
Coverage Analysis of Joint Localization and Communication in THz
Systems with 3D Arrays

Downloaded from: https://research.chalmers.se, 2024-03-13 10:11 UTC

Citation for the original published paper (version of record):
Zheng, P., Ballal, T., Chen, H. et al (2023). Coverage Analysis of Joint Localization and
Communication in THz Systems with 3D Arrays. IEEE Transactions on Wireless Communications,
In Press. http://dx.doi.org/10.1109/TWC.2023.3325192

N.B. When citing this work, cite the original published paper.

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained
for all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, or reuse of any copyrighted component of this work in other
works.

This document was downloaded from http://research.chalmers.se, where it is available in accordance with the IEEE PSPB
Operations Manual, amended 19 Nov. 2010, Sec, 8.1.9. (http://www.ieee.org/documents/opsmanual.pdf).

(article starts on next page)



1

Coverage Analysis of Joint Localization and
Communication in THz Systems with 3D Arrays

Pinjun Zheng, Tarig Ballal, Member, IEEE, Hui Chen, Member, IEEE,
Henk Wymeersch, Senior Member, IEEE, and Tareq Y. Al-Naffouri, Senior Member, IEEE

Abstract—As a key enabler of Terahertz (THz)-based wireless
technologies, large-scale multiple-input-multiple-output systems
are well known for their advantages in both communication and
localization. Contrary to existing works that mostly focus on
planar arrays, this paper first explores the potential of three-
dimensional (3D) spatial array structures in joint localization
and communication coverage enhancement. We consider a THz-
band wireless system where a user is equipped with a 3D array
receiving downlink far-field signals from multiple base stations
with known positions and orientations over Rician fading chan-
nels. First, we derive the constrained Cramér-Rao bound (CCRB)
for the localization (i.e., position and orientation estimation)
performance, based on which we define the localization coverage
metrics. Then, we derive the communication key performance
indicators (KPIs) including instantaneous signal-to-noise ratio,
outage probability, and ergodic capacity, and define the corre-
sponding coverage metrics. To facilitate localization applications
using 3D arrays, a maximum likelihood-based algorithm for
joint user equipment (UE) position and orientation estimation is
proposed, which is initialized by a least squares-based solution.
Our numerical results show that the 3D array configuration
offers overall higher coverage than the planar array w.r.t.
both localization and communication KPIs, although with minor
performance loss in certain UE positions and orientations. The
proposed localization algorithm is also verified to be efficient in
simulations as it attains the derived CCRB.

Index Terms—three-dimensional (3D) arrays, Terahertz (THz),
localization, wireless communication, coverage, constrained
Cramér-Rao bound (CCRB).

I. INTRODUCTION

With the increasing demands for higher data traffic in wire-
less communication, the THz frequency band (0.1-10THz)
is envisioned as a key enabler for future sixth generation
(6G) wireless communication systems and beyond [1], [2].
Due to the hundreds of GHz bandwidth available, the THz
band is able to achieve Terabit-per-second (Tbps) data rates
and massive secure connectivity.In addition to the benefits
to communication, larger array size (high angular resolu-
tion) and larger bandwidth (high delay resolution) in high-
frequency systems also enable high-accuracy localization,
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which has been extensively explored within multiple-input-
multiple-output (MIMO) communication systems [3]–[5]. On
the other hand, signals at the THz frequencies are unable
to penetrate objects, leading to a more direct relationship
between the propagation paths and the environment [6]. It is
foreseeable that potential localization-aware applications, such
as virtual reality (VR)/augmented reality (AR) [7], unmanned
aerial vehicle (UAV) [8], vehicular safety [9], etc., will be
considered in future communication systems, and more com-
pact and efficient cooperation paradigms of communication
and localization will be continuously explored [10], [11].

In early wireless communication systems (e.g., the first
generation (1G) and the second generation (2G) cellular
systems), the user’s location is usually estimated based on
the signal strength and time measurements [12]. Enabled by
large antenna arrays in the advanced MIMO systems, angle-
based localization methods are widely pursued, as they can
avoid tight synchronization requirements and achieve high-
accuracy localization [6]. Over the years, a plethora of local-
ization techniques based on one-dimensional (1D) arrays [13],
two-dimensional (2D) arrays [4], [14], and arbitrary array
configurations [15] have been proposed. Although promising
localization results are shown in these works and localization-
aware mobile network deployment solutions are proposed [16],
the localization coverage issue is rarely discussed, which is a
practical issue in real localization scenarios. In the far-field
and asynchronous scenarios without geometrical constraints,1

at least two BSs with line-of-sight (LOS) paths are needed
for localization (e.g., based on uplink AOAs).2 Hence, the
localization availability is highly limited by the geometrical
setup of the user equipment (UE) and BSs. To improve
localization coverage, employing 3D arrays is one of the
promising options. A localization error bound analysis of 2D
and 3D V-shaped arrays is reported in [20], which shows 3D
configurations provide better source positioning performance
compared to the 2D one for the same number of sensors.
Despite the obvious potential of 3D arrays, this concept has

1With geometrical constraints, for example, the height of the localization
target, it is possible to localize using a single base station (BS). For instance,
a robot with a fixed height on the ground can be localized using angle-of-
arrival (AOA)/angle-of-departure (AOD) information from a single BS on the
ceiling.

2Relying on NLOS paths components [17] or the curvature-of-arrival in-
formation (i.e., in the near-field model) [18], promising single-BS localization
solutions exist. However, stable NLOS paths are not always available [19],
and near-field conditions are not satisfied in the scenarios considered in this
paper (as shown calculated in Subsection VI-A). In this work, we consider
far-field LOS-based 6D localization, where at least 2 BSs are needed.
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not yet been widely studied in radio localization due to its
impractical physical size. However, we expect this issue to
be solved in the THz band thanks to the very small signal
wavelengths.3 Besides, since existing works on 3D array
localization are limited to specific array configurations such
as the V-shaped arrays in [20], a more general model for 3D
array localization is needed.

For THz communication, researchers meet challenges that
differ significantly from those in systems operating at lower
frequencies. For instance, to overcome the very short com-
munication distances due to severe power limitations and
propagation attenuation, efficient THz-band signal processing
techniques are needed [2]. A well-known example is the array-
of-subarray (AOSA) architecture, i.e., dividing large antenna
arrays into multiple subarrays (SAs), which can improve the
beamforming gain and energy efficiency, and thus combat the
distance problem [21], [22]. Based on hybrid beamforming,
different SA structures have been studied, specifically includ-
ing the fully connected [23], the subconnected [24], and the
overlapped subarray [25] structures. However, these works
on SA design mainly focus on the interconnection among
the radio-frequency chains (RFCs), phase shifters (PSs) and
antenna elements (AEs) (i.e., the RFC-PS-AE mapping). To
the best of the authors’ knowledge, there is still a lack of work
exploring the spatial structure of the SAs (i.e., 3D array) in an
AOSA system, which is expected to enhance the connectivity
and improve the coverage w.r.t. both communication and
localization key performance indicators (KPIs) [26].

Coverage is one of the most important performance in-
dicators in evaluating the performance of communication
systems. Over the years, many notable advances in coverage
analysis have been reported. For example, [27] presented a
general framework to evaluate the coverage and rate perfor-
mance in mmWave cellular networks. The authors of [28]
developed a novel framework characterizing the sensing and
communication coverage probability and ergodic capacity in
joint communication and sensing networks. For the coexisting
radio frequency and THz finite indoor network, a coverage
and rate analysis is reported in [29]. Although those works
have developed rigorous and tractable models for network-
wide performance analysis based on tools such as stochastic
geometry, there is still a literature gap in 3D coverage analysis
of specific deterministic scenarios involving joint localization
and communication systems.

In this paper, we consider a downlink far-field THz-band
MIMO wireless system with multiple BSs and a single UE.
Localization and communication coverage performance are
evaluated jointly over a Rician fading channel, which has been
shown to be a good fit for empirical data in the THz band [30].
The UE is equipped with a 3D array of subarrays with
arbitrary but known relative element positions and subarray
orientations. Each SA is arranged in a 2D space (i.e., a
planar SA). Our investigation reveals that leveraging such 3D
array configurations in THz wireless systems can enhance the
coverage and improve both localization and communication

3For example, a 10×10 half-wavelength spaced array of a 140GHz system
can be fitted into a 1 cm2 area, while the same footprint can only support a
2× 2 array at the frequency of 28GHz.

KPIs relative to the conventional 2D (or planar) structures.
Furthermore, to show the practical usability of 3D arrays in ra-
dio localization, we propose a maximum likelihood estimation
(MLE) algorithm for joint position and orientation estimation
for a UE equipped with a 3D array, and an ad-hoc initialization
method based on least-square estimation (LSE). The main
contributions of this paper are as follows:

• Based on the CCRB, we derive the position error bound
(PEB) and orientation error bound (OEB) for the under-
lying localization problem, and the localization coverage
is then defined.

• To explore the communication performance of different
array configurations (i.e., 2D arrays and 3D arrays),
we derive communication KPIs including instantaneous
signal-to-noise ratio (SNR), outage probability, and er-
godic capacity. The non-outage coverage and the capacity
coverage are then defined.

• To facilitate localization applications using 3D arrays, we
propose an efficient method for joint UE position and
orientation estimation using Riemannian manifold opti-
mization tools. The proposed method starts with a least-
squares (LS) initialization step followed by a maximum
likelihood (ML) refinement.

• We assess the derived KPIs and provide a compara-
tive performance analysis of 2D and 3D arrays through
numerical simulations. The accuracy of the proposed
localization algorithm is verified through the root mean
square error (RMSE) comparison with the PEB and OEB.

The paper is organized as follows. Section II introduces the
system model. Section III poses the localization problem and
derives the localization KPIs including PEB, OEB, and the
localization coverage. The communication KPIs are derived in
Section IV, including instantaneous SNR, outage probability,
ergodic capacity, and the corresponding coverage. A local-
ization algorithm for 3D array configuration is proposed in
Section V. Section VI presents simulation results. Finally, the
conclusions of the paper are drawn in Section VII. The sim-
ulation examples can be reproduced using code available at
https://github.com/ZPinjun/3D array joint Loc and Com.

Notations: A bold lowercase letter x denotes the column
vector, a bold capital letter X denotes the matrix. [x]i repre-
sents the i-th entry of the vector x, and [X]i,j represents the
entry in the i-th row and j-th column of the matrix X. The
superscripts (·)T, (·)∗, and (·)H stand for transpose, conjugate,
and conjugate transpose operations, respectively. Re(·) denotes
the operation of taking the real part, and ∠· denotes the
operation of taking the phase.

II. SYSTEM MODEL

We consider a far-field downlink scenario with M BSs and
one UE, as shown in Fig. 1-(a). The positions and orientations
of the BSs are known in a global coordinate system (GCS).
Each BS is equipped with a planar array and is connected
to an independent RFC.4 By adopting a 3D AOSA structure,
the array of the UE consists of N planar SAs arranged in a

4Since we focus on a single UE, deploying one RFC at each BS is sufficient.

https://github.com/ZPinjun/3D_array_joint_Loc_and_Com
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Fig. 1: Illustration of the considered geometric model. (a) A downlink MIMO wireless system with multiple BSs and one UE equipped with a 3D array. (b)
The geometry of the azimuth and elevation components of the AOD and AOA.

3D space with fixed relative positions and orientations. Each
SA is connected to an independent RFC. Both localization
(i.e., determining the position and orientation of the UE) and
communication functions are considered is this system.

A. Geometric Model

The m-th BS is deployed at position pB,m ∈ R3×1, m =
1, . . . ,M . It is equipped with a planar antenna array of NB,m
elements and oriented according to the rotation matrix RB,m ∈
R3×3. The position and orientation of the UE in the GCS are
denoted as pU ∈ R3×1 and RU ∈ R3×3, respectively. Without
loss of generality, we set pU as the origin of the UE’s local
coordinate system (LCS). The known position and orientation
of the n-th SA in UE’s LCS are denoted as pUE

S,n ∈ R3×1 and
RUE

S,n ∈ R3×3 respectively, n = 1, . . . , N . Specifically, pUE
S,n

represents the location of the origin of the n-th SA’s LCS in
UE’s LCS. The number of elements of the n-th SA of the UE
is denoted as NS,n.

All the rotation matrices are constrained in the group of 3D
rotations SO(3) [31] defined as

SO(3) = {R|RTR = I3,det(R) = 1}. (1)

A rotation matrix represents the rotation relationship between
the GCS and a LCS. For example, for a vector d in the GCS,
we can express its coordinates in the UE’s and the n-th SA’s
LCS as

dUE = RT
Ud, dSA,n =

(
RUE

S,n

)T
RT

Ud, n = 1, 2, . . . , N.

Similarly, the position of the n-th SA (i.e., the origin of the
n-th SA’s LCS) in the GCS can be expressed as pS,n = pU +
RUp

UE
S,n.

When a link is established between the m-th BS and the
n-th SA, the directions of the path can be represented by the
AOD from the transmitting side (BS) or the AOA from the
receiving side (UE). In 3D space, the AOD consists of a pair of

azimuth angle θ
(az)
m,n and elevation angle θ

(el)
m,n, while the AOA

pair consists of an azimuth angle ϕ
(az)
m,n and an elevation angle

ϕ
(el)
m,n, as visualized in Fig. 1-(b). Another way of expressing

the AOA and the AOD is the direction vector. For example,
in the m-th BS’s LCS, the direction vector from the m-th BS
pointing towards n-th SA is given by

tBS,m
n =

cos(θ
(az)
m,n) cos(θ

(el)
m,n)

sin(θ
(az)
m,n) cos(θ

(el)
m,n)

sin(θ
(el)
m,n)

 . (2)

This direction vector tBS,m
n is equivalent to the AOD, and the

inverse transformation is given by

θ(az)
m,n = atan2

([
tBS,m
n

]
1
,
[
tBS,m
n

]
2

)
, (3)

θ(el)
m,n = asin

([
tBS,m
n

]
3

)
. (4)

A similar transformation relationship pair can be obtained for
AOA and tSA,n

m .
Since we consider a far-field wireless system with M BSs

and a single UE with N SAs, we have at most M ×N LOS
paths. However, depending on the positions and orientations
of the corresponding BSs and SAs, some of these paths may
not exist because of the limited radiation pattern of antennas.
We will elaborate on this phenomenon in Subsection II-B.

B. The 3D Array MIMO THz Channel

We consider a far-field scenario where the link distances
are larger than the Rayleigh distance [32]. Specifically, we
assume that for each pair of visible BS m and SA n,
∥pB,m −PS,n∥ > max{ 2D2

B,m
λc

,
2D2

S,n
λc

}, where λc denotes the
carrier wavelength, and DB,m and DS,n represent the the array
apertures of the m-th BS and the n-th SA, respectively. For
each visible BS, we consider transmissions of G orthogonal
frequency-division multiplexing (OFDM) symbols with K
subcarriers [22]. In the localization phase, we assume that
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different BSs transmit signals (i.e., G transmissions over the
same subcarriers 1, . . . ,K) at different times, during which
the UE state remains unchanged; In the communication phase,
only one BS is selected to communicate with the UE based
on the localization result (The selection rule used in this paper
will be specified in Subsection VI-A). Since the OFDM
block duration is usually much smaller than the channel
coherence time, the channel can be assumed constant over
the G transmissions [6], [14].

1) Signal Model: Using analog beamforming, the signal
received by the UE at the k-th subcarrier and the g-th
transmission from the m-th BS is given by

y(g)
m [k] =

√
PW(g)Hm[k]w

(g)
B,mx(g)

m [k] +W(g)n(g)[k], (5)

where

Hm[k]=

Hm,1[k]
...

Hm,N [k]

 , W(g)=


w

(g)
S,1

T
· · · 0

...
. . .

...

0 . . . w
(g)
S,N

T

 .

(6)

Here, P is the average transmission power from each BS,
x
(g)
m [k] is a unit-modulus symbol, w(g)

B,m ∈ CNB,m×1 is the
radio frequency (RF) precoder at the m-th BS, Hm,n[k] ∈
CNS,n×NB,m is the channel matrix from the m-th BS to the n-th
SA at the k-th subcarrier, w(g)

S,n ∈ CNS,n×1 is the RF combiner
at the n-th SA,5 and n(g)[k] ∼ CN (0, σ2INS) is a complex
additive white Gaussian noise (AWGN) vector with NS =∑N

n=1 NS,n. Each element in w
(g)
B,m/w(g)

S,n represents a PS with
power constraints |[w(g)

B,m]i| = 1/
√
NB,m, and |[w(g)

S,n]j | =

1/
√
NS,n.

2) Antenna Radiation Model: In this work, we consider
cone antenna radiation pattern which is modeled with a single
cone-shaped beam that approximates the main lobe while
ignoring the side lobes. According to this approximation, the
antenna gain Gn

B,m/Gm
S,n is given by [34], [35]

Gn
B,m=

{
2

1−cos(ϑB,m/2) , if acos(µT
B,mtBS,m

n )<
ϑB,m
2 ,

0, otherwise,
(7a)

Gm
S,n=

{
2

1−cos(ϑS,n/2)
, if acos(µT

S,nt
SA,n
m )<

ϑS,n
2 ,

0, otherwise,
(7b)

where µB,m and µS,n are respectively the normal vector of
the m-th BS and the n-th SA in their LCSs, and ϑB,m/ϑS,n
denotes the directivity of the antennas of the m-th BS/n-th SA.
For instance, for a semi-spherical antenna pattern, ϑ = 180◦.
In this work, we choose the default normal direction of an
array as the x-axis of its LCS. See Fig. 2 for visualization
examples of different cone patterns.

5Since the AOD/AOA estimation requires at least two non-parallel pre-
coders [33], w(g)

B,m/w(g)
S,n are set to change with (g) in the localization phase.

When discussing the communication issues, we will omit the superscript (g).

Directional antenna: Cone model

3

[1] V. Petrov, M. Komarov, D. Moltchanov, J. M. Jornet and Y. Koucheryavy, "Interference and SINR in Millimeter Wave and Terahertz Communication 
Systems With Blocking and Directional Antennas," in IEEE Transactions on Wireless Communications, vol. 16, no. 3, pp. 1791-1808, March 2017.

μS,n/μB,m is the normal vector of the SA/BS.

tBS,m
n /tSA,n

m  means the direction vector.

ϑ determines the directivity of the antenna.

ϑ = 360∘ ⟺  Isotropic antenna 

ϑ

(a) (b)

Fig. 2: Example 3D visualizations of the cone antenna gain pattern. (a) ϑ =
180◦; (b) ϑ = 90◦.

Based on (7), we can define a set Q below of all available
LOS paths based on the visibility of the link between the m-th
BS and the n-th SA in the UE:

Q =
{
(m,n)

∣∣∣acos(µT
B,mtBS,m

n )<
ϑB,m

2
,

acos(µT
S,nt

SA,n
m )<

ϑS,n

2
, m=1, . . . ,M, n=1, . . . , N

}
.

To facilitate subsequent discussions, let D denote the cardinal-
ity of Q and assign labels to the elements in the set Q from 1
to D as Q = {(m1, n1), (m2, n2), . . . , (mD, nD)}. Note that
Q can be identified since each SA and BS is equipped with
an independent RFC.

3) Channel Model: In THz wireless communication sys-
tems, the LOS path plays a dominant role [1] while the
multipath fading effect also exists due to the scattering on
aerosols in the atmosphere [36]. A commonly used model for
THz wireless propagation captures the LOS path through a
deterministic model and generates the multipath components
using random processes [22]. As experimentally validated by
[30], Rice distribution that models both LOS and none-line-
of-sight (NLOS) components is able to achieve a good fit
to empirical measurement data in an indoor THz wireless
environment. Therefore, we use the Rician fading model to
characterize the statistics of the considered THz channel and
express the channel sub-matrix Hm,n[k] as [37]

Hm,n[k] =
Gk

m,n

√
Kr√

Kr + 1
H̄m,n[k] +

Gk
m,n√

Kr + 1
H̃m,n[k]. (8)

Here, H̄m,n[k] is the deterministic LOS component, H̃m,n[k]
is the random NLOS component, Gk

m,n is the path gain, and
Kr is the Rician K-factor which represents the ratio between
the deterministic and the randomly scattered energies.

The NLOS component of the channel matrix can be ex-
pressed as [38]

H̃m,n[k] = Θ
1/2
R,nĤm,n[k]Θ

1/2
T,m, (9)

where the entries of Ĥm,n[k] ∈ CNS,n×NB,m are independent
and identically distributed (i.i.d.) CN (0, 1) random variables,
and ΘR,n ∈ CNS,n×NS,n and ΘT,m ∈ CNB,m×NB,m are receive
and transmit correlation matrices, respectively.

The LOS component of the channel matrix, H̄m,n[k], can
be expressed as

H̄m,n[k] = e−j(2πfkτm,n+φm,n)

× aS,n
(
fk, t

SA,n
m

)
aTB,m

(
fk, t

BS,m
n

)
, (10)
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where aB,m(fk, t
BS,m
n ) ∈ CNB,m×1 and aS,n(fk, t

SA,n
m ) ∈

CNS,n×1 are respectively the Tx and Rx antenna array re-
sponse vectors (called beamsteering vectors in this work).
The transmitter beamsteering vector can be described as[
aB,m

(
fk, t

BS,m
n

)]
i
= ej

2πfk
c (tBS,m

n )
T
pBS,m

i , where the entries
of pBS,m

i are the coordinates of the i-th AE given in the m-
th BS’s LCS. The expression of the receiver beamsteering
vector aS,n takes a similar form. In (10), φm,n accounts for the
random phase offset introduced by the Tx and Rx hardwares
(assumed identical over subcarriers), and τm,n is the signal
delay of the LOS path given by [6]

τm,n =
∥pU +RUp

UE
S,n − pB,m∥2
c

+ ρ, (11)

where ρ is the relative clock bias between the BS and the UE
and c is the speed of light. We assume that all the BSs are
synchronized and that the SAs of the UE share the same clock
signal, resulting in a fixed ρ for all paths.

The path gain Gk
m,n is given by [39]

Gk
m,n =
(

c
4πfkdm,n

) ν
2

e−
1
2K(fk)dm,n

√
Gm

S,nG
n
B,m, if (m,n) ∈ Q,

0, if (m,n) /∈ Q,

where the factor ( c
4πfkdm,n

)
ν
2 accounts for the spreading loss

while e−
1
2K(fk)dm,n accounts for the molecular absorption

loss in the THz band. Here, fk = fc + ∆fk = fc +
(2k−1−K)B

2K , k = 1, . . . ,K is the frequency of the k-th
subcarrier, where fc = c/λc is the carrier frequency and
B is the bandwidth. dm,n is the distance between the m-th
BS and the n-th SA, and ν is the path loss exponent. The
molecular absorption coefficient, K(fk), represents a unique
THz fingerprint for different gases and isotopologue, and it can
be retrieved from the high-resolution transmission molecular
absorption (HITRAN) database [22], [40], [41].

III. LOCALIZATION PERFORMANCE ANALYSIS

The localization problem refers to estimating the position
and orientation of the UE based on the received signal
y
(g)
m [k], g = 1, ..., G, k = 1, . . . ,K given in (5). In local-

ization performance analysis, we assume identical attenuation
coefficients across all subcarriers [6], i.e., K(fk) = K(fc),
thus Gk

m,n = Gm,n,∀k = 1, . . . ,K. Focusing on the LOS
channels, we merge the NLOS component with the AWGN
in analyzing the localization error bound. By absorbing the
NLOS into the AWGN, the model in (5) becomes

y(g)
m [k] =

√
PW(g)H̄m[k]w

(g)
B,mx(g)

m [k]︸ ︷︷ ︸
ζ
(g)
m [k]

+n̊(g)
m [k], (12)

where

n̊(g)
m [k] =

√
PW(g)H̃m[k]w

(g)
B,mx(g)

m [k] +W(g)n(g)[k] (13)

H̄m[k] =

 Ḡm,1H̄m,1[k]

...
Ḡm,NH̄m,N [k]

 , H̃m[k] =


G̃m,1H̃m,1[k]

...
G̃m,NH̃m,N [k]

 .

Here, Ḡm,n =
Gm,n

√
Kr√

Kr+1
, G̃m,n =

Gm,n√
Kr+1

, and ζ
(g)
m [k] in (12)

is the noise-free version of the LOS received signal at the UE
from the m-th BS. As mentioned in Subsection II-B, different
BSs transmit signals to the UE at different times in the
localization phase, thus there are MG transmissions. Since we
also assumed that the UE state remains unchanged during the
localization phase, the deterministic channels H̄m[k] in (12)
are constant over the MG transmissions.

To facilitate the CCRB derivation, we rewrite the submatri-
ces of H̄m[k] as

Gm,n

√
Kr√

Kr + 1
H̄m,n[k] =

hm,n︷ ︸︸ ︷
ha
m,ne

−jhp
m,n e−j2π∆fkτm,n

× aS,n
(
fk, t

SA,n
m

)
aTB,m

(
fk, t

BS,m
n

)
, (14)

where hm,n is a complex channel gain with amplitude ha
m,n =

Gm,n

√
Kr√

Kr+1
and phase hp

m,n = 2πfcτm,n + φm,n. We now
introduce a two-stage localization framework. Subsequently,
we derive the PEB, OEB, and the localization coverage metrics
based on the CCRB.

A. Two-stage Localization

1) Channel Parameters Estimation: The considered un-
known channel parameters consist of AODs at the BSs, AOAs
at the SAs in the UE, channel delays, and complex channel
gains. These parameters can be stacked in a single vector of
the form

ηch ≜ [θT
az,θ

T
el ,ϕ

T
az,ϕ

T
el, τ

T︸ ︷︷ ︸
η∈R5D×1

,hT
a ,h

T
p ]

T ∈ R7D×1, (15)

where θs1 = [θ
(s1)
m1,n1 , . . . , θ

(s1)
mD,nD ]

T, ϕs1 =

[ϕ
(s1)
m1,n1 , . . . , ϕ

(s1)
mD,nD ]

T, τ = [τm1,n1
, . . . , τmD,nD

]T, hs2 =
[hs2

m1,n1
, . . . , hs2

mD,nD
]T, with s1 ∈ {az, el}, s2 ∈ {a, p}, and

(mi, ni) ∈ Q. By excluding the nuisance parameters ha and
hp, η is a vector of parameters that is used for position and
orientation estimation.

The objective of the channel parameters estimation stage
is to estimate η based on the received signal y

(g)
m [k] with

all parameters in ηch being unknown. There exists a variety
of channel parameter estimators, including ESPRIT [42] and
orthogonal matching pursuit [4]. To keep this work focused on
the UE position and orientation estimation, we will assume an
efficient channel parameter estimation routine that achieves
the Cramér-Rao lower bound (CRLB) is available, and the
corresponding covariance matrix of the channel parameters is
perfectly known.

2) UE Position and Orientation Estimation: In the local-
ization problem, the unknowns of interest are the position and
orientation of the UE. Considering also the unknown clock
bias ρ as in (11), the localization parameters to be estimated
can be grouped in a vector r ≜

[
pT

U, ρ, vec(RU)
T
]T

.
Estimating the UE position and orientation can be accom-

plished by estimating the vector r from the estimated chan-
nel parameters η̂ and the corresponding covariance matrix.
The relationships between the channel parameters and the
localization parameters are given by (11) and the following
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equations, which can be inferred from the geometric model in
Subsection II-A,

θ(az)
m,n = atan2

(
uT
2R

T
B,m(pU +RUp

UE
S,n − pB,m),

uT
1R

T
B,m(pU +RUp

UE
S,n − pB,m)

)
, (16)

θ(el)
m,n = asin

(
uT
3R

T
B,m(pU +RUp

UE
S,n − pB,m)

∥pU +RUp
UE
S,n − pB,m∥2

)
, (17)

ϕ(az)
m,n = atan2

(
−uT

2

(
RUE

S,n

)T
RT

U(pU +RUp
UE
S,n − pB,m),

− uT
1

(
RUE

S,n

)T
RT

U(pU +RUp
UE
S,n − pB,m)

)
, (18)

ϕ(el)
m,n = asin

(uT
3

(
RUE

S,n

)T
RT

U(pU +RUp
UE
S,n − pB,m)

−∥pU +RUp
UE
S,n − pB,m∥2

)
,

(19)

where u1 = [1, 0, 0]T, u2 = [0, 1, 0]T, u3 = [0, 0, 1]T.

B. The PEB and OEB

We first derive the CCRB of the localization parameters r,
from which the coverage metrics will be derived and analyzed.
More details about CRLB can be found in, e.g., [43], [44]. By
collecting the observations from all the available paths with
labels (mi, ni) ∈ Q, i = 1, . . . , D, we can write
[
y
(g)
m1 [k]

]
n1

...[
y
(g)
mD [k]

]
nD


︸ ︷︷ ︸

z(g)[k]

=


[
ζ
(g)
m1 [k]

]
n1

...[
ζ
(g)
mD [k]

]
nD


︸ ︷︷ ︸

m(g)[k]

+


[
n̊
(g)
m1 [k]

]
n1

...[
n̊
(g)
mD [k]

]
nD


︸ ︷︷ ︸

n̊(g)[k]

, (20)

where m(g)[k] denotes the noise-free version of the received
signal at the k-th subcarrier and the g-th transmission.

Before deriving the CRLB, we determine the statistics of
n̊(g)[k] in Lemma 1.

Lemma 1. The noise n̊(g)[k] has the following distribution:

n̊(g)[k] ∼ CN (0, diag{Σm1,n1
, . . . , ΣmD,nD

}︸ ︷︷ ︸
Σ̃

), (21)

where

Σmi,ni
= σ2

∥∥∥w(g)
S,ni

∥∥∥2
2
+

P (Gk
mi,ni

)2

1 +Kr

·
∥∥∥Θ1/2

T,mi
w

(g)
B,mi

x(g)
mi

[k]
∥∥∥2
2
·
∥∥∥∥(w(g)

S,ni

)T
Θ

1/2
R,ni

∥∥∥∥2
2

,

i = 1, . . . , D. (22)

Proof. See Appendix A.

To obtain the CCRB of the localization parameters r, we
first derive the Fisher information matrices (FIMs) of the
channel parameters ηch and η. The FIM of the channel
parameter vector ηch can be obtained as in Proposition 1 (For
proof see [43, Sec. 3.4]).

Proposition 1. Given {y(g)
m [k]}m=1,...,M,k=1,...,K,g=1,...,G

in (12), the FIM of the unknown channel parameters ηch in
(15) is given by the Slepian-Bangs formula

I(ηch) = 2

G∑
g=1

K∑
k=1

Re

((
∂m(g)[k]

∂ηch

)H

Σ̃−1 ∂m
(g)[k]

∂ηch

)
.

(23)

Then, we obtain the equivalent Fisher information matrix
(EFIM) using AOA, AOD, and channel delays as follows:

I(η) =
([

I(ηch)
−1
]
1:5D,1:5D

)−1

. (24)

Now, considering the localization parameters vector r =
[pT

U, ρ, vec(RU)
T]T, we can see that η is a function of r.

The relationships between these two vectors are represented
in (11) and (16)–(19). Thus, the FIM with r as the estima-
tion subject can be obtained as I(r) = TTI(η)T, where
[T]i,j = ∂ηi/∂rj .

Since r consists of RU, which is constrained in SO(3), we
have constrained FIM as

I−1
const(r) = M(MTI(r)M)−1MT. (25)

Here, M ∈ R13×7 is obtained by collecting the orthonormal
basis vectors of the null-space of the gradient matrix of the
constraints manifold [17]. A matrix M can be chosen as

M =
1√
2


√
2I4×4 04×1 04×1 04×1

03×4 −c3 03×1 c2
03×4 03×1 −c3 −c1
03×4 c1 c2 03×1

 , (26)

where [c1, c2, c3] = RU. Therefore, we have the PEB and the
OEB given by

PEB ≜
√

tr([I−1
const(r)]1:3,1:3), (27)

OEB ≜
√

tr([I−1
const(r)]5:13,5:13).

Remark 1. By inspecting (16)–(19), we see that the UE
orientation is related to the AODs (θ

(az)
m,n, θ(az)

m,n) through the
term RUp

UE
S,n only. As the size of the UE is much smaller than

the distance between BS and UE, i.e., ∥pUE
S,n∥ ≪ ∥pU−pB,m∥,

changing the orientation RU does not cause much difference
in the AODs. In other words, AODs carry limited information
about the UE’s orientation. On the contrary, AOAs carry most
of the information regarding the UE rotation. Therefore, a
lower OEB is expected in cases with better AOA estimation.

C. Localization Coverage

Coverage is a metric used to evaluate the overall perfor-
mance of a localization/communication system [45], [46].
Here, we define the localization coverage as the probability
that the PEB/OEB is lower than a threshold ξp/ξo when the
UE is located at random positions pU ∈ Ωp and random
orientations RU ∈ Ωo. Here, Ωp and Ωo are the sets over
which the UE position and orientation vary. More specifically,
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the position coverage Rp(ξp) and orientation coverage Ro(ξo)
can be defined as

Rp(ξp) =

∫
Ωp

∫
Ωo

H(ξp − PEB(pU,RU))dpUdRU∫
Ωp

∫
Ωo

dpUdRU
, (28)

Ro(ξo) =

∫
Ωp

∫
Ωo

H(ξp − OEB(pU,RU))dpUdRU∫
Ωp

∫
Ωo

dpUdRU
, (29)

where H(·) is the Heaviside step function (i.e., H(t) = 1, t ≥
0 and zero elsewhere), dpU = dpUxdpUydpUz , and dRU =
dαdβdγ.6

IV. COMMUNICATION PERFORMANCE ANALYSIS

In this section, we derive the communication KPIs including
the instantaneous SNR, the outage probability, and the ergodic
capacity. These KPIs are derived assuming that the user is
communicating with the m-th BS only. Based on the derived
KPIs, the corresponding coverage metrics are defined.

A. Instantaneous SNR

Since the UE maintains multiple RFCs (each SA has an
independent RFC), we consider deriving an instantaneous SNR
measure for each RFC input upon receiving a signal from a
BS. Based on (5) and (6), the instantaneous SNR of the k-th
subcarrier for the path from the m-th BS to the n-th UE SA
can be defined as

SNRk
m,n ≜

P
∣∣∣wT

S,nHm,n[k]wB,m

∣∣∣2
σ2

, (30)

where SNRk
m,n is a random variable whose statistics are

characterized by Proposition 2.

Proposition 2. Define Y k
m,n =

∣∣∣wT
S,nHm,n[k]wB,m

∣∣∣, (m,n) ∈
Q, then Y k

m,n ∼ Rician(x|νs, σs), with a probability density
function (PDF) given by

fY k
m,n

(y|νs, σs) =
y

σ2
s

e

−(y2+ν2
s)

2σ2
s I0

(
yνs
σ2
s

)
, y > 0, (31)

where

νs =

∣∣∣∣∣Gk
m,n

√
Kr√

Kr + 1
wT

S,nH̄m,n[k]wB,m

∣∣∣∣∣ , (32)

σ2
s =

(Gk
m,n)

2
∥∥∥Θ1/2

T,mwB,m

∥∥∥2
2

2(Kr + 1)

∥∥∥wT
S,nΘ

1/2
R,n

∥∥∥2
2
, (33)

and I0(x) =
1
2

∫ 2π

0
e−x cos θdθ.

Proof. See Appendix B.

6Since RU has only three degrees of freedom [31], we denote them as
{α, β, γ}, which are the Euler angles that will be introduced in subsection
VI-A.

B. Outage Probability

We define the outage probability as the probability that
the instantaneous SNR of a subcarrier is smaller than a
threshold [47], [48]. For the RFC of the n-th SA, the outage
probability of the k-th subcarrier for the signal from the m-th
BS is given by

P out
m,n(γth, k) = 1, if(m,n) /∈ Q,

P out
m,n(γth, k) = P(SNRk

m,n < γth) (34)

= P
(
Y k
m,n <

√
γthσ2

P

)
= FY k

m,n

(√γthσ2

P

)
, if (m,n) ∈ Q,

This follows from (30) and Proposition 2. Here, FY k
m,n

(·) is
the cumulative distribution function (CDF) of Y k

m,n. Now a
signal transmitted from the BS can be received by multiple
RFCs in the UE, and so we define the total outage probability
at the UE (for transmission from the m-th BS) as P out

m,k,γth
≜∏N

n=1 P
out
m,n(γth, k).

C. Ergodic Capacity

In this work, we assume the channel state information at
the receiver (CSIR) and channel distribution information at
the transmitter (CDIT) to be perfectly known. As such, we
can determine the ergodic capacity (also known as Shannon
capacity) for a single transmission from the m-th BS to the
UE as [49], [50]

Cm = E

[
N∑

n=1

K∑
k=1

B

K
log2

(
1 + SNRk

m,n

)]
. (35)

D. Non-Outage Coverage and Capacity Coverage

As mentioned in Subsection II-B, the UE’s position and
orientation determine which BS is chosen to perform commu-
nication with the UE. In other words, m is a function of pU
and RU, i.e., m = m(pU,RU). This function will be specified
in Subsection VI-A. Therefore, for each UE position pU and
orientation RU, we can denote the total outage probability
of k-th subcarrier as P out

k,γth
(pU,RU) = P out

m(pU,RU),k,γth
, and

ergodic capacity as C(pU,RU) = Cm(pU,RU).
Analogous to the localization coverage metric in Subsec-

tion III-C, we define the non-outage coverage and capacity
coverage metrics as

Rout
k,γth

(ξout) =

∫
Ωp

∫
Ωo

H(ξout − P out
k,γth

(pU,RU))dpUdRU∫
Ωp

∫
Ωo

dpUdRU
,

Rc(ξc) =

∫
Ωp

∫
Ωo

H(C(pU,RU)− ξc)dpUdRU∫
Ωp

∫
Ωo

dpUdRU
.

V. LOCALIZATION METHODOLOGY

In this section, the localization algorithm is derived as-
suming that the following system parameters are given:
(1) The positions and orientations of the BSs in the GCS,
{pB,m}Mm=1, {RB,m}Mm=1; (2) The positions and orientations
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of the SAs in the UE’s LCS, {pUE
S,n}Nn=1, {RUE

S,n}Nn=1; (3) The
visibility set Q = {(m1, n1), (m2, n2), . . . , (mD, nD)}. As
mentioned in subsection III-A, we assume that an efficient
channel estimator is applied, which provides unbiased channel
parameters estimate η̂ and the corresponding error covariance
matrix Σ. Now, we focus on the second stage of the localiza-
tion process.

A. MLE Formulation

The ML criterion is adopted to estimate r based on η̂ and
Σ. As η̂ ∼ N (η,Σ), the log-likelihood function is

ℓ(η̂;pU, ρ,RU) =

− 1

2
(η̂ − η(pU, ρ,RU))

T
Σ−1 (η̂ − η(pU, ρ,RU)) . (36)

Now, let r1:4 = [pT
U, ρ]

T, the underlying optimization problem
is

r̂ML = argmax
r1:4∈R4,RU∈SO(3)

−1

2
(η̂ − η(r1:4,RU))

T

·Σ−1 (η̂ − η(r1:4,RU)) . (37)

B. Solving the MLE Problem

Note that (37) is a constrained optimization problem since
the rotation matrix RU is constrained in the group of 3D
rotations SO(3), which is an embedded submanifold of R3×3,
as defined in (1). In addition, r1:4 lies in the Euclidean
space R4, which is also a manifold. Therefore, we consider
using manifold optimization tools to solve (37). To this end,
we follow the first-order Riemannian manifold optimization
approach [51], [52].

As the product of two embedded submanifolds is still a
manifold [52, Sec. 3.2], we can define a product manifold
Mr as

Mr ≜ R4 × SO(3) =
{
(r1:4,RU)

∣∣r1:4 ∈ R4,RU ∈ SO(3)
}
.

To simplify the notation, we denote the point in Mr as X =
(r1:4,RU) such that r1:4 ∈ R4,RU ∈ SO(3).

Similar to the standard steepest descent algorithm, optimiza-
tion over a manifold is implemented by using the Riemannian
gradient. At each iteration, we obtain the Riemannian gradient
by projecting the classical gradient to the tangent space
TXMr of the manifold Mr. Then, we update the optimization
variables in the direction of the Riemannian gradient and
retract it from the tangent space TXMr onto the manifold
Mr. Mathematically, starting from an initial value X̂(0), the
algorithm iterates as follows:

X̂(k+1) = RX̂(k)

(
ϵkPX̂(k)

(
∂ℓ(η̂;X)

∂X

∣∣∣∣
X=X̂(k)

))
, (38)

where PX̂(k)(·) is an orthogonal projection from the Euclidean
space onto the tangent space TXMr at point X(k), RX̂(k)(·) is
a retraction from the tangent space TXMr onto the manifold
Mr, and ϵk is a suitable step size. The orthogonal projection
PX̂(k)(·), the retraction RX̂(k)(·), and the gradient ∂ℓ(η̂;X)

∂X can
be factorized as PX̂(k)(·) =

(
P
r̂
(k)
1:4

(·),P
R̂

(k)
U

(·)
)
, RX̂(k)(·) =

(
R

r̂
(k)
1:4

(·),R
R̂

(k)
U

(·)
)
, ∂ℓ(η̂;X)

∂X =
(

∂ℓ(η̂)
∂r1:4

, ∂ℓ(η̂)
∂RU

)
. The pro-

jection and retraction operations of the Riemannian gradient
descent algorithm over Mr are given by [52, Sec. 7]

P
r̂
(k)
1:4

(u) = u,

P
R̂

(k)
U

(U) = R̂
(k)
U skew

((
R̂

(k)
U

)T
U

)
,

R
r̂
(k)
1:4

(u) = r̂
(k)
1:4 + u,

R
R̂

(k)
U

(U) =
(
R̂

(k)
U +U

) (
I3 +UTU

)− 1
2 ,

where skew(A) = (A −AT)/2 extracts the skew-symmetric
part of a matrix. Let IK denote the number of iterations, then
the computational complexity of (38) is O(IKD).

C. Initial Estimation
As the MLE for the localization formulated in this work is

a non-convex problem [17], the algorithm might fall into local
optima if the initial values are not set properly. Considering
this, we propose an LS-based coarse localization method to
obtain a proper initial estimate. The proposed initialization
method is divided into two parts. We first estimate the UE
orientation RU and then estimate the UE position & clock
bias r1:4 based on the orientation estimate.

1) Initial estimation of orientation using LS: For a path
(mi, ni) in the set Q, the following relationship holds true

RUR
UE
S,ni

tS,ni
mi

= −RB,mi
tB,mi
ni

, i = 1, 2, . . . , D. (39)

Therefore, letting A = −[RB,m1t
B,m1
n1

, . . . ,RB,mD
tB,mD
nD

], B =
[RUE

S,n1
tS,n1
m1

, . . . ,RUE
S,nD

tS,nD
mD

], we can formulate an LSE
problem for the UE orientation RU as

R̂U,LS = argmin
RU∈SO(3)

∥RUB−A∥22. (40)

The optimization problem (40) is a special case of the orthog-
onal Procrustes problem [53], which admits the closed-form
solution

R̂U,LS =

{
UVT, if det(UVT) = 1,

UJVT, if det(UVT) = −1,
(41)

where J = [u1,u2,−u3]
T and U and V are the unitary basis

matrices of the singular value decomposition of ABT, i.e.,
ABT = UWVT (W is the diagonal matrix of the singular
values).

2) Initial estimation of position & clock bias using LS:
Starting with the orientation estimate R̂U, we can now provide
initial estimates of the UE position and clock bias. Specifically,
for a path (mi, ni) in set Q, we have the following relation-
ships:

pB,mi +RB,mit
B,mi
ni

· c · (τmi,ni − ρ)− R̂Up
UE
S,n = pU,

pB,mi
−RUR

UE
S,ni

tS,ni
mi

· c · (τmi,ni
− ρ)− R̂Up

UE
S,n = pU,

∀i = 1, 2, . . . , D. (42)

We can put (42) in a matrix-vector form. Toward that end, let

D1=


I3 cRB,m1t

B,m1
n1

I3 cRB,m2
tB,m2
n2

...
...

I3 cRB,mD
tB,mD
nD

 , D2=


I3 −cRUR

UE
S,n1

tS,n1
m1

I3 −cRUR
UE
S,n2

tS,n2
m2

...
...

I3 −cRUR
UE
S,nD

tS,nD
mD

 ,
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b1 =


pB,m1 +RB,m1t

B,m1
n1

· c · τm1,n1 − R̂Up
UE
S,n

pB,m2 +RB,m2t
B,m2
n2

· c · τm2,n2 − R̂Up
UE
S,n

...
pB,mD

+RB,mD
tB,mD
nD

· c · τmD,nD
− R̂Up

UE
S,n

 ,

b2 =


pB,m1 −RUR

UE
S,n1

tS,n1
m1

· c · τm1,n1 − R̂Up
UE
S,n

pB,m2
−RUR

UE
S,n2

tS,n2
m2

· c · τm2,n2
− R̂Up

UE
S,n

...
pB,mD

−RUR
UE
S,nD

tS,nD
mD

· c · τmD,nD
− R̂Up

UE
S,n

 .

Then we have [
D1

D2

]
︸ ︷︷ ︸

D

[
pU
ρ

]
︸ ︷︷ ︸
r1:4

=

[
b1

b2

]
︸ ︷︷ ︸

b

, (43)

which has a unique solution given by r̂1:4,LS = (DTD)−1DTb
if D has full column rank. The full column rank can be
guaranteed by the solvability condition proposed in Subsec-
tion V-D. The computational complexity of the proposed LS-
based initialization computation is O(D).

D. Solvability Analysis

The localization problem in this section refers to estimating
r =

[
pT

U, ρ, vec(RU)
T
]T ∈ R13×1 based on η̂ ∈ R5D×1. Note

that RU has 3 degrees of freedom only; hence, the number of
unknowns in r is reduced to 7. To obtain a unique solution,
the number of unknowns should not exceed the number of
observations, i.e., 7 ≤ 5D, which requires D ≥ 2.

It should be noted that a given value of D can be achieved
using different combinations of visible BSs and SAs. For
instance, D = 2 can be achieved with 2 BSs and 1 SA, or
alternatively with 1 BS and 2 SAs. The latter case, however,
is ill-conditioned under the far-field scenario, as the two paths
from the BS to 2 SAs produce very similar AODs and channel
delays. Therefore, to guarantee a high localization accuracy,
we restrict the solvability condition as: At least 2 BSs are
visible, i.e., the cardinality of the set {m1, . . . ,mD} in Q is
greater than or equal to 2.

VI. NUMERICAL SIMULATIONS

A. Simulation Setup

Throughout the simulation examples, the precoder w
(g)
B,m

and combiner w
(g)
S,n are set as follows. When performing

localization, we set the elements of w(g)
B,m and w

(g)
S,n as PSs with

random phases uniformly distributed between 0 and 2π and
constant amplitudes 1/

√
NB,m and 1/

√
NS,n, respectively.

When performing communication, suppose the m̃-th BS is
selected to communicate with the UE. We set the n-th SA
to always use equal gain combining (EGC) to improve the
received SNR for the K

2 -th subcarrier (assume K is even)
from the m̃-th BS. In this case, the combiner is given by [54]

[wS,n(m̃)]i =
1√
NS,n

e−j∠[Hm̃,n[
K
2 ]wB,m̃]

i . (44)
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Fig. 3: Illustration of the planar (2D) and cuboidal (3D) array layouts by
tiling the cube into a plane.
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Fig. 4: The indoor scenario considered in simulations, with default parameters
provided in Table I.

The precoder wB,m̃ is set as forming a beam towards the
dominant departure direction as [55]

[wB,m̃]i =
1√
NB,m̃

ej∠[vmax]i , (45)

where vmax is the right-singular vector of Hm̃[K2 ] that corre-
sponds to the maximum singular value.

In this work, the selection of the m̃-th BS follows the fol-
lowing rule. For each m = 1, . . . ,M , we obtain the combiner
wS,n(m) and precoder wB,m using (44) and (45). Then the
single subcarrier SNR, SNRk

m,n, is computed according to (30)
using the current channel Hm,n[k]. We choose m̃ as the BS
that maximizes the sum-rate [50] over all subcarriers and all
SAs as

m̃ = argmax
m

N∑
n=1

K∑
k=1

B

K
log2(1 + SNRk

m,n). (46)

In addition, we set both ΘR,n and ΘT,m as identity matrices,
which means both the receive/transmit antennas are mutually
uncorrelated.

We evaluate two different array configurations (2D and 3D),
each with 6 SAs. For the 3D array, each SA is placed at the
center of a side of a 0.1 × 0.1 × 0.1m3 cube. On the other
hand, the 2D array has all the SAs placed on a plane. For both
array configurations, the antenna separation is set as λc/2.
Fig. 3 shows the two array layouts where the cube is tiled
into a plane. To evaluate the performance of the two array
configurations, we consider an indoor scenario with two BSs as
shown in Fig. 4, where the UE is placed inside a 20×20×5m
indoor space (i.e., −10 < x < 10,−10 < y < 10, 0 < z <
5). The directivity of antennas are set as ϑB,m = ϑS,n =
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TABLE I: Default simulation parameters

Parameter Value
Propagation Speed c 2.9979× 108 m/s
Carrier Frequency fc 140GHz

Bandwidth B 1000MHz
# subcarriers K 128

# transmissions G 10
path loss component ν 2

Rician K-factor Kr 4
Transmit Power P 10mW

Clock Offset ρ 100 ns
Noise PSD N0 −173.855 dBm/Hz

UE Noise Figure 10 dB
Molecules of Medium {N2,O2,H2O,CO2,CH4}

Molecules Ratio {76.6%, 21.0%, 1.6%, 0.03%, 0.77%}
Dimension of BS array 10× 10
Dimension of UE’s SA 4× 4

Positions of BSs pB,1 = [10.5, 10.5, 5]T

pB,2 = [10.5,−10.5, 5]T

Euler Angles of BSs oB,1 = [0◦, 135◦, 45◦]T

oB,2 = [0◦, 0◦, 90◦]T

180◦, ∀m = 1, . . . ,M, n = 1, . . . , N . Other default simulation
parameters are listed in Table I. To ensure the validity of
the far-field assumption, we calculate the Rayleigh distance of
the simulation scenario in this paper. For the link between an
arbitrary BS-SA pair, the Rayleigh distance for the BS arrays
and the SAs in the UE can be calculated as [32]

dB =
2(10

√
2× λc

2 )2

λc
=

100c

fc
≈ 0.2m, (47)

dS =
2(4

√
2× λc

2 )2

λc
=

16c

fc
≈ 0.03m. (48)

The BS placements in Table I guarantee that the distance
between any visible BS-SA pair is larger than max{dB, dS}
when the UE is located within the considered space, and so
the far-field assumption is valid.

To give an intuitive characterization of the orientation,
we use the Euler angles o ≜ [α, β, γ]T to represent a
rotation matrix R. As such, we use the rotation sequence
R = Rz(γ)Ry(β)Rx(α), where Rx(α) denotes a rotation
of α degree around the x-axis, and likewise for Ry(β) and
Rz(γ). The expressions of these rotation matrices can be
found in, e.g., [31].

B. Localization Performance Assessment

1) PEB & OEB vs. UE Position: We first evaluate the
distribution of the PEB and OEB across different UE posi-
tions for the two array types. We fix the UE orientation as
α = β = γ = 0◦, and the PEB/OEB is calculated in a
20×20m2 area with a 0.2m step size and with a fixed z-axis
[pU]3 = 0. The results are shown in Fig. 5.

For PEB over different UE positions (Fig. 5-(a) and Fig. 5-
(b)), we can observe that, in general, the PEB becomes larger
as the UE moves away from both BSs. For this specific setup,
the planar array appears to have a slightly lower PEB. This
is because only a subset of the SAs of the 3D array can
receive LOS signals from a BS. In contrast, all the SAs of
the planar array enjoy LOS connections with the BSs. From
Fig. 5, we can see that the UE gets a worse position estimation
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Fig. 6: The PEB and OEB distribution over different UE orientations for
the planar and cuboidal arrays. We fix UE position as pU = [0, 0, 0]T and
α = 0◦.

performance when located around y = −10m compared with
y = 10m, due to the less accurate AOD from the BS 2 while
the orientation setup of the BS 1 always provides a good AOD
estimation.7 These results reveal that a good AOD helps lower
the PEB for both planar and cuboidal array.

For OEB over different UE positions (Fig. 5-(c) and Fig. 5-
(d)), we observe that the planar array outperforms the cuboidal
array in most of the areas, which can again be explained by
the lack of LOS link between some of the cuboidal array’s
SAs and the BSs. Nonetheless, a striking difference from the
PEB distribution is that the OEB of the planar array becomes

7Angle estimation of the target at the boresight of the array is usually better
than other directions as sin(θ) contains more information about the direction
when θ = 0 (i.e., ∂ sin(θ)

∂θ
|θ=0 = 1). Therefore, a bad AOD/AOA means a

large angle between the outgoing/incoming direction and the normal direction
of the array. On the contrary, a good AOD/AOA means a small angle between
the outgoing/incoming direction and the normal direction of the array.
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Fig. 7: The PEB and OEB vs. Rician factor Kr for the planar and cuboidal
arrays. The UE position and orientation are set as [0, 0, 0]T and [0◦, 0◦, 0◦]T,
respectively.

extremely high around x = 10m. This is because the planar
array UE gets bad AOA estimation in this area with the
selected orientation. In this scenario, the cuboidal array shows
more robustness as it benefits from the orientation diversity
of its SAs. This result shows that the OEB is highly sensitive
to the AOA rather than the AOD, which is consistent with
Remark 1.

2) PEB & OEB vs. UE Orientation: Then we evaluate
the distribution of the PEB and OEB across different UE
orientations for the two array types. We fix the UE position at
pU = [0, 0, 0]T and rotate the UE by varying β, γ in the range
[0◦, 360◦) with a 3◦ step while setting α = 0. The results are
shown in Fig. 6.

From the PEB/OEB over different UE orientations as shown
in Fig. 6, we conclude that the 3D array substantially outper-
forms the 2D array in terms of coverage. Note that localization
is impossible in the asynchronous case when the UE can only
access fewer than two LOS paths from the BSs. These cases
are represented by the white areas in Fig. 6-(a) and Fig. 6-
(c) for the planar array, where the PEB and OEB is infinity
since performing localization is infeasible. For instance, the
planar array does not have a LOS to either BS when β is
around 90◦ (i.e., the array points downward), while it has
LOS to both BSs when β is around 270◦ (pointing upward).
On the other hand, the cuboidal array’s performance is fairly
consistent across all the test angles. That said, we notice that
there are several lines in Fig. 6-(b) and Fig. 6-(d) around
γ = 45◦, γ = 135◦, γ = 225◦, and γ = 315◦, with relatively
high PEB and OEB for the cuboidal array. This phenomenon
occurs because, in these orientations, each BS can only see
one or two of the UE SAs, while there are always three SAs
visible in other orientations. A final observation vis-a-vis the
planar array results in Fig. 6-(a) and Fig. 6-(c) is the presence
of several areas with extremely high OEB but low PEB. This
is due to same reason of the extremely high OEB in Fig. 5-(c)
around x = 10m, i.e., bad AOA estimation.

3) PEB & OEB vs. Rician Factor: Next, we test in Fig. 7
the PEB and OEB of the two array types versus the Rician
factor Kr with the UE position at [0, 0, 0]T and orientation as
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Fig. 8: PEB and OEB coverage of the two types of array under {2, 3, 4} BSs
with antenna directivity ϑ = 180◦.

[0◦, 0◦, 0◦]T. The planar array keeps a lower PEB and OEB
than the cuboidal array because of the full visibility of its
SAs in this specific UE position and orientation. Moreover,
we see that both the PEB and OEB decrease with increasing
Kr before saturating. We can conclude that improving the LOS
channel helps lower the localization error bounds. Under the
considered system, good localization accuracy can be attained
within a practical range of Kr.8

4) Localization Coverage Evaluation: Now, we evaluate
the localization coverage of the 2D and 3D array configu-
rations defined in (28) and (29). To this end, we random-
ize the UE position and orientation according to a uniform
distribution, namely, x, y ∼ U(−10, 10), z ∼ U(0, 5), and
α, β, γ ∼ U(0, 360), and collect PEB and OEB samples to
obtain an empirical CDF. To give a compact view of the
PEB/OEB’s threshold with the coverage in different orders of
magnitude, we plot 1−Rp(ξp) and 1−Ro(ξo) over different
threshold ξp and ξo, which is complementary cumulative distri-
bution function (CCDF). We test the CCDF by performing two
simulations: (i) M = {2, 3, 4} BSs in a system with a fixed
antenna directivity ϑ = 180◦, as shown in Fig. 8; (ii) 2 BSs
with different antenna directivities (ϑ = {120◦, 150◦, 180◦})
as shown in Fig. 9. For the 3 BSs case, we add one BS at
location [−10.5, 10.5, 5]T with orientation [0◦, 45◦,−45◦]T;
For the 4 BSs case, we add one more BS at location
[−10.5,−10.5, 5]T with orientation [0◦, 45◦, 45◦]T. For each
case, we repeat 10000 trials to obtain the CCDF curves.

We observe from Fig. 8 and Fig. 9 that the planar array
(dashed curves) suffers from limited coverage for all cases. As
explained earlier, this is due to the lack of LOS with enough
BSs in some specific UE orientation. Take the 4 BSs, ϑ = 180◦

8For instance, the typical Rician factor values of THz links in a shopping
mall environment are around 0.1 < Kr < 10 [56].
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Fig. 9: PEB and OEB coverage of the two types of array under antenna
directivity ϑ = {120◦, 150◦, 180◦} with 2 BSs.

case with a coverage of 70% (outage of 30%) for example,
we have a PEB within about 0.028 m using the cuboidal array,
while the planar array gives a PEB within about 0.173 m. The
same result holds in most of the range of ξp/ξo, revealing
that the cuboidal (3D) array is able to achieve better coverage
than the planar (2D) array in the practical range of threshold.
Besides, we see from Fig. 8 that under the same threshold, the
more BSs we deploy, the lower the outage and thus the higher
the coverage we can obtain for both 2D and 3D arrays. From
Fig. 9, we can see that increasing the antenna directivity (i.e.
decreasing ϑ) would improve the localization coverage in the
low ξo area but degrade the coverage in the high ξo area. This
is because a more directional antenna heightens the antenna
gain and thus produces a lower PEB and OEB in the covered
space, which results in the higher coverage in the low ξo area.
However, at the same time, a narrower beam also causes the
shrinkage of the covered space, which results in the coverage
limit in the high ξo area.

C. Communication KPIs Assessment

As mentioned earlier, only one BS is chosen to com-
municate with the UE in the communication phase. Before
assessing communication KPIs, we test the communication
BS selection rule in (46). Taking the planar array as an
example, Fig. 10 demonstrates the BS selection results and
the corresponding maximum sum-rate across different UE
positions and orientations, and this selection rule will be used
in the following simulations. It is worth noting that, although
different selection rules of m̃ would affect the communication
performance, the comparison between the 2D and 3D arrays
always yields the same conclusions.

1) Outage Probability vs. UE Position & Orientation: For
the outage probability, at first we test the outage probability
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Fig. 10: Maximum sum-rate over different BSs and the communication BS
selection results according to (46) using the planar array. The results across
different UE positions (fix [pU]3 = 0 and orientation α = β = γ = 0◦) are
presented in (a) and (b), while the results across different UE orientations
(fix α = 0◦ and position pU = [0, 0, 0]T) are presented in (c) and (d). Note
that the white areas in (d) represent the UE orientations with which both BSs
are invisible.
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Fig. 11: Outage probability P out
m̃,k,γth

of the planar and cuboidal arrays over
different UE positions (fix [pU]3 = 0 and orientation α = β = γ = 0◦)
and orientations (fix α = 0◦ and position pU = [−5.9, 1.8, 0]T, as marked
with a red cross symbol in (a) and (b)), where k = K

2
, γth = 20dB, and

m̃ is selected according to (46).

P out
m̃,k,γth

of the two types of arrays over different UE positions
and orientations. We set k = K

2 , γth = 20dB, and m̃ is
selected according to (46). Other simulation parameters are
the same as Subection VI-B1 and Subsection VI-B2, and the
results are shown in Fig. 11. From Fig. 11-(a) and Fig. 11-
(b), we can observe that, under both array configurations,
the outage probability in most areas is 0 or 1 except for a
very narrow boundary. This is because in the THz band, the
LOS component is highly dominant, which makes the channel
behave with low uncertainty. For the same reason, there is little
difference between the outage probability distributions over
different UE positions for the two types of arrays. However,
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when we observe the outage probability distribution over
different UE orientations, we see that the planar array has a
certain percentage of the uncovered area (P out

m̃,k,γth
= 1) while

the cuboidal array has better coverage. Nonetheless, we can
clearly see that in the covered UE orientation, the planar array
maintains a lower outage probability than the cuboidal one,
which shows a trade-off between the peak performance and
the overall coverage.

2) Outage Probability vs. Instantaneous SNR Threshold:
We further test the outage probability P out

m̃,k,γth
of the two types

of arrays versus instantaneous SNR threshold γth ranging from
17.96 dB to 18.36 dB with a step size of 0.02 dB. For this
simulation, we set k = K

2 and the UE position and orientation
as [−10, 0, 0]T and [0◦, 0◦, 0◦]T, respectively. For each γth
point, we evaluate P out

m̃,k,γth
both analytically and empirically.

The result is demonstrated in Fig. 12. We can observe that
the planar array is able to provide a lower outage probability
in this specific setup, which originates from its full-visibility
of all SAs. In general, the outage probability increases as the
instantaneous SNR threshold γth increases.

3) Non-Outage Coverage Evaluation: Now we assess
the non-outage coverage of the 2D and 3D array con-
figurations. The simulation is performed under γth =
{17 dB, 20 dB, 23 dB}, k = K

2 , and other setup is kept the
same as Subsection VI-B4. The result is presented in Fig. 13.
We can notice that the non-outage coverage curve is flat as
ξout increases, this is also because the THz channel is LOS-
dominant and highly deterministic. The cuboidal array always
keeps a higher non-outage coverage than the planar array.
Especially, when γth = 17dB, the cuboidal array can cover
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Fig. 14: Ergodic capacity Cm̃ (in units of Gbps) of the planar and cuboidal
arrays over different UE positions (fix z = 0 and orientation α = β = γ =
0◦) and orientations (fix α = 0◦ and position pU = [0, 0, 0]T, as marked
with a red cross symbol in (a) and (b)).

all the considered space with a zero outage probability, thus
1− P out

m̃,k,γth
= 0 for all ξout ∈ [0, 1].

4) Ergodic Capacity vs. UE Position & Orientation: For the
ergodic capacity, at first we test the ergodic capacity Cm̃ of the
two types of arrays over different UE positions and orienta-
tions. The simulation setup is the same with Subsection VI-B1
and Subsection VI-B2, and the results are shown in Fig. 14.
We can observe that, in general, the ergodic capacity becomes
lower as the UE moves away from both BSs. For this specific
setup, the planar array appears to have a higher capacity across
different UE positions compared with the cuboidal array. This
is also because of the full-visibility of the SAs of the planar
array in this specific orientation. For the ergodic capacity over
different UE orientations, it is easy to conclude that the 3D
array outperforms the 2D array in terms of coverage, as the
2D array maintains some orientations which are invisible to
both BSs and thus results in zero capacity.

5) Ergodic Capacity vs. Rician Factor: Then, we test the
ergodic capacity of the two types of arrays versus Rician K-
factor for a range from -20 dB to 28 dB with a step size 6 dB
under different transmit powers, as shown in Fig. 15. For this
simulation, we choose P = {5mW, 10mW, 15mW}, and
the UE position and orientation are [0, 0, 0]T and [0◦, 0◦, 0◦]T,
respectively. We can easily conclude that, the planar array
keeps a higher ergodic capacity in this specific setup. It is
obvious that the ergodic capacity increases as Kr increases,
which implies enlarging the LOS component helps to achieve
a higher ergodic sum rate. Besides, in general, the higher the
transmit power, the higher the ergodic capacity. The same
behaviors of the ergodic capacity w.r.t. K-factor and transmit
power/SNR can be found in literature, e.g., [57].

6) Ergodic Capacity Coverage Evaluation: Afterwards, we
assess the ergodic capacity coverage of the 2D and 3D array
configurations. The simulation is performed under Kr =
{1, 4, 16}, and other setup is the same as Subsection VI-B4.
The result is presented in Fig. 16. The ergodic capacity
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coverage of the planar array is limited to lower than 70%
for all thresholds while the cuboidal array can achieve a
coverage close to 100% when the threshold is low enough. It
is also observed that the cuboidal array outperforms the planar
array in low-capacity threshold regions, while the planar array
keeps a better coverage in high-capacity threshold regions.
This phenomenon indicates that the cuboidal array provides
communication access to more UE positions and orientations
at the expense of the loss in peak performance compared to
the planar array. By observing the impact of the Rician K-
factor, we see that a higher Kr provides a higher coverage of
the ergodic capacity, which is consistent with Fig. 15.

D. Localization Algorithm Performance Evaluation

Finally, we evaluate the performance of the proposed es-
timator using 3D array. Fig. 17 shows the RMSE evaluation
of UE position and orientation estimation versus the transmit

power ranging from -25 dBm to 45 dBm with a 5 dBm step
size. Both the RMSE of the LS-based initialization and the
final estimation based on ML are tested over 300 Monte Carlo
trials. To ensure a linear increment of the transmit SNR, here
we set Kr = ∞ and fixed the noise PSD as the default value.
For this simulation, we set the UE position and orientation
as [1, 3, 2]T and [30◦, 40◦, 50◦]T, respectively. The algorithm
procedures are implemented using the Manopt toolbox [58].
We observe that the accuracy of both estimators is improved
by increasing the transmit power. The RMSEs of the MLE are
able to reach the PEB/OEB, while the LSE result has a gap
to the lower bound. The tightness of ML-based estimator to
the PEB and OEB for a practical range shows the efficiency
of our proposed estimation algorithm.

VII. CONCLUSION

This paper considered a downlink, far-field THz band
MIMO wireless system with multiple BSs and a single UE
equipped with a 3D array over Rician fading channel. By
deriving the localization error bound in terms of PEB and
OEB, and communication KPIs of instantaneous SNR, outage
probability, and ergodic capacity, we analyzed and compared
the planar and 3D array configuration w.r.t. the coverages of
these metrics. A ML-based joint localization algorithm for 3D
arrays and a corresponding LS-based initialization method are
proposed. The numerical results revealed a higher coverage for
3D array in both localization and communication KPIs given a
suitable threshold, and minor performance loss in certain areas
compared with the planar array. The proposed localization
algorithm is also verified to attain the derived CCRB. This
work is instructive for the BS placement optimization, array
design, and channel estimation algorithms of the THz local-
ization and communication systems, which can be potential
future research directions.

APPENDIX A
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Combining (A-2) and (A-3) gives (22).
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APPENDIX B
PROOF OF PROPOSITION 2

From (A-3), we see
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Therefore, we get (A-4), which follows Y k
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s) with νs, σ2
s given in (32) and (33).
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