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Abstract

The interaction between light and matter is fundamental in perceiving and
understanding the world. The interaction is typically weak, meaning light
only perturbs matter without changing its properties. When photons
interact strongly with material resonances caused by electronic or
vibrational transitions, hybrid light-matter states called polaritons emerge.
Polaritons have gained significant attention because of their potential to
modify and manipulate material properties, such as conductivity, energy
transport, photochemistry, and chemical reaction rates. Obtaining
polaritons used to require meticulous design and fabrication of cavities, but
recent efforts have aimed to simplify the process using metallic
microcavities and open plasmonic cavities to expand their potential
applications. Regardless of the type of cavity used, conventional polaritons
rely on an external cavity, making them a rare occurrence.

This thesis aims to study and simplify the process of obtaining polaritons in
theory and experiment. It begins with the extensively studied conventional
polaritons obtained with metallic microcavities. The focus is on their
asymmetric decay rates, a less-studied and puzzling property. Surprisingly,
the asymmetry is found to be a more general effect than previously
considered, occurring even in bulk polaritons. Next, instead of fabricating
them, metallic microcavities are formed by the balance between Casimir
and electrostatic forces in gold flakes present in the solution. These metallic
microcavities then self-assemble and hybridize with the excitons in a 2D
semiconductor. These microcavities can be tuned by altering the ionic
concentration in the solution or through dynamic laser irradiation. Finally,
the rest of the thesis is devoted to removing the necessity of an external
cavity, leading to cavity-free polaritons. In this case, optical modes are
sustained by the material’s geometry and hybridize without requiring an
external cavity. The thesis includes experimental demonstrations of two
geometries: 2D planar semiconductors sustaining exciton-polaritons and
spherical water droplets sustaining vibrational polaritons. The existence of
cavity-free polaritons reveals that polaritons are more common than
previously thought, as even water droplets in mist are polaritonic. The
findings presented here open the possibility of studying polaritonic
properties in more straightforward and prevalent structures.
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Chapter 1

Introduction

You are probably reading this text on a screen. The screen emits light that
enters your eyes and focuses on photoreceptors that convert it into
electrical signals that your brain processes as words. This simple example
highlights how the interaction between light and matter facilitates our
ability to perceive and understand the world.

Most of these interactions are weak, where the energy is transferred only in
one direction. For instance, when you look at a screen, your eye does not
send photons back to the screen. Energy is transferred only from the photon
to the receptors in your eye and not the other way around.

However, let us consider an example where energy transfer occurs both
ways. Think of an atom that emits a photon. In the weak coupling regime,
the atom cannot recover its energy once the photon is released into free
space. But if the atom is placed between two perfectly reflective mirrors,
they can ensure the photon stays around long enough until the atom
reabsorbs it. This allows the energy back into the atom, enabling it to
re-emit a photon and repeat the cycle. This process creates a reversible
energy exchange, leading to a strong coupling interaction. At this point,
light and matter hybridize, creating a quasi-particle called polariton.

If the mirrors are not perfect, the imperfections cause the photons to leak,
thus losing energy in the optical cavity created by the mirrors. The energy
loss rate is called the decay rate. Similarly, the atom has its own decay rate,
given by, for example, energy loss to heat. In this case, strong coupling is
reached if the energy exchange between light and matter is faster than the
decay rate of both components.

Polaritons possess fascinating characteristics that distinguish them from
their components. Their properties include new energy levels, new decay
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rates, and coherence. Studies reveal that polaritons can modify
photophysics [1, 2], chemical reaction rates [3–5], charge transport [6],
energy transfer [7], and more [8, 9]. Additionally, polaritons can facilitate
coherence for quantum processing and polariton condensation [10–12]. If
the coupling disappears, the material will regain its original properties.

Because polaritons are light-matter hybrids, their ingredients are a photonic
mode and a resonance in a material. In the example of the atom in a cavity,
the material resonance is given by the transition between electronic energy
levels in the atom. However, the resonance can also result from an excitonic
or a vibrational transition. Chapter 2 explains the optical properties of the
materials that sustain these resonances and how this thesis models them. In
the same example, two mirrors formed a cavity that supported the photonic
mode. Although two mirrors may be the simplest form of an optical
resonator, they can take many different forms and variations. The same
chapter describes the optical resonators in this thesis, including the
well-known Fabry-Pérot resonators, plasmonic nanoresonators, and Mie
resonances in spheres.

Once the ingredients are understood, Chapter 3 introduces the discussion
on strong light-matter interactions. The chapter begins with a historical
overview of polaritons to understand their development over the years
from two perspectives. The first perspective focuses on the quantum
electrodynamics (QED) description of a single photon single atom
interaction, which led to the terms "weak" and "strong" coupling. The work
of Haroche follows this view [13], who won a Nobel prize in 2012 for the
quantum control over single photon and single atom interactions [14]. The
second perspective concentrates on the properties of solids when their
interactions with light cannot be neglected. In this context, the term
"polariton" was coined by Hopfield in 1958 [15] to refer to what is now
known as bulk polariton [16].

In 1992, Weisbuch et al. [17] merged both perspectives by demonstrating
microcavity exciton-polaritons in quantum wells. This discovery marked
the beginning of the microcavity polariton era [18], which has since evolved
into various platforms that utilize different materials and cavities. Among
the materials used are quantum wells [18, 19], organic molecules [20],
quantum dots [21, 22], perovskites [23], and 2D materials [24]. The cavity
types include dielectric [18] and metallic [25] Fabry-Pérot microcavities,
photonic crystals [21], surface plasmons [9, 26], single plasmonic
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FIGURE 1.1: (a) Plasmons in metallic nanodisks coupled to photons in a metallic
microcavity, therefore these are an example of conventional polaritons. (b) Excitons
in WSe2 strongly coupled to photonic modes in a self-assembled metallic microcavity
comprised of a floating gold flake floating on top of a gold mirror. (c) Cavity-free
polaritons in MoS2 flakes by hybridizing its excitons to the photonic modes sustained
by the geometry (planar dielectric cavity). (d) Vibrational modes self-hybridized to Mie

modes sustained by spherical droplets.

particles [27, 28], and plasmonic arrays [29]. This thesis refers to all these as
conventional polaritons, where a resonant material is coupled to an external
cavity.

The first part of this thesis studies the decay rates of these conventional
polaritons. Among all the possible platforms described above, Chapter 3
describes one where plasmons (collective oscillations of electron density) in
nanodisks are coupled to microcavity photons to study conventional
polaritons, as shown in Figure 1.1a. Plasmonic nanoresonators are common
in the strong coupling field but are usually the "light" part of a hybrid [9].
However, plasmons are collective excitations involving electromagnetic
waves (photons) and charge carriers (electrons or holes) oscillations in a
material. Therefore, they are already hybrids, so they can also serve as the
"matter" part [30], as demonstrated in this thesis.

Using plasmonic nanoresonators gives us control over the coupling
strength of the plasmon–microcavity hybrid [31]. In general, the coupling
strength depends on the material transition’s dipole moment, the
electromagnetic field’s confinement in the cavity (mode volume), and the
number of molecules/emitters involved in the collective coupling [32].
Using plasmonic nanoresonators allows us to tailor both the dipole
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moment and the number of nanoparticles involved in the coupling, which
enables control over the coupling strength. Thus, it is possible to reach the
ultrastrong coupling regime [33], where the coupling strength is a fraction
of the transition energy [19]. Even deep strong coupling has been
accomplished with metallic nanoparticles [34], where the coupling strength
is equivalent to the transition energy [35].

Because of their metallic nature, plasmonic resonators possess significant
decay rates due to Ohmic losses given by the scattering of electrons in the
impurities and to absorption of light by their interband transitions.
Therefore, they are an interesting platform to study the behavior of
polaritonic decay rates, a problem of interest since the 1990s [36, 37]. Paper
I studies the behavior of plasmon–microcavity polaritonic decay rates
under different interaction regimes [38]. The decay rates can be visualized
in measurements by its resonances’ broadening. However, in Paper I, we
opted for calculating the quasinormal modes of the system in the complex
frequency plane to obtain simultaneous information on the energies and
decay rates of the polaritons, as described in Chapter 5. Surprisingly, the
asymmetry is found to be a more general effect that occurs in bulk
polaritons and is independent of the material’s microscopic structure.

In conventional polaritonic works, optical cavities are typically tailored to
the material they interact with, as in Paper I. The most common cavity
design consists of two mirrors, but placing the material between them
makes it difficult to reach it for further modifications. Open cavities, such
as plasmonic particles, have been explored to overcome this limitation.
However, adjusting them after fabrication can be challenging, even with
open cavities.

To address this problem, Paper II proposes self-assembled cavities in
solution [39]. In this approach, gold flakes float in a solution and form
Fabry-Pérot cavities due to a balance between electrostatic and Casimir
forces, as illustrated in Figure 1.1b. The salt in the solution can passively
control the self-assembled microcavity, while laser radiation pressure can
dynamically control it.

On the other hand, Paper III questions the need for an external cavity
altogether [40]. Instead, it proposes hybridizing the macroscopic material’s
resonance to the photonic modes sustained by its geometry. These
polaritons are called cavity-free or self-hybridized polaritons. Bulk
polaritons inspired them, but instead of coupling to a plane wave in the
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material, they rely on confined photonic modes by the material itself.
Moreover, Paper III shows that only if a material sustains bulk polaritons
can it hybridize with external cavities and self-sustained modes.

Chapter 4 discusses materials that sustain cavity-free polaritons and
focuses on my efforts to measure them. For instance, Paper IV aimed to
experimentally probe polaritons in the planar geometry [41], as depicted in
Figure 1.1c. Interestingly, MoS2 slabs are not only polaritonic, but the same
unpatterned flakes also perfectly absorb light below the light-line.

Similar to perfect absorption, this thesis includes other exciting results
beyond the strong light-matter interaction regime. Chapter 2 provides an
overview of the basics required to understand these results, such as perfect
light absorption, optical resonators, and Casimir forces. The chapter
describes perfect absorption in a few nanometers thick MoS2 unpatterned
flakes, the formation of self-assembled microcavities via Casimir attraction,
and water droplets as an optical resonator. This chapter highlights that
spheres have a complicated Mie spectrum because multiple Mie resonances
overlap. Yet, Paper V presents a resonance spectrum organized in combs
obtained by measuring the scattering of the droplet from a side [42]. The
resonances have a Fano profile explained through a quantum mechanical
analogy.

Despite the complex Mie spectrum of a single droplet, Paper III pointed
out that single Mie modes in water droplets can reach strong coupling with
the O–H stretch vibrational mode, as shown in Figure 1.1d. However, the
experimental setup in Paper V would require significant upgrades
(including an infrared laser and detector) to visualize polaritons. Instead,
inspired by atmospheric sciences, mist’s infrared (IR) spectrum was
measured using a commercial Fourier transform infrared (FTIR)
spectrometer described in Chapter 5. As a result, Paper VI demonstrates
that water droplets in fog and mist are polaritonic [43].

As an overview, Chapter 2 describes the optical properties of materials and
the optical resonators used in this thesis. Then, Chapter 3 describes the
various regimes of light-matter interactions and conventional polaritons.
This chapter includes a study of polaritonic decay rates and a way to
simplify fabrication with self-assembled microcavities. The fabrication is
further simplified in Chapter 4 by removing external cavities. Thus, the
chapter introduces cavity-free self-hybridized polaritons. All the
experimental and theoretical methods details are found in Chapter 5.
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Finally, Chapter 6 summarizes the main findings of the research papers
included in the thesis. The final chapter discusses the impact of results in
the field, their significance to my research education, and present ideas for
future research.
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Chapter 2

Light-matter interactions

This chapter introduces important concepts for the rest of the thesis. It
begins with the Lorentz model for permittivities of materials and covers the
optical resonators used here for strong light-matter interactions. Even
though the heart of the thesis is about polaritons, many exciting effects do
not require strong coupling.

The appended papers have contributions outside of the strong coupling
realm. This chapter also explores those results. First, I discuss reaching
perfect absorption in an unpatterned few nanometer-thick 2D crystal. Later,
following the topic of Mie resonances in water droplets, I go through the
measurement of around a hundred Fano resonances in levitated water
droplets. Lastly, I focus on a method to generate Fabry-Pérot resonators
through self-assembly enabled by Casimir forces.

2.1 Optical properties of matter

To understand light propagating in materials, we can start by discussing
light traveling in vacuum. From a classical perspective, light is an
electromagnetic wave with oscillating electric and magnetic fields. In the
case of a plane wave, the electric field evolves as E(r, t) = E0e

i(k·r−ωt). Here, r
is the wave direction of propagation, k is the wave vector, and ω is the
angular frequency. In a vacuum, the relationship between the wavenumber
and the angular frequency is known as its dispersion relation, which is
k = |k| = ω

c
. I refer to this later on as the light-line in vacuum. Light can be

described by frequency, wave number, or energy. In this case, I chose
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energy most of the time, where it is related to the angular frequency as
E = ℏω1 and I describe it in electron volts (eV).

Now, imagine that the plane wave propagates through a material instead.
The field E displaces its electrons, this generates a field that also impacts the
electrons’ movement. This effect of the generated field on the electrons is
called polarization density, P. As a result, the plane wave is described by the
electric displacement2:

D = ε0E + P = ε0E + ε0χE . (2.1)

In this equation, ε0 represents the vacuum’s permittivity while χ represents
the material’s susceptibility. We can simplify the equation by expressing
the displacement in terms of the material’s relative permittivity, denoted as
D = ε0εE. Therefore, the response to the plane wave is determined by the
complex relative permittivity of the material, which is expressed as ε = ε′ +

iε′′.

If the material is nonmagnetic, the permittivity is related to its refractive
index as ñ2 = ε [44]. The real part of this macroscopic quantity, n, is related
to the velocity of light in the material, v = c/n. Therefore, the dispersion
in the material changes to ω = ck/n. The imaginary part, κ, represents the
extinction coefficient, which describes the absorption of light by the material.

The response of the material to incoming light usually varies with the
frequency of light, ω, meaning that it is dispersive. The dispersion is
considered in the dielectric function, ε(ω). Moreover, the permittivity may
depend on the direction of propagation in the material for anisotropic
materials [45]. Only some of the 2D materials in this thesis have
out-of-plane anisotropy, hexagonal boron nitride (hBN), and molybdenum
disulfide (MoS2).

2.1.1 Drude-Lorentz model

The dispersion of the permittivity is usually related to resonances in the
material. I will later address the nature of the resonances for each material
used in the thesis. Let us now discuss the Lorentz model to describe

1In many instances here for simplicity ℏω is shortened to ω.
2This is valid in linear optics. However, when the intensity of the field E0 increases,

nonlinearities play an important role. These effects are beyond the scope of this thesis, but
they are covered in detail in [44].
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classically ε [44, 45]. The model considers the electrons in the material as
simple harmonic oscillators around the fixed ions. If the material is
isotropic with a density of electrons (ρ), light induces oscillations around
the ions with a frequency ω0. Then, a polarization density, P = −ρex, is
induced that evolves in time as

P̈(t) + γṖ(t) + ω2
0P = f

ρe

me

E(t) , (2.2)

where, me is the electron mass, e its charge, γ is the damping frequency, and
f is the oscillator strength of the resonance, which is related to the efficiency
of the interaction between the electric field and the electronic or vibrational
transition. Equation (2.2) is solved by performing a Fourier transform,
obtaining

P(ω) = f
ρe2/meε0

ω2
0 − ω2 − iγω

ε0E(ω) . (2.3)

Assuming a homogeneous and isotropic material, we have P(ω) = ε0χE =

ε0(ε− 1)E. Then, the permittivity can be written as,

ε(ω) = 1 + f
ω2
P

ω2
0 − ω2 − iγω

, (2.4)

where ωP =
√
ρe2/meε0 is the plasma frequency.

Equation (2.4) considers a single resonance locally. In reality, several
resonances contribute to the total optical response in a material. It is
possible to add more oscillators to account for resonances in the same
energy range as in equation (2.5). If resonances occur at higher energies, the
background permittivity can account for them [44]:

ε(ω) = ε∞ +
∑
j

fj
ω2
P

ω2
0j
− ω2 − iγjω

. (2.5)

Until now, this permittivity has been described from a classical view.
However, it is also possible to interpret it quantum mechanically. In that
case, ℏω0 = ℏωg→e represents the energy between the ground and excited
states of a transition, while f = fg→e is the probability of the transition
occurring [46]. It is then possible to prove that

∑
j fj = 1 [44]. The following

sections provide examples of the permittivity in equation (2.5)
approximating the real permittivity of the materials in this thesis.
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2.1.2 Permittivities of real materials

The nature of the resonances described by ε(ω) depends on the material
and spectral range. These resonances can come from electronic transitions,
vibrational transitions, or even excitons [44, 45]. Let us discuss the nature of
the resonances of some materials considered in this thesis.

Organic molecules: J-aggregates

J-aggregates are a type of dye molecule that can self-assemble head-to-tail.
This process results in a significant change in their optical properties [47].
J-aggregates can sustain delocalized excitons3, which give rise to a sharp
absorption spectrum. One of the most extensively studied cyanine dyes that
form j-aggregates is TDBC4 because of its simple spectrum [47].

The Lorentz permittivity of TDBC J-aggregates fitted to the experimental
data [48] is shown in Figure 2.1. The fitting used equation (2.5) with one
resonance with ω0 = 2.11 eV, γ = 0.1 eV and ε∞ = 2.15. Plotting the same
permittivity in the complex frequency plane shows the pole of equation (2.5),
ε(ω̃) → ∞, when ω̃ = ω0 − iγ/2. It is worth noting that γ increases the
broadening of the Lorentzian in Imε, while fω2

P determines the peak height.

J-aggregates have been broadly used in strongly coupled systems [25, 49].
In particular, TDBC has been used to strongly couple to plasmonic
resonances because its high oscillator strength generates a Rabi splitting
larger than the high metallic decay rates [26, 28, 50]. Interestingly, since
J-aggregates are formed in solution, the concentration of monomers before
aggregation regulates the final absorption intensity. The concentration
allows it to tune its oscillator strength. In Paper III, this property was used
to theoretically visualize the eigenmodes of a J-aggregate in weak, strong,
and ultrastrong coupling.

Water

Water’s optical properties are well-documented in textbooks [46]. In this
thesis, I am interested mainly in water’s light absorption in the infrared (IR)
spectral region [51, 52]. The absorption in this spectral region is given by
its vibrational modes. The two main vibrational modes of water, H–O–H

3Excitons are quasiparticles that are formed due to the Coulombic interaction between
an electron excited to the conduction band and the hole left in the valence band.

4TDBC stands for 5,5’,6,6’-tetrachloro - 1,1’- diethyl- 3,3’- di(4-
sulfobutyl)benzimidazolocarbocyanine.
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FIGURE 2.1: Permittivity of a Lorentzian fit of TDBC J-aggregates. (a) The real and
imaginary parts of ϵ(ω). The imaginary part reaches a maximum at the resonance
frequency. The broadening of the imaginary part (purple arrow) is given by the
system’s damping, γ. (b) The same Lorentzian permittivity plotted in the complex-

ω plane shows the pole at ω0 − iγ/2.

bending and O–H stretching, are shown from left to right in Figure 2.2a.
In the imaginary part of the permittivity, the bending mode appears as a
peak around 0.2 eV. On the other hand, water has a symmetric and an anti-
symmetric stretch so close to each other with such high oscillator strength
that they merge into one peak around 0.418 eV, as shown in Figure 2.2a.

Figure 2.2 shows the Lorentzian fit of the experimental permittivity [51]
using the fitting values proposed by Fiedler et al. [53]. The fit considers one
damped oscillator for each vibrational mode in equation (2.5). Paper
VI contains further details on the fitting values. For a more comprehensive
fit to the water permittivity, an additional Debye term, described in Paper
II, should be included [53]. This term is related to the polarization caused
by the rotation of permanent dipoles at low frequencies [46]. Although not
relevant for polaritons calculations, it is important for Casimir’s potential
calculations, as explained in section 2.5.

Atomically thin MoS2

Bulk molybdenum disulfide, MoS2, is an indirect band-gap semiconductor
that belongs to the Transition Metal Dichalcogenides5 (TMDs) family. TMDs
are van der Waals (vdWs) layered materials. This means mechanical
exfoliation can easily separate its layers due to the weak vdWs interaction
between them. As a result, it is possible to obtain 2D-atomically thin layers
similar to graphene [55–57]. As shown in Figure 2.2b, a single layer of

5TMDs are semiconductors of the type MX2, where M is a transition metal atom (e.g.,
Mo, W or Ta) and X is a chalcogen atom (e.g., S, Se or Te) [55].
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FIGURE 2.2: (a) Lorentzian fit to the experimental permittivity of water [51, 52] with
resonances given by the vibrational bending (left) and stretching (right) modes. (b)

Lorentzian fit of the experimental MoS2 permittivity [54].

MoS2 consists of three atoms, where Mo is sandwiched between two S
atoms. These layers can stack to form slabs or a bulk material6. The dashed
lines in Figure 2.2b show the experimental permittivity of bulk MoS2 [54].
The Lorentzian is fitted using three oscillators, one for each exciton (A, B,
and C)7.

A commonly overlooked optical property of bulk TMDs is their high
background refractive index in the visible range [60]. The real part of the
permittivity in Figure 2.2b shows these high values. Paper IV uses this
property to obtain optical resonances in the slabs, as described in
subsection 4.1.1.

In contrast, the most popular property of TMD monolayers is the
appearance of photoluminescence due to exciton recombination [61]. This
occurs because the band structure changes, so the indirect band gap
becomes direct. This feature makes it easy to identify monolayers, as done
in Paper IV.

2D-atomically thin hBN

Hexagonal boron nitride (hBN) is a material composed of layers that are
one atom thick and held together by vdWs forces [63]. It is commonly used

6The stacking is important for determining the thickness and properties such as second-
harmonic generation and transport. In this case, for a 2H phase, the only stable stacking is
AB. However, this is beyond the scope of this thesis. For a better description, see [55, 58,
59].

7Excitons are often present in semiconductors but are typically screened by other
charges. However, in layered materials, the screening is reduced, resulting in particularly
high binding energies of excitons in TMDs, which remain stable even at room temperature.
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FIGURE 2.3: Materials with negative permittivities. (a) Lorentzian fit to the
experimental bulk in-plane permittivity of hBN [54]. The shaded area represents the
Reststrahlen band, where Re(ε) is negative. (b) Drude-Lorentz fit to the experimental

gold permittivity [62].

as a substrate and insulator for other atomic crystals, enhancing and
protecting their properties. However, its unique optical properties in the
infrared (IR) have recently become an area of interest in their own right.
Due to the large anisotropy, two phononic branches arise from the in-plane
and out-of-plane lattice vibrations [63]. The in-plane branch is around 169
meV, while the out-of-plane branch is around 95 meV [64]. Figure 2.3 shows
the in-plane experimental permittivity and its Lorentzian fit. Additional
information about the fit is in Paper III.

Like MoS2, hBN also has a high refractive index but in the IR range. Paper
III uses this property to show that hBN slabs sustain cavity-free polaritons
in the IR. In contrast, the real part of the permittivity turns negative for
hBN, creating what is known as the Reststrahlen band (shaded area in
Figure 2.3a). The appearance of Reststrahlen bands is common in polar
crystals with strong phonon vibrations [46]. This is a reflective portion of
the spectra where surface phonon-polaritons (SPhP) are supported.
Moreover, these polaritons do not require any external cavities, and in
subsection 4.1.2, I will discuss the distinctions between SPhPs and
cavity-free polaritons.

Gold

Metals have a permittivity with a negative real part, as illustrated in
Figure 2.3b. Unlike dielectrics, this negative permittivity is not caused by
intense phonon vibration. Instead, it is due to free electrons in metals that
can move around to reflect the incoming field. As a result, the resonance
frequency in the Lorentzian (as shown in equation 2.4) is set to zero, i.e.,
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ω0 = 0. This model is known as the Drude model [46],

ε(ω) = ε∞ − ω2
P

ω2 + iγω
. (2.6)

The electron collision frequency, γ, determines the damping in metals.
However, this equation is limited because it only considers the free
electrons in metals, not the bound electrons. For instance, noble metals such
as gold contain additional bound electrons that can impact light absorption
at higher frequencies [65]. The increase in light absorption from the onset of
the interband transitions of gold is exemplified in Figure 2.3b. This
increased absorption is what gives gold its characteristic color. To consider
these bound electrons we use a Drude-Lorentz model,

ε(ω) = ε∞ − ω2
P

ω2 + iγω
+
∑
j

fj
ω2
P

ω2
0j
− ω2 − iγjω

. (2.7)

The parameters used to fit the permittivity values of gold are in Paper I.
There, the gold permittivity Lorentzian fit was used to calculate the
eigenfrequencies of a Fabry-Pérot microcavity, as addressed in
subsection 2.3.1.

2.2 Perfect absorption in thin MoS2 layers

The imaginary part of a material’s permittivity indicates the frequencies
and extent to which it absorbs light. As we have seen, some materials
naturally have a large Im(ε) around the resonances, meaning they have
enhanced absorption. Researchers have been actively designing and
structuring materials to increase the amount of absorbed light, sometimes
even resulting in total absorption of incoming radiation. This phenomenon
is known as perfect absorption and has significant applications in fields like
photodetection, sensing, and photovoltaics. Therefore, various techniques
and materials have been used to achieve perfect absorption in different
frequency ranges [66].

2D crystals have great potential in this field due to their ability to form
ultra-thin slabs while having high absorption despite being only a few
atoms thick [54]. Perfect absorption has been achieved in graphene [67] and
hBN [68] from the microwave to IR regime. In the visible range, TMDs have
been targeted to achieve perfect absorption in visible frequencies. Several
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FIGURE 2.4: Perfect absorption in MoS2 ultra-thin slabs. (a) Light shines from the
bottom of the substrate with a few layers thick MoS2 slab, which consists of a few
stacked 3-atom layers. The number of stacked layers gives the thickness of the slab.
(b) Maximum absorption in the visible at every angle for TE (orange) and TM (green)
polarized light. Two thicknesses are considered, a monolayer (dotted lines) and a 7-

layer (7L) slab shown in solid lines.

structures have been designed to maximize TMDs absorption [69–71].
However, achieving this requires careful design and fabrication.

In contrast, Häggalund et al. [72] noticed absorption enhancement in a
dispersionless unpatterned dielectric when the refractive index of the
material from which the light comes is higher than the outgoing one. The
absorption is maximized for light coming at angles above the critical angle
(below the light line). Paper IV extends this idea to a dispersive MoS2 slab
(also called flake), as shown in Figure 2.4a. Here, light comes from glass
(n = 1.51), passes through MoS2, and is scattered into air (n = 1).

This process is polarization-dependent. Figure 2.4b shows that the
maximum absorption in the visible range reaches 100% for a 7-layer
(7L∼ 4.6 nm) MoS2 slab for TE-polarized light, but it only reaches ∼ 85%

for TM polarization. Interestingly, a monolayer being only three atoms
thick (∼ 0.65 nm) reaches ∼ 70% absorption by simply illuminating at the
critical angle. Paper IV presents the experiments that show that the
maximum absorption occurs around the C-exciton.

One of Paper IV’s most significant findings is the unique reflection spectra
for each slab with thickness between 1-10L. The reflection8 spectrum in the
visible was measured at various angles as described in subsection 5.3.1, and
it was calculated via the transfer matrix method (TMM). Here,

8Note that beyond the critical angle, there is no transmitted light due to total internal
reflection in glass. Therefore, it is possible to calculate the absorption directly from reflection
measurements by A = 1−R.
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FIGURE 2.5: Perfect absorption of TE polarized light in a 7-layer MoS2 slab. (a)
Calculated reflectivity beyond the light-line by TMM. The horizontal dashed lines
marked the energies of the excitons. The vertical line marks the limit of the
experimental angular resolution. (b) Measured reflectivity via Fourier spectroscopy,
note that the experimental angular resolution is limited. (c) Phase of the reflected wave
calculated by TMM. The singularities appear in the points of perfect absorption. gray
and black circles mark the topological charge of the singularities (1 and -1, respectively).
(d) Zeros of the Ŝ-matrix in the complex frequency plane at different angles. The
frequencies at which the zeros cross the real axis are marked with gray and black arrows
depending on the topological charge of its associated singularity. Figure modified

from [41].

Figure 2.5a(b) shows only the example of the reflection calculation
(experiment) for 7L of MoS2 under TE-polarized light illumination.
However, flakes with different thicknesses have a distinct angular reflection
spectrum that could enable a direct optical, non-invasive characterization
technique for the thickness of 2D crystals. This method does not require a
monolayer nearby to calibrate with and is particularly interesting for flakes
thicker than 4L. After this thickness, other methods like Raman
spectroscopy become unreliable.

Note that the experimental resolution in reflection is 1%, meaning we
cannot claim 100% absorption. To demonstrate perfect absorption, we
examine the phase of the reflected wave. The phase of the reflected wave is
not defined when its magnitude is zero, giving rise to a phase singularity as
illustrated in Figure 2.5c. The points with singularities perfectly absorb
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light. For example, in the measured visible range, the 7L slab has five
points of perfect absorption at different angles and energies. Paper IV also
provides analytical formulas to find the angles and energies at which any
material with permittivity ε(ω) will show perfect absorption. The formulas
indicate that only 4L-8L MoS2 flakes can absorb light perfectly and agree
with the five perfect absorption points of 7L.

If a 7L MoS2 has five singularities, what is the maximum number of
singularities that can arise? We can find the answer using the Ŝ-matrix
(explained in subsection 5.1.2). The poles of Ŝ-matrix determine the
eigenfrequencies of the system. Similarly, perfect absorption occurs when
the zeros of Ŝ become purely real9 [74]. In a lossless system, all poles are in
the lower plane, and the zeros are in the upper plane [73]. In MoS2, the
zeros get pulled to the lower plane because of the high loss of the excitons
(see subsection 5.1.2 for more details). Therefore, the zeros can only cross
the real axis (dashed lines) at most twice per exciton, resulting in a
maximum of two singularities per exciton. The appearance of two
singularities of opposite topological charges per resonance has been
observed before in a metasurface [75].

2.3 Optical resonators

Optical resonators confine light [76, 77]. Intuitively, one can think of a
resonant cavity as a set of boundary conditions reflecting light back and
forth, enhancing electromagnetic fields in certain positions. The boundary
conditions can vary. They can be given by a perfect mirror or simply by a
sudden refractive index change. This section discusses the kinds of
resonators used in this thesis, such as plasmonic nanoresonators, metallic
and dielectric Fabry-Pérot cavities, and dielectric spheres.

Before diving into each resonator’s details, let us start with some general
definitions. An optical resonance is the response of an electromagnetic
normal mode to incoming light. A normal mode is a stationary solution of
the source-less Maxwell’s equations in a closed system. A closed system
has perfect boundary conditions, so no radiation leaks to the environment.

9They correspond to perfect absorption only below the LL, as in this case, because
transmission is zero. In general, a zero in the real axis corresponds to Coherent Perfect
Absorption (CPA) [73, 74].
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If there are no losses to the environment, the system is Hermitian, and its
eigenfrequencies are real.

However, all the systems in this thesis leak radiation into the environment.
Thus, they are open systems. The solutions of the source-free Maxwell’s
equations in an open system are instead called quasinormal modes (QNMs)
[78, 79]. The QNMs eigenfrequencies10 are complex, ω̃ = ω − iγ/2, where γ
is the decay rate of the mode. Intuitively, with a smaller decay rate, the
photons stay longer in the resonator. The resonance quality is described by
the quality factor, Q = ω/γ [78, 80]. The Q-factor tells the number of
oscillations the resonant state has before it is damped by a factor of 2.7 [74].

The QNMs manifest in reflection, transmission, or extinction measurements
or calculations depending on the system’s geometry. They appear as peaks
(dips) in extinction cross-sections (reflectivity) measurements. This chapter
will discuss the manifestation of the QNMs and also the behavior of their
eigenfrequencies in the complex frequency plane for different optical
resonators.

2.3.1 Fabry-Pérot resonators

The most popular and intuitive resonator is the Fabry-Pérot resonator [81].
A Fabry-Pérot (FP) resonator is given by two reflecting surfaces, which
bounce light and generate interference that leads to resonances. Usually, the
reflecting surfaces are either metallic or Bragg mirrors. The higher the
reflectivity of the mirrors, the higher the quality factor of the resonance.

Metallic Fabry-Pérot resonator

The FP resonant wavelength at normal incidence depends on the thickness
of the cavity, denoted by L, and the refractive index of the material between
the mirrors, n =

√
ε. If the mirrors were perfect conductors, the resonant

wavelength would be λm = 2Ln/m, where m denotes higher order modes,
such as m = 1, 2, 3, ... [80].

Realistic metallic mirrors reflect most of the light but also transmit or absorb
part of it. The more reflective the mirrors are, the better the quality factor of
the resonance is [82, 83]. The mirrors used in this thesis are made of gold as
sketched in Figure 2.6a. The thickness of the mirrors determines the amount

10There is a detailed discussion about calculating the eigenfrequencies
in subsection 5.1.1. Here, I focus only on the results and their physical interpretation.
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of light they can reflect, which is directly proportional to the quality factor
of the resonance. As previously discussed in subsection 2.1.2, gold reflects
IR and visible light very well, thanks to its negative permittivity. However,
the interband transitions (IBTs) of gold for energies above 2.2 eV result in
absorption by the mirrors, as seen in the reflection calculation of a gold FP
cavity shown Figure 2.6b.

The reflection was calculated using the transfer matrix method (TMM) [82,
84]. For that, the cavity was modeled for the calculation as a layered system
with gold mirrors separated by a glass medium of thickness L, as shown in
Figure 2.6a. The reflection from the cavity exhibits a dip in reflection at the
cavity’s resonance in Figure 2.6b. The minimum perfectly coincides with
the eigenfrequencies of the system plotted on top for all angles of incidence,
θ. The Ŝ-matrix was used to calculate these eigenfrequencies, with
reflection and transmission coefficients obtained from TMM, as described
in subsection 5.1.2.

The resonance blue shifts at higher angles of incidence as shown in
Figure 2.6b. In the complex frequency plane in Figure 2.6c, the blue shift is
visualized as a shift to the right at higher angles, but the eigenfrequencies
also move down. The increase in the imaginary part physically corresponds
to a larger decay rate (|Im(ω̃)| = γ/2). The cavity quality factor worsens at
higher energies because the mirror absorption increases due to the IBTs in
gold. Paper I focuses on the decay rates of strongly coupled structures
using these metallic FP microcavities. There, the impact of the IBTs is
studied by analytically removing the oscillators corresponding to the IBTs,
leaving only the Drude part of the permittivity as in equation (2.6).

Dielectric Fabry-Pérot resonator

FP resonators do not require mirrors. The interfaces of a dielectric slab can
reflect enough light to form FP cavities. The amount of reflection depends
on the degree of impedance mismatch, which increases when the difference
between the refractive indices of the incoming and outgoing media is greater.
However, the reflection from an interface cannot be compared to that of a
mirror, resulting in a lower FP quality factor.

The diagram in Figure 2.7a illustrates a 200 nm thick slab suspended in
vacuum with ε = ε∞ = 2.15 eV, typical for TDBC J-aggregates. The
low-quality factor of the FP resonances results in a broad minimum in
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FIGURE 2.6: (a) Schematic of a metallic Fabry-Pérot (FP) resonator and its layered
representation for TMM calculations. The energy of the resonance is mainly
determined by the distance between the mirrors, L. The quality factor is mainly
determined by the thickness of the mirrors, t. (b) Reflection of TE polarized light
from a gold FP microcavity with L = 180 nm and t = 40 nm. The real part of the
eigenfrequencies are plotted on top. (c) Eigenfrequencies of the same FP microcavity

plotted in the complex frequency plane.

reflection as shown in Figure 2.7b. The eigenfrequencies marked on top
show the two first FP modes (circles) above the LL (dashed line) and two
waveguide modes below the LL (squares).

The complex frequency plane helps to visualize the radiative nature of the
eigenfrequencies above the LL (circular markers). Note that the imaginary
part of this FP cavity is one order of magnitude larger than the FP modes
in the metallic cavity in Figure 2.6. This difference in decay rates matters
for strongly coupling optical resonances and matter, as is discussed in the
following Chapters.

Nevertheless, the waveguide modes (squares in Figure 2.7c) have an
imaginary part approaching zero (Im(ω̃) → 0). This shows the waveguide
modes’ lossless nature. The importance of the waveguide modes for
polaritons is discussed in section 4.4.

2.3.2 Plasmonic nanoresonators

Intuitively, the previously described FP resonators need to be large enough
to "fit" the photons they hold. Therefore, the distance between the "mirrors"
must be larger than half a wavelength (in the medium) of the desired
resonance frequency. This sets a minimum size for the resonators.
However, plasmonics enabled smaller resonators, even of a few
nanometers [65].

Plasmons are the quanta of free electrons’ collective oscillations coupled to
light. A bulk metal sustains volume plasmons, which are longitudinal
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FIGURE 2.7: (a) Schematic of a dielectric slab of thickness L = 200 nm and ε = 2.15.
(b) Reflection of light from the slab for various k-vectors, kx = k0 sin θ. The markers
show the eigenfrequencies. A white dashed line marks the light line (LL). Above it, the
modes are radiative (circular markers), and below it they are guided (square markers).
The colorbars mark the reflection and the wave vector. (c) Eigenfrequencies plotted in

the complex frequency plane. The colorbar marks the corresponding wave vector.

collective electron oscillations when ε(k, ω) = 0, and they are excited when
ω = ωP [65]. Due to the longitudinal nature of volume plasmons, they
cannot be excited with transverse electromagnetic waves. Although not
trivially, surface plasmons can be excited by light [85]. Surface plasmon
polaritons (SPPs)11 are electromagnetic excitations that propagate at a
metal/dielectric interface.

However, SPPs cannot be excited with direct light in free space. In contrast,
localized surface plasmon resonances (LSPRs) are bounded in three
dimensions and can be excited with direct illumination. The LSPR occurs
when free electrons in a metallic nanostructure oscillate in response to an
external electromagnetic field. The LSPR frequency depends on the metal’s
permittivity, the surrounding medium’s permittivity, and the shape and
size of the structure [65].

Paper I uses the LSPR tunability in gold nanodisk arrays by changes in their
diameter. The reflection spectra in Figure 2.8a show that smaller nanodisks
blue shift the resonance and decrease its intensity. Prof. Tomasz Antosiewicz
numerically simulated the reflection spectra using the Finite-difference time-
domain method (FDTD) in the software Ansys Lumerical [87].

One can also vary the array’s pitch, Λ (distance center to center). Paper
I keeps the pitch large enough to avoid altering the spectra due to near-field
interactions between the nanodisks [65] and smaller than the incident
wavelength to avoid surface lattice resonances [88]. In this pitch range, the
reflection closely follows a Lorentzian response. Due to the oscillatory

11As the name explains, these are polaritons [86], and I will return to them in chapter 4
to discuss their relation to surface phonon polaritons.
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FIGURE 2.8: (a) Reflectivity of gold nanodisks simulated by FDTD (dashed lines) for
3 diameters, d = 60, 80 and 100 nm with the pitch fixed to Λ = 300 nm. The nanodisk’s
reflectivity is fitted with the reflectivity from a dispersive thin-film as shown in (b).
(b) Schematic of the gold nanodisks being approximated as a dispersive thin-film with
the same height as the nanodisks. The arrays are characterized by their pitch, Λ and
the diameter of the disk, d. (c) Numerical simulation (dashed lines) and Lorenzian fit
(solid line) of the reflectivity of gold nanodisks with d = 80 nm and varying the pitch.
(d) Eigenfrequencies (in circles) in the complex frequency plane of the approximated
dispersive Lorentzian slab embedded in glass. The pole of the permittivity for each
diameter is marked in a purple star. The colorbar shows different pitches. Figure

modified from [38].

nature of the electrons that cause the resonance, it is reasonable to consider
the nanodisks response as a Lorentzian material [89]. Therefore, in Paper I,
the nanodisk arrays are approximated as a dispersive layer of the same
height as the nanodisks to use TMM to calculate its eigenfrequencies, as
shown in Figure 2.8b.

To determine the effective Lorentz permittivity of the nanodisks, we first
calculate the reflection of a single slab in glass using TMM. The permittivity
of the slab is given by equation (2.5). We then compare this calculated
reflection with the reflection of the nanodisks in glass, simulated by FDTD.
The effective Lorentz permittivity is determined when the two reflections
match12. Figure 2.8a,c compare the simulated (dashed) and the calculated
(solid) reflections. The effective permittivity reproduces the optical
response of the nanodisks very well in both cases.

12All the fitted values of the effective permittivity can be found in Paper I.
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The LSPR tunability is visualized in the complex frequency plane when
obtaining the eigenfrequencies of the equivalent slab in glass. A change in
pitch affects the amplitude and FWHM of the resonance, as shown in
Figure 2.8c. In the complex frequency plane, the decrease in pitch results in
a growth of the imaginary part of the eigenfrequencies, which in turn
pushes the circles in Figure 2.8d downwards. Thus, decreasing the pitch
increases the coupling of the arrays to free space, increasing radiative
losses.

The star marks the pole of the effective permittivity ε(ω), which represents
the eigenfrequencies of the slabs without interactions with any
electromagnetic modes. Physically, it would represent a "bare" plasmon
fully shielded from the environment. These decay rates are non-radiative.
Interestingly, smaller disks gain non-radiative losses, as shown by the most
right star in Figure 2.8d. This increase is due to the onset of the IBTs, which
damps the LSPR. None of the eigenfrequencies (in circles), ω̃pl occur at the
star because the interactions with free space always induce some radiative
decay rate.

Despite their significant decay rates due to Ohmic losses and IBTs,
plasmonic nanoresonators allow for subwavelength confinement of light.
Therefore, the strong coupling community has utilized them as cavities
with tight confinement, allowing single-molecule studies [27]. However,
plasmons are already light-matter hybrids and can also play the "matter"
part role. Paper I assumes so and hybridizes them with metallic
microcavities. The arrays’ tunability is leveraged to investigate different
interaction regimes, ranging from weak to ultrastrong. Paper I will be
further discussed in chapter 3.

2.3.3 Mie resonances in spheres

Finally, let us consider the last type of resonator: a water (ε = 1.75) sphere
of radius R in vacuum. Spheres sustain optical Mie modes, named after
Gustav Mie, who found the solutions in 1908. Mie theory describes a plane
wave in spherical coordinates (an infinite series of spherical vector
harmonics) scattered by a sphere. The complete derivation is in ref. [46].

Mie resonances can be found as the poles of the scattering coefficients in
Mie theory for TM (TE) modes, al (bl). A TM (TE) mode is defined as having
no radial magnetic (electric) field [46]. Physically, the multipole mode
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FIGURE 2.9: (a) Schematic of a dielectric sphere that sustains optical resonances. (b)
Real part of the eigenfrequencies of the first four Transverse Magnetic dipolar Mie
modes, aN1 in the IR range of the spectrum. Different radii sustain different resonances.
(c) Eigenfrequencies in the complex frequency plane show the frequency and the decay

rate of the modes of spheres of different radii (colorbar).

number l can be visualized as the number of electromagnetic field maxima
around the circumference of the droplet. For a fixed angular number l and
radius R, multiple order modes occur at different energies with varying
radial numbers, N . This mode order specifies the number of maxima in the
radial direction inside the droplet [90].

The first four radial modes N = 1, 2, 3, 4 (computed from equation (5.9) as
explained in subsection 5.1.2) for the electric dipole (TM1,N or aN1 ) are shown
in Figure 2.9b. Higher-order modes are sustained for larger radii. Their
decay rates decrease with the radial number N , as shown in Figure 2.9c.
Larger l multipolar modes also require a larger droplet to resonate. Thus,
the larger the radii, the more modes the sphere sustains.

All modes coexist in the droplet and contribute to the extinction spectrum,
a commonly measured observable. The extinction cross-section depends on
the droplet’s radius and the wavelength of the light. To obtain the extinction
cross-section, you can either fix the radius and explore different wavelengths
or vice-versa using the formula [46],

σext =
2π

k2

∞∑
l=1

(2l + 1)Re(al + bl) . (2.8)

Regardless, the size parameter x = kR is the important factor for calculations
(see subsection 5.1.2 for details), where k = 2π/λ.

In Paper VI, we focus on spanning the energy, keeping the radius fixed as
shown in Figure 2.10b. The covered energy range is extensive for
spectroscopy and is achieved by Fourier transform IR (FTIR) spectroscopy
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FIGURE 2.10: (a) Extinction cross-section of water spheres (n=1.33) of different sizes
for fixed light energy of 2.33 eV (532 nm). (b) Extinction cross-section of the first size
parameters in (a) but calculated for a fixed radius of R=3 µm in an IR spectrum between
0.1-1 eV. (c) Close up to the complexity of several resonances overlapping for diameters

around 3.5 µm calculated at a fixed energy of 2.33 eV.

as described in subsection 5.3.3. Note that for this calculation, I considered
only the background permittivity. Therefore, there is no strong coupling.
The extinction of a coupled sphere is discussed in subsection 4.3.2.

Measuring large spectral ranges is usually a challenging task. Measuring the
full range of size parameters calculated in Figure 2.10a in an experiment with
a fixed diameter would require sources and detectors in energies between
0.1-4 eV. This is a daunting task. However, it is possible to measure the
full range if the radius varies instead. Paper V shows this measurement via
optical levitation, as described next.

2.4 Fano resonances in a single water droplet

The resonances of a levitated droplet were observed by Ashkin back in
1977 [91]. Despite being an oil droplet instead of water, the resonances
overlapped as in Figure 2.10c. Soon after, each resonance was carefully
associated with a Mie mode, aNl , b

N
l by direct calculation using Mie

theory [92]. It is still common practice to compute the resonances to figure
out the overlapping and order of the resonances.
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In Paper V, a cleaner spectrum of aNl resonances was obtained from the
scattering of a levitated water droplet evaporating over time, as described
in section 5.4. The resonances appeared equally spaced and ordered in
combs as shown in Figure 2.11a.

Moreover, the observed resonances evolve from Lorentzians to asymmetric
profiles, as visible in Figure 2.11b. Fano resonances are characterized by
displaying such asymmetric lineshapes. They were first described by Ugo
Fano [93] in the context of electron scattering. However, they also appear
in photonic systems and have recently attracted a lot of attention [94]. Fano
resonances occur because of the interference between a discrete state and a
continuum. In photonics, they also result from the interaction of a sharp
resonance and a very broad one [94].

Mie resonances have been theorized to be a cascade of Fano resonances [95],
but only a few have been measured at the same time [96]. Paper V shows
around a hundred Fano resonances arranged in three combs. To explain
the entire spectrum, Paper V used a previously proposed quantum analogy
based on the radial, time-independent Schrödinger equation [97].

The analogy results in a potential well for each radius and fixed l, as shown
in the inset of Figure 2.11b.i. The energy levels in the well are Mie modes
and are "excited" when they have the same energy as the laser’s energy
level,13 k2, shown in a gray dashed line. Photons reach the well from the
right and have a barrier to tunnel into it. As illustrated in Figure 2.11b.i, the
smallest radius has a minimal barrier for the a211 Mie mode to be excited.
Therefore, light easily tunnels in but is trapped briefly before leaving the
well with a negligible phase difference. This results in a broad Lorentzian
when interfering with the continuum outside of the well.

For a larger radius, the barrier (in pink) grows because the well is moving
up with respect to the laser line (Figure 2.11b.ii). Then, the mode is trapped
longer, and the phase difference increases, resulting in a more intense
asymmetric Fano shape. The asymmetry grows with the size of the barrier
until it reaches the most asymmetric Fano shape at the end of the comb
(Figure 2.11b.v). At this point, the potential well has moved too up in
energy, and no more N = 1 modes resonate.

13Note that the laser’s energy level is different from the laser’s energy, 2.33 eV. The latter
is the color of the laser.
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FIGURE 2.11: (a) Fano resonances for an evaporating water droplet. Each resonance
corresponds to a multipolar number, l, ascending with the radius. Each comb
corresponds to a radial number, N . The green comb corresponds to N = 1, the
orange to N = 2, and the purple to N = 3. (b) Individual Fano resonances of the 1st
comb evolving from a Lorentzian (i) to a completely asymmetric Fano profile (v). The
inset shows the well obtained from the quantum mechanical analogy. Figure modified

from [42].

However, at the end of the first comb, the droplet radius is large enough
for the next radial mode, N = 2, to resonate with the laser (the potential
is in dashed lines). However, the barrier is small again, so the resonance
is close to a Lorentzian shape as marked in orange in Figure 2.11b.iv. This
begins the next comb that repeats the cycle. This quantum analogy explains
all three combs in the measured size parameters.

2.5 Self-assembled microcavities by Casimir

forces

Usually, FP microcavities are fabricated with a given thickness (L) between
them to sustain resonances on a specific energy. Instead of forcing two
mirrors to a fixed position, Paper II presents a way of obtaining metallic
self-assembled cavities using synthesized gold flakes that float in solution.

The gold flakes are synthesized as colloids by reducing gold ions with
ascorbic acid in a cetyltrimethylammonium bromide (CTAB) aqueous
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FIGURE 2.12: (a) Self-assembly of a Fabry-Pérot (FP) cavity in solution by the
equilibrium of electrostatic repulsion and attractive Casimir forces. The equilibrium
distance Leq determines the FP resonance frequency. (b) Sum (orange) of the Casimir
(green) and electrostatic (purple) potential calculation for an experimental cavity with a
total ion concentration C = 2.85 mM (c) C = 0.23 mM. (d) FP formed by a floating gold
flake aligned to a gold triangle patterned by EBL on the glass substrate. (e) True-color
image in reflection of the self-assembled FP using a patterned substrate. (f) Normal
incidence reflection spectra shows the resonance wavelength for different Leq . The

dashed lines represent the fit by TMM to determine Leq .

solution [98]. CTAB works as a capping agent to stabilize the gold
nanoflakes’ growth and prevent them from aggregating. Once in solution,
CTAB dissociates in cation CTA+ (red circles) and anion Br− (blue circles) as
shown in Figure 2.12a. Therefore, the flakes feel electrostatic repulsion
between them. The screened electrostatic potential between two charged
gold mirrors in an ionic solution is [99],

Ue =
2σ2

ε0ε(0)κ
e−κL . (2.9)

Where σ is the surface charge density, ε(0) is the static permittivity of water,
q0 is the elementary charge, C is the total concentration of ions with valence
z (which in case of CTAB is one) and κ−1 =

√
ε(0)ε0kBT

Cq20z
2 is the Debye-Huckel

length. The potential is positive, meaning the repulsion increases with
higher surface charges. This potential is in purple dashed curves in
Figure 2.12b,c.

Adding this electrostatic potential with a van der Waals (vdWs) potential
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explains colloids’ usual aggregation and short-range self-assembly in the
DLVO (Derjaguin-Landau-Verwey-Overbeek) theory. This theory suggests
that if the distance between two gold planes is less than κ−1, the vdWs
attraction will dominate and cause the plates to aggregate [99].

In contrast, Paper II shows self-assembly of gold dimers with colorful
resonances as shown in the true-color reflection pictures in Figure 2.12e.
The distances between the mirrors were determined by measuring the
reflection spectra (shown as solid curves) and fitting them with TMM
(shown as dashed curves) as demonstrated in Figure 2.12f. These distances
are around or above a hundred nm, Leq ≳ 100 nm, which are very long
distances for vdWs forces to be relevant. This long-range stability suggests
that Casimir forces play a role instead.

Casimir and Polder expanded the known vdWs interactions to consider
retardation and thus be valid at long distances [100]. The same year,
Casimir calculated the interaction between two infinite metallic plates and
found an attractive force between both plates FC = ℏcπ2

240R4 [101]. Casimir
considered perfect electrical conductors as plates in vacuum, but Lifshitz
and his collaborators expanded the theory for it to be used with real
materials in isotropic and non-magnetic media [102, 103]. Using this
Casimir-Lifshitz approach, the potential between the two gold plates in
water is,

UC =
ℏ
2π

∫ ∞

0

dξ

∫ ∞

0

dk∥

(2π)2
k∥ ln det (1−R1R2e

−2K0L) . (2.10)

This potential is obtained integrating over the imaginary frequency ω = iξ,
where ξ is real and over all the in-plane wave vectors, k∥ in the gap region.
The material properties are included on the reflection operator, Ri for each
side of the system, i = 1, 2:

Ri =

(
rssi 0

0 rppi ,

)
(2.11)

with the Fresnel reflection coefficients rqi for each polarization q = s, p.
Finally, K0 =

√
k2
∥ + ξ2/c2 is the z-component of the wave vector in the gap

between the two mirrors evaluated at the imaginary frequency. The integral
depends on the materials of the system and was calculated by Dr. Denis G.
Baranov. Once the materials are fixed (gold mirrors and water in between),
the potential depends only on the distance between the mirrors as depicted
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in green curves in Figure 2.12b,c.

The total potential is the sum of electrostatic and Casimir potentials,
UT = Ue + UC . The minimum in the total potential indicates that two
mirrors in water can create a stable cavity for distances in the expected
range of Leq ≳ 100 nm. Higher concentrations of solution result in a smaller
Leq (as shown in Figure 2.12b), while lower concentrations increase Leq (as
shown in Figure 2.12c). Therefore, the cavity resonance frequency can be
adjusted with the ion concentration of the solution. Paper II explores this
static tuning and studies the dependence of the resonance frequency with
the total ion concentration.

We explored having a bottom mirror fabricated on the sample and one
floating flake to have more control over the cavities. Having one mirror
fixed facilitates control over the formed cavity because we manipulate a
single floating gold flake. Paper II had mirrors on extended surfaces, while
Paper S.III explores patterned substrates in triangular lattices as bottom
mirrors. Figure 2.12d shows the example of patterned triangles of a similar
size to the floating gold flakes.

To manipulate the floating flake, Paper II employs laser irradiation, similar
to optical tweezers. This technique also enables the vertical position of the
flake to be adjusted, thus changing the distance between the two mirrors.
As a result, the resonance frequency can be dynamically modulated using
laser irradiation pressure. This effect is further examined in section 3.5,
where a polariton is achieved using these self-assembled cavities and
excitons in a 2D crystal. This dynamic control enables us to adjust the
polaritonic composition of the hybrid material. However, to fully
comprehend this concept, we should first understand what a polariton is,
as discussed in the following chapter.
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Chapter 3

Conventional polaritons

This chapter focuses on the strong coupling regime, where light and matter
hybridize and require a description as a new quasiparticle: a polariton. In
this thesis, conventional polariton refers to a polariton obtained with an
external cavity. However, in this chapter, I also discuss bulk polaritons that
do not need an external cavity. These were the first polaritons, so to start
the chapter, I give a brief historical perspective on why an external cavity
was included.

Then, I dive into the definitions of weak, strong, and ultrastrong coupling
regimes. Once we have the basics, I discuss the results of Paper I, which
uses an unconventional way to visualize polaritons in the complex
frequency plane to obtain simultaneous information about polaritonic
eigenfrequencies and decay rates.

Finally, I discuss self-assembled polaritons as obtained in Paper II. They
offer static and dynamic tunability of the coupling strength and polaritonic
composition.

3.1 A short historical perspective on polaritons

The term polariton dates back to the 1960s. The term’s origin is usually
related to Hopfield’s work on excitons in solids [15]. He noticed that it was
necessary to consider exciton interactions with light propagating in the
solid to describe their properties accurately. We now refer to this as bulk
polaritons. Hopfield used the quantum mechanical framework developed
by Fano to describe phonons in a solid, replacing their classical macroscopic
permittivity description [104]. However, the quantum mechanical
framework is not crucial to describe them. A few years before, in 1951,
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Huang noticed that the classical description of phonons in a solid needed to
consider retardation when light had similar energies to the phonons in the
crystals [105], as in our previous Casimir discussion. The result of
considering retardation was a dispersion curve that we now associate with
phonon polaritons (PhP). However, measuring bulk polaritons required
them to propagate to a boundary and scatter there. They quickly noticed
that if a material sustained bulk polaritons close to the surface, it also
sustained surface polaritons that propagate along interfaces, which could
be easier to measure [16]. From there, the term surface phonon polariton
(SPhP) was coined. In the past, these polaritons were heavily studied
experimentally in crystals, and there has recently been a new wave of
interest in polaritons in 2D-atomic crystals [64]. Until here, there is no
external cavity required. Polaritons are intrinsic modes to the materials.

Why is a cavity needed if polaritonic modes are ubiquitous to some
materials? Cavities enhance light-matter interactions in cases with minimal
interaction. They are necessary when only one molecule or atom interacts
with the electric field because atoms have minuscule dipole moments.
Studying the interaction of a single atom with a photon was experimentally
unthinkable until the development of the maser in 1955 [106]. The maser
enabled the interaction of a couple of molecules with the electric field,
hence paving the way for studies on single-molecule interactions with the
electric field. Subsequently, Jaynes and Cummings proposed their
well-known Hamiltonian in 1963 [107]. This field has evolved into what is
now known as cavity quantum electrodynamics (cQED) [14], which developed
terms like strong coupling and Rabi oscillation. A Rabi oscillation represents a
complete cycle of excitation that passes from the atom to the cavity and
back to the atom. In 1983, Haroche’s group measured Rabi Oscillations
between a cavity and N Rydberg atoms [13]. Haroche continued his work
on controlling single photons with atoms and was awarded a Nobel prize
in 2012 [14]. Enhancing single-atom interactions in these experiments
requires extremely high-quality cavities.1

In 1992, when researchers were studying the interaction between single
atoms and photons, Weishbuch et al. published a groundbreaking work

1Recently, the interaction between a single atom and cavity photon has been advanced
using giant atoms in superconducting qubits. These atoms have a high and adjustable dipole
moment, reducing the need requirements on the cavities, which has led to the emergence of
a field known as circuit QED. This field has pushed the coupling strength to the ultrastrong
coupling (USC) regime, which will be explained in the following section. Therefore, cQED
has extensively developed USC’s theory.
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that merged the concepts of polaritons and strong coupling [17]. Their
research involved coupling dielectric microcavity photons with excitons in
Quantum Wells. This platform was more controllable, as the polaritons
could be tuned with the microcavity. Bulk polaritons, on the other hand,
were difficult to control and relied solely on the material. Weisbuch’s
research led to the development of the field of microcavity polaritons [18],
which linked atomic physics and solid-state physics, drawing ideas from
both fields.

Excitons in various materials have been coupled to dielectric microcavities
for strong coupling since then. Such as in organic semiconductors [20] and
2D-atomic crystals dichalcogenides [108]. After that, various cavities were
explored to obtain strong coupling in quantum dots [109]. Further, organic
molecules with large dipole moments achieved strong coupling even with
cavities that have poor quality factors such as metallic microcavities [25]
and plasmonic resonators [26]. In fact, due to their simple fabrication,
metallic microcavities are currently preferred for coupling to vibrational
(phonon) excitations in molecules [8] or electronic excitations in
perovskites [110]. Nowadays, a wide range of materials have been coupled
to various cavities [111].

Next, I will discuss metallic microcavities coupled to plasmons in metallic
nanodisks and excitons in WSe2 to metallic microcavities. However, before
diving into the specific platforms, let us review the different light-matter
interaction regimes.

3.2 Weak, strong and ultrastrong coupling

There are classical, semiclassical, and quantum mechanical descriptions of
light-matter interactions [9]. I will start with the popular quantum
mechanical Jaynes–Cummings Hamiltonian [107] because it is pedagogical.
I will not dive into derivations (which can be found in text books [112]), but
only use the model to build intuition.

Consider one photon in a single-mode cavity with an electric fieldE = E(â†+
â). A photon in the cavity field interacts with a two-level emitter that can
only be in the ground, |g⟩, or excited state, |e⟩, as depicted in Figure 3.1.
Then, the system is described by the Hamiltonian:

Ĥ =
ℏω0

2
σ̂z + ℏωcâ

†â+ ℏg(â†σ̂ + σ̂†â) . (3.1)
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FIGURE 3.1: Weak and strong coupling in the conventional configuration with a generic
FP cavity, in blue, and a two-level system (TLS), in purple. (a) In the weak coupling
regime, the decay rates γc and γ0 are larger than the rate at which the uncoupled
elements share energy, ΩR. In this case, the eigenstates of the system are approximately
the same as the uncoupled ones. (b) In the strong coupling regime, the coupling

strength results in a split of the eigenstates into lower and upper polaritons.

The first term corresponds to the free two-level system (TLS) and ℏω0 =

Ee − Eg is the transition energy between both energy levels.2 The second
term corresponds to the electric field mode resonating at ℏωc. The third term
describes the light-matter interaction, where the annihilation of a photon
excites the TLS, and vice-versa.

In the absence of a driving field, the emitter couples to the vacuum field.
The coupling strength is given by ℏg = µ⃗ · E⃗vac, where µ̂ = µ⃗(σ̂† + σ̂)2 is
the transition dipole moment. The amplitude of the vacuum field is Evac =√
ℏωc/2εε0V , for a mode volume, V . Thus, high coupling strengths occur for

large dipole moments and small cavity mode volumes.

This simple model has several extensions to include fast-rotating terms
(σ̂†â†, σ̂â), several emitters3, several photonic modes, diamagnetic term, etc.
A good summary of which model is more accurate for each situation can be
found in references [35, 113].

For this thesis, decay rates4 are an essential missing feature in this model.
In real systems, both lose energy to their environments at rates γ0 and γc, as
marked in Figure 3.1. To include dissipation, one can phenomenologically

2σ̂ = |e⟩ ⟨g| and σ̂† = |g⟩ ⟨e| are the atomic transition operators and σ̂z = [σ̂, σ̂†].
3In a case with several emitters N the coupling strength increases with the number of

emitters as
√
N [32].

4The thesis treats decay rate as a synonym of linewidth because I consider ℏγ as γ, even
though strictly speaking, these two have different units and the linewidth is the correct
quantity in eV, while the decay rate should be in Hz.
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introduce the decay rates in the Hamiltonian by considering the cavity and
TLS to have complex eigenenergies ω̃c,0 = ωc,0−iγc,0/2 [111]. Then, the above
Hamiltonian becomes,

Ĥ = ℏ

(
ω0 − iγ0/2 g

g ωc − iγc/2

)
, (3.2)

where the new eigenfrequencies are,

ω± =
ωc + ω0

2
− i

γc + γ0
4

±
√
g2 +

(ω0 − ωc

2
− i

γ0 − γc
4

)2
. (3.3)

Here, the detuning is δω = ωc−ω0. The difference in decay rates is δγ = γc−γ0
and the average uncoupled decay rate is γavg ≡ γc+γ0

2
. At zero detuning,

ωc = ω0, the difference between the two new eigenfrequencies is the Rabi
splitting. The Rabi frequency is the rate at which light and matter exchange
energy. It is given by,

ΩR = ω+|δω=0 − ω−|δω=0 = 2

√
g2 −

(δγ
2

)2
. (3.4)

The Rabi splitting is real when the coupling is larger than g = |δγ|/4. This
point is known as an exceptional point (EP) [114]. At zero detuning, both
eigenfrequencies are degenerated before the EP, and higher coupling
strengths result in a degeneracy lift as shown in Figure 3.2a.

Before the EP, the interaction is in the weak coupling (WC) regime, as
highlighted in yellow in Figure 3.2a,b. In this regime, the interaction is not
strong enough to affect the real part of the eigenfrequencies, but it alters the
imaginary part, corresponding to the decay rates. At large detuning, the
decay rates remain the same as for the uncoupled system. However, the
decay rates become more similar at detunings closer to zero, as highlighted
in yellow in Figure 3.2d. The stronger the coupling strength, the more
similar the decay rates become until they eventually merge at the EP.

This modification is known as the Purcell effect5, where a resonant (non-
resonant) cavity can be used to enhance (decrease) the radiative decay rates
of the emitter [115] due to an increased (decreased) density of available states

5Purcell discovered this effect in 1946 while working on measuring nuclear magnetic
moments in resonant cavities in the radiofrequency (RF) range. [115]. He won the Nobel
Prize in 1952 because his methods allowed him to measure magnetic moments in liquids.
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FIGURE 3.2: Eigenfrequencies of a coupled system calculated with the simplest
Jaynes–Cummings (JC) non-Hermitian Hamiltonian. Here, ωc = ω0 = 1.9 eV γc =
0.157 eV, γ0 = 0.2 eV. (a) Real part of the eigenfrequencies for various coupling
strengths for δω = 0. The degeneracy is lifted after the exceptional point (EP). The
different light matter regimes are marked in various colors: weak coupling (WC)
– yellow, after EP – pink, strong coupling (SC) – green, and ultrastrong coupling
(USC) – orange. (b) Imaginary part of the eigenfrequencies for the same interaction
regimes. The decay rates become degenerate at δω = 0 after the EP. (c) Real
part of the eigenfrequencies for varying detuning with a coupling strength in each
interaction regime corresponding to the dashed lines in (a). (d) Imaginary part of the

eigenfrequencies for varying detuning for the same coupling strengths as in (c).

for photons to decay in. The plasmonics community commonly uses this
effect to enhance emission rates for sensing [65].

When the coupling strength reaches the exceptional point (EP), the real
eigenfrequency degeneracy is lifted, and two new eigenmodes appear. This
phenomenon is observed as an anticrossing when the detuning is varied, as
shown in Figure 3.2c. However, the opposite situation occurs for the
imaginary part of the eigenfrequencies (∝ γ). After the EP, they degenerate
at zero detuning, and their decay rate equals the average of the uncoupled
ones, γ± = γavg. As the detuning increases, the decay rates get closer to the
uncoupled values, as shown in Figure 3.2d.

The next regime after the EP in Figure 3.2 is shaded in pink and
corresponds to a high enough coupling strength to present Rabi splitting
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FIGURE 3.3: (a) Scattering calculated from a coupled mechanical oscillator model
for parameters in weak coupling (yellow), after the exceptional point (pink), strong
coupling (green) and ultrastrong coupling (orange). (b) Reflection from a coupled
plasmon–microcavity system for various coupling regimes marked in the same colors

as in (a). The coupling strength is controlled by the nanodisk array pitch, Λ.

but not enough to reach the strong coupling threshold. The exact coupling
strength required for strong coupling is a debated topic [116, 117]. Even
though some people consider the onset already after the EP [118], the more
accepted threshold has been vaguely defined as the coupling required to
resolve the two polaritons spectrally [9, 94]. For some, this occurs only
when g ≫ γc, γ0 [94, 119]. Others consider that if the linewidth of the
polaritons at zero detuning is γ± = γavg,6 then ΩR > γavg is enough to
resolve both polaritons7 [9, 109]. Given its broad acceptance, this will be the
strong coupling onset in this thesis.

To better understand the definitions, consider the following hypothetical
example. In Figure 3.3a, the scattering spectra are calculated for a system
with the coupling strengths considered in Figure 3.2c,d. The model used in
the calculation is a coupled oscillator model from a classical mechanics
perspective [83, 123]. The scattering spectrum exhibits a single peak at zero
detuning in the weak coupling regime. Even after the EP, there are no two

6In the following sections, we will see that considering the polaritonic linewidth as
average of the linewidth of the uncoupled components is just an approximation, and it
can be inaccurate even at low coupling strengths.

7From a classical approach, this onset corresponds to Rabi oscillations taking place [120].
Rider and Barnes give a nice discussion of all the different SC onsets [117]. However, all
the definitions stem from using cQED concepts in other areas, such as nanophotonics.
Therefore, there are also debates about the direct applicability of those concepts [121,
122]. This discussion is beyond the scope of this thesis. However, interested readers are
encouraged to refer to the given references.



38 Chapter 3. Conventional polaritons

distinguishable peaks until the strong coupling regime is reached, as shown
in Figure 3.3a.

In the previous hypothetical system, two polaritons are resolvable only
after ΩR > γavg. However, two polaritons are resolvable even before in the
system described in Paper I, where gold nanodisk arrays couple to a
metallic microcavity. Their coupling strength depends on the pitch between
nanodisks in the array, resulting in different interaction regimes. These
regimes are shown in Figure 3.3b with the same color code as in Figure 3.3a.
As expected, two distinct peaks are observed in the strong coupling regime
(green). However, several pitches are above the EP (pink), and the lightest
pink one has two clear peaks. Therefore, it is not always necessary to reach
ΩR > γavg to observe splitting in the peaks.

Hopfield Hamiltonian and coefficients

In the plasmon–microcavity platform, both plasmons and photons are
bosonic fields. Therefore, the Jaynes–Cummings (JC) Hamiltonian, as
shown in equation (3.1), cannot be applied. Instead, this thesis often
approximates the matter component as a Lorentzian permittivity, which
assumes matter as a series of harmonic oscillators. Hopfield made the same
approximation in his seminal paper [15] to understand exciton behavior in
crystals and proposed the following Hamiltonian,

Ĥ = ℏω0b̂
†b̂+ ℏωcâ

†â+ ℏg(â† + â)(b̂† + b̂) +
ℏg2

ω0

(â† + â)2 . (3.5)

Where the first two terms represent the uncoupled oscillators. The third
term is the interaction term of both fields with coupling strength
g = µ

√
ρV Evacω0/ωc, in the Coulomb gauge8. The diamagnetic term, also

known as the A2 term, is the fourth term in the equation. For small values
of g, this term can be neglected. However, it becomes important when the
system enters the ultrastrong coupling (USC) regime [19]. The USC regime
is shaded in orange in Figure 3.4a, and it requires η = g/ω0 ≥ 0.1, where the
eigenfrequencies deviate from a linear behavior [19, 35]. The
eigenfrequencies of this lossless Hamiltonian are the following,

ω± =

√
ω2
c + 4g2ωc/ω0 + ω2

0 ±
√

(ω2
c + 4g2ωc/ω0 + ω2

0)
2 − 4ω2

cω
2
0√

2
, (3.6)

8The gauge choice does not change the values of the observables. Thus, one could use
the dipole gauge and obtain the same eigefrequencies [33, 124].
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FIGURE 3.4: (a) Polaritonic eigenfrequencies for increasing coupling strength, g,
with ω0 = ωc = 1.9 eV. Comparison between Jaynes–Cummings (JC) and Hopfield
Hamiltonians. The dot-dashed line marks the renormalized frequency of the plasmon,
ωr
0 =

√
ω2
0 + 4g2. (b) Eigenfrequencies corresponding to g = 0.225 eV calculated with

a JC and a Hopfield Hamiltonian. (c) Photonic fraction (Hopfield coefficient) of the
system in (b) for a JC Hamiltonian.

For small g in the SC regime, it is possible to obtain a Hamiltonian similar
to JC in equation (3.1) by using the rotating wave approximation (RWA)
and neglecting the diamagnetic term [35]. The comparison between the
eigenfrequencies obtained with both Hamiltonians is shown in Figure 3.4a
for increasing coupling strengths and in Figure 3.4b for various detunings
with a fixed coupling strength.

In this JC approximation, the coefficients of the eigenvectors (called
Hopfield coefficients) give the photonic or matter fractions. The photonic
fractions depend on the detuning as shown in Figure 3.4c. In this case,
perfectly mixed polaritons are achieved at zero detuning. However, in the
USC, the polaritons at zero detuning are no longer evenly split between
light and matter. Higher coupling strengths increase the matter (light)
fraction in the LP (UP) at zero detuning [19].

Moreover, in the USC regime, the diamagnetic term renormalizes the
resonance frequency of matter9 to ωr

0 =
√
ω2
0 + 4g2 [125, 126]. The

renormalized frequency is shown in dot-dashed magenta lines in
Figure 3.4. The importance of ωr

0 will be further explored in section 3.4.

How can a system reach USC? The most common way is to increase the
number of oscillators coupled, g ∝

√
N . However, few experimental

platforms can span from weak to ultrastrong coupling regimes. Among
them, there are intersubband polaritons [127], hBN in metallic microcavities

9In Paper III, we utilized the notation ω̃0 to represent the renormalized frequency, which
is widely used in literature. However, throughout this thesis, we constantly use the complex
frequency plane, where ω̃0 is equivalent to ω0− iγ0/2. In order to avoid any confusion, I use
the notation ωr

0 instead.
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FIGURE 3.5: Dispersion in reflection of plasmon–microcavity polaritons for TM
polarized light. The system has L = 180 nm and d = 80 nm. The red dashed line shows
the uncoupled plasmon and the blue dashed line shows the empty cavity dispersion in
(a). The arrays have different pitches that tune the coupling strength from SC to USC
regime: (b) Λ = 300 nm, ΩR ≈ 0.28 eV, (c) Λ = 260 nm, ΩR ≈ 0.36 eV, (d) Λ = 220 nm,

ΩR ≈ 0.44 eV, (e) Λ = 180 nm, ΩR ≈ 0.56 eV, (f) Λ = 140 nm, ΩR ≈ 0.76 eV.

[128], and carbon nanotubes [129], among others. In Paper I, the
plasmon–microcavity hybrid is used due to its versatility to span all
regimes, as described next.

3.3 Plasmon – microcavity polaritons

Ameling et al. [30] began the study of the strong interaction between LSPR
of metallic nanostructures (also called meta–atoms) and microcavity
photons. Meta–atoms offer great versatility because one can tune their
resonance frequency, dipole moment, and, to a certain extent, even their
resonance width.

In this thesis, all meta–atoms are gold nanodisks arranged in lattices
separated center-to-center by a pitch, Λ, as described in subsection 2.3.2.
Their coupling strength to the microcavity field increases directly with d

and inversely with Λ [31, 33]. This behavior is experimentally visualized in
dispersion measurements in reflection shown in Figure 3.5b-f for TM
polarization10. As expected, the Rabi splitting (ΩR in orange arrows)

10Paper I presents measurements and analysis for TE polarization for simplicity because
the electric field is parallel to the dipole moment of the nanodisks for all angles. Thus, g
remains constant even at all angles.
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between both polaritons grows for smaller pitches. The measurements are
obtained in the Fourier plane as described in subsection 5.3.1.

Figure 3.5f presents a significant reduction in the linewidth of the LP
compared to panel b. At the same time, the UP broadens to the point where
it becomes difficult to differentiate it from the absorption caused by the IBTs
in gold. This observation was even more apparent in Paper S.II because the
density of the meta-atoms increased, even reaching the USC regime with a
reduced coupling strength of η ≈ 0.55.11 This polaritonic linewidth
asymmetry observation sparked the analysis in Paper I.

Although Paper S.II used the Hopfield Hamiltonian framework to analyze
ground-state modification of the system [33], the plasmon–microcavity
platform is purely classical. Therefore, Paper I opted to use a classical
approach to determine the eigenenergies of the system. The approach
involved finding the eigenenergies via a pole-search method using the
scattering matrix (Ŝ-matrix), as explained in detail in subsection 5.1.2. This
method automatically includes all the higher-order modes, dissipation, and
all the Hamiltonian terms that must be included in a quantum model.
Additionally, this technique provides both the real eigenfrequencies and
decay rates simultaneously.

The only approximation of this pole-search method is that the LSPR
response of the nanodisks is considered analogous to the optical response
of an equivalent thin film with an effective Lorentzian permittivity. This
approximation was suggested previously by Ameling et al. [89]. Previously,
subsection 2.3.2 described the Lorentzian fit of the reflection response of the
bare nanodisks outside the cavity. However, as in any approximation, it
results in losing some information about the system.

In this case, our model does not consider the interactions between
nanodisks mediated by the cavity. To consider these interactions, Berkhout
et al. [130] proposed a transfer matrix to describe the plasmonic arrays.
However, their method is only accurate at normal incidence, while Paper
I also studies angular incidence. Nonetheless, Paper I showed that the
effective Lorentzian permittivity approximation remains valid even at
higher angles.

11Paper S.II reached this coupling without filling the full microcavity with meta-atoms,
indicating that adding more nanodisk arrays could lead to reaching the regime where η ≈ 1.
Such regime is known as deep strong coupling, and it has been achieved by tightly packing
gold nanoparticles in a crystal [34].
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Using this approximation makes the study more general because many
other experimental platforms in strong coupling use matter components
whose permittivity is also approximated to a Lorentzian, as Zhu et al. did
for atoms [131], Fano for phonons in crystals [104] and Hopfield for
excitons in crystals [15]. As described in subsection 2.1.2, it is also a
common approximation for excitons in organic molecules [48], excitons and
phonons in 2D-crystals [132] and phonons in solution [8]. Therefore, the
results obtained with this approximation can be generalized to many other
systems.

3.3.1 Polaritonic eigenfrequencies in the complex frequency

plane

Typically, strong coupling is visualized through dispersion plots, as shown
in Figure 3.6a,d. However, in an open system, the eigenfrequencies are
naturally complex. This thesis uses the complex frequency plane to
visualize the eigenfrequencies, which is unusual in the strong coupling
community. By using the complex frequency plane, it is possible to convey
information about the resonance frequencies and their decay rates
simultaneously. Figure 3.6b,e shows the same eigenfrequencies plotted in
the complex frequency plane.

Paper I visualized the eigenfrequencies of conventional polaritons behavior
in the complex frequency plane across different coupling regimes, ranging
from weak to ultrastrong. The complex frequency plane in the weak
coupling regime visualizes the Purcell effect (which results in a shift in the
imaginary part of the eigenfrequency), and the Lamb shift (shift in the real
part) [94]. As the coupling strength increases, a topological change occurs
after the EP point [38]. This is the only transition in the eigenfrequencies
behavior. Here, the polaritons split into two separate branches as seen in
Figure 3.6b,e.

The eigenfrequencies’ behavior in the complex frequency plane remains
consistent regardless of the type of polaritons. These can include
conventional polaritons in a cavity (Paper I), cavity-free polaritons coupled
to their own optical modes in several geometries (Paper III, Paper IV, and
Paper VI), and even bulk polaritons (Paper III). The behavior for different
interaction regimes is detailed in Paper I and Paper III.
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FIGURE 3.6: Left column: dispersion in reflection of plasmon–microcavity polaritons
with the eigenfrequencies on top obtained with the pole-search method for (a)
Experimental reflection with eigenfrequencies obtained for Drude-Lorentz (DL)
mirrors with IBTs. (d) Calculated reflection and eigenfrequencies obtained for Drude
mirrors without IBTs. Middle column: eigenfrequencies in the complex frequency plane
for (b) DL mirrors causing a lossy cavity with γc > γ0 and (e) Drude mirrors with a
cavity with γc < γ0. Right column: Decay rates of the polaritons with (c) DL mirrors
and (f) Drude mirrors. The uncoupled decay rates are marked in dotted lines. The

vertical dashed line marks zero detuning δω = 0. Image modified from [38].

The pole of the effective Lorentz permittivity is marked with a purple star
and is considered the "uncoupled" plasmon in Figure 3.6b. The polaritons
(circles) usually approach the uncoupled components’ trajectories (star and
dotted line). More than that, the UP imaginary part goes beyond the
uncoupled cavity for Figure 3.6b. This increase in decay rate is due to the
contribution of the interband transitions (IBTs) of gold in the mirrors to the
losses, which causes a high-loss cavity mode with γc > γ0.

Our approach allows us to "turn off" the IBTs contributions, resulting in the
trajectories shown in Figure 3.6e, where γ0 > γc. It is worth noting that even
without IBTs, the LP and UP trajectories in the complex frequency plane
remain asymmetric, which is intriguing. In fact, the asymmetry of the decay
rates at zero detuning is the key takeaway of Paper I.

3.3.2 Decay rates in plasmon – microcavity polaritons

The linewidth commonly associated with polaritons at zero detuning is the
average of the uncoupled losses, γ± = γavg [9, 22, 111, 133]. This result is
obtained in the simplest JC approximation as discussed in Figure 3.2d.
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However, asymmetries in the linewidth have been previously observed in
experiments. Thorough studies on the asymmetry of polaritonic decay rates
at zero detuning were done in the 1990s when mainly excitons in quantum
wells were hybridized with dielectric cavities. Several models discussed the
symmetry through different microscopic mechanisms, but all were based
on the disorder in the excitons [36, 37, 134–138]. The asymmetries continue
to be observed in modern experiments with other materials but are
automatically attributed to the disorder as proposed in the 1990s. Except for
Wang et al. [139], who observed the asymmetry even though the disorder in
their platform was small, and they attributed it to cross-damping.

The plasmon–microcavity polariton is homogeneous under the Lorentz
approximation and free of disorder. Nevertheless, the linewidth asymmetry
is still noticeable, as shown in Figure 3.6c. The asymmetry is enhanced by
the contribution of the IBTs in the mirrors, causing the UP to be broader for
higher angles and coupling strengths because it spectrally overlaps with the
IBTs. But even when removing IBTs in the mirrors, the asymmetry persists
at zero detuning as shown in Figure 3.6f. However, in this case, the
polaritons share the same linewidth at a higher detuning, as observed for
excitons previously [37, 139]. This effect is solely due to electromagnetism,
with no influence from microscopic structure.

In the field of plasmonics, a similar electromagnetic effect can occur where
the interaction of two plasmons can generate resonances of asymmetric
linewidths. The mode with narrow linewidth is known as subradiant, and
the broad one as superradiant. In this case, the effect is due to
interference [140, 141]. However, Paper I demonstrated that this effect
persists in bulk polaritons.

3.4 Bulk polaritons

As originally studied by Hopfield [15, 142, 143], bulk polaritons are formed
when a plane wave traveling through a material interacts with the material
resonances (given by e.g. excitons or phonons) in it. Bulk polariton modes
are found as roots of the dispersion equation in the material,

kc− ω
√
ε(ω) = 0 , (3.7)
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FIGURE 3.7: (a) Real eigenfrequencies of the bulk polaritons with an effective
permittivity corresponding to a nanodisk array of d = 100 nm and Λ = 260 nm.
The uncoupled eigenfrequencies are shown in dotted lines (ω0 in magenta and ωc in
turquoise). The renormalized frequency, ωr

0 , is marked in the blue dot-dashed line. The
polaritonic gap is shaded in blue. (b) Asymmetric decay rates of the bulk polaritons.
Zero detuning is marked with a vertical gray dashed line. The vertical gray dot-dashed

line marks the detuning for which ωr
0 − ωc = 0. Figure modified from [38].

where ε(ω) is the permittivity of the material, which is approximated here
by a simple Lorentz formula, as stated in equation (2.5). In Paper III, the
coupling strength is expressed in terms of the oscillator strength (f ) and
plasma frequency (ωP ) of the Lorentz permittivity as
g = (ωP/2)

√
fω0/ε∞ωc

12. Interestingly, the bulk coupling strength at zero
detuning as gB = (ωP/2)

√
f/ε∞, depends only on the optical properties of

the material.

Paper III also shows that the material will sustain bulk polaritons if,

fω2
P > ε∞γ

2/4 . (3.8)

Alternatively, it can be expressed as gB > γ/4 [144, 145], which is the usual
strong coupling criterion (ΩR > γavg), but with a lossless cavity mode (γc = 0)
due to it being a plane wave.

As mentioned before, Paper III shows that the eigenfrequencies in the
complex frequency plane have the same behavior as the conventional
polaritonic eigenfrequencies in different interaction regimes. As expected,
the real eigenfrequencies in Figure 3.7a show anticrossing. The upper limit
of the LP is given by the uncoupled resonance frequency ω0, but the lower

12Note that ωc in the case of bulk polaritons is not the frequency of the photons in the
cavity, because there is no cavity. Instead, it is the frequency of the plane wave propagating
through the medium.
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limit of the UP is the renormalized resonance frequency ωr
0 =

√
ω2
0 + 4g2B, as

defined before. This opens a polaritonic gap where no modes are sustained.
This gap can be approximated to ∆ = ωr

0 − ω0 ≈ 2g2B/ω0 when
(2gB/ω0)

2 ≪ 1 [40, 127]. This area also corresponds to the spectral range of
the Reststrahlen band, where the permittivity is negative, and thus, no
modes can propagate in the material.

3.4.1 Asymmetric decay rates in bulk polaritons

The decay rates of the bulk polariton in Figure 3.7b are not equal at zero
detuning. However, they cross at a detuning corresponding to ωr

0 = ωc.
Therefore, the linewidth asymmetry at zero detuning and the detuning at
which the polaritons have the same linewidth increase with the coupling
strength.

Moreover, Paper I shows that at zero detuning, the quality factors of the
polaritons are equal, ω+

γ+
= ω−

γ−
. This equality automatically means that an

asymmetry in the linewidths compensates for the difference in polaritonic
frequencies when the modes split. Intuitively, this conservation means that
both polaritons oscillate the same number of times before they damp.

These results open a series of questions. The Hopfield coefficients of the full
Hopfield Hamiltonian are not equal at zero detuning [19]. My preliminary
calculations show they should be equal at the renormalized frequency. If
that is the case, should the zero detuning be defined with respect to ωr

0? As
described before, the appearance of ωr

0 occurs when considering the
diamagnetic term in the Hamiltonian.

Moreover, the detuning at which the linewidths become equal is
δω = ∆ ≈ 2g2/ω0. This expression is similar to the approximate change in
ground energy in the USC regime [33, 145]. Does this mean the linewidth
asymmetry can estimate the ground state’s occupancy? The link between
ωr
0 and the linewidth asymmetry in bulk polaritons makes the asymmetries

a more general result with a potential fundamental meaning that requires
further research.

3.5 Self-assembled Casimir polaritons

The plasmon–microcavity polaritons samples were carefully fabricated as
described in subsection 5.2.1. Their properties are fixed after fabrication, as
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FIGURE 3.8: (a) Gold flake floating in water on top of few layers of WSe2 deposited
on SiO2 on a gold mirror. Modulated laser irradiation at λ = 455 nm pushes the flake
down, changing Leq . (b) Normal incidence reflection spectra from the coupled system
at different detuning of the cavity: red, zero, and blue detuning. The dashed line
marks the energy of WSe2 A-exciton. (c) Time-resolved normal incidence spectra of

the modulated coupled system. Figure modified from [39].

with most polaritonic platforms. In fact, only a handful of platforms can
actively adjust the properties of the cavity [146] or the material [147, 148] to
tune polaritonic properties as coupling strength or polaritonic composition.

As discussed in section 2.5, FP cavities can be formed with floating gold
flakes by Casimir forces. Paper II obtained polaritons by strongly coupling
the A-exciton of WSe2 to the self-assembled FP cavities. A few-layer
WSe2 flake was transferred on top of a SiO2 spacer deposited on an
evaporated gold mirror as shown in Figure 3.8a. Then, gold flakes floating
in solution formed a microcavity around the WSe2, resulting in
self-assembled polaritons with a Rabi splitting above 100 meV.

In section 2.5, the resonance of the cavity depends on the total
concentration of ions in the solution. However, the resonance also depends
on the SiO2 spacer thickness in this configuration. This configuration gives
a broader frequency range tunability to couple to different materials [39].
The thickness and high-refractive index of the few-layer WSe2 also add to
the optical path. Figure 3.8b shows that coupling can occur with different
detunings, where δω = 0 is in gray, the blue detuned cavity in blue, and the
red detuning in red.

In addition to passive control of detuning, active control is also possible by
using a laser to change the thickness of the cavity. The process involves
using modulated laser radiation pressure to push the floating gold flakes
vertically, as depicted in Figure 3.8a. The distance between the mirrors
changes over time, causing a shift in the vacuum field, affecting the value of



48 Chapter 3. Conventional polaritons

g. Additionally, the change in Leq changes the detuning between the two
resonances, as shown in Figure 3.8c, enabling the tunability of the
polaritonic composition. To quantify this effect, Paper II uses equation (3.2)
to fit the data and obtain the Hopfield coefficients. Raising the intensity of
the laser enhances the variation of ∆L, and all the effects discussed above.
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Chapter 4

Cavity-free polaritons

This Chapter examines cavity-free or self-hybridized polaritons, where the
photonic modes are sustained by the material’s geometry, unlike
conventional polaritons that require an external cavity. I provide an
overview of cavity-free polaritons in various geometries, incorporating the
findings in Papers III, IV, and VI.

Paper III theoretically demonstrated various geometries that sustain these
polaritons for different materials. Then, Paper IV focused on measuring a
planar geometry, where excitons in MoS2 flakes hybridize to the photonic
modes supported by the slab. Finally, Paper VI presents the results of
measurements on water droplets in the IR spectral range.

The Chapter also includes unpublished experimental findings on hBN
structures. Lastly, it discusses the limits and implications of self-hybridized
polaritons.

4.1 Polaritons in 2D slabs

In a simple 2D slab, the edges of a material can reflect light well enough to
form FP cavities, as shown in section 2.3. The photonic modes sustained by
a thick 2D slab can be radiative (FP) or guided. According to equation (3.4),
the Rabi splitting is maximum for a given coupling strength when γc → γ0.
Therefore, depending on the decay rate of the material resonance, the Rabi
splitting is larger with radiative or guided modes. Most materials have a
small decay rate, γ0 → 0. Therefore, a larger Rabi splitting is easier to obtain
with lossless waveguide modes (γc → 0) than radiative modes. That is why
the first cavity-free studies in planar cavities coupled excitons in
J-aggregates to waveguide modes in the slab [149]. Additionally, 2D atomic
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crystals naturally stack, forming slabs that sustain photonic modes.
Cavity-free polaritons have also been measured in WSe2 with waveguide
modes [150, 151]. Moreover, cavity-free vibrational polaritons were
measured below the LL in a α−lactose photonic crystal [152].

Cavity-free polaritons were later measured above the light line (LL) in J-
aggregates [147, 153], and in TMDs [132, 154], including TMDs with in-
plane anisotropy as ReS2 [155].

However, most of these studies either do not mention the coupling strength
or estimate it using a coupled oscillator model. In contrast, Paper
III obtains the Rabi splitting directly from the difference between upper
and lower polaritons’ eigenfrequencies found via the pole-search method
using the Ŝ-matrix, as described in subsection 5.1.2. This approach obtains
the radiative and waveguide eigenfrequencies of polaritons above and
below the LL.

Paper III was purely theoretical, but Paper IV measures reflection spectra
of MoS2 slabs obtains and visualizes the polaritonic eigenfrequencies in the
complex frequency plane, as we will see in the following section. Paper
III presents the theoretical example of hBN slabs, and subsection 4.1.1
presents a simple experimental realization. However, these are preliminary
results and require more theoretical work for a full interpretation.

4.1.1 Polaritons and perfect absorption in MoS2 slabs

The goal of Paper IV was to measure polaritons above and below the light
line (LL), as was theorized in Paper III. MoS2 was used because its excitonic
resonances are in the visible and because its high absorption around the
C-exciton was promising for perfect absorption in ultrathin flakes as
mentioned in section 2.2. Due to the high refractive index of MoS2, thick
flakes sustain FP modes above the LL and waveguide modes below the LL.

To measure reflection from the slab above and below the LL, we use an oil
immersion objective that matches the refractive index of glass to illuminate
the slab from the substrate, as shown in Figure 4.1a. All angles of incidence
smaller than the critical angle of air/glass (θc = arcsin 1/nglass ∼ 41.5◦)
provide measurements above the LL, which is region I in Figure 4.1b. On
the other hand, all angles larger than θc provide measurements below the
LL.
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FIGURE 4.1: (a) Top: Schematic of the system. Bottom: True-color image of the reflected
light from a 97L (∼ 63 nm) MoS2 flake in the Fourier Plane. (b) Calculated reflection of
TM-polarized light from a 97L flake for various wavevectors, kx = k0n sin θ. The real
eigenfrequencies are plotted on top with markers of colors varying with the in-plane
wavevector. The Rabi splitting is marked for each of the three regions: I) above the
light line (LL) in blue, II) below the LL (θ > θcair

) in pink, and III) below the glass
LL (θ > θcglass

) in yellow. (c) Eigenfrequencies in the complex frequency plane for all
regions. The stars mark the uncoupled excitons. Image modified from [41].

Fourier imaging (described in subsection 5.3.1) allows us to measure the
reflected spectra at different angles of incidence. The true-color image of
the Fourier plane of a 97L slab in Figure 4.1a shows the colors generated by
the photonic modes. Fabry-Pérot modes (region I) give the turquoise color
around the center, and the dispersion of leaky modes results in the
fast-changing colors of the region II.

Paper IV shows the spectra measured for various angles. The
measurements correspond well with the calculated reflection via TMM
shown in Figure 4.1b. The TMM calculations were used to build the
Ŝ-matrix and find the system’s eigenfrequencies as described in
subsection 5.1.2. The eigenfrequencies obtained with the pole-search
method are shown with markers on top of the reflection colormap. The
marker color varies with kx.

The first remark is that the eigenfrequencies and the minima in reflection
do not match, unlike in the metallic microcavity discussed in the previous
chapter. This mismatch is because the two scattering channels for light above
the LL are not symmetric. One of these channels is glass, and the other is air.
This asymmetry leads to a mismatch between the observable (reflection) and
the eigenfrequencies.

There have been discussions about the most accurate observable to obtain
the Rabi splitting [156]. According to the literature, absorption is the closest
observable to the eigenfrequencies [132, 157]. However, even absorption
may not perfectly correspond [158]. In our case, the absorption spectra
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match better with the eigenfrequencies, as shown in Paper IV. This is an
important remark because the apparent splitting in the reflection in region I
could be mistakenly attributed to polaritons when, in fact, it is an
interference effect resulting from two scattering channels. However, it
could be easily mistaken for strong coupling, and one could even determine
its coupling strength using the coupled oscillator model. To avoid this
problem, we calculated the eigenfrequencies using the pole-search method
to avoid this potential error. It is crucial to handle splitting in measurable
observables with care [94]. I will return to a similar message when
discussing polaritons in water droplets.

The second remark is that the anticrossing observed for the B-exciton in all
three regions in Figure 4.1b varies depending on the region. Region I has the
smallest value, and region III has the highest value because the decay rates
decrease until in region III, the waveguide mode is lossless.

The advantage of using the complex frequency plane in Figure 4.1c is that it
is easy to distinguish between weakly and strongly coupled modes. The A-
exciton in region I is weakly coupled due to its trajectory in a circle around
the uncoupled exciton (star). In contrast, the B-exciton shows a polaritonic
gap in all regions. The A-exciton only shows the gap in region III.

Finally, Paper IV shows that the dips in reflection in Figure 4.1b correspond
to points perfectly absorbing TM-polarized light. Therefore, this simple
unpatterned MoS2 flake on glass can sustain polaritons while also perfectly
absorbing light.

4.1.2 Polaritons in hBN slabs

Paper III showed the anticrossing of the eigenfrequencies of hBN, another
2D atomic crystal. We chose a thick (L = 1.75 µm) slab to tune the first FP
mode at normal incidence with the TO phonon, ω0 = 0.169 eV. The
eigenfrequencies show anticrossing above and below the LL in Figure 4.2a.
The Rabi splitting with the first mode above the LL is indicated in blue,
while the one below is in yellow. The uncoupled modes are marked in
lines, and the hybridized ones are in markers. Unlike the previous analysis
of MoS2 on glass, here we only observe two regions, above and below the
LL. There is no intermediate region because there is no substrate.

In Figure 4.2a, the polaritonic gap is marked. As explained earlier, the
polaritonic gap refers to the region between two phonon resonances: the
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FIGURE 4.2: (a) Calculated reflection (TE polarization) and eigenfrequencies of a
L = 1750 nm thick slab of hBN. The markers show the polaritonic eigenfrequencies
with the first and second FP and waveguide modes. The polaritonic gap between
transverse (TO) and longitudinal (LO) photons is shaded in yellow. The uncoupled
modes are in dashed, dotted, and dot-dashed lines. The white dot-dashed line marks
the line along which the ATR measures. (b) Eigenfrequencies of the modes below the
LL in the complex frequency plane. The Rabi splitting is marked with an orange arrow.
(c) Asymmetry of the normalized decay rate of polaritons resulting from hybridization
with the first waveguide mode. The dashed vertical line marks the zero detuning
δω = 0, and the dot-dashed line marks the waveguide mode in resonance with the

renormalized frequency ωr
0 . Figure modified from [40].

uncoupled phonon resonance (ω0) and the renormalized resonance (ωr
0). For

hBN, this gap corresponds to the Reststrahlen band between the transversal
(TO, ω0) and the longitudinal (LO) phonons.

Figure 4.2b illustrates the eigenfrequencies in the complex frequency plane.
A shaded rectangle connects the eigenfrequencies at δω = 0. Similar shaded
rectangles can be found in the complex frequency plane plots throughout
the thesis and the appended papers. However, the papers do not address
the full significance of these rectangles. If the polaritons had the same
decay rate at zero detuning, these rectangles would be just a line (Rabi
splitting). The height of the shaded area is determined by the polaritonic
asymmetric linewidths described in subsection 3.4.1 and in Paper I. To
better visualize this, Figure 4.2c displays the normalized polaritonic decay
rates of the first waveguide mode for various k-vectors (varying detuning).
The dashed line marks the wavevector corresponding to zero detuning for
the first uncoupled waveguide mode (dotted line in Figure 4.2a). In
contrast, a dot-dashed line marks the wavevector at which the
renormalized frequency is at zero detuning. Hence, polaritonic decay rates
of hBN polaritons below the LL exhibit the same asymmetric linewidth
behavior observed for bulk polaritons in Figure 3.7.
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FIGURE 4.3: (a) Bright-field image of hBN flakes on glass. The colors are given by
the FP modes sustained by the different thicknesses, L. (b) Normal incidence reflection
from an hBN slab of L ∼ 325 nm (dotted line) and L ∼ 800 nm (solid line). The
characteristic hBN Raman peak (∼ 1367 cm−1) is shown in blue. The Reststrahlen
band between transverse (TO) and longitudinal (LO) photons is shaded in yellow. (c)
Attenuated total reflectance (ATR) measurement of hBN slabs of different thicknesses.

The Reststrahlen band is shaded in yellow.

We conducted preliminary experiments on hBN slabs, similar to MoS2.
Figure 4.3a shows hBN slabs of various thicknesses. The colors show that
they sustain FP modes in the visible. However, the TO phonon is in the
infrared, ω0 = 0.169 eV = 1367 cm−1. Thus, Fourier-transform infrared
spectroscopy (FTIR, described in subsection 5.3.3) was used to obtain the
reflection spectra. The normal incidence reflection spectra of a "thin" slab
with L = 325 nm (dotted line) shows only a lower polariton slightly
red-detuned from the TO (subsection 4.1.2). Increasing the thickness to
L = 800 nm decreases the detuning with the first FP mode. A first LP and
UP are clearly visible for this thickness, and a slight second LP appears.
Even thicker samples are required for the first FP mode to be zero detuned
at normal incidence, but they are challenging to obtain by mechanical
exfoliation and transfer (see subsection 5.2.2). Even though the
measurement at normal incidence presented in Figure 4.3b is
straightforward, I have not seen these hBN cavity-free polaritons above the
LL reported in the literature.

However, bare hBN slabs are known to sustain other polaritons [64, 159]. It
is important to understand the difference between those polaritons and the
cavity-free polaritons discussed here. Usually, those polaritons refer to
surface polaritons that propagate along an interface between a dielectric
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material and a material with negative permittivity, well-known since the
70s [86]. These are the same type of polaritons as surface plasmon
polaritons (SPPs) [65], where a metal provides the negative permittivity.
Here, the strong oscillator strength of the phonons results in negative
permittivity. Thus, they are called surface phonon polaritons (SPhPs). As
such, SPhPs appear only in the Reststrahlen band (shaded in yellow in
Figure 4.3b), where the permittivity turns negative1. Similar to SPPs, they
are excited below the LL for TM-polarized light. Therefore, they are not
visible in the calculation for TE-polarization in Figure 4.2a. However, they
are present in the measurements below the LL in Figure 4.3b.

Measurements below the LL in IR were done using attenuated total
reflectance (ATR, as described in subsection 5.3.3) in FTIR with unpolarized
light. ATR uses a germanium crystal (n = 4) to excite below the LL from a
medium with a higher refractive index similar to the MoS2 setup. The line
along which the ATR measures is marked in Figure 4.2a with a dot-dashed
white line2. Figure 4.3b shows the reflection for different hBN slab
thicknesses. The thinnest one (∼ 9 nm) shows a resonance at the TO
phonon. Thicker slabs (50 and 144 nm) show a lower polariton dip for
frequencies below the TO phonon and a hyperbolic phonon polariton
(HPhP) dip for higher frequencies. For even thicker slabs (263, 325 nm),
more dips are measured below the TO, corresponding to hybridization with
higher-order waveguide modes of both polarizations. The dip in the
Reststrahlen band gets broader and blue shifts because the dip integrates
the contribution of several HPhPs. No UP is observed because they usually
appear at smaller k-vectors as shown in Figure 4.2a.

Although these simple and fast measurements provide insight, to
understand Figure 4.3c, calculations including both polarizations and
resolving all HPhPs in the Reststrahlen band are required. Also, detailed
pole-search calculations with the correct structure (glass/hBN/Ge) can be
done to determine the contributions of the eigenfrequencies to the
measured dips. Regardless, there are considerable limitations in the

1Many polar crystals have strong phonon resonances that sustain SPhPs [63]. However,
hBN is a special material among them because it is anisotropic. The permittivity in-plane is
very different from the out-of-plane one. It is so different that it sustains two Reststrahlen
bands in different frequency regions, one in-plane (upper band in 1367-1614 cm−1) and one
out-of-plane (lower band in 760-825 cm−1. This kind of material is called hyperbolic, which
is why polaritons in hBN are better known as hyperbolic phonon polaritons (HPhP)

2This is just a guideline to understand the concept of the measurements, but those
calculations are far from the actual measured system. A specific calculation is required
for the hBN slab between glass and germanium.
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k-vector resolution with these measurements. The better alternative (but
not so easy to access) is using a scanning near-field optical microscope
(SNOM) [64].

4.2 Polaritons in 1D infinite cylinders

Paper III shows that optical resonances in the cylinders hybridize with the
electronic transition in the perovskite CsPbCl3. Like slabs, cylinders sustain
radiative (above the LL) and waveguided modes (below the LL), and all
can be strongly coupled to the material. This thesis did not contribute to
such experimental studies. However, polaritons have been demonstrated in
several material platforms, including perovskite nanowires [110, 160],
nanofibers of organic dyes [161], and inorganic semiconductors
nanowires [162].

Recently, polaritons in self-hybridized nanowires of organic
semiconductors (J-aggregates and H-aggregates) have been shown to have
five times higher energy transport velocity than the expected for a
non-polaritonic exciton [163]. Even though they only resolve Rabi splitting
above the LL in about ∼ 30% of the measured regions3, they measured the
energy transport effect for all the regions. This may be related to the fact
that the nanowires are also strongly coupled with waveguide modes below
the LL, even though no Rabi splitting is measurable above the LL. These
observations highlight the impact of self-hybridized polaritons on material
properties, particularly the importance of considering the coupling with
waveguide modes. A more extended discussion about waveguide modes is
found in subsection 4.4.3.

4.3 Polaritons in 0D geometries

Platts et al. [164] first theorized hybridizing excitons in a GaAs sphere to its
whispering gallery modes. These were the first theorized self-hybridized
polaritons, to my knowledge. Later WS2 slabs were shaped into nanodisks
and reached strong coupling with the A-excitons [165]. Paper III proposed
that water droplets exhibit strong coupling in theory. Paper VI subsequently
observed this phenomenon in laboratory mists. Moreover, hBN was recently

3The authors attribute this to potential variations in the oscillator strengths.
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FIGURE 4.4: (a) Shematic of normal incidence reflection of hBN nanodisks on glass.
(b) Raman signal for all nanodisks is the same as the unpatterned hBN with a main
peak at 1367 cm−1. (c) Extinction cross-section calculation of an isotropic ellipsoid with
the in-plane permittivity of hBN. The height of the ellipsoid was 140 nm for various
diameters. (d) Left: Bright-field image of an hBN flake patterned with nanodisks of
various diameters, d1=1 µm, d2=2.5 µm, d3=5 µm, d4=7.5 µm, d5=10 µm. The blue
flake has h = 140 nm, and the yellow h = 213 nm. Right: Raman intensity of the
1367 cm−1 peak on the patterned nanodisks. No additional peaks were observed. (d)
Normal incidence reflection from the nanodisks patterned with h = 140 nm for various

diameters.

shaped into nanodisks to target strong coupling to the TO phonon [166].
Here, I describe the last three cases.

4.3.1 Polaritons in hBN nanodisks

As often happens in science, similar ideas often occur to several people
around the same time. In our case, we also created hBN nanodisks to
combine the TO phonon with Mie resonances supported by the nanodisks.
The schematic of the system measured at normal incidence is shown in
Figure 4.4a. The nanodisks were patterned on hBN flakes with thicknesses
of 140 nm and 213 nm, as shown in Figure 4.4d.

The quick calculations performed on the hBN ellipsoids extinction
cross-section, shown in Figure 4.4c, were done as a guide for the sizes to
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fabricate. These calculations have two major approximations. Firstly, they
assumed an ellipsoidal shape, and secondly, the material was approximated
to an isotropic permittivity, with the in-plane permittivity of hBN.
Although these calculations provided an initial idea, more accurate
calculations are required to understand the experimental outcomes
thoroughly.

Despite the heavy approximations, the calculations in Figure 4.4c provide
insights. Here, the resonances appear as a maximum in extinction. They
show that for a height of 140 nm, only diameters above 4 µm have visible
UP and LP peaks in extinction. These are phonon modes hybridized with
the Mie modes, resulting in UP and LP. The peak is inside the Reststrahlen
band for smaller diameters. As a result, the resonance is similar to LSPR in
metals, resulting in only one peak for smaller diameters.

Reflection from the fabricated arrays was measured as shown in Figure 4.4d
using a normal incidence FTIR microscope, as described in subsection 5.3.3.
The main changes for various radii occur inside the Reststrahlen band but
only for larger nanodisks. The unpatterned flake shows a weak reflection
peak given by the TO phonon. The peak is damped with the smaller
diameters, but no other changes are observed. However, for larger
diameters, the signal varies considerably. Unfortunately, this contradicts
the simple calculation that expected changes inside the Reststrahlen band
for smaller disks. Therefore, interpreting the data requires simulations in
reflection with an anisotropic hBN permittivity.

The main goal of this project was not only to show hybridization with Mie
modes but also to measure Raman scattering from the polaritons. We were
looking for a nanodisk size-dependent Raman signal, which should only
depend on the material’s properties in the absence of polaritons. For that,
Raman was measured at normal incidence, but we always obtained the same
hBN 1367 cm−1 peak shown in Figure 4.4b. The large area scan on the right of
Figure 4.4b shows the Raman intensity of the common hBN 1367 cm−1 peak.
This central peak of hBN never varied, and no other peaks were detected.

We now understand that this project failed because the phonon measured by
Raman is not the same as the phonon strongly coupled to IR light. They have
practically the same energy but correspond to different vibrations [167]. As
a result, the Raman signal always came from an uncoupled phonon.

For this project to work, we just need to change the material platform to a
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non-centrosymmetric crystal. The problem with hBN is that given its
symmetry, the mutual exclusion principle states that an IR active mode is
not Raman active [168]. However, breaking the symmetry allows for the
same phonon to be Raman and IR active. Only in that case could the
phonon coupled to IR Mie resonances show Raman signal from the
polaritons.

4.3.2 Polaritons in water droplets

Finally, Paper III considers a water sphere and theoretically shows that Mie
resonances (described in subsection 2.3.3) hybridize with the vibrational
phonons in water. As shown in Figure 4.5c, the Rabi splitting (orange
arrow) with the first aNl=1 Mie modes increases for larger N due to better
confinement of the mode and a corresponding decrease in its decay rate.
However, this increase is ultimately limited by the bulk Rabi splitting 2gB,
as described in Paper III. The goal of Paper VI was to show that water
droplets in mist sustain cavity-free polaritons experimentally.

An initial trial was to individually measure single droplets in an FTIR
microscope, as was done for the hBN flakes and nanodisks. For that, I used
spiderwebs to hold water droplets formed by a nebulizer as shown in
Figure 4.5a. However, the droplets evaporate in about 10 seconds, and a
single scan of the FTIR microscope takes several minutes. The droplets
could stabilize if the ambient were humid. However, the main problem
with this approach was that the droplets stabilized around sizes of 30 µm,
which was far from the diameters calculated in Paper III.

For sizes below 5 µm, the effect of the self-hybridized polaritons is more
notable in extinction. Figure 4.5d shows a clear "splitting" in the extinction
spectra given by the coupling between the bare Mie modes (dashed gray
line) and the O–H stretch resonating at ω1 = 0.418 eV (blue dotted line) in a
droplet of R = 2.5 µm. In contrast, a droplet with R = 30 µm shows a
flattening behavior around the O–H stretch (marked in a circle in
Figure 4.5e). This flattening pattern continues as the size increases.

Regardless of the size, the difference between the uncoupled spheres and
the hybridized ones is clear. Even "splitting" is visible for the bending mode
resonating at ω2 = 0.2 eV for R = 30 µm. These "splittings" marked in
red arrows in Figure 4.5d,e are not Rabi splittings, but they result from the
superposition of several Mie modes splitting with the resonant mode.
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FIGURE 4.5: (a) Water droplets on a spiderweb. (b) Mesh nebulizer producing mist
with water droplets with sizes below 5 µm. (c) Eigenfrequencies of water droplets of
different sizes. The uncoupled eigenfrequencies are marked in blue dotted lines, and
the extinction of the uncoupled spheres is in a gray-dashed curve. The Rabi splitting
is marked with orange arrows. (d) Extinction cross-section of a water sphere of R =
2.5 µm with (blue curve) and without the contribution of vibrational modes (uncoupled
sphere shown in the gray dashed curve). (e) Extinction cross-section of a water sphere

of R = 30 µm. Figure modified from [43].

To understand why they are not Rabi splittings, let us remember that
extinction cross-sections (σext) are the sum of all Mie modes in a sphere, as
described in equation (2.8). Therefore, σext includes all the modes in
Figure 4.5c, all higher multipolar modes, l > 1, and all bNl modes. Note that
most Mie modes are not at zero detuning with the resonance for a fixed
radius. Therefore, most contributions to the extinction of a sphere of a
given single radius will be of the splitting at high detuning.

Instead of measuring single droplets, Paper VI presents transmission
measurements through the mist generated by a commercial vibrating mesh
nebulizer (Evolu Air Pro), as demonstrated in Figure 4.5b. The mist
produced by these nebulizers has a narrow droplet distribution due to their
typical usage in drug delivery, with a median size requirement of below 5
µm [169, 170].

Paper VI fits the experimental optical density with a calculated one [171]
that includes the extinction cross-section of water spheres with a size
distribution between 0.5 − 4.5 µm. It also shows that water droplets above
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∼ 2.7 µm are strongly coupled. Therefore, a mix between polaritonic and
non-polaritonic droplets gives the total optical density. Paper VI shows the
difference between the measured optical density and the calculated one if
the droplets would not interact with its vibrational modes.

We also studied heavy water (D2O) in Paper VI to ensure the optical density
signal is due to strong coupling. Its optical properties are similar to water,
but the vibrational modes are shifted to lower energies due to its heavier
mass. As a result, the measured "splitting" in optical density shifts to those
frequencies. In this case, the radii cutoff to become polaritonic increases to
∼ 3.7 µm.

Therefore, the measured mist contains polaritonic droplets. The studied
droplet sizes are similar to those found in some fogs [172, 173]. Also, most
clouds are formed by droplets with sizes above the polaritonic threshold
[174]. Consequently, polaritonic water droplets occur in clouds naturally.

Recent experimental [175–177] and theoretical [178] studies have increased
interest in hybridized water. These studies on conventional polaritons have
found that water properties undergo modifications in the strong coupling
regime. Understanding the polaritonic nature of water droplets will
hopefully lead to further research to better understand their impact.

4.4 Limits and applications for cavity-free

polaritons

4.4.1 Critical size

The previous section pointed out that not all sizes in droplets that sustain
Mie resonances can hybridize with the O–H stretch in water. In general, for
any material, the critical radius depends on ω0 and the material’s
background permittivity. The higher ε∞, the smaller the spheres can be to
sustain polaritons.

All the geometries studied in Paper III have a critical size below which no
polaritons are sustained. In planar and cylindrical structures, the first
waveguide mode gives the limit. Paper III provides a rough approximation
of the minimum thickness required to sustain Rabi splitting below the LL
for the 1st TE waveguide mode in slabs in terms of the optical properties of
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TABLE 4.1: Calculated values of the bulk Rabi splitting, 2gB , η and the minimal
slab thickness needed to sustain polaritons, Lmin.

Material 2gB (eV) η Lmin (nm)
Water 0.1 0.12 137.3
hBN 0.12 0.35 2.6

Perovskite (CsPbCl3) 0.382 0.06 4.4
J-aggregates (TDBC) 0.455 0.11 9.7

MoS2 A-exciton 0.328 0.09 2.4
MoS2 B-exciton 0.524 0.13 2.1

the material. The thickness is then given by,

L2
min >

γ2

2k20(fω
2
P )
√
ε∞ − 1

. (4.1)

Here, k0 is the wave vector in vacuum. This results in different thicknesses
for different materials (see Table 4.1). We can only offer a rough guideline
with this equation. It is important to find the eigenfrequencies for more
accurate identification. Approximately, the thickness threshold for 2D
crystals here is below 3 nm for slabs in vacuum. Interestingly, polaritons
below the LL have recently been measured in a WSe2 few-layer slabs as thin
as 9 nm [151] on SiO2.

Note that the structures are considered in vacuum, so the critical sizes may
vary in a different medium, such as placing it on a substrate. Of course,
by matching the surrounding media refractive index with the structure, the
optical resonances disappear along with the polaritons.

4.4.2 Maximum Rabi splitting

Regardless of the photonic mode, all the materials and geometries studied
exhibit a Rabi splitting below the bulk Rabi splitting, 2gB = ωP

√
f/ε∞.

Other groups have also reported this observation [128, 164]. This limit
applies to both cavity-free and conventional polaritons. A summary of the
bulk coupling strength of all the materials studied in this thesis is found in
Table 4.1. The table also shows that some of these materials can reach the
USC regime, η ≥ 0.1.

The bulk coupling strength can be used as a guideline to determine which
materials can be hybridized with light. For a resonance of interest, one can
fit its permittivity with a Lorentzian equation and verify that fω2

P > ε∞γ
2/4
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to determine if a material sustains bulk polaritons. If so, the material can
sustain bulk polaritons and may be strongly coupled to other photonic
modes. Conversely, if a material cannot sustain bulk polaritons, no cavity
will provide a photonic mode that can strongly couple to it.

4.4.3 Implications of cavity-free polaritons

Before closing the chapter, I would like to discuss the implications of the
existence of cavity-free polaritons. One of the promises of polaritons is that
they can tune materials’ properties because of their hybrid nature [179].
Conventional polaritons have shown their impact in a few material
characteristics like exciton transport [180–184], charge transport [185],
photochemical reactions [1–3, 186], and ground-state chemical
reactivity [187, 188]. Reaching even polariton condensation [12, 189].

For some of these applications, having an external cavity is necessary. For
example, in long-range energy transfer [7, 190], the cavity mediates the
transfer between two materials far from each other but that share the same
photonic mode. However, other applications do not need an external cavity.
For example, exciton transport enhancement has been recently obtained in
cavity-free nanowires [163]. Also, it has been recently shown that
self-hybridized polaritons affect magneto-optical properties of a van der
Waals material [191].

The concept of cavity-free polaritons has only recently gained interest, so
we will probably see more applications in the coming years. It would be
particularly intriguing to find out whether ground-state chemical [8]
reactivity can occur in cavity-free structures.

Interestingly, ground-state chemistry changes have been so far solely
measured in conventional vibrational polaritons when the cavity and the
vibrational mode are at zero detuning and normal incidence (k = 0, above
the LL) [8]. As of yet, there are no conclusive theoretical explanations for
these observations [122], which makes it difficult to understand if
cavity-free polaritons would show the same changes. One hypothesis
suggests that the density of states provided by bulk and cavity-free
polaritons is not as large as that provided by a metallic cavity in
conventional polaritons and, thus, cannot show the same results [192].

To determine the changes in polaritonic chemistry, the reaction speed is
usually compared in a cavity at zero detuning versus a detuned cavity or
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with mirrors and without mirrors. Let us address both benchmarks
considering the existence of cavity-free polaritons above and below the LL.

Polaritonic chemistry effects have been only observed for cavity thicknesses
for which the Rabi splitting is visible at normal incidence. In order to
determine the effects, the reaction speed is often compared to a benchmark.
Two comparisons are often made: i) a cavity at zero detuning vs. a detuned
cavity, or ii) a cavity with metallic mirrors vs. the same cavity without
mirrors. Let us address both benchmarks considering the existence of
cavity-free polaritons above and below the LL.

For the first one, the crucial need for zero detuning at k=0 is very
intriguing. Similar to cavity-free slabs, conventional microcavities also
sustain waveguide modes with which the phonon strongly couples [193].
Therefore, even if the detuning is high at normal incidence, several
waveguide modes will be at zero detuning at higher k-vectors. The
community is working on many of the puzzles regarding these
observations, and I look forward to reading works on this in the future.

On the second one, cavity-free polaritons can still be present after removing
the mirrors. Therefore, one needs to be careful with the thickness and
refractive index contrast because, in some cases, there may even be
cavity-free optical modes at zero detuning at normal incidence. To avoid
polaritons and get a proper benchmark, one needs to match the solution’s
refractive index or decrease the thickness of the "uncoupled" material below
the critical value. On the bright side, very recent studies are now
considering this by comparing the effects of polaritons in cavities with
mirrors, with one mirror, and without mirrors [194, 195].

In this chapter, we have discussed that Lorentz materials can form
polaritons without requiring an external cavity. Such materials can be
reshaped to support optical modes for the material to self-hybridize.
Theoretical discussions have covered slabs, cylinders, and spheres.
Experimental studies were conducted on MoS2 and hBN slabs, hBN
nanodisks, and water spheres. Polaritons can be easily fabricated and occur
naturally, for instance, in water droplets in clouds.

The material’s capability to form polaritons with any cavity (conventional or
a self-hybridization configuration) depends solely on its optical properties
since the bulk polaritons seem to be the maximum attainable Rabi splitting.
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Thus, a quick way to test if a material could reach strong coupling is to fit
a Lorentzian to the resonance of interest and calculate 2gB = ωP

√
f/ε∞ and

compare it to its decay rate.

As described in this chapter, new experiments continue to show cavity-free
self-hybridized polaritons and their potential to change materials
properties [152, 153, 163, 191]. Self-hybridized polaritons offer a unique
platform for studying polaritonic changes in materials, particularly in
polaritonic chemistry, as they provide polaritons without any additional
interactions with the external cavity. This allows for better isolation of the
effects of polaritons when characterizing the material properties.
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Chapter 5

Research methods

The previous chapters have focused on the results of the thesis. This chapter
describes the calculation, fabrication, and optical characterization methods.
The chapter is divided into three parts.

The first section covers the theoretical tools and concepts used in the thesis.
It explores quasinormal modes of open systems and how to obtain them
using a pole-search method in the complex frequency plane and the
scattering matrix.

The second section focuses on nanofabrication. It describes the methods
used to fabricate microcavity–plasmon polaritons, self-assembled
polaritons, and how to exfoliate, transfer, and pattern 2D crystals.

The final section describes the experimental setups used for optical
characterization, including Fourier plane spectroscopy, dynamic
modulation of self-assembled polaritons, Fourier-transform infrared
spectroscopy (FTIR), and optical levitation of water droplets.

5.1 Analytical calculations

5.1.1 Quasinormal modes in open systems

All the calculations in this thesis considered open systems (also called
non-conservative or non-Hermitian) with radiative losses to the
environment. The eigenmodes of these systems are called "quasinormal
modes" (QNMs) to differentiate them from the eigenmodes in closed
systems called "normal modes". In waveguide theory, these modes are also
called "leaky" modes [196].
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The QNMs are solutions to the source-less Maxwell’s equations. Therefore,
they do not depend on the excitation field. In the case of open systems, the
equations should obey the Silver-Müller (SM) radiation conditions, which
state that there should be no sources of radiation in the far-field, such that the
energy flow is only outgoing [79]. Let us consider the source-less Maxwell’s
equations with no free charges in a matrix form, such that they look like an
eigenvalue problem [78],[

0 iε−1 (r, ω̃)∇×
−iµ−1 (r, ω̃)∇× 0

][
Ẽ (r)
H̃ (r)

]
= ω̃

[
Ẽ (r)
H̃ (r)

]
. (5.1)

The eigenvectors are the QNMs’ spatial field distributions [Ẽ(r), H̃(r)]T and
the eigenvalues are its complex frequencies, ω̃n = ωn − iγn/2 [78, 79]. The
real part is the measurable resonant frequency, ωn, and the imaginary part is
the decay rate, associated with its lifetime, τn = 1/γn. This means that the
field decays exponentially with time, E(r, t) = Ẽ(r)eiωnte−γnt, and similarly
for H.

Resonances are a manifestation of QNMs. A figure of merit of the damping
for resonances is the quality factor, Q = ωn/γn. The measurable quantity
related to γn is the resonance’s full width at half maximum (FWHM). The
Q–factor physically corresponds to the resonance’s number of oscillations
before damping.

Among the various methods to find QNMs [78, 79], it is possible to
compute them by searching poles in the complex frequency plane of the
system’s electromagnetic response [197]. This pole-search approach uses
that if a driving field approaches a QNM eigenfrequency, its resonator
response will diverge. We look for points where the scattered field diverges.
Therefore, we calculate the systems’ scattering matrix (Ŝ) and find the poles
of its eigenfrequencies [74]. In practice, one calculates det Ŝ in the complex
frequency plane and looks for points where it diverges.

5.1.2 Scattering matrix

When an incoming field interacts with a system, the scattering matrix relates
the incoming and scattered fields after the incoming field interacts with the
system, Es = ŜEi. The Ŝmatrix is built by linking the amplitudes of the
incoming waves (s+ = {s+1 , s+2 , ..}) with those of the outgoing waves (s− =

{s−1 , s−2 , ..}), s− = Ŝs+ [74], as shown in Figure 5.1a forM scattering channels.
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FIGURE 5.1: (a) Schematic of the scattering matrix with M scattering channels. (b)
Poles (cross) and zeros (circle) of the Ŝ-matrix without for a material without loss or
gain in gray and increasing loss in black. The point when the zero is on the real axis is

where perfect absorption (PA) occurs when there is only one scattering channel.

Before diving into the specific geometries calculated for this thesis, let us
understand some generalities of the Ŝ-matrix. The Ŝ-matrix has both zeros
(Ŝs+ = 0) and poles (Ŝs+ = ∞) [73]. In the absence of loss and gain in the
material, the zeros and poles appear in pairs in the complex frequency
plane and are related by complex conjugation. The zeros appear in the
upper plane, and the poles are in the lower plane, as shown in the schema
in Figure 5.1b. Their distance to the real axis depends on the total radiative
losses. For example, waveguide modes have poles almost at the real axis
since they are practically lossless.

Increasing the amount of material loss (γ in ε(ω)) has the effect of pulling
down the zeros and poles to the lower plane. The larger the loss, the lower
both are. The point where the zeros cross the real axis is a point with no
outgoing fields. This point corresponds to perfect absorption if the system
has only one scattering channel, as in Paper VI. However, in systems with
more scattering channels, this corresponds to coherent perfect absorption
(CPA) [73].

Now, let us continue to calculate the Ŝ-matrix and the QNMs
eigenfrequencies for the relevant structures in the thesis. First, I discuss
planar structures, followed by spheres.

Dielectric and layered planar structures

Planar structures are a two-port scattering problem as shown schematically
in Figure 5.2a. Considering the incoming light, Ei, with an angle,
kx = k0 sin θ, where k0 is the wave vector in vacuum. Then, the incoming
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and scattered fields can be described as,

Ei (r) = a1Eeikzz+ikxx + a2Ee−ikzz+ikxx (5.2)

Es (r) = b1Ee−ikzz+ikxx + b2Eeikzz+ikxx (5.3)

From these equations, one can build the scattering matrix such that,(
b1

b2

)
= Ŝ

(
a1

a2

)
, (5.4)

Then, the scattering matrix is [74]:

Ŝ(ω) =

(
R11(ω) T12(ω)

R21(ω) T22(ω)

)
, (5.5)

Here, Rij, Tij represent the final reflection and transmission coefficients,
respectively, from either side as shown in Figure 5.2. These coefficients can
be calculated with the transfer matrix method (TMM) [84, 198]. The TMM
breaks down a layered system, such as the one illustrated in Figure 5.2b,
into matrices representing each layer. These matrices are multiplied
together to calculate the optical response of the system. Textbooks such as
[82, 84, 198] thoroughly explain this standard method.

In the case of a single slab in a symmetric environment as depicted in
Figure 5.2a, reflection and transmission can be expressed as:

RTE,TM =
rTE,TM(1− e2ikz,2L)

1− r2TE,TMe
2ikz,2L

, TTE,TM =
rTE,TM(1− r2)e2ikz,2L)

1− r2TE,TMe
2ikz,2L

, (5.6)

where the Fresnel coefficients are given by[80],

rTE =
kz,1 − kz,2
kz,1 + kz,2

, rTM =
kz,1 − kz,2/ε(ω)

kz,1 + kz,2/ε(ω)
, (5.7)

with kz,1 =
√
k20 − k2x, kz,2 =

√
ε(ω)k20 − k2x being the z-components of the

wave vector in vacuum and dielectric, respectively.

In this simple case, it is unnecessary to calculate the full Ŝ-matrix and find
the poles of its eigenvalues. In this case, the eigenvalues are given by λ1,2 =
R ± T , and from equation (5.6), we see that the poles of the system are the



5.1. Analytical calculations 71

FIGURE 5.2: (a) Schematic of the two scattering channels in a single slab with
permittivity ε(ω). (b) Schematic of the same scattering channels in a layered system

where the total Ŝ-matrix is calculated using the transfer matrix method (TMM).

roots of the characteristic equation:

1− r2TE,TMe
2ikz,2L = 0 . (5.8)

This characteristic equation was used for all planar calculations in Paper
III. However, in Paper IV, one channel was glass, and the other was air.
Also, Paper I required several layers, as shown in Figure 5.2b. Therefore, the
transmission and reflection coefficients were calculated using TMM to build
the Ŝ-matrix and calculate its eigenvalues numerically to find their poles and
zeros.

Spheres

Paper III and Paper VI obtain the eigenfrequencies of a sphere as follows.
When considering the scattering with a sphere of radius R, it is easier to
consider plane waves in spherical coordinates (r, θ, ϕ). Mie theory writes the
incident and scattered field in spherical coordinates. Here, we use the results
and notation from Bohren [46]. The field scattered by a sphere of radius R
and permittivity ε = n2 can be written as an infinite series of spherical vector
harmonics with scattering coefficients al and bl [46].

al =
nψl(nx)ψ

′
l(x)− ψl(x)ψ

′
l(nx)

nψl(nx)ξ′l(x)− ξl(x)ψ′
l(nx)

, (5.9)

bl =
ψl(nx)ψ

′
l(x)− nψl(x)ψ

′
l(nx)

ψl(nx)ξ′l(x)− nξl(x)ψ′
l(nx)

, (5.10)

where x = k0R. The Ricatti-Bessel functions: ψl(ρ) = ρjl(ρ) and ξl(ρ) =

ρh
(1)
l (ρ) are used to simplify the expressions with spherical Bessel, jl(ρ), and

first kind Hankel functions, h(1)l (ρ).
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The coefficient al (bl) weighs the contribution of the l-th TM (TE) mode, for
which there is no radial magnetic (electric) field. Thus, the eigenfrequencies
for TE and TM polarized modes with orbital number l are found as roots of
the following characteristic equations:

ψl(nx)ξ
′
l(x)− nξl(x)ψ

′
l(nx) = 0, (TE) (5.11)

nψl(nx)ξ
′
l(x)− ξl(x)ψ

′
l(nx) = 0. (TM) (5.12)

These roots have several zeros at different energies. The radial number, N
characterizes these higher-order modes.

Finally, as mentioned in section 2.3, the extinction cross-sections can be
computed using the scattering coefficients as in equation (2.8).

5.2 Nanofabrication

This part is dedicated to the nanofabrication processes followed for
conventional polaritons in metallic microcavities, plasmonic particles,
self-assembled polaritons, self-hybridized MoS2 and hBN slabs, and hBN
disks.

All the samples were prepared on glass coverslips (170 µm). Cleaned by
5 min ultrasonication in acetone and IPA, followed by oxygen plasma
ashing.

5.2.1 Microcavities and plasmonic particles

The plasmon-microcavity polaritonic samples of Paper I were fabricated by
evaporating a 30 nm Au bottom mirror on top of a 2 nm Cr adhesion layer
using an e-beam evaporator (Kurt J. Lesker PVD225). Then 80 nm of
SiO2 was deposited by STS plasma-enhanced chemical vapor deposition
(PECVD) at 300 °C.

Then, the nanodisks were fabricated by electron beam lithography (EBL) on
spin-coated PMMA (baked for 5 min at 180 °C). Twelve arrays were
patterned with disks of diameters d = 60, 80 and 100 nm and different
pitches Λ = 100, 140, 180, 220, 300 and 340 nm. After the development and
oxygen plasma ashing of the exposed areas, 20 nm of Au were evaporated.
Then, lift-off in acetone finalizes the nanodisk arrays fabrication. The
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samples were annealed for 10 min at 200 °C on a hotplate to improve the
crystallinity of the nanodisks. Separately, bare nanodisk arrays on glass
were prepared similarly and imaged with SEM (Zeiss Supra 60 VP - EDX)
by coating them with a thin layer of conductive polymer (E-spacer).

The second half of the spacer was spin-coated (PMMA, baked at 180 °C for
5 min). Finally, the cavity was closed by evaporating the last 30 nm Au layer
deposited by e-beam evaporation.

In a similar way, the self-assembled cavities fabricated for Paper II that
required a fixed bottom mirror were evaporated with various
SiO2 thicknesses deposited on top as described previously. Flakes of
WSe2 were deposited on top as explained below.

5.2.2 Transfer and characterization of 2D materials

MoS2, WSe2, and hBN flakes were mechanically exfoliated from bulk
crystals (HQ Graphene) using dicing tape. The flakes were then transferred
onto thin PDMS stamps and finally onto glass substrates, following the
procedure outlined by Castellanos-Gomez et al. [199]. The monolayers
were identified through their distinct photoluminescence [61] in an upright
Nikon microscope with a fiber-coupled spectrometer (Andor Shamrock
SR-303i) equipped with a CCD (Andor iDus 420).

Photographs of the transferred flakes were taken with a CCD camera
(Nikon D300S) through an upright microscope. The number of layers was
deduced by optical contrast using the software ImageJ. The thicknesses of
hBN flakes were measured by a surface profiler (Tencor AS500). for Paper
IV, the thicknesses of MoS2 flakes were measured by AFM (NTEGRA
Prima, NT-MDT) in non-contact mode by Dr. Battulga Munhkbat.

The hBN nanodisks were fabricated by Dr. Aleksandr Polyakov. The
samples are spin-coated with a positive resist (polymethyl methacrylate,
PMMA). Next, the electron beam in EBL was used to expose the area
around the disks. After development, all PMMA was removed, except for
the disks. These PMMA disks act as a protective layer for hBN during the
reactive ion etching (RIE). This ensures that after RIE, only the protected
areas have hBN remaining. Once the PMMA is dissolved, the hBN
nanodisks are obtained. This method closely follows the one described in
Munhkbat et al. [200]
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FIGURE 5.3: (a) Schematic of the experimental setup for angular resolved
spectroscopy. Collimated light illuminates the full numerical aperture of the lens
focused on the sample. The incoming light is focused with incident angles up to
θmax = arcsinNA/n. The reflected signal is collected with the same lens. The Fourier
plane of the lens is found at a distance equal to the focal length f . The spectra of
the imaged Fourier plane are collected simultaneously at different radii via a fiber
bundle with a spectrometer. (b) Incident angle distribution in the Fourier plane for
an oil immersion objective with NA=1.49. The Brewster, θB , and critical, θC , angles
are marked in red dashed lines. The arrows mark the directions along which TE and
TM polarizations are measured. (c) Fourier plane of glass in reflection. All the light
is transmitted before the critical angle and after it is all reflected. The fiber bundle is

shown measuring TE-polarization. Figure modified from [41].

5.3 Optical characterization

My work heavily relies on reflectivity measurements to optically
characterize micro and nanostructures at normal incidence and angular
dispersion. This section describes the experimental setups used to measure
reflection in the visible and infrared spectral range.

Reflection spectra at normal incidence were collected using a 20× objective
(Nikon, NA = 0.45) in an upright microscope with a fiber-coupled
spectrometer (Andor Shamrock SR-303i) equipped with a CCD (Andor
iDus 420). The reflection signal was then normalized with a standard
dielectric-coated silver mirror (Thorlabs). Higher angle reflection was
measured in the Fourier plane as described below.

5.3.1 Fourier microscopy and spectroscopy

The field of Fourier optics is quite vast [198]. However, I mainly used it to
obtain angular spectral information from the Fourier plane, also known as
the Back Focal Plane (BFP). The BFP of a lens with focal length f is located
at a distance f from it, as depicted in Figure 5.3a. The Fourier plane spreads
the k-vector information, so light collected by the lens at various angles is
distributed in the BFP at different radii, r ∼ sin(θ) [201]. Increasing the
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angle increases the distance from the center. This means that light collected
at normal incidence will land on the center of the Fourier plane, while the
signal collected at the highest possible angle will end up on the edge of the
Fourier plane.

In Figure 5.3b, we can see an example of angle dependence. The figure
shows the angles corresponding to different radii in an oil immersion
objective with a 1.49 numerical aperture (NA)1. The outermost dashed
circle corresponds to the maximum angle collected by the objective. The
most inner red dashed circle marks the Brewster angle, θB, for which all
TM-polarized light is transmitted. This angle gives us the minimum
reflection our setup can measure for TM polarization, which is about 1%.

The next marked dotted circle is the critical angle, θC , after which total
internal reflection (TIR) occurs from the glass substrates. The critical angle
is clearly visible in the Fourier plane of the glass substrate shown in
Figure 5.3c. Before reaching this angle, most light is transmitted through
the substrate, creating a black region. After the critical angle, the light is
entirely reflected due to TIR, producing a bright band. This area is the
region II, below the light line in Paper IV.

The Fourier plane is a powerful tool that also gives information about the
polarization through the azimuthal angle, ϕ [202]. It is also possible to
measure any polarization mixture, where the weight of each polarization
depends on the azimuthal angle as ETM ∼ cos(ϕ) and ETE ∼ sin(ϕ) [202].
My experiments set the signal of TE (TM) polarization on the vertical
(horizontal) axis, as shown in Figure 5.3b. The fiber bundle is placed to
measure TE-polarization in the example in Figure 5.3c.

A simplified description of the optical setup in Paper IV, which used an
inverted microscope (Nikon Eclipse TE2000-E), is depicted in Figure 5.4a.
Here, a collimated laser-driven white light source (LDLS, EQ-99FC, high-
brightness, flat-broadband spectrum) is polarized and fully covers the back
aperture of an oil (n=1.51) immersion 60× objective (Nikon, NA=1.49). The
sample is illuminated from the glass substrate, thus allowing it to reach TIR.

The same objective collects the reflected light (depicted in orange).
Typically, the Fourier plane of an objective is located inside it, so a Bertrand
lens is used to image it. The spectra are then collected for different radii

1Every lens or objective has a maximum angle from which it can collect light, and its
numerical aperture describes it, NA= n sin θmax, where n is the refractive index of the
medium, which is usually air, water, or oil in commercial objectives.
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FIGURE 5.4: (a) Schematic of the experimental setup used to measure angular
dispersion of conventional polaritons and self-hybridized MoS2 polaritons. Collimated
light is focused and reflected from the sample. It is collected with an objective whose
Fourier plane is imaged with a Bertrand lens. Then, a fiber bundle coupled to a
spectrometer measures spectra at various radii of the Fourier plane. Alternatively,
the Fourier plane is imaged on a CCD camera. (b) True-color image of the Fourier
plane of a 48 nm thick MoS2 layer. (c) Experimental setup to measure normal incidence
reflection from self-assembled polaritons while modulating the top mirror. The dimer
is illuminated from the bottom with an LDLS source. The floating top mirror is
modulated with incident laser irradiation from the top, causing a change in the distance
between the mirrors, Leq . The intensity of a continuous wave (cw) laser (455 nm) is
modulated with a chopper, and the mirror returns to equilibrium when there is no

laser irradiation. The dichroic mirror filters the laser. Figure modified from [41].

simultaneously using a fiber bundle consisting of 19 fibers with 100 µm core
(Andor SR-OPT-8002) coupled to a spectrometer (Andor 500i, equipped
with Newton 920 CCD camera). Alternatively, the Fourier plane is imaged
on a CCD camera (Nikon 300S), which produces true-color images of the
Fourier plane, as illustrated in Figure 5.4b for a 48 nm MoS2 slab.

The angular resolution can increase if the Fourier plane is expanded with a
telescope (not shown). In this case, the fiber bundle no longer covers the full
BFP as is the case in Figure 5.3c. The fiber bundle is mounted on an XYZ
translational stage to ensure complete coverage.

For measurements above the light-line for the conventional polariton
dispersion in Paper I, the setup is very similar to the one shown in
Figure 5.4a. However, the objective and illumination source used are
different. In this case, an air 40x objective with a numerical aperture of 0.95
was utilized, along with a fiber-coupled Halogen lamp (Thorlabs) to
illuminate from the bottom.
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FIGURE 5.5: (a) Fourier transform infrared (FTIR) spectrometer schematic. The IR
beam passes through the sample, and the transmitted light intensity is recorded. (b)
Attenuated total reflection (ATR) objective working principle. Light is focused on the
sample via a Germanium crystal, forming an evanescent wave that interacts with the

sample. Figure modified from [43].

5.3.2 Active modulation of self-assembled cavities

All the measurements of reflection of Paper II took place in the inverted
microscope (Nikon Eclipse TE2000-E), as depicted in Figure 5.4c. In this
case, the objective was 100× oil immersion with a tunable NA 0.5-1.3
(Nikon). NA=0.5 was used for quasi-normal incidence reflection and to
take colorful pictures of the formed cavities. The NA=1.3 was used for
measuring the dispersion in reflection in the Fourier plane with the fiber
bundle, as described in the previous section. The sample was illuminated
using an LDLS. The reflected signal was then collected by a fiber-coupled
spectrometer (Andor Shamrock SR-303i) equipped with an iDus 420 CCD
detector.

Active modulation of the equilibrium distance between the fixed and
floating mirror was obtained using a continuous wave (cw) laser (455 nm)
modulated with a chopper. The radiation pressure pushes the top mirror
towards the bottom mirror. The mirror returns to equilibrium when the
laser intensity is minimal. A dichroic mirror filters the laser from the
reflected signal measured by the spectrometer.
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5.3.3 Fourier-Transform Infrared Spectroscopy

Fourier-transform infrared spectroscopy (FTIR) is a widely used technique
to analyze the infrared absorption spectrum of materials. Conventional
spectroscopic techniques separate light into colors and each color’s
intensity after interacting with the material. However, FTIR utilizes a
Michelson interferometer to obtain dispersion in a broad energy range, as
depicted in Figure 5.5a. In this method, the detector measures the intensity
interferograms as a function of time, which uses a Fourier transformation to
obtain the information in energy expressed in wave numbers.

The Bruker Vertex70v spectrometer was used in Paper VI to analyze the light
absorbed by mist within the 600-8000 cm−1 range. Then, a vibrating mesh
nebulizer generating the mist was placed in the optical path, as depicted in
Figure 5.5a. Typically, a spectrometer measures bulk samples by shining a
focused IR light beam through the sample.

To measure microscopic samples such as hBN flakes and hBN microdisks,
we utilized the FTIR microscope Hyperion3000. With a 15× objective, the
microscope can measure reflection and transmission at normal incidence.
The samples were fabricated on glass due to its low refractive index in IR,
which has a smaller impact on the optical resonances sustained by hBN.
However, glass is not transparent in IR, so the samples were only measured
in reflection.

The hBN slabs were measured beyond the light line using the
Hyperion3000 in ATR mode. In this mode, a special objective is used to
touch the sample with a crystal, as depicted in Figure 5.5b. The
measurement starts when the pressure sensor detects 1N. The sample is
illuminated at 45◦ using a germanium crystal with a refractive index of 4 in
the IR range. Due to total internal reflection, only an evanescent wave
interacts with the sample. The objective and detector then detect the
reflected light. However, the smallest measurable spot size is
approximately 32 µm, so it could not be used for hBN disks.

5.4 Optical levitation of water droplets

Paper V studied light scattering from a levitated water droplet in air. All
experiments in Paper V were done by Javier Tello-Marmolejo. He built a
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FIGURE 5.6: (a) Counter-propagating trap used to measure Fano combs in levitated
water droplets. The scattered light is measured at 90◦ from the axis of the trap. A beam
splitter separates the vertical and horizontal polarizations. The vertical polarization is
used to determine the size of the droplets, and the horizontal polarization is used to
study the scattering intensity. The inset shows a picture of the light interacting with the
sphere, resulting in the two scattered components. (b) Picture of the trap with a water

droplet scattering light in the middle. Figure modified from [42].

counter-propagating optical trap to obtain stable trapping of water droplets
produced by an ultrasonic nebulizer (MY-520A).

The 532 nm cw laser (Laser Quantum gem532) was divided into two arms.
Both were focused into a beam waist of around the droplet size (∼ 7.5 and
∼ 5 µm) from opposite sides. The relative power of each arm was balanced
to minimize the drift of the particles during their evaporation.

The scattering was collected perpendicular to the trapping axis. A lens
collected the signal, and a polarizing beam splitter separated it. The
vertically polarized signal was used to visualize the diffraction pattern
generated by the droplet from which its size can be calculated [203]. The
horizontal one measures the intensity of the scattering while the droplet
evaporates in time. The analysis of both signals results in the plot presented
in Figure 2.11.
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Chapter 6

Concluding remarks

Undertaking a PhD is a profoundly personal experience unique to every
individual. While some journeys seem linear and focused on a specific
subject, my experience has been different. I enjoy learning new things and
connecting different subjects. Even though the heart of my research is on
strong-light matter coupling, the systems I studied led to interesting results
in other areas, such as Fano resonances, perfect absorption, and Casimir
physics. In essence, this thesis reflects a journey full of fun and exciting
detours.

The thesis divided the findings of some works for the sake of clarity. First,
in Chapter 2, I introduced the optical properties of materials and optical
resonators. This chapter included the results obtained outside of strong
light-matter interaction, such as perfect absorption in MoS2, Fano
resonances in levitated water droplets, or the self-assembly of Fabry-Pérot
resonators by equilibrium of electrostatic and Casimir forces. Then,
Chapter 3 delved into strong light-matter interactions in conventional
structures, consisting of an external cavity and a separate resonant material.
This chapter focused on polaritonic decay rates and tunable self-assembled
polaritons that can be dynamically tuned. Chapter 4 demonstrates that
some materials can support optical modes and hybridize without an
external cavity. This results in self-hybridized cavity-free polaritons, which can
be more easily fabricated or naturally occur. This thesis explores cavity-free
polaritons in various materials and geometries, including fabricated hBN
nanodisks and naturally occurring planar 2D crystals and water droplets.
Finally, Chapter 5 gave an overview of all the methods (experimental and
theoretical) used in this thesis.

In this final chapter, I summarize the works included in this thesis. Instead
of dividing the results by topic, I present the scientific key takeaways of
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each work, along with my perspective on their scientific impact. As
doctoral studies focus on our education toward becoming independent
researchers, I also reflect on the learning outcomes of each work as a part of
my growth as a researcher. With that in mind, let us dive into each work.

6.1 Summary of the appended papers

Paper I

Polaritonic linewidth asymmetry in the strong and ultrastrong coupling regime

In the first project, I worked on a conventional polariton given by a plasmon–
microcavity system. We explored this platform in Paper S.I and noticed that
the Rabi splitting increased with the nanoparticle density [31]. Therefore,
we pushed the nanoparticle density limit in Paper S.II to reach ultrastrong
coupling [33]. I was interested in the difference between both polaritons
at higher coupling strengths for the follow-up. The lower polariton became
narrower, while the upper polariton was broad. These observations were not
unique in the polaritonic community. They were observed since the 90s [36]
and were attributed to the disorder in the material [134]. However, for the
theoretical analysis, we considered the nanodisks a dispersive media with
a Lorentzian permittivity, removing all inhomogeneities from the system.
Despite the absence of disorder, the linewidth asymmetry persisted.

Paper I analyzed the asymmetry behavior for various coupling strengths
and noted that the lower polariton can even reach linewidths below the
ones of the uncoupled elements for some coupling strengths. Interestingly,
the decay rates equalize at higher detunings if no other losses affect the
polaritons (as the interband transitions in the gold mirrors). I observed this
also for cavity-free polaritons even before the coupling strength reached the
ultrastrong coupling regime onset.

The most surprising result was that bulk polaritons also have a decay rate
asymmetry, making the effect more general. Even more so, their quality
factors are the same at zero detuning. Therefore, the linewidth asymmetry
arises naturally from the Rabi splitting. The most intriguing result is that
the polariton linewidths are equal for zero detuning with the renormalized
frequency for bulk polaritons.
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This project grew and developed alongside me. As my first project, I gained
much experience in experimental and fabrication techniques through it.
With time, I put a hold on the project as I delved into other exciting projects.
Only when I learned the pole-search method could I apply it to this project
and complete it. I finished the project only at the end of my studies, and the
outcome was more profound than I ever expected.

Paper II

Tunable Self-Assembled Casimir Microcavities and Polaritons

Many discoveries are accidental, as was the case in Paper II. We were
interested in continuing the work of Paper S.II. The question was if the
ground state modification affected the formation of polaritons. In Paper I,
the nanodisks sit on top of a spacer deposited on a bottom mirror, with a
top mirror closing the cavity. Thus, as in most platforms, the structure is
fixed. But what would happen if the top mirror could move? Would it sit
on the nanodisks and form polaritons or try to avoid them? The hypothesis
was that the floating mirror would leave the nanodisks because the
polaritonic system has more energy than the uncoupled one. However, the
denser the arrays, the more attracted the gold flakes (top mirror) were to
the nanodisks. Later, we noticed that the attraction was because of Casimir
forces. Even more so, we noticed that the floating gold flakes formed stable
dimers with each other, creating Fabry-Pérot cavities resonating in the
visible.

In Paper II, the two floating gold flakes formed a cavity by balancing the
electrostatic repulsive and attractive Casimir forces. The concentration of
ions in the solution affected the distance between the flakes in equilibrium.
Therefore, the resonant wavelengths could be tuned by manipulating the ion
concentration.

Paper II also showed that self-assembled cavities can strongly couple to
the A-exciton in WSe2 as a proof of concept. Coupling any material of
interest resonating in the visible with these self-assembled cavities is
possible. Moreover, the top mirror was movable in the liquid, allowing
dynamic tunability. The floating mirror was pushed by laser radiation
pressure to change the cavity thickness, which dynamically varied the
coupling strength and polaritonic composition.
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During this project, I gained insights into the importance of adaptability
and creativity. I discovered that sometimes, the unexpected things we
encounter can be just as interesting, or even more so, than what we were
initially searching for. Additionally, I learned about the benefits of
collaborative work. The allocation of tasks between the theoretical and
experimental team members was precise, efficient, and fruitful.

Paper III

Abundance of Cavity-Free Polaritonic States in Resonant Materials and
Nanostructures

Paper III brought back into focus bulk polaritons from a new perspective
since we used the complex-frequency plane to visualize the complex
eigenfrequencies of leaky systems. We described the coupling strength for
these bulk polaritons in terms of the macroscopic permittivity. We showed
that the bulk Rabi splitting is the limit for the Rabi splitting for any
geometry, which significantly simplifies the search for materials that will
achieve strong coupling. No other polaritons will be present if the material
cannot sustain bulk polaritons.

Paper III theoretically demonstrated the possibility of achieving cavity-free
polaritons in various geometries and materials. Our research involved
organic semiconductor slabs, 2D crystals, perovskite nanowires, and water
droplets. The key findings show that various geometries can support
cavity-free polaritons, a minimum size exists for a cavity-free polaritonic
structure, and the bulk Rabi splitting represents the maximum Rabi
splitting achievable in any geometry. Cavity-free polaritons considerably
reduce the fabrication complexity to obtain polaritonic systems.

This work also highlighted the importance of considering optical modes
below and above the light line in 2D and 1D geometries. The modes below
the light-line are often ignored, but they are crucial when determining the
minimum size of a structure to be polaritonic. Note that cavity-free
polaritons can complicate control experiments on polaritonic effects. Even
after the external cavity is removed, polaritons may persist, making it
difficult to compare the uncoupled and polaritonic effects. Sometimes, the
material may still be strongly coupled "outside" of the cavity, and one
should be cautious. To ensure that no remaining polaritons are present, the
size of the structure must be below the critical size threshold.
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Due to its implications, this theoretical work may be my most significant
contribution to the polaritonic community. As it served as the backbone of
my PhD, it was certainly the most relevant during my studies. It guided the
rest of my research and established the theoretical basis I continued to rely
on.

Paper IV

Perfect Absorption and Strong Coupling in Supported MoS2 Multilayers

Continuing the theoretical work in Paper III, I conducted experiments to
measure cavity-free polaritons in unpatterned MoS2 slabs above and below
the LL. The findings of Paper IV revealed the presence of polaritons and
showed perfect absorption below the LL in unpatterned MoS2 flakes.

Even a 2.6 nm thick unpatterned MoS2 slab can perfectly absorb
TE-polarized light. Moreover, the angle and frequency at which perfect
absorption occurs largely depend on the number of layers present. As a
result, each thickness below nine layers exhibits a unique reflection
spectrum and provides an optical, non-invasive means of determining the
number of layers without the need for comparison with a nearby
monolayer.

Thicker slabs of MoS2 have Fabry-Pérot modes that produce colored slabs
when viewed at normal incidence. The most striking colors can be seen in
the Fourier plane. These images, including this thesis’s cover, are my
favorite experimental results. Not only are they beautiful, but they also
demonstrate two phenomena simultaneously: polaritons and perfect
absorption. Both phenomena are present in the same unpatterned sample,
making the results all the more remarkable.

This work was pivotal for my research education. It took me several
months to achieve the quality of measurements I desired, but it boosted my
confidence in the lab. Furthermore, with occasional guidance, I applied and
expanded the theoretical skills I had developed in Paper III. I am very
proud of this work and its scientific and aesthetic beauty. Its beauty lies in
its simplicity.

Paper V

Fano Combs in the Directional Mie Scattering of a Water Droplet
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Paper V studied Mie resonances of a single levitating water droplet. The
spectrum of a levitated dielectric is now a classic since Ashkin observed it
first in 1977 [91]. However, that spectrum is a mix of all resonances
simultaneously occurring in the droplet. Mie calculations are needed to
identify each resonance and untangle the messy spectrum.

Paper V presents an ordered spectrum with approximately a hundred
resonances. These resonances progressively shift from Lorentzians to Fano
profiles. The spectrum was obtained by measuring the scattering of a
shrinking water droplet from a side. This method filtered the resonances
and detected only TM modes. To explain the full spectrum, Paper
V employed a quantum-mechanical analogy to an atom.

Collaborating with Javier Tello Marmolejo from Gothenburg University on
Paper V was a very valuable experience. It all started with casual coffee
breaks, where we would try to interpret Javier’s experimental results. It was
my first collaboration outside my research group, and it helped me grow
and mature as a scientist.

Paper VI

Self-hybridized vibrational – Mie polaritons in water droplets

After the theoretical prediction in Paper III, I began working on measuring
polaritonic water droplets. Paper VI shows a simple experiment using an
FTIR and a commercial mesh nebulizer to produce mist. A fitting
confirmed that the droplet sizes contributing to the measured optical
density were indeed polaritonic. Paper VI presented how the optical
density would look without interactions with the vibrational modes and
the experimental results with heavy water. It demonstrated that the Mie
modes strongly coupled with the vibrational modes.

The main message of this work was that water droplets in mist, fog, and
clouds are naturally strongly coupled. As my most recent work, it is
challenging to assess its impact. An interesting study will be to investigate
whether the alterations observed in water (and its solutions) in
conventional polaritons also manifest in water droplets.

During my time in the lab, I found this project to be the most enjoyable. It
challenged me to think creatively and develop innovative ways to measure.
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Additionally, it expanded my scientific knowledge and stimulated my
curiosity.

6.2 Outlook

Some of my projects have raised more questions than answers, while others
offer a new perspective by bridging two fields. In both cases, there are
opportunities for further studies to deepen our knowledge. In this outlook,
I will discuss a few topics that require more time for exploration and other
ideas that could be pursued in the future.

Asymmetric polaritonic linewidths

Paper I showed, in an entirely classical approach, that the polariton
linewidths are the same when zero detuning is considered with respect to
the renormalized frequency. The renormalized frequency concept comes
from studies of the USC regime in quantum optics, where the diamagnetic
term of the Hamiltonian is crucial. Thus, the appearance of the
renormalized frequency suggests the diamagnetic term’s importance.
However, the linewidth asymmetry occurred before the USC regime,
implying that the diamagnetic term has a greater impact on linewidths than
the actual eigenfrequencies. It would be interesting to investigate from a
quantum optics perspective whether USC effects are present on linewidths
even before the USC onset. In our joint project, Therese Karmstrand
showed that the linewidth behavior is reproduced with a complete
Hopfield Hamiltonian. This method provides us with the necessary means
to investigate the effects of the diamagnetic term. The results need further
work, but they are promising.

Furthermore, I intuitively expect the Hopfield coefficients to be equal at the
same point as the linewidths become the same. Therese’s calculations could
establish a connection between the Hopfield coefficients and the linewidths
obtained classically. This understanding could provide the composition of
polaritons without the need for Hamiltonians.

However, the most interesting research direction would be the significance
of the polaritons having equal linewidths at the renormalized frequency. An
intriguing question is if it is possible to use the asymmetry in linewidths at
zero detuning to detect changes in the ground-state energy.
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On a more applied note, we demonstrated that coupling two high-loss
elements, namely plasmonic nanodisks and metallic cavities, leads to a
narrow resonance for the LP. This effect could benefit plasmonic sensors
since the strong coupling generates a sharp lower polariton with nearly flat
dispersion.

Casimir physics and polaritons

The work on Casimir has opened a lot of possibilities. We are currently
exploring the control we can have on the self-assembled system. For
example, we are patterning substrates to promote the formation of dimers
in specific areas. We are also exploring possibilities to study the bending of
thin gold flakes due to Casimir forces.

For the polaritonic community, the most interesting contribution of our
work is to highlight the importance of Casimir physics. Casimir forces do
not only form the self-assembled cavities. They contribute to the energy of
the system, and this contribution is more important for metallic mirrors.
The polaritonic community has largely ignored such contributions. The
main difference between considering Casimir and strong coupling is that
Casimir integrates over all frequencies, while strong coupling is a resonant
effect focusing on frequencies around zero detuning. A study on the
contribution of Casimir to the ground-state energy of the system would be
interesting to see the impact of non-resonant effects on the system.

Cavity-free polaritons

We learned that cavity-free polaritons are more straightforward to obtain
than we thought and are ubiquitous. From there, an option could be that
polaritons are too common to be interesting. Thankfully, other works have
recently shown that cavity-free polaritons also have interesting properties!
For example, energy transport in organic semiconductors is faster in
polaritonic nanowires [163], and the magneto-optical properties can be
tuned by varying the photonic component in the polariton in a vdW
magnet [191].

Even though I required more time to finish my research on polaritons in
hBN nanodisks, we learned a lot during the project. More extensive arrays
are needed to obtain better-quality results in FTIR, and simulations of the
disks in reflection that consider the anisotropy of hBN are required to
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understand the experimental results better. However, our primary goal
with that project was to observe Raman signal dependence on the
polaritonic states. However, we did not see any changes. We now realize
that to observe any variations, we need to switch to a non-centrosymmetric
material. Therefore, I look forward to seeing the experiment results using a
different material platform.

Water polaritons

A clear next step for my work on polaritonic water droplets is to try to
measure the Rabi splitting between a single Mie mode and the stretching
modes in water. I envision a setup like the one presented in Paper V.
However, that setup has challenges to overcome to achieve it. Notably, it
requires equipment in the IR, including detectors and tunable lasers. Once
the appropriate source is found, the next problem is evaporation. In Paper
V, every droplet evaporates in about 10 seconds, and water is transparent
at the laser wavelength (532 nm). That process considerably speeds up if
the droplet absorbs at the frequency of the illuminating IR source (around
3µm), requiring a fast photodetector sensible in the IR.

However challenging and interesting, these experiments would still only
measure Rabi splitting. The most exciting research would be to go beyond
simply observing Rabi splitting. It would be interesting to know if any
properties are affected by the polaritons in the water droplets. Are thermal
properties affected? Could chemical reaction rates be changed? In a long
shot, polaritons could affect the process of acid rain formation, which
occurs by interactions between water droplets and atmospheric gases.
Research in this direction would have the highest impact.

As human beings, our memory capacity is limited. So, if you can only
remember one thing from this thesis, remember that polaritons are more
common than previously thought. They can exist in simpler structures and
even occur naturally, such as in water droplets in clouds. There is still much
work left to understand polaritons fully, and I am excited to see how the
field evolves in the coming years.
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