://arxiv.org/abs/1610.02136
http://arxiv.org/abs/1409.1556
http://proceedings.mlr.press/v70/guo17a.html
https://distill.pub/2018/building-blocks/
https://openreview.net/forum?id=Hk6dkJQFx

208 BIBLIOGRAPHY

[204] Q. Chao, H. Bi, W. Li, T. Mao, Z. Wang, M. C. Lin, and Z. Deng, “A
survey on visual traffic simulation: Models, evaluations, and applications
in autonomous driving,” Comput. Graph. Forum, vol. 39, no. 1, pp.
287–308, 2020.

[205] N. Ersotelos and F. Dong, “Building highly realistic facial modeling and
animation: a survey,” The Visual Computer, vol. 24, no. 1, pp. 13–30,
2008.

[206] Q. Cheng, Q. Zhang, P. Fu, C. Tu, and S. Li, “A survey and analysis on
automatic image annotation,” Pattern Recognit., vol. 79, pp. 242–259,
2018.

[207] A. Shafaei, M. Schmidt, and J. J. Little, “A less biased
evaluation of out-of-distribution sample detectors,” in 30th British
Machine Vision Conference 2019, BMVC 2019, Cardiff, UK,
September 9-12, 2019. BMVA Press, 2019, p. 3. [Online]. Available:
https://bmvc2019.org/wp-content/uploads/papers/0333-paper.pdf

[208] M. Gyllenhammar, R. Johansson, F. Warg, D. Chen, H.-M. Heyn,
M. Sanfridson, J. Söderberg, A. Thorsén, and S. Ursing, “Towards an
Operational Design Domain That Supports the Safety Argumentation of
an Automated Driving System,” in 10th European Congress on Embedded
Real Time Software and Systems (ERTS 2020), TOULOUSE, France, Jan.
2020. [Online]. Available: https://hal.archives-ouvertes.fr/hal-02456077

[209] W. M. Kouw, “An introduction to domain adaptation and transfer
learning,” CoRR, vol. abs/1812.11806, 2018. [Online]. Available:
http://arxiv.org/abs/1812.11806

[210] V. Tran, “Selection bias correction in supervised learning with
importance weight. (l’apprentissage des modèles graphiques probabilistes
et la correction de biais sélection),” Ph.D. dissertation, University of
Lyon, France, 2017. [Online]. Available: https://tel.archives-ouvertes.fr/
tel-01661470

[211] A. Liu and B. D. Ziebart, “Robust classification under sample selection
bias,” in Advances in Neural Information Processing Systems 27:
Annual Conference on Neural Information Processing Systems 2014,
December 8-13 2014, Montreal, Quebec, Canada, Z. Ghahramani,
M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, Eds.,
2014, pp. 37–45. [Online]. Available: http://papers.nips.cc/paper/
5458-robust-classification-under-sample-selection-bias

[212] M. Dud́ık, R. E. Schapire, and S. J. Phillips, “Correcting sample selection
bias in maximum entropy density estimation,” in Advances in Neural In-
formation Processing Systems 18 [Neural Information Processing Systems,
NIPS 2005, December 5-8, 2005, Vancouver, British Columbia, Canada],
2005, pp. 323–330. [Online]. Available: http://papers.nips.cc/paper/
2929-correcting-sample-selection-bias-in-maximum-entropy-density-estimation

https://bmvc2019.org/wp-content/uploads/papers/0333-paper.pdf
https://hal.archives-ouvertes.fr/hal-02456077
http://arxiv.org/abs/1812.11806
https://tel.archives-ouvertes.fr/tel-01661470
https://tel.archives-ouvertes.fr/tel-01661470
http://papers.nips.cc/paper/5458-robust-classification-under-sample-selection-bias
http://papers.nips.cc/paper/5458-robust-classification-under-sample-selection-bias
http://papers.nips.cc/paper/2929-correcting-sample-selection-bias-in-maximum-entropy-density-estimation
http://papers.nips.cc/paper/2929-correcting-sample-selection-bias-in-maximum-entropy-density-estimation

BIBLIOGRAPHY 209

[213] W. Fan and I. Davidson, “On sample selection bias and its efficient
correction via model averaging and unlabeled examples,” in Proceedings
of the Seventh SIAM International Conference on Data Mining, April
26-28, 2007, Minneapolis, Minnesota, USA. SIAM, 2007, pp. 320–331.
[Online]. Available: https://doi.org/10.1137/1.9781611972771.29

[214] J. Chen, Y. Chang, B. Hobbs, P. J. Castaldi, M. H. Cho, E. K. Silver-
man, and J. G. Dy, “Interpretable clustering via discriminative rectangle
mixture model,” in IEEE 16th International Conference on Data Min-
ing, ICDM 2016, December 12-15, 2016, Barcelona, Spain, F. Bonchi,
J. Domingo-Ferrer, R. Baeza-Yates, Z. Zhou, and X. Wu, Eds. IEEE
Computer Society, 2016, pp. 823–828.

[215] L. van der Maaten and G. Hinton, “Visualizing data using t-SNE,”
Journal of Machine Learning Research, vol. 9, pp. 2579–2605, 2008.
[Online]. Available: http://www.jmlr.org/papers/v9/vandermaaten08a.
html

[216] X. Gu and A. Easwaran, “Towards safe machine learning for CPS: infer
uncertainty from training data,” in Proceedings of the 10th ACM/IEEE
International Conference on Cyber-Physical Systems, ICCPS 2019, Mon-
treal, QC, Canada, April 16-18, 2019. ACM, 2019, pp. 249–258.

[217] D. J. McDuff, S. Ma, Y. Song, and A. Kapoor, “Characterizing
bias in classifiers using generative models,” H. M. Wallach,
H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. B. Fox, and
R. Garnett, Eds., 2019. [Online]. Available: http://papers.nips.cc/paper/
8780-characterizing-bias-in-classifiers-using-generative-models

[218] D. J. McDuff, R. Cheng, and A. Kapoor, “Identifying bias in AI
using simulation,” CoRR, vol. abs/1810.00471, 2018. [Online]. Available:
http://arxiv.org/abs/1810.00471

[219] E. Thorn, S. C. Kimmel, and M. Chaka, Sep 2018, ch. A
Framework for Automated Driving System Testable Cases and
Scenarios, tech Report, DOT HS 812 623. [Online]. Available:
https://rosap.ntl.bts.gov/view/dot/38824

[220] H. Lakkaraju, E. Kamar, R. Caruana, and E. Horvitz, in
Proceedings of the Thirty-First AAAI Conference on Artificial
Intelligence, February 4-9, 2017, San Francisco, California, USA.
AAAI Press, 2017, pp. 2124–2132. [Online]. Available: http:
//aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14434

[221] I. Giurgiu and A. Schumann, “Additive explanations for anomalies de-
tected from multivariate temporal data,” in Proceedings of the 28th ACM
International Conference on Information and Knowledge Management,
CIKM 2019, Beijing, China, November 3-7, 2019, W. Zhu, D. Tao,
X. Cheng, P. Cui, E. A. Rundensteiner, D. Carmel, Q. He, and J. X. Yu,
Eds. ACM, 2019, pp. 2245–2248.

https://doi.org/10.1137/1.9781611972771.29
http://www.jmlr.org/papers/v9/vandermaaten08a.html
http://www.jmlr.org/papers/v9/vandermaaten08a.html
http://papers.nips.cc/paper/8780-characterizing-bias-in-classifiers-using-generative-models
http://papers.nips.cc/paper/8780-characterizing-bias-in-classifiers-using-generative-models
http://arxiv.org/abs/1810.00471
https://rosap.ntl.bts.gov/view/dot/38824
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14434
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14434

210 BIBLIOGRAPHY

[222] L. Antwarg, B. Shapira, and L. Rokach, “Explaining anomalies detected
by autoencoders using SHAP,” CoRR, vol. abs/1903.02407, 2019.
[Online]. Available: http://arxiv.org/abs/1903.02407

http://arxiv.org/abs/1903.02407

	Abstract
	Acknowledgement
	List of Publications
	Introduction
	Automotive software: preparing for the next wave
	Research objectives
	Solution approach
	Thesis structure
	Relation to publications

	Background
	Automotive application software
	The importance of system thinking
	The automotive E/E system
	Vehicle application software as a system

	Foundation models in deep learning
	Domains, tasks and supervision in deep learning
	Benefits and costs of supervised task specialization
	Flexibly applying foundation models for tasks

	I Easing the process of software design compliance
	Automotive software design
	Patterns for designing vehicle application software
	Limits of traditional design compliance assessment
	Towards a deep learning approach for design compliance

	Defining a system for design compliance assessment
	The `language' of design in code
	Stating the problem of design compliance
	The corpus and design pattern studied

	Building a system for design compliance assessment
	Constructing a system for assessing design compliance
	Experiments in assessing design compliance

	Discussions
	On research questions
	On techniques employed
	Related work
	Congruence with research objectives
	Congruence with the solution approach

	II Easing the process of virtual software testing
	Virtual automotive software testing
	Simulation for testing vehicle application software
	Limits of traditional simulation methods
	A deep learning approach to stimulus generation

	Defining a system for test stimulus generation
	A wealth of operational scenarios in signals
	Stating the problem of stimulus generation
	The system of signals and software studied

	Building a system for sampling test stimuli
	Constructing a system for sampling stimuli
	Experiments in sampling stimuli

	Building a system for searching test stimuli
	Expanding the set of signals
	Expanding the system for generating stimuli
	Experiments in searching stimuli

	Discussions
	On research questions
	On techniques employed
	Related work
	Congruence with research objectives
	Congruence with the solution approach

	III Principled operations in vector space
	Vector operations - a joint re-examination
	Learning representations of domains
	Regularity for design compliance
	Interpolation for stimulus sampling
	Gradient descent for stimulus search
	Representational similarity as substratum
	Put together, pre-train and calculate
	What about pre-train and prompt?

	Explaining representation spaces
	Explaining domain adaptation in tasnet
	Relative importance of tokens in a domain
	Conducting a vocabulary challenge
	Results
	Discussion
	Future extension

	Explaining sample representation in data
	Interpretable assessment of sample representation
	Explaining sample representation using annotations
	Explaining sample representation using simulation
	Discussion
	Related work
	Future extension

	Conclusions
	Future work

	Bibliography

