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A B S T R A C T

We present and analyze a methodology for numerical homogenization of spatial networks
models, e.g. heat conduction and linear deformation in large networks of slender objects,
such as paper fibers. The aim is to construct a coarse model of the problem that maintains
high accuracy also on the micro-scale. By solving decoupled problems on local subgraphs we
construct a low dimensional subspace of the solution space with good approximation properties.
The coarse model of the network is expressed by a Galerkin formulation and can be used to
perform simulations with different source and boundary data, at a low computational cost.
We prove optimal convergence to the micro-scale solution of the proposed method under mild
assumptions on the homogeneity, connectivity, and locality of the network on the coarse scale.
The theoretical findings are numerically confirmed for both scalar-valued (heat conduction) and
vector-valued (linear deformation) models.

. Introduction

In order to reduce complexity in computer simulation, first principle models on materials composed of multiple slender domains
re sometimes replaced by simpler spatial network models. In a porous media flow problem, for instance, continuum-scale fluid
low equations in the three-dimensional pore space geometry can be replaced by a spatial network model where the nodes represent
ore cavities and the edges model throats between cavities, see e.g. [1]. Another example is deformation of fiber based materials,
ike paper and cardboard, where individual fibers can be modeled as one-dimensional objects instead of three-dimensional hollow
ylinders, resulting in a spatial network model of edges (fibers) and nodes (connections between fibers), see [2]. Still, the resulting
etwork models are often very large and the edge weights (modeling e.g. permeability or fiber width) may vary rapidly in space.
ee Fig. 1 for an illustration and [3] for more details on a paper model. The aim of this work is to develop and analyze a numerical
omogenization technique for spatial network models that maintains high accuracy on the micro-scale.

Problems where the micro-scale model is a partial differential equation (PDE) instead of a spatial network model are well-studied
n the literature. Homogenization theory efficiently handles numerical upscaling when the data variation is periodic. For non-periodic
ata, there are various numerical approaches. Successful numerical algorithms typically use parallelization and discretizations on
ultiple scales, for instance geometric multigrid [4] and domain decomposition [5] but also numerical homogenization techniques

uch as the multiscale finite element method [6], gamblets [7], and localized orthogonal decomposition (LOD) method [8,9]. It is
atural to define coarser scales in PDE problems, at least if the geometry is simple, using nested meshes. In this work, we want
o apply numerical homogenization techniques inspired by the PDE community to spatial network models, where it is less obvious
ow coarse scales can be introduced.
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Fig. 1. A network model resulting from a paper forming simulation.

Numerical homogenization techniques from the PDE community have been applied to spatial network models before. In [10,11]
the heat conductivity of a spatial network is studied. In these works, local solutions enable the construction of an effective global
thermal conductivity tensor. Another approach is stochastic volume elements [12–14], where in [14], a network model was used to
analyze the microstructure for the elements in the method. Traffic flows models in [15] consider a governing PDE for the macroscale
by formulating traffic flow equations for single network nodes by interpreting the relations as finite difference approximations. The
macroscale parameters are computed using a two-scale averaging technique. In [1] spatial network models of flows in a porous
medium are studied. The network nodes represent pores and the edges represent throats. The micro-scale model is based on mass
conservation equations for the flow through the network.

This paper considers the LOD method, which aims to produce accurate approximations on the micro-scale solution to the
problem by constructing a representative low-dimensional function space. In [2], we consider a specific linear fiber deformation
network model of paper and derive the LOD-based numerical method considered here. However, the key results needed to prove
the convergence of the proposed method were left as open problems. In this paper, we take advantage of the recent work [16] on
domain decomposition methods for spatial network models to prove optimal order convergence of the LOD method when applied
to spatial network models.

We consider a spatial network, defined by a symmetric network matrix 𝐊, for which we want to solve an equation of the form:
find 𝐮 ∈ 𝐕 such that for all 𝐯 ∈ 𝐕,

(𝐊𝐮, 𝐯) = (𝐟 , 𝐯),

given right hand side data 𝐟 and with (⋅, ⋅) denoting the Euclidean scalar product taken over the nodes of the network. We apply
the LOD method and introduce an artificial coarse-scale using minimal assumptions on the relation between the coarse-scale
representation and the network. The fine-scale space is defined as the kernel of a projective quasi-interpolation operator onto the
coarse-scale, and the multiscale space is the orthogonal complement to the fine-scale space with respect to the inner product induced
by 𝐊. In order to show optimal order convergence, we need to show that the basis spanning the multiscale space decays in space.
This decay is possible to establish under mild assumptions on the homogeneity, connectivity, and locality of the network. In order
to analyze the error in the proposed method, we prove an interpolation error bound in the spatial network setting. The theoretical
findings show how the density variation and connectivity of the network affect the approximation properties of the proposed method.
The main result is an optimal order a priori error bound in the norm induced by 𝐊. Finally, the theoretical results are illustrated
by three numerical examples.

The paper is organized as follows. Section 2 is devoted to preliminary notation and problem formulation. Section 3 introduces
coarse finite element spaces and proves an interpolation error bound. In Section 4, the LOD method is presented and an a priori
error bound is derived. Finally, in Section 5 numerical examples are presented. To get a better overview, some of the more technical
proofs are presented in the Appendix.

2. Problem formulation

This section presents network notation, function spaces, norms, and finally the model problem, with three examples of network
matrices 𝐊 we consider.

2.1. Network and norms

We consider spatial networks represented as connected graphs  = ( , ), where the node set  is a finite set of points 𝑥 ∈ R𝑑

and the edge set

 = {{𝑥, 𝑦} ∶ an edge connects 𝑥 and 𝑦}
2
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Fig. 2. A spatial network with Dirichlet nodes marked on opposite boundary segments.

consists of unordered node pairs. The notation 𝑥 ∼ 𝑦 means that {𝑥, 𝑦} is an edge in  , i.e. 𝑥 and 𝑦 are adjacent. For simplicity we
assume that the network resides in the hyper-rectangle

𝛺 = [0, 𝑙1] × [0, 𝑙2] ×⋯ × [0, 𝑙𝑑 ],

however, the methodology can be generalized to polygonal and polyhedral domains. For each pair of adjacent nodes 𝑥 ∼ 𝑦 we
write the Euclidean distance between the nodes as |𝑥 − 𝑦|. Furthermore, we let 𝛤 ⊂ 𝜕𝛺 be the non-empty boundary segment where
Dirichlet boundary conditions are applied. See Fig. 2 for an illustration.

Let the function space 𝑉 be the space of real valued functions that are defined on the node set  , and introduce the constrained
space

𝑉 = {𝑣 ∈ 𝑉 ∶ 𝑣(𝑥) = 0, 𝑥 ∈ 𝛤 }.

In order to refer to a subset of nodes in the network we define  (𝜔) =  ∩ 𝜔 for any 𝜔 ⊂ 𝛺. Using this notation, let
(𝑢, 𝑣)𝜔 =

∑

𝑥∈ (𝜔) 𝑢(𝑥) ⋅ 𝑣(𝑥) and (𝑢, 𝑣) = (𝑢, 𝑣)𝛺, for all 𝑢, 𝑣 ∈ 𝑉 .
We further introduce a weighted version of the inner product. This weighted inner product is composed of node-wise diagonal

linear operators 𝑀𝑥 ∶ 𝑉 → 𝑉 :

(𝑀𝑥𝑣, 𝑣) =
1
2
∑

𝑦∼𝑥
|𝑥 − 𝑦|𝑣(𝑥)2. (1)

These node-wise operators are extended to sets, 𝜔 ⊂ 𝛺, by 𝑀𝜔 =
∑

𝑥∈ (𝜔)𝑀𝑥, with 𝑀 = 𝑀𝛺 when the full domain is considered.
The weighted inner product

(𝑀𝑢, 𝑣) =
∑

𝑥∈
(𝑀𝑥𝑢, 𝑣)

defines the norm

|𝑣|𝑀 = (𝑀𝑣, 𝑣)1∕2

and, similarly, |𝑣|𝑀,𝜔 = (𝑀𝜔𝑣, 𝑣)1∕2 the semi-norms. The squared norm |1|2𝑀,𝜔 of the constant function 1 ∈ 𝑉 can be interpreted as
the mass of the network in subdomain 𝜔.

Next, we define semi-norms related to the reciprocal edge-length weighted graph Laplacian. Let

|𝑣|2𝐿,𝜔 = 1
2
∑

𝑥∈𝜔

∑

𝑦∼𝑥

(𝑣(𝑥) − 𝑣(𝑦))2

|𝑥 − 𝑦|
. (2)

and, with a simplified notation,

|𝑣|𝐿 = |𝑣|𝐿,𝛺 .

We note that |1|𝐿 = 0, since the weighted graph Laplacian has the constant functions of 𝑉 in its kernel. However, since 1 ∉ 𝑉 and
 is connected, | ⋅ |𝐿 is a norm on 𝑉 .

2.2. Vector-valued functions

The models considered in this work are both scalar-valued (e.g. heat conduction) and vector-valued (e.g. structural problems),
so we need to introduce vector-valued function spaces and network operators. Let the integer 𝑛 denote the number of components
in the function space of interest. We introduce

𝐕 = 𝑉 𝑛 = 𝑉 ×⋯ × 𝑉

as the admissible function space for the unknown and 𝐕̂ = 𝑉 𝑛 (so that 𝐕 ⊂ 𝐕̂) as the full space. In general, the different components
(dimensions) of 𝐕 can have separate Dirichlet boundary conditions, however, we assume, for simplicity, that all components are
the same. A function 𝐯 ∈ 𝐕̂ consists of the components 𝑣 , 𝑣 ,… , 𝑣 and we write 𝐯 = [𝑣 , 𝑣 ,… , 𝑣 ].
3
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𝐊
s

We also introduce corresponding norms

|𝐯|𝐋 =

( 𝑛
∑

𝑖=1
|𝑣𝑖|

2
𝐿

)1∕2

, (3)

|𝐯|𝐌 =

( 𝑛
∑

𝑖=1
|𝑣𝑖|

2
𝑀

)1∕2

, (4)

with localized versions |𝐯|𝐋,𝜔 =
(

∑𝑛
𝑖=1 |𝑣𝑖|

2
𝐿,𝜔

)1∕2
and |𝐯|𝐌,𝜔 =

(

∑𝑛
𝑖=1 |𝑣𝑖|

2
𝑀,𝜔

)1∕2
.

2.3. Model problem

The model problem is expressed using a linear operator 𝐊 ∶ 𝐕̂ → 𝐕̂ and a function 𝐟 ∈ 𝐕̂:

find 𝐮 ∈ 𝐕 ∶ (𝐊𝐮, 𝐯) = (𝐟 , 𝐯) for all 𝐯 ∈ 𝐕. (5)

Since 𝐮 ∈ 𝐕, 𝐮 is zero on the non-empty set of Dirichlet boundary nodes  (𝛤 ), where 𝛤 ⊂ 𝜕𝛺. We can easily handle non-zero
boundary data 𝐮(𝑥) = 𝐠(𝑥) for 𝑥 ∈  (𝛤 ) by extending 𝐠 to all nodes and write 𝐮 = 𝐮0 + 𝐠, where 𝐮0 ∈ 𝐕 solves Eq. (5) with modified
right hand side (𝐟 , 𝐯) ∶= (𝐟 , 𝐯) − (𝐊𝐠, 𝐯).

Next we make some assumptions on the operator 𝐊.

Assumption 2.1. The operator 𝐊

1. is bounded and coercive on 𝐕 with respect to the 𝐋-norm, i.e. there are constants 0 < 𝛼 ≤ 𝛽 <∞ such that

𝛼|𝐯|2𝐋 ≤ (𝐊𝐯, 𝐯) ≤ 𝛽|𝐯|2𝐋 (6)

for all 𝐯 ∈ 𝐕, and
2. can be written as a sum 𝐊 =

∑

𝑥∈ 𝐊𝑥 of operators 𝐊𝑥 ∶ 𝐕̂ → 𝐕̂, where 𝐊𝑥 are symmetric positive semi-definite and have
support on 𝑥 and nodes adjacent to 𝑥.

The operator 𝐊 is symmetric as a consequence of 𝐊𝑥 being symmetric and the bilinear form (𝐊⋅, ⋅) is an inner product on 𝐕
because of the norm equivalence in Eq. (6). Therefore, Eq. (5) has a unique solution. With 𝐊𝜔 =

∑

𝑥∈ (𝜔) 𝐊𝑥 we define the following
(semi-)norms |𝐯|𝐊 = (𝐊𝐯, 𝐯)1∕2 and |𝐯|𝐊,𝜔 = (𝐊𝜔𝐯, 𝐯)1∕2. We now give three examples of system matrices 𝐊 that we consider in this
work.

Example 2.2 (Heat Conductivity). Since this is a scalar example we drop the bold face notation. The same goes for the corresponding
(first) numerical example of this model in Section 5. Let 𝑛 = 1 and 𝑢 be the sought temperature distribution in the nodes of the
network. We define 𝐾𝑥 by

(𝐾𝑥𝑣,𝑤) =
1
2
∑

𝑦∼𝑥
𝛾𝑥𝑦

(𝑣(𝑥) − 𝑣(𝑦))(𝑤(𝑥) −𝑤(𝑦))
|𝑥 − 𝑦|

,

where 0 < 𝛾𝑥𝑦 < ∞ is heat conductivity on the edges. Assumption 2.1 is satisfied with 𝛼 = min𝑥∼𝑦 𝛾𝑥𝑦 and 𝛽 = max𝑥∼𝑦 𝛾𝑥𝑦. The right
hand side 𝑓 represents an external heat source.

Example 2.3 (Spring Model). Let 𝑑 = 𝑛 = 3, and 𝜕𝑥𝑦 = |𝑥 − 𝑦|−1(𝑥− 𝑦) be the unit direction vector for edge {𝑥, 𝑦}, then we can define

(𝐊𝑥𝐯,𝐰) =
1
2
∑

𝑦∼𝑥
𝛾𝑥𝑦

((𝐯(𝑥) − 𝐯(𝑦))𝑇 𝜕𝑥𝑦)((𝐰(𝑥) − 𝐰(𝑦))𝑇 𝜕𝑥𝑦)
|𝑥 − 𝑦|

, (7)

where 0 < 𝛾𝑥𝑦 < ∞ measures the elasticity of the edges. The upper bound of the first assumption in Assumption 2.1 is satisfied with
𝛽 = max𝑥∼𝑦 𝛾𝑥𝑦 since 𝜕𝑥𝑦 has unit length. Whether the lower bound is satisfied or not depends on the geometry of the network. At
least 𝑑 nodes need to be in 𝛤 and they have to span a plane. Additionally, the network needs to be a rigid structure. The value of
𝛼 depends on 𝛾𝑥𝑦 and on the structural rigidity of the network. We seek the displacement 𝐮 of the nodes under the load 𝐟 .

Example 2.4 (Fiber Network Model). Example 2.3 can be expanded to represent beams by adding bending stiffness to the edges. A
linearized Euler–Bernoulli model can be written on a similar form as (7). For 𝑘 = 1, 2, then

(𝐊(𝑘)
𝑥 𝐯,𝐰) =

∑

𝑥∼𝑦∧𝑥∼𝑧
𝑦≠𝑧

𝛾 (𝑘)𝑥𝑦𝑧
|𝑥 − 𝑦| + |𝑥 − 𝑧|

2
𝑔𝑥𝑦𝑧(𝐯)𝑔𝑥𝑦𝑧(𝐰),

𝑔𝑥𝑦𝑧(𝐯) =
(𝐯(𝑦) − 𝐯(𝑥)) ⋅ 𝜂𝑦,(𝑘)𝑥𝑦𝑧

|𝑥 − 𝑦|
+

(𝐯(𝑧) − 𝐯(𝑥)) ⋅ 𝜂𝑧,(𝑘)𝑥𝑦𝑧

|𝑥 − 𝑧|
,

(8)

where 𝜂𝑦,(1)𝑥𝑦𝑧 = 𝜂𝑧,(1)𝑥𝑦𝑧 is a unit vector orthogonal to both 𝜕𝑥𝑦 and 𝜕𝑥𝑧, and 𝜂𝑟,(2)𝑥𝑦𝑧 = 𝜕𝑥𝑟 × 𝜂
𝑟,(1)
𝑥𝑦𝑧 for 𝑟 = 𝑦, 𝑧. Adding components 𝐊(1)

𝑥 and
(2)
𝑥 to (7) results in an operator that capture tensile strains and bending resistance. For more details about this network model,

ee [2].
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3. Coarse scale representation

The aim of this work is to derive an upscaled representation of the spatial network model problem (5) using the LOD
ethodology. This representation should have significantly fewer degrees of freedom, but still yield an accurate solution to the

riginal problem. In this section, using a construction first presented in [16], we define a coarse scale finite element representation
hat will be used to form the LOD space. The construction involves three main steps. First, we make assumptions on the spatial
etwork, since not all networks allow for accurate upscaling. In essence, the network should resemble a homogeneous material on
he coarse scale. Second, a finite element mesh and coarse function space is introduced on the coarse scale. Third, we introduce a
ovel idempotent interpolation operator onto the finite element function space and establish the corresponding interpolation error
ound.

.1. Network assumptions

Four assumptions on the network are made, guaranteeing homogeneity, connectivity, and locality on a coarse scale. As a technical
ool for the assumptions, and later for the definition of the finite element mesh, we define boxes 𝐵𝑅(𝑥) ⊂ 𝛺 with side length 2𝑅 and
idpoint 𝑥 = (𝑥1,… , 𝑥𝑑 ) as follows. Let

𝐵𝑅(𝑥) = [𝑥1 − 𝑅, 𝑥1 + 𝑅) ×⋯ × [𝑥𝑑 − 𝑅, 𝑥𝑑 + 𝑅),

ut if 𝑥𝑖 + 𝑅 = 𝑙𝑖, we replace [𝑥𝑖 − 𝑅, 𝑥𝑖 + 𝑅) with [𝑥𝑖 − 𝑅, 𝑥𝑖 + 𝑅].
From [16] we recall the following network assumptions.

ssumption 3.1 (Network Assumptions). There is a length-scale 𝑅0 and a uniformity constant 𝜎, so that

1. (homogeneity) for all 𝑅 ≥ 𝑅0, it holds that

max
𝐵𝑅(𝑥)⊂𝛺

|1|2𝑀,𝐵𝑅(𝑥)
≤ 𝜎 min

𝐵𝑅(𝑥)⊂𝛺
|1|2𝑀,𝐵𝑅(𝑥)

,

2. (locality) the edge length |𝑥 − 𝑦| < 𝑅0 for all edges {𝑥, 𝑦} ∈  ,
3. (boundary density) for any 𝑦 ∈ 𝛤 , there is an 𝑥 ∈  (𝛤 ) such that |𝑥 − 𝑦| < 𝑅0.
4. (connectivity) for all 𝑅 ≥ 𝑅0 and 𝑥 ∈ 𝛺, there is a connected subgraph ̄ = (̄ , ̄) of , that contains

(a) all edges with one or both endpoints in 𝐵𝑅(𝑥),
(b) only edges with endpoints contained in 𝐵𝑅+𝑅0

(𝑥).

The four assumptions can be interpreted at scale 𝑅0 as follows. The homogeneity assumption implies that the spatial network
has homogeneous density over the domain in terms of the 𝑀-norm mass. The locality assumption says that edges connect only
nodes close to each other, while the boundary density requires that the boundary conditions are given close enough to nodes. The
connectivity assumption guarantees that nodes close to each other spatially are also close to each other in the network.

Under the assumptions above, the following Friedrichs and Poincaré inequalities are proven in [16].

Lemma 3.2 (Friedrichs and Poincaré Inequalities). If Assumption 3.1 holds, then there is a 𝜇 <∞ such that for all 𝑅 ≥ 𝑅0 and 𝑥 ∈ 𝛺 for
hich

• (Friedrichs) 𝐵𝑅(𝑥) contains boundary nodes, it holds that
|𝑣|𝑀,𝐵𝑅(𝑥) ≤ 𝜇𝑅|𝑣|𝐿,𝐵𝑅+𝑅0 (𝑥),

for all 𝑣 ∈ 𝑉 ,
• (Poincaré) 𝐵𝑅(𝑥) may or may not contain boundary nodes, it holds that

|𝑣 − 𝑐|𝑀,𝐵𝑅(𝑥) ≤ 𝜇𝑅|𝑣|𝐿,𝐵𝑅+𝑅0 (𝑥),

for some constant function 𝑐 = 𝑐(𝑅, 𝑥, 𝑣), for all 𝑣 ∈ 𝑉 .

The constant 𝜇 enters the interpolation bounds and consequently affects the accuracy of the homogenization method presented
n Section 4. For simple networks, such as regular grids, the constant can be shown to be small, while for most networks, theoretical
ounds are generally difficult to obtain. The constant 𝜇 can, however, be estimated numerically.

As an illustration on how to estimate 𝜇 in the Poincaré case, we pick an 𝑅 ≥ 𝑅0 and an 𝑥 ∈ 𝛺. We start from the eigenvalue
problem 𝜆2 = min𝑣∈𝑉 ∶(𝑀̄𝑣,1)=0

|𝑣|2
𝐿̄

|𝑣|2
𝑀̄

, where 𝑀̄ and 𝐿̄ are the corresponding norms for the graph ̄ in Assumption 3.1. Note that 𝜆2 is

the second smallest eigenvalue associated with the Rayleigh quotient
|⋅|2
𝐿̄

|⋅|2
𝑀̄

, since the constant 𝑐 is an eigenvector for the only zero

eigenvalue. The connectivity of ̄ implies that 𝜆2 is non-zero. We get

|𝑣 − 𝑐|2 ≤ (𝑀̄(𝑣 − 𝑐), 𝑣 − 𝑐) ≤ 𝜆−1|𝑣|2 . (9)
5

𝑀,𝐵𝑅(𝑥) 2 𝐿,𝐵𝑅+𝑅0 (𝑥)
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Fig. 3. Illustration of the homogeneity equation in Assumption 3.1 for a random network generated on the square [0, 0.1]2 with edge length 𝑟 = 0.05 and density
𝜌gen = 103 (center) for a grid of 𝐵𝑅 with 𝑅 = 1.25 ⋅ 10−2 (left) and 𝑅 = 6.25 ⋅ 10−3 (right).

Fig. 4. The eigenvalue 𝜆−12 for different networks with varying sizes and densities. Each combination is analyzed ten times, with the mean (marker) and standard
deviation (feet) results presented. Comparable networks to the one in Fig. 3 are shown with 𝜌gen = 5 ⋅ 102 (left) and 2 ⋅ 103 (right).

Thus, 𝜇2𝑅2 is bounded by the maximum 𝜆−12 attained for any 𝑅 ≥ 𝑅0 and 𝑥 ∈ 𝛺. A similar eigenvalue problem can be formulated for
the Friedrichs case. Next, we illustrate by a number of examples how the connectivity and homogeneity constants can be estimated
numerically based on this eigenvalue problem.

Example 3.3 (Numerical Estimates of Homogeneity and Connectivity). To visualize the homogeneity and connectivity assumptions of
Assumption 3.1, several random square networks are generated and evaluated. The analyzed networks are generated by randomly
placing edges with a fixed length in a domain. Three attributes categorize each network: the side length 𝑅 of the domain, the length
𝑟 of the edges placed, and a density 𝜌gen. The networks are generated in three steps. First, the edges are randomly placed with their
midpoints in the extended domain [−𝑟, 𝑅 + 𝑟]2 with a random rotation. This extension guarantees uniform coverage, and any part
of an edge placed outside the network domain [0, 𝑅]2 is removed. Edges are placed until the total edge length of the network is
𝜌gen𝑅2. The second step is adding a node in every point where two edges intersect. The final step removes any loose edges and
combines nodes closer than 0.01𝑟 to guarantee a lower bound on the edge lengths. The largest remaining connected network is kept.
An illustration of the homogeneity assumption is shown in Fig. 3 for a network with parameter 𝑅 = 0.1, 𝑟 = 0.05, and 𝜌gen = 103. This

figure shows how the mean value of the local density
|1|2𝑀,𝐵𝑅
(2𝑅)2 stays similar (≈ 𝜌gen) when 𝑅 is halved but varies more throughout

the network. The connectivity property is analyzed for multiple networks with multiple parameters, and a composite of the results
is presented in Fig. 4. We see that 𝜆−12 scales with 𝑅2 and thus the connectivity assumption holds for the networks in the interval
of 𝑅 analyzed with 𝜇2 ≈ 10.

3.2. Coarse mesh

With the network embedded in a domain 𝛺 we can introduce a family of meshes over 𝛺 for the coarse discretization. The
elements have to be larger than the length-scale 𝑅0 of the network introduced in the previous section. To help convey the main
message of the paper, we choose a simple mesh of hypercubes (squares for 𝑑 = 2, and cubes for 𝑑 = 3, etc.). For a general polygonal
or polyhedral domain, triangles or tetrahedrons can be used. The main difference in the analysis is that constants also will depend
on the shape regularity parameter of the mesh.

Let 𝐻 be subdivisions of 𝛺 into elements of side length 𝐻 as follows,

 = {𝐵 (𝑥) ∶ 𝑥 = (𝑥 ,… , 𝑥 ) ∈ 𝛺 and 𝐻−1𝑥 + 1∕2 ∈ Z for 𝑖 = 1,… , 𝑑}.
6
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Fig. 5. A partition 𝐻 , with 𝐻 = 1∕4 on the unit square (left) and an illustration showing the recursive operator 𝑈𝑘 (right).

We require that 𝑙1,… , 𝑙𝑑 are integer multiples of 𝐻 so that the mesh covers 𝛺. The box definition 𝐵𝑅(𝑥) from the previous section
is used here. This makes 𝐻 a true partition so that each point in 𝛺 is included in exactly one element. An illustration of such a
partition is presented in Fig. 5 (left). We assume that the boundary segments 𝛤 are union of mesh element edges (or faces) so that
a conforming finite element function space can be defined. Since we define elements 𝐵𝐻∕2, with half side length in the subscript,
but the length-scales 𝐵𝑅 using the full side length, it is natural to define a mesh length-scale,

𝐻0 = 2𝑅0.

The elements must be larger than the mesh length-scale 𝐻0 of the network. In fact, to define a stable idempotent quasi-
interpolation operator, we require that

𝐻 ≥ 4𝑑𝐻0. (10)

For a motivation of this lower bound, see the proof of Lemma 3.4. Thus, these meshes are coarse compared to the homogeneity and
connectivity length-scale 𝐻0. Note, we do not require that the mesh nodes coincide with the network nodes.

To handle patches of elements in a mesh 𝐻 , we introduce the notation 𝑈 . We let, for 𝜔 ⊂ 𝛺,

𝑈 (𝜔) = {𝑥 ∈ 𝛺 ∶ ∃𝑇 ∈ 𝐻 ∶ 𝑥 ∈ 𝑇 , 𝑇 ∩ 𝜔 ≠ ∅}.

For instance, 𝑈 (𝑇 ) contains the points both in 𝑇 and in the elements adjacent to 𝑇 . Recursively, we define 𝑈𝑗 (𝜔) = 𝑈𝑗−1(𝑈 (𝜔)) with
𝑈1 = 𝑈 . An illustration of 𝑇 , 𝑈 (𝑇 ), and 𝑈2(𝑇 ) can be found in Fig. 5 (right).

3.3. Interpolation

In this section, we define the function space to be used for the coarse representation and an interpolation operator from the
functions on the network to this coarse space. The interpolation operator is of Scott–Zhang type (see [17]) and is defined by use of
an 𝑀-dual basis. By showing that the dual basis functions are appropriately bounded, we obtain the accuracy and stability result
for the interpolation operator in Lemma 3.5. A Scott–Zhang type operator is used here since it is important for the analysis of the
LOD method that the interpolation operator is idempotent.

Let ̂𝐻 denote the continuous real functions over 𝛺 whose restriction to 𝑇 ∈ 𝐻 can be written as a linear combination of
𝑧 = (𝑧1,… , 𝑧𝑑 ) ↦ 𝑧𝛼 for multi-index 𝛼 with 𝛼𝑖 ∈ {0, 1}, 𝑖 = 1,… , 𝑑. For 𝑑 = 2, this is the space of functions that are bilinear on each
element. The functions satisfying the boundary conditions are 𝐻 = {𝑝 ∈ ̂𝐻 ∶ 𝑝|𝛤 = 0}. We let 𝑉𝐻 and 𝑉𝐻 be the restriction of
̂𝐻 and 𝐻 to the nodes in the network.

From this point on, we study a fixed 𝐻 . Denote by 𝜑1,… , 𝜑𝑚 ∈ 𝑉𝐻 the Lagrange finite element basis functions and 𝑦1,… , 𝑦𝑚 the
corresponding mesh nodes. An illustration of a 𝜑𝑖 function can be found in Fig. 6. We assume that the basis functions are sorted so
that the basis functions 𝜑1,… , 𝜑𝑚0

, 𝑚0 < 𝑚 span 𝑉𝐻 that vanish on 𝛤 . For each mesh node 𝑦𝑘, we denote by 𝑇𝑘 the unique element
that contains it and define 𝜓𝑘 ∈ 𝑉𝐻 (𝑇𝑘) that satisfies

(𝑀𝑇𝑘𝜓𝑘, 𝜑𝓁) = 𝛿𝑘𝓁 (11)

for all 𝓁 = 1,… , 𝑚. Note that the scalar product is still the Euclidean scalar product on the network, i.e. only the values of the
functions 𝜑𝓁 and 𝜓𝑘 in the network nodes affect the product.

The interpolation operator is then defined by

𝑣 =
𝑚0
∑

𝑘=1
(𝑀𝑇𝑘𝜓𝑘, 𝑣)𝜑𝑘.

We let the subscript 𝑧 of a constant 𝐶𝑧 indicate a dependency on a constant 𝑧, where the exact value of 𝐶𝑧 may differ (by some
generic constant).
7
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Fig. 6. A two-dimensional network (black) displaced to the discrete function values of the 𝜑 basis function. The gray shading is a triangulation of the displaced
network for illustrative purposes.

Lemma 3.4 (Dual Basis Norm Bound). If Assumption 3.1 holds and 𝐻 ≥ 4𝑑𝐻0, then for any 𝑆 ∈ 𝐻
(

|𝜑𝑘|𝑀,𝑆 +𝐻|𝜑𝑘|𝐿,𝑆
)

|𝜓𝑘|𝑀,𝑇𝑘 ≤ 𝐶𝑑𝜎
1∕2 (12)

for mesh nodes 𝑘 = 1,… , 𝑚. The proof of this identity is provided in the Appendix.

With the above result on the dual basis norm bound, we can show the following interpolation bound.

Lemma 3.5. If Assumption 3.1 holds and 𝐻 ≥ 4𝑑𝐻0, then for 𝑣 ∈ 𝑉 and all 𝑇 ∈ 𝐻 ,

𝐻−1
|𝑣 − 𝑣|𝑀,𝑇 + |𝑣|𝐿,𝑇 ≤ 𝐶𝑑,𝜇,𝜎 |𝑣|𝐿,𝑈3(𝑇 ). (13)

This is an element local version of [16, Lemma 5.2] with a different choice of nodal variable 𝑣↦ (𝑀𝑇𝑘𝜓𝑘, 𝑣) for the interpolation
operator. In [16], a Clément interpolation operator is used, while a Scott–Zhang interpolation operator is used here. The proof can
be used almost verbatim to prove this element local version, with the exceptions to leave out the summation over all elements in
the end and apply Lemma 3.4 in the third inequality of equation 5.5 in [16].

4. Numerical homogenization

Given the spatial network model and a coarse scale finite element space, the aim is to derive an accurate upscaled representation
of the model problem. This is accomplished by using the localized orthogonal decomposition (LOD) technique originally developed
for numerical homogenization of elliptic partial differential equations with heterogeneous data, see [8,9]. An accurate representation
is achieved by decoupling the fine scale computations into local subproblems and thereby constructing a multiscale basis that
captures the data variation. The heterogeneities present in the spatial network setting come from the geometry of the graph and the
spatially varying weights. With the results from Section 3, we can derive the LOD method for the model problem defined in Eq. (5).
We let I ∶ 𝐕 → 𝐕 be defined as I𝐯 = [𝑣1,… ,𝑣𝑛] and introduce a fine scale space

𝐖 = ker(I) = {𝐯 ∈ 𝐕 ∶ I𝐯 = 0}.

4.1. Ideal multiscale method

The multiscale space 𝐕ms
𝐻 is defined as the orthogonal complement of 𝐖 with respect to the inner product induced by 𝐊. For

every 𝐯 ∈ 𝐕 we define a fine scale projection operator 𝐐 ∶ 𝐕 → 𝐖 such that

(𝐊𝐐𝐯,𝐰) = (𝐊𝐯,𝐰) (14)

for all 𝐰 ∈ 𝐖.

Definition 4.1. The ideal multiscale space is defined as

𝐕ms
𝐻 = {(1 −𝐐)𝐯 ∶ 𝐯 ∈ 𝐕}.

Any vector 𝐯 ∈ 𝐕 can be decomposed into

𝐯 = (𝐯 −𝐐𝐯) +𝐐𝐯 ∈ 𝐕ms
𝐻 ⊕𝐖

with the two terms being 𝐊-orthogonal. The ideal multiscale approximation 𝐮𝐻 of 𝐮 fulfills: find 𝐮𝐻 ∈ 𝐕ms
𝐻 such that for all 𝐯 ∈ 𝐕ms

𝐻

(𝐊𝐮 , 𝐯) = (𝐟 , 𝐯). (15)
8
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Fig. 7. The bilinear function, 𝜑, in Fig. 6 with an ideal fine scale correction, i.e. (1 − 𝐐)𝝋 for a heat conductivity problem. The left figure is comparable to
Fig. 6, and the right shows (1 −𝐐)𝝋 in the entire domain with the area of the left marked with the dashed lines.

Lemma 4.2. The error in the approximate solution 𝐮𝐻 , defined in Eq. (15), fulfills

|𝐮 − 𝐮𝐻 |𝐊 ≤ 𝐶𝛼,𝑑,𝜇,𝜎𝐻|𝐟 |𝐌−1 ,

where |𝐟 |2𝐌−1 = (𝐌−1𝐟 , 𝐟 ).

Proof. The error 𝐮 − 𝐮𝐻 ∈ 𝐖 is bounded by

|𝐮 − 𝐮𝐻 |

2
𝐊 = (𝐊𝐮,𝐮 − 𝐮𝐻 )

= (𝐟 ,𝐮 − 𝐮𝐻 )

≤ |𝐟 |𝐌−1 |𝐮 − 𝐮𝐻 − I(𝐮 − 𝐮𝐻 )|𝐌
≤ 𝐶𝛼,𝑑,𝜇,𝜎𝐻|𝐟 |𝐌−1 |𝐮 − 𝐮𝐻 |𝐊,

where Lemma 3.5 is used in all coordinate directions and the overlap of subregions 𝑈3(𝑇 ) are hidden in 𝐶𝛼,𝑑,𝜇,𝜎 . The lemma follows
after division by |𝐮 − 𝐮𝐻 |𝐊. □

For the method to be computationally feasible we need to localize the fine scale correction operators. To do this, we first
decompose the computation of 𝐐 to the elements 𝑇 ∈ 𝐻 . We define 𝐐𝑇 ∶ 𝐕 → 𝐖, such that for any 𝐯 ∈ 𝐕

(𝐊𝐐𝑇 𝐯,𝐰) = (𝐊𝑇 𝐯,𝐰) (16)

for all 𝐰 ∈ 𝐖. By this choice, 𝐐𝑇 𝐯 is independent of the values of 𝐯 in points not adjacent to nodes in 𝑇 . Note that 𝐐 =
∑

𝑇∈𝐻 𝐐𝑇
since 𝐊𝑇 =

∑

𝑥∈𝑇 𝐊𝑥 sums up to 𝐊.

4.2. The LOD method

With the fine scale correction decomposed into element components, we want to localize the computation of those components
to element patches. Let

𝐖(𝜔) = {𝐰 ∈ 𝐖 ∶ 𝐰(𝑥) = 0 for 𝑥 ∈  (𝛺 ⧵ 𝜔)}

and let 𝐐𝑘
𝑇 𝐯 ∈ 𝐖(𝑈𝑘(𝑇 )) be the solution to

(𝐊𝐐𝑘
𝑇 𝐯,𝐰) = (𝐊𝑇 𝐯,𝐰) (17)

for all 𝐰 ∈ 𝐖(𝑈𝑘(𝑇 )). We sum the contributions over the elements to get the full truncated fine scale projection operator
𝐐𝑘𝐯 =

∑

𝑇∈𝐻 𝐐𝑘
𝑇 𝐯. By this construction, 𝐐𝑘 is an approximation of 𝐐 computed on element patches.

To define the truncated LOD space, we define coarse basis functions for the free nodes. Let 𝝋𝑗 for 𝑗 = 1, 2,… , 𝑛𝑚0 enumerate
the basis functions that span the range of I. We define them as 𝝋1 = [𝜑1, 0,… , 0], 𝝋2 = [𝜑2, 0,… , 0],… ,𝝋𝑚0

= [𝜑𝑚0
, 0,… , 0],

𝝋𝑚0+1 = [0, 𝜑1, 0,… , 0], to 𝝋𝑛𝑚0
= [0,… , 0, 𝜑𝑚0

].

Definition 4.3. The truncated LOD space is given by

𝐕ms,𝑘
𝐻 = span

⎛

⎜

⎜

⎜

⎝

⎧

⎪

⎨

⎪

⎩

𝝋𝑗 −
∑

𝑇∈𝐻

𝐐𝑘
𝑇𝝋𝑗 ∶ 𝑗 = 1,… , 𝑛𝑚0

⎫

⎪

⎬

⎪

⎭

⎞

⎟

⎟

⎟

⎠

and the LOD approximation by: find 𝐮𝑘𝐻 ∈ 𝐕ms,𝑘
𝐻 such that for all 𝐯 ∈ 𝐕ms,𝑘

𝐻 (see Fig. 7),

(𝐊𝐮𝑘𝐻 , 𝐯) = (𝐟 , 𝐯). (18)
9
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Remark 4.4 (Nonlinear Problems). Nonlinear problems, where 𝐊 depends on 𝐮, can be treated efficiently if the nonlinearity is
localized to the support of a small number of correctors, since only these correctors need to be recomputed between the nonlinear
iterations. A more general and systematic approach is to compute error indicators for the correctors as in [18] and recompute only
the correctors with sufficiently large error in every iteration.

4.3. Decay of fine scale correctors

In order for 𝐮𝑘𝐻 to be a good approximation of 𝐮 for small values of 𝑘 we need to show that 𝐐𝑇𝝋𝑗 decays quickly away from 𝑇 .
This is done by following ideas presented in [16,19], using Lemma 3.5 and a discrete analog to the product rule.

The idea is to approximate the fine scale projection 𝐐 using an iterative domain decomposition technique that spreads
information locally in each iteration. By proving that the method converges quickly we can also draw conclusions about the decay
of the 𝐐𝑇𝝋𝑗 .

For points 𝑥 ∈ 𝛺, let 𝑈 (𝑥) be used as short-hand notation for 𝑈 ({𝑥}). In particular, if 𝑦𝑘 is a mesh node then 𝑈 (𝑦𝑘) is the node
patch. We let 𝐕𝑗 = 𝐕(𝑈 (𝑦𝑗 )) be the space of functions that vanish outside the node patch for mesh nodes 𝑗 = 1,… , 𝑚 (including the
fixed mesh nodes 𝑚0 + 1, 𝑚0 + 2… , 𝑚). The fine scale space 𝐖 is decomposed into overlapping subspaces

𝐖𝑗 = (1 − I)𝐕𝑗 = {𝐯 − I𝐯 ∶ 𝐯 ∈ 𝐕𝑗}.

The relation 𝐖𝑗 ⊂ 𝐖 holds since I is idempotent. Since the scalar basis {𝜑𝑗}𝑗=1,…,𝑚 is a partition of unity on  , any 𝐰 ∈ 𝐖 can
be written as

𝐰 =
𝑚
∑

𝑗=1
(1 − I)(𝜑𝑗𝐰) with (1 − I)(𝜑𝑗𝐰) ∈ 𝐖𝑗 ,

where 𝜑𝑗𝐰 = [𝜑𝑗𝑤1,… , 𝜑𝑗𝑤𝑛]. Remember that (I𝐯)(𝑦𝑗 ) is computed by taking a weighted average of 𝐯 in element 𝑇𝑗 with 𝑦𝑗 ∈ 𝑇𝑗 .
Therefore, I𝐯 has a slightly larger support than 𝐯. More precisely, any 𝐰𝑗 ∈ 𝐖𝑗 fulfills

𝐰𝑗 ∈ 𝐕(𝑈1(𝑇̂𝑗 )) ∩𝐖, (19)

where 𝑇̂𝑗 is an element adjacent to the node 𝑦𝑗 .
Now let 𝐏𝑗 ∶ 𝐕 → 𝐖𝑗 define the projection such that for any 𝐯 ∈ 𝐕 and all 𝐰 ∈ 𝐖𝑗

(𝐊𝐏𝑗𝐯,𝐰) = (𝐊𝐯,𝐰).

The operator 𝐏 =
∑𝑚
𝑗=1 𝐏𝑗 is a preconditioner for 𝐐, and it is important that it only spreads information a few layers of coarse

elements in each application by Eq. (19).
Next, we investigate some further properties of 𝐏. The following discrete analogue of a product rule (see [16] for a proof),

|𝑣𝜑𝑘|
2
𝐿,𝑇 ≤ 2

(

𝐻−2
|𝑣|2𝑀,𝑇 + |𝑣|2𝐿,𝑇

)

, 𝑘 = 1,… , 𝑚, 𝑇 ∈ 𝐻 , (20)

is used to the prove the following identities.

Lemma 4.5. Every decomposition 𝐰 =
∑𝑚
𝑗=1 𝐰𝑗 with 𝐰𝑗 ∈ 𝐖𝑗 satisfies

|𝐰|2𝐊 ≤ 𝐶2

𝑚
∑

𝑗=1
|𝐰𝑗 |2𝐊

nd the particular decomposition 𝐰𝑗 = (1 − I)(𝜑𝑗𝐰) satisfies
𝑚
∑

𝑗=1
|𝐰𝑗 |2𝐊 ≤ 𝐶1|𝐰|2𝐊.

he proof of this Lemma can be found in the Appendix.

Using Lemma 4.5 one can show the following norm equivalence, where we refer to Lemma 3.1 in [5] for a proof of the first
tatement and the appendix of [16] for a proof of the second statement.

emma 4.6. The following norm equivalence holds

𝐶−1
1 |𝐰|2𝐊 ≤ (𝐊𝐏𝐰,𝐰) ≤ 𝐶2|𝐰|2𝐊

or all 𝐰 ∈ 𝐖. Furthermore, with 𝜈 = (𝐶2 + 𝐶−1
1 )−1 and 𝐰 ∈ 𝐖, it holds

sup
𝐰∈𝐖

|(1 − 𝜈𝐏)𝐰|𝐊
|𝐰|𝐊

≤ 𝛾 < 1,

where 𝛾 ≤ 𝐶2
−1 .
10
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We now define an approximation 𝐑𝑘𝑇 ∶ 𝐕 → 𝐖 to 𝐐𝑇 by the iteration,

𝐑𝑘𝑇 𝐯 = 𝐑𝑘−1𝑇 𝐯 + 𝜈𝐏(𝐐𝑇 − 𝐑𝑘−1𝑇 )𝐯, 𝑘 ≥ 1, (21)

with 𝐑0
𝑇 = 0 and a relaxation parameter 𝜈 > 0. First we note that 𝐑𝑘𝑇 𝐯 is computable without explicitly forming 𝐐𝑇 𝐯 since 𝐏𝑗𝐐𝑇 𝐯 ∈ 𝐖𝑗

solves

(𝐊𝐏𝑗𝐐𝑇 𝐯,𝐰𝑗 ) = (𝐊𝐐𝑇 𝐯,𝐰𝑗 ) = (𝐊𝑇 𝐯,𝐰𝑗 )

for all 𝐰𝑗 ∈ 𝐖𝑗 . We further conclude that 𝐑𝑘𝑇 is local. The right hand side 𝐊𝑇 𝐯 has support on 𝑈1(𝑇 ). Since functions in 𝐖𝑗 have
upport on 𝑈1(𝑇̂𝑗 ) according to Eq. (19) only a few of the corresponding projections 𝐏𝑗 will be non-zero. More precisely 𝐑1

𝑇 will
ave support on 𝑈3(𝑇 ) and in general

supp(𝐑𝑘𝑇 ) ⊂ 𝑈3𝑘(𝑇 ).

e will use this property when we show that 𝐐𝑇 decays exponentially. The approximation 𝐑𝑘𝑇 of 𝐐𝑇 fulfills the error bound

(𝐐𝑇 − 𝐑𝑘𝑇 )𝐯 = (1 − 𝜈𝐏)(𝐐𝑇 − 𝐑𝑘−1𝑇 )𝐯 = (1 − 𝜈𝐏)𝑘𝐐𝑇 𝐯. (22)

Altogether we get the following approximation result.

emma 4.7. It holds

|(𝐐𝑇 − 𝐑𝑘𝑇 )𝐰|𝐊 ≤ exp(−𝑘(2𝐶1𝐶2)−1)|𝐰|𝐊,𝑇 .

roof. Using Eq. (22) and Lemma 4.6 we conclude

|(𝐐𝑇 − 𝐑𝑘𝑇 )𝐰|𝐊 ≤ 𝛾𝑘|𝐐𝑇𝐰|𝐊 ≤ 𝛾𝑘|𝐰|𝐊,𝑇 .

ince 𝛾 ≤ 𝐶2
𝐶2+𝐶−1

1
we have that log(𝛾−1) ≥ (2𝐶1𝐶2)−1 by Maclaurin expansion and therefore

𝛾𝑘 = exp(−𝑘 log(𝛾−1)) ≤ exp(−𝑘(2𝐶1𝐶2)−1). □

In the last technical lemma we show that the error 𝐐𝐯 −𝐐𝑘𝐯 decays exponentially in 𝑘.

Lemma 4.8. For any 𝐯 ∈ 𝐕 it holds

|(𝐐 −𝐐𝑘)𝐯|𝐊 ≤ 𝐶𝛼,𝛽,𝑑,𝜇,𝜎𝑘
𝑑∕2 exp(−𝑘(6𝐶1𝐶2)−1)|𝐯|𝐊.

The proof is provided in the Appendix.

With Lemma 4.8, the use of 𝐐𝑘 instead of 𝐐 is thoroughly motivated. Moreover, with exponential decay the element patches can
be small and still be representative. Now all that is left is to provide the final a priori estimate for the localized LOD approximation
𝐮𝑘𝐻 :

Theorem 4.9. Under Assumptions 2.1 and 3.1 with 𝐻 ≥ 4𝑑𝐻0 the error in the approximate solution 𝐮𝑘𝐻 , defined in Eq. (18), fulfills

|𝐮 − 𝐮𝑘𝐻 |𝐊 ≤ 𝐶𝛼,𝛽,𝑑,𝜇,𝜎𝑘
𝑑∕2 (𝐻 + exp(−𝑘(6𝐶1𝐶2)−1)

)

|𝐟 |𝐌−1 .

Proof. By Galerkin orthogonality |𝐮 − 𝐮𝑘𝐻 |𝐊 ≤ |𝐮 − 𝐯|𝐊 for all 𝐯 ∈ 𝐕ms,𝑘
𝐻 . We let 𝐯 = (1 − 𝐐𝑘)I𝐮𝐻 ∈ 𝐕ms,𝑘

𝐻 and use the identity
𝐮𝐻 = (1 −𝐐)I𝐮𝐻 . Using the triangle inequality we therefore have

|𝐮 − 𝐮𝑘𝐻 |𝐊 ≤ |𝐮 − 𝐮𝐻 |𝐊 + |(𝐐 −𝐐𝑘)I𝐮𝐻 |𝐊.

The first part is treated in Lemma 4.2. For the second part we use the triangle inequality, Lemma 4.8, and that 𝐋 and therefore 𝐊
is stable with respect to I in the 𝐊 norm

|(𝐐 −𝐐𝑘)I𝐮𝐻 |

2
𝐊 ≤ 𝐶𝛼,𝛽,𝑑,𝜇,𝜎𝑘

𝑑 exp(−𝑘(3𝐶1𝐶2)−1)|I𝐮𝐻 |

2
𝐊

≤ 𝐶𝛼,𝛽,𝑑,𝜇,𝜎𝑘
𝑑 exp(−𝑘(3𝐶1𝐶2)−1)|𝐮𝐻 |

2
𝐊

≤ 𝐶𝛼,𝛽,𝑑,𝜇,𝜎𝑘
𝑑 exp(−𝑘(3𝐶1𝐶2)−1)|𝐟 |2𝐌−1 .

where we use the equivalence of the 𝐊 and 𝐋 norms and that |𝐮𝐻 |𝐊 ≤ |𝐮|𝐊 ≤ 𝐶𝛼|𝐟 |𝐌−1 . The theorem follows. □

5. Numerical examples

We first consider a scalar example modeling heat conduction and then we turn to a structural problem where we seek the
displacement of a fiber network. For all numerical examples, we use the network shown in Fig. 8. Uniformly rotated line segments
of length 0.05 are uniformly distributed in the unit square so that the total mass is |1|2𝑀 = 1000, resulting in about 20 000 line
segments. The line segments are discretized with nodes and edges. All cross points are in particular represented by nodes. The total
11

number of nodes in the generated network is around 80 000.
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Fig. 8. The network analyzed in the numerical examples. It is constructed by around 20 000 line segments of length 0.05 uniformly distributed in the unit
square. Crossings of line segments are represented by nodes.

Fig. 9. The solution 𝑢 to the problem in Section 5.1, along with the convergence results for a finite element approach and the LOD method with localization
factor 𝑘 = 2.

5.1. Heat conduction

We consider the model problem introduced in Example 2.2 for the two-dimensional network in Fig. 8 and adopt the scalar
notation from Example 2.2. The solution represents temperature (scalar) in each node, and the node-wise operator, 𝐾𝑥, is defined
as:

(𝐾𝑥𝑣,𝑤) =
1
2
∑

𝑦∼𝑥
𝛾𝑥𝑦

(𝑣(𝑥) − 𝑣(𝑦))(𝑤(𝑥) −𝑤(𝑦))
|𝑥 − 𝑦|

,

where the coefficients 𝛾𝑥𝑦 ∈ [0.1, 1] are chosen at random for each edge {𝑥, 𝑦}. The computational domain is the unit square
𝛺 = [0, 1]2. The problem considered has a constant right hand side weighted with the mass matrix 𝑀 and zero Dirichlet boundary
is applied on the entire boundary, i.e.

{

𝐾𝑢 = 𝑓,
𝑢(𝜕𝛺) = 0,

with 𝐾 =
∑

𝑥∈ 𝐾𝑥, 𝑓 =𝑀1 and 1 ∈ 𝑉 . The exact solution is compared to the LOD approximation 4.3 with localization parameter
𝑘 = 2 for different coarse grids. To show that the problem cannot easily be solved using the coarse finite element spaces 𝑉𝐻 we also
consider the problem:

find 𝑢FEM
𝐻 ∈ 𝑉𝐻 ∶ (𝐾𝑢FEM

𝐻 , 𝑣) = (𝑀1, 𝑣) for all 𝑣 ∈ 𝑉𝐻 . (23)

An illustration of the solution, 𝑢, and the errors of the direct finite element approach and the LOD approximations in both 𝐾 and
𝑀 norm are presented in Fig. 9. The results show a convergence plateau for the finite element approach, whereas the theoretical
convergence rate of 𝐻 (Theorem 4.9) is achieved for the LOD method already for a localization parameter of 𝑘 = 2. Moreover, we
observe that error is proportional to 𝐻2 in the 𝑀-norm for the LOD method.

5.2. A fiber network model

Here two variations of Example 2.4 are considered. The network in Fig. 8 should be interpreted as a mesh of round steel wires
of radius 𝑟𝑤 = 2.5 × 10−3. Eq. (7) is a linearized version of Hooke’s law with parameter 𝛾𝑥𝑦 = 𝛾1 = 𝐸𝐴, where 𝐴 = 𝜋𝑟2𝑤 is the
cross-section area of the wire and 𝐸 = 210GPa its Young’s modulus. The bending forces are handled by adding the equations in
(8). These additions are linearized versions of Euler–Bernoulli with parameters 𝛾𝑥𝑦𝑧 = 2𝐸𝐼(|𝑥 − 𝑦| + |𝑥 − 𝑧|)−2 where 𝐸 is the same
Young’s modulus and 𝐼 = 0.25𝜋𝑟4𝑤 = 0.25𝐴𝑟2𝑤 is the second moment of area of the wire. The two coefficients are related in the
following way,

𝛾𝑥𝑦𝑧 = 𝐸𝐴
𝑟2𝑤 = 𝛾1

𝑟2𝑤 ,
12

2(|𝑥 − 𝑦| + |𝑥 − 𝑧|)2 2(|𝑥 − 𝑦| + |𝑥 − 𝑧|)2
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Fig. 10. The solution of the strained fiber network along with the normalized approximation errors for different localization parameter 𝑘.

where 0.05 ≤ 𝑟𝑤
|𝑥−𝑦| ≤ 5 for any edge 𝑥 ∼ 𝑦. This relation is dependent on the lengths of the edges, where the edge lengths in turn

depend on how the fibers intersect each other. Because of this 𝛾𝑥𝑦𝑧 varies rapidly in space.

Pure displacement problem
The first structural problem we consider is a tensile simulation, where one side of the unit square is fixed, and the opposite side

is displaced. This displacement stretches the network, and the solution to the problem is the equilibrium of the network given the
displacement. We will only consider forces and displacements in the plane the network resides in for this simulation, meaning that
any 𝑥3-directional components are left out. The problem can be written as

{

𝐊𝐮̂ = 𝟎,
𝐮̂(𝛤1) = [0, 0]𝑇 , 𝐮̂(𝛤2) = [0.5, 0]𝑇 ,

where 𝛤1 is any point with x-coordinate 0, and 𝛤2 is any point with 𝑥-coordinate 1. The solution is presented in Fig. 10. Solving
this problem with the LOD method requires some extra steps compared to the previous example as we have non-vanishing Dirichlet
conditions. As mentioned in Section 2.3, we introduce an auxiliary function, 𝐠, such that 𝐮̂ = 𝐮 + 𝐠 and consider,

{

𝐊𝐮 = −𝐊𝐠,
𝐮(𝛤1 ∪ 𝛤2) = [0, 0]𝑇 .

For this specific problem we choose 𝐠(𝑥) = [0.5𝑥1, 0]𝑇 which is in 𝐕̂𝐻 for all 𝐻 . It was shown in [2] that if 𝐠 ∈ 𝐕̂𝐻 then the exact
solution of this support problem can be written as 𝐮 = 𝐮𝐻 + 𝐜𝐻 , where 𝐜𝐻 is attainable with an extended version of 𝐐. This is seen
by first writing the corrector term, 𝐜𝐻 , as the solution to the following variational problem:

find 𝐜𝐻 ∈ 𝐖 ∶ (𝐊𝐜𝐻 ,𝐰) = (𝐊(−𝐠),𝐰) for all 𝐰 ∈ 𝐖,

by using that 𝐕 = 𝐕ms ⨁𝐖, 𝐕ms ⟂𝐊 𝐖, and 𝐊 being coercive. The solution to this variational problem can be written as 𝐐̂(−𝐠),
where 𝐐̂ ∶ 𝐕̂ → 𝐖 is the extended projection operator of 𝐐:

(𝐊𝐐̂𝐯,𝐰) = (𝐊𝐯,𝐰) for all 𝐰 ∈ 𝐖.

With 𝐐̂𝑇 and 𝐐̂𝑘
𝑇 derived analogously to 𝐐𝑇 and 𝐐𝑘

𝑇 . In practice, finding this extension, 𝐐̂, is comparable to finding 𝐐 in terms of
computational complexity. Using this projection operator we can write the exact solution to the initial problem as:

𝐮̂ = 𝐮 + 𝐠 = 𝐮𝐻 + 𝐜𝐻 + 𝐠 = 𝐮𝐻 + (1 − 𝐐̂)𝐠,

and the localized LOD approximations:

𝐮̂𝑘𝐻 = 𝐮𝑘𝐻 + (1 − 𝐐̂𝑘)𝐠.

For an extended discussion on how to handle general Dirichlet data in the LOD method, see [20].
In the numerical experiment, the exponential decay of the correctors are analyzed, by fixing 𝐻 = 1∕32 and computing the errors

|𝐮̂𝑘𝐻 − 𝐮̂| for different 𝑘. The results are presented in Fig. 10, and exponential decay is observed in both the 𝐊 and 𝐌 norm which
is consistent with Theorem 4.9.

Displacement problem with lateral load
In the second numerical example of the fiber network problem, we introduce a lateral (𝑥3-directional) load to the previous tensile

problem. This problem can be expressed as the following linear system:
{

𝐊𝐮̂ = 𝐟 ,
𝑇 𝑇
13

𝐮̂(𝛤1) = [0, 0, 0] , 𝐮̂(𝛤2) = [0.5, 0, 0] ,
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Fig. 11. Illustration of the solution (XY-plane) and the normalized errors of the LOD approximations 𝐮̂2𝐻 for varying 𝐻 .

where 𝛤1 is any point with x-coordinate 0, 𝛤2 any point with x-coordinate 1, and 𝐟 = 𝐌𝐡 with 𝐡 as the constant function [0, 0,−105].
As with the previous example, we let 𝐠(𝑥) = [0.5𝑥1, 0, 0]𝑇 ∈ 𝐕̂𝐻 and

{

𝐊𝐮 = 𝐟 −𝐊𝐠,
𝐮(𝛤1 ∪ 𝛤2) = [0, 0, 0]𝑇

where 𝐮̂ = 𝐮 + 𝐠. Using the same motivation as in the previous example, the localized LOD approximations considered are:

𝐮̂𝑘𝐻 = 𝐮𝑘𝐻 + (1 − 𝐐̂𝑘)𝐠.

However, unlike the previous example we cannot guarantee that the ideal LOD approximation, 𝐮̂𝐻 , is the exact solution 𝐮̂, since
𝐟 ≠ 𝟎. Theorem 4.9 is numerically confirmed, with localization parameter 𝑘 = 2, and presented in Fig. 11, along with the reference
solution 𝐮̂. The 𝐻 convergence is seen in the 𝐊-norm as the theory indicates, but some slight stagnation is observed for the finest
grid considered which would vanish for 𝑘 = 3 as indicated in Fig. 10. Already for 𝑘 = 2 the method produces highly accurate results
in both 𝐊 and 𝐌 norm, with less than one percent relative error in the 𝐊 norm and a tenth of a percent in the 𝐌 norm for the
finest coarse grid considered.
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Appendix. The technical proofs

Proof of Lemma 3.4. Since the basis functions 𝜑𝑘 have a Lipschitz constant 𝐻−1 we have

|𝜑𝑘|
2
𝐿,𝑆 =

∑

𝑥∈ (𝑆)
(𝐿𝑥𝜑𝑘, 𝜑𝑘) =

1
2

∑

𝑥∈ (𝑆)

∑

𝑥∼𝑦

(𝜑𝑘(𝑥) − 𝜑𝑘(𝑦))2

|𝑥 − 𝑦|
≤ 𝐻−2

|1|2𝑀,𝑆 (24)

and therefore, since 0 ≤ 𝜑𝑘 ≤ 1,

|𝜑 | +𝐻|𝜑 | ≤ 2|1| . (25)
14

𝑘 𝑀,𝑆 𝑘 𝐿,𝑆 𝑀,𝑆
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We turn to the dual basis 𝜓𝑘. To relieve the notation, we omit subscript 𝑘 and set 𝜓 = 𝜓𝑘 and 𝑇 = 𝑇𝑘 in this proof. Denote the
mesh vertices in 𝑇 by 𝑦1,… , 𝑦2𝑑 and let 𝑦1 be the vertex for which 𝜓 is the dual basis. We define the positive semi-definite Gram
matrix 𝛬 with entries 𝛬𝑖𝑗 = (𝑀𝑇𝜑𝑗 , 𝜑𝑖) for 𝑖, 𝑗 = 1,… , 2𝑑 . Let 𝛼 = (𝛼1,… , 𝛼2𝑑 )𝑇 and express the dual basis as 𝜓 =

∑2𝑑
𝓁=1 𝛼𝓁𝜑𝓁 . Then

by the definition of 𝜓 , we have 𝛼 = 𝛬−1(1, 0,… , 0)𝑇 and that the sought squared norm (𝑀𝑇𝜓,𝜓) = 𝛼1 ≤ 𝜆1(𝛬)−1, where 𝜆1(𝛬) is
the smallest eigenvalue of 𝛬. To be able to bound this eigenvalue from below, we split 𝛬 into the significant contributions from
network nodes close to the corners of the element.

Let 𝑇̂𝓁 = {𝑥 ∈ 𝑇 ∶ 𝑦𝓁 + (𝑥 − 𝑦𝓁)∕𝑟 ∈ 𝑇 } be the points in 𝑇 that is in an 𝑟 scaling of 𝑇 in the corner of node 𝑦𝓁 . We set
𝑟 = 1∕(4𝑑), but keep writing 𝑟 for brevity. Since the closure of 𝑇̂𝓁 is a scaling of 𝑇 , it is a hypercube of side length 𝑟𝐻 ≥ 𝐻0. We set
̂0 = 𝑇 ⧵ 𝑇̂1 ⧵⋯ ⧵ 𝑇̂𝓁 and define the symmetric positive semi-definite matrices 𝛬𝓁 for 𝓁 = 0, 1,… , 2𝑑 with entries 𝛬𝓁

𝑖𝑗 = (𝑀𝑇̂𝓁
𝜑𝑗 , 𝜑𝑖).

e can then write 𝛬 = 𝛬0 + 𝛬1 +⋯ + 𝛬2𝑑 . Since 𝑥 ↦ 𝜑𝑗 (𝑥)𝜑𝑖(𝑥) is continuous and 𝑇̂𝓁 is path-connected, by the intermediate value
heorem there is an 𝑥𝓁 ∈ 𝑇̂𝓁 such that

𝛬𝓁
𝑖𝑗 = (𝑀𝑇̂𝓁

𝜑𝑗 , 𝜑𝑖) =
∑

𝑥∈ (𝑇̂𝓁 )

|1|2𝑀,{𝑥}𝜑𝑖(𝑥)𝜑𝑗 (𝑥) = |1|2
𝑀,𝑇̂𝓁

𝜑𝑖(𝑥𝓁)𝜑𝑗 (𝑥𝓁).

sing the properties of the smallest eigenvalues of symmetric real operators 𝐴 and 𝐵: (i) 𝜆1(𝐴 + 𝐵) ≥ 𝜆1(𝐴) + 𝜆1(𝐵) and
ii) 𝜆1(𝛼𝐴 + 𝛽𝐵) ≥ min(𝛼, 𝛽)𝜆1(𝐴 + 𝐵), we get

𝜆1(𝛬) ≥ 𝜆1(𝛬0) + 𝜆1(𝛬1 +⋯ + 𝛬2𝑑 ) ≥ 𝜆1(𝛬1 +⋯ + 𝛬2𝑑 ) ≥ min
𝓁

|1|2
𝑀,𝑇̂𝓁

𝜆1(𝐺)

here 𝐺 is a matrix with entries 𝐺𝑖𝑗 =
∑2𝑑

𝓁=1 𝜑𝑖(𝑥𝓁)𝜑𝑗 (𝑥𝓁). The next step is to bound 𝜆1(𝐺) from below by means of the Gershgorin
circle theorem.

We study the first row of 𝐺 and note that all entries in the row are positive. The distance 𝐷1 between zero and the Gershgorin
disc for the first row can be expressed as the difference between the diagonal entry and the sum of the (all positive) non-diagonal
entries on the row, i.e.

𝐷1 = 𝐺11 −
2𝑑
∑

𝓁=2
𝐺1𝓁 =

2𝑑
∑

𝓁=1
𝜑1(𝑥𝓁)2 − 𝜑1(𝑥𝓁)

2𝑑
∑

𝑗=2
𝜑𝑗 (𝑥𝓁)

=
2𝑑
∑

𝓁=1
𝜑1(𝑥𝓁)(2𝜑1(𝑥𝓁) − 1) = 𝜑1(𝑥1)(2𝜑1(𝑥1) − 1) +

2𝑑
∑

𝓁=2
𝜑1(𝑥𝓁)(2𝜑1(𝑥𝓁) − 1),

where the partition of unit of the basis functions was used. Since 𝑥𝓁 ∈ 𝑇̂𝓁 , the values of the basis function 𝜑1 in these points are
bounded as follows

(1 − 𝑟)𝑑 ≤ 𝜑1(𝑥1) ≤ 1 and
0 ≤ 𝜑1(𝑥𝓁) ≤ 𝑟𝑘 if 𝑦1 and 𝑦𝓁 differ in 1 ≤ 𝑘 ≤ 𝑑 components.

The condition for the second bound can also be phrased as 𝑘 being the minimum number of edges of the hypercube 𝑇𝓁 to traverse
to reach 𝑦𝓁 from 𝑦1. We note that, for each 𝑘, there are

(𝑑
𝑘

)

element corners 𝑦𝓁 for which this condition hold. This allows us to write

2𝑑
∑

𝓁=2
𝜑1(𝑥𝓁) ≤

𝑑
∑

𝑘=1

(

𝑑
𝑘

)

𝑟𝑘 = (1 + 𝑟)𝑑 − 1,

which will be useful next.
With the particular choice 𝑟 = 1∕(4𝑑), we use Bernoulli’s inequality (1−𝑟)𝑑 ≥ 1−𝑟𝑑 = 3∕4 to bound 2𝜑1(𝑥1)−1 ≥ 2(1−𝑟)𝑑−1 ≥ 1∕2.

Using this inequality again, together with 2𝜑1(𝑥𝓁) − 1 ≥ −1 and (1 + 𝑟)𝑑 ≤ 𝑒𝑟𝑑 = 𝑒1∕4, we bound 𝐷1 as follows,

𝐷1 ≥
1
2
𝜑1(𝑥1) −

2𝑑
∑

𝓁=2
𝜑1(𝑥𝓁) ≥

1
2
(1 − 𝑟)𝑑 − (1 + 𝑟)𝑑 + 1 ≥ 3

8
− 𝑒1∕4 + 1 > 0.

hus, the distance between zero and the Gershgorin disc for the first row is bounded below by a positive constant. The argument
an be repeated for the 2𝑑 rows and we get that all eigenvalues of 𝐺 are bounded below, and in particular that 𝜆1(𝐺) ≥ 𝐶. We
btain the asserted inequality

|𝜓|2𝑀,𝑇 = (𝑀𝑇𝜓,𝜓) ≤ 𝜆1(𝛬)−1 ≤ (4𝑑)𝑑 max
𝓁

|1|−2
𝑀,𝑇̂𝓁

𝜆1(𝐺)−1 ≤ 𝐶𝑑 max
𝓁

|1|−2
𝑀,𝑇̂𝓁

.

ltogether, using Assumption 3.1.1, and Eq. (25) we conclude
(

|𝜑𝑘|𝑀,𝑆 +𝐻|𝜑𝑘|𝐿,𝑆
)

|𝜓𝑘|𝑀,𝑇𝑘 ≤ 𝐶𝑑𝜎
1∕2 (26)

or any 𝑆 ∈ 𝐻 . □

roof of Lemma 4.5. We start with the first inequality. Pick a 𝑇 ∈ 𝐻 . Since 𝐰𝑗 ∈ 𝐕(𝑈2(𝑦𝑗 )) and 𝐊𝑇 𝐯 = 0 for 𝐯 ∈ 𝐕(𝛺 ⧵ 𝑈 (𝑇 )),
e have that 𝐊𝑇𝐰𝑗 can be non-zero for at most 𝐶𝑑 mesh nodes 𝑗, where 𝐶𝑑 depends only on 𝑑. Since 𝐊𝑇 is locally defined in this

ense, we get

|𝐰|2𝐊,𝑇 ≤ 𝐶𝑑
𝑚
∑

|𝐰𝑗 |2𝐊,𝑇 .
15
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Summation over 𝑇 ∈ 𝐻 proves the inequality with 𝐶2 = 𝐶𝑑 .
For the second inequality we first consider the 𝐋-norm. We use Lemma 3.5 componentwise and globally, inequality (20), the

fact that I𝐰 = 0, Lemma 3.5 again, and finally a similar locality argument of 𝐋𝑇 as in the previous paragraph and get
𝑚
∑

𝑗=1
|𝐰𝑗 |2𝐋 ≤ 𝐶𝑑,𝜇,𝜎

𝑚
∑

𝑗=1
|𝜑𝑗𝐰|2𝐋

≤ 𝐶𝑑,𝜇,𝜎
𝑚
∑

𝑗=1

∑

𝑇∈𝐻

(

𝐻−2
|𝐰|2𝐌,𝑇 + |𝐰|2𝐋,𝑇

)

≤ 𝐶𝑑,𝜇,𝜎
𝑚
∑

𝑗=1

∑

𝑇∈𝐻

|𝐰|2𝐋,𝑈3(𝑇 )

≤ 𝐶𝑑,𝜇,𝜎 |𝐰|2𝐋.

We use equivalence of 𝐋- and 𝐊-norms to get the second inequality with 𝐶1 = 𝐶𝛼,𝛽,𝑑,𝜇,𝜎 . □

Proof of Lemma 4.8. We use 𝐑𝓁
𝑇 as an intermediate step to show that

|𝐐𝑇 𝐯|𝐋,𝛺⧵𝑈3𝓁+1(𝑇 ) ≤ |𝐐𝑇 𝐯 − 𝐑𝓁
𝑇 𝐯|𝐋 + |𝐑𝓁

𝑇 𝐯|𝐋,𝛺⧵𝑈3𝓁+1(𝑇 )

≤ 𝛼−1∕2|𝐐𝑇 𝐯 − 𝐑𝓁
𝑇 𝐯|𝐊 + |𝐑𝓁

𝑇 𝐯|𝐋,𝛺⧵𝑈3𝓁+1(𝑇 )

≤ 𝛼−1∕2 exp(−𝓁(2𝐶1𝐶2)−1)|𝐯|𝐊,𝑇 .

(27)

The term |𝐑𝓁
𝑇 𝐯|𝐋,𝛺⧵𝑈3𝓁+1(𝑇 )

is zero since by Eq. (19) 𝐑𝓁
𝑇 𝐯 is zero outside 𝑈3𝓁(𝑇 ) and 𝐋 only spreads information one layer.

We let 𝜂 ∈ 𝑉𝐻 be a cut-off function such that (1 − 𝜂)(𝑥𝑖) = 0 for all 𝑥𝑖 ∈ 𝑈𝑘−2(𝑇 ) and (1 −I)(𝜂𝐐𝑇 𝐯) ∈ 𝐖(𝑈𝑘(𝑇 )). Since 𝐐𝑘
𝑇 𝐯 is the

best approximation of 𝐐𝑇 𝐯 in 𝐖(𝑈𝑘(𝑇 )) we get

|𝐐𝑇 𝐯 −𝐐𝑘
𝑇 𝐯|

2
𝐊 ≤ |𝐐𝑇 𝐯 − (1 − I)(𝜂𝐐𝑇 𝐯)|2𝐊 = |(1 − I)(𝐐𝑇 𝐯 − 𝜂𝐐𝑇 𝐯)|2𝐊
≤ 𝛽|(1 − I)(𝐐𝑇 𝐯 − 𝜂𝐐𝑇 𝐯)|2𝐋 ≤ 𝐶𝛽,𝑑,𝜇,𝜎 |(1 − 𝜂)𝐐𝑇 𝐯|2𝐋

using the equivalence of the 𝐋 and 𝐊 norms and Lemma 3.5. Next we use the inequality (20), since 𝜂 ∈ 𝑉𝐻 , and Lemma 3.5 to get

|(1 − 𝜂)𝐐𝑇 𝐯|2𝐋 =
∑

𝑇 ′∈𝐻

|(1 − 𝜂)𝐐𝑇 𝐯|2𝐋,𝑇 ′

=
∑

𝑇 ′∈𝐻

|(1 − 𝜂)𝐐𝑇 𝐯|2𝐋,𝑇 ′∩𝛺⧵𝑈𝑘−3(𝑇 )

≤ 2
∑

𝑇 ′∈𝐻

𝐻−2
|𝐐𝑇 𝐯|2𝐌,𝑇 ′∩𝛺⧵𝑈𝑘−3(𝑇 )

+ |𝐐𝑇 𝐯|2𝐋,𝑇 ′∩𝛺⧵𝑈𝑘−3(𝑇 )

≤ 2
∑

𝑇 ′∈𝐻

𝐻−2
|(1 − I)𝐐𝑇 𝐯|2𝐌,𝑇 ′∩𝛺⧵𝑈𝑘−3(𝑇 )

+ |𝐐𝑇 𝐯|2𝐋,𝑇 ′∩𝛺⧵𝑈𝑘−3(𝑇 )

≤ 𝐶𝑑,𝜇,𝜎
∑

𝑇 ′∈𝐻

|𝐐𝑇 𝐯|2𝐋,𝑇 ′∩𝛺⧵𝑈𝑘−6(𝑇 )

= 𝐶𝑑,𝜇,𝜎 |𝐐𝑇 𝐯|2𝐋,𝛺⧵𝑈𝑘−6(𝑇 )
.

We use Eq. (27) with 𝓁 = 𝑘∕3 − 7∕3 to conclude

|𝐐𝑇 𝐯 −𝐐𝑘
𝑇 𝐯|𝐊 ≤ 𝐶𝛼,𝛽,𝑑,𝜇,𝜎 exp(−𝑘(6𝐶1𝐶2)−1)|𝐯|𝐊,𝑇 . (28)

Next we follow the proof of Theorem 4.3 in [9]. Let 𝜂 ∈ 𝑉𝐻 be 1 for 𝑥 ∈ 𝛺 ⧵𝑈𝑘+3(𝑇 ) and 0 for all 𝑥 ∈ 𝑈𝑘+2(𝑇 ). We let 𝐞 = (𝐐−𝐐𝑘)𝐯
and 𝐞𝑇 = (1 − I)(𝜂𝐞) ∈ 𝐖 with 𝐞𝑇 (𝑥) = 0 for all 𝑥 ∈ 𝑈𝑘+1(𝑇 ). We note that

(𝐊𝐞𝑇 , 𝐞) = (𝐊𝐞𝑇 ,𝐐𝑇 𝐯) = (𝐊𝑇 𝐞𝑇 , 𝐯) = 0

since 𝐐𝑘
𝑇 𝐯(𝑥) = 0 for all 𝑥 ∈ 𝛺 ⧵ 𝑈𝑘(𝑇 ) and 𝐊𝐞𝑇 (𝑥) = 0 for all 𝑥 ∈ 𝑈𝑘(𝑇 ) and that 𝐊𝑇 𝐞𝑇 = 0. We have 𝐞 − 𝐞𝑇 = (1 − 𝜂)𝐞 + I(𝜂𝐞) =

(1 − I)((1 − 𝜂)𝐞) ∈ 𝐖(𝑈𝑘+4(𝑇 )). We conclude, using Eq. (28),

|𝐞|2𝐊 =
∑

𝑇∈𝐻

(𝐊(1 − I)((1 − 𝜂)𝐞), (𝐐𝑇 −𝐐𝑘
𝑇 )𝐯)

≤ 𝐶𝛼,𝛽,𝑑,𝜇,𝜎exp(−𝑘(6𝐶1𝐶2)−1)
∑

𝑇∈𝐻

|𝐞|𝐊,𝑈𝑘+5(𝑇 )|𝐯|𝐊,𝑇

≤ 𝐶𝛼,𝛽,𝑑,𝜇,𝜎𝑘
𝑑∕2exp(−𝑘(6𝐶1𝐶2)−1)|𝐞|𝐊|𝐯|𝐊

where we use that one element 𝑇 is only covered by a finite number of patches 𝑈𝑘+5(𝑇 ). The lemma follows after division by
|𝐞| . □
16
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