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A B S T R A C T

This paper applies computational linguistics learning methods to the banking industry and climate change
fields. We introduce our data-driven framework, climateBUG, with the aim of detecting latent information
about how banks discuss their activities related to climate change using natural language processing (NLP). This
framework consists of an ingestion pipeline, a configurable database, and a set of API’s. In addition, climateBUG
offers two standalone components, namely a unique annotated corpus of approximately 1.1M statements from
EU banks’ annual and sustainability reporting and a deep learning model adapted to the semantics of the
corpus. When benchmarking on classification performance, our model outperforms other models with similar
scopes due to its stronger domain relevance. We also provide examples of how the framework can be applied
from a user perspective.
1. Introduction

This article bridges the domains of the banking industry and climate
change through the lens of computational linguistics. We introduce cli-
mateBUG (climate model for Bank reporting analysis from the Univer-
sity of Gothenburg), a comprehensive data-driven framework equipped
with an ingestion pipeline, a configurable database, and a suite of APIs.
The framework stems from an interdisciplinary approach, drawing on
pertinent domain knowledge from annual reporting, climate economics,
and advanced computational linguistics in Natural Language Process-
ing (NLP). Uniquely, climateBUG offers two standalone components:
a unique annotated corpus of approximately 1.1 million data points
drawn from the annual reports of EU banks, with a focus on climate
change and finance, and a sophisticated deep learning model tailored
to the semantics of this corpus. Designed with versatility in mind,
climateBUG and its components can be readily employed by researchers
and practitioners to uncover latent information on how banks articulate
their climate-related activities. This is achieved through the exami-
nation of unstructured data extracted from banks’ annual reports. To
showcase the utility of this framework, we also provide some examples
of potential applications of the system.

Developing a comprehensive data-driven framework with a focus
on finance and climate change is important for several reasons. Firstly,
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(J. Elliott), asa.lofgren@economics.gu.se (Å. Löfgren).

the banking industry is critical for providing a significant part of the
finance for climate investments necessary to reach the climate net
zero target by 2050. The International Energy Agency together with
the International Monetary Fund estimate that a global annual energy
investment of USD 5 trillion (more than a tripling of current levels) is
needed by 2030 to reach the climate net zero target (Bouckaert et al.,
2021). In addition, climate change can also affect the stability of the
banking system and jeopardize global financial stability if banks do not
correctly assess the climate-related risks (both physical and transition)
of assets and exposure to carbon-intensive industries (Lamperti, Bosetti,
Roventini, & Tavoni, 2019). Still, the availability of transparent quan-
titative data to evaluate the vulnerability of banks to climate-related
risks and to track their efforts in mitigating their exposure over time
is limited. This limitation of data availability has created a supply-side
effect from regulators that demand banks (as well as public companies)
to disclose key financial information but also climate-related risks. One
such example is the Sustainable Finance Disclosure Regulation (SFDR)
(2019/2088) in the European Union, which came into effect in March
2021 (European Parliament, 2019). We anticipate that regulations like
the EU SFDR will have an impact on how banks discuss sustainability
and climate change. To address parts of the information gap, it will be
important to monitor banks’ disclosures under these regulations.
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This leads us to the second argument as to why the application
in this paper is important — the increase in unstructured data from
more financial reporting over time driven by both a supply-side as
well as a demand-side effect (Lewis & Young, 2019). This increase
in unstructured data has spurred researchers within the finance and
accounting literature to use computational linguistics learning methods
to analyze financial reports and other text sources to detect latent infor-
mation.1 In general, the field of NLP and computational linguistics has
volved from early methods that relied on simple rule-based systems
nd keyword matching, to statistical models, such as Naïve Bayes clas-
ifiers (Rish et al., 2001), bag-of-words analysis (Harris, 1954; Zhang,
in, & Zhou, 2010), Hidden Markov Models (Conroy & O’Leary, 2001),
nd probabilistic context-free grammars (Jelinek, Lafferty, & Mercer,
992). Later developments have evolved towards machine learning ap-
roaches, where algorithms learn patterns from data rather than relying
n hard coded rules. This transition has led to the introduction and
ide adoption of neural networks and deep learning techniques (Brown
t al., 2020; Devlin, Chang, Lee, & Toutanova, 2018; Vaswani et al.,
017), which now play a central role in many state-of-the-art solutions.
verall, deep learning models are more capable in extracting complex

emantic information from texts compared to classical techniques.
When considering the accounting and finance literature and its ap-

lication of NLP and computational linguistics methods, El-Haj, Rayson,
alker, Young, and Simaki (2019) conclude that the main limitation

f studies within this field is the common use of basic techniques like
ag-of-words content analysis. They argue that this does not capture the
ntricacies of language, particularly context and the multiple meanings

word can have. Also, they note that studies often lack transpar-
nt evaluations of methodologies. Finally, the authors emphasize the
omplementarity between computational linguistics methods and high-
uality manual analysis when analyzing financial research questions.
he research within finance and accounting using computational lin-
uistics methods is hence still under development and in light of this,
here has also emerged a literature that review text analysis methodolo-
ies with the aim of facilitating researchers in adopting best practices
hen utilizing these methods (see e.g. Benchimol, Kazinnik, & Saadon,
022). While enhanced expertise in applying these methods is required,
here are other challenges that can hinder effective use of NLP methods
s applied to finance and accounting.

One of the more prominent challenges is a lack of interdisciplinary
esearch teams (Lewis & Young, 2019). The authors recognize that
‘applying NLP to financial reporting output is an inherently inter-
isciplinary process requiring the marriage of domain expertise from
inancial reporting with advanced NLP skills from computational lin-
uistics. Neither discipline is capable of delivering step-change on its
wn’’ (Lewis & Young, 2019, p. 605). Another challenge we identify is
he limited availability of annotated domain-specific data sets, which in
urn relates to the absence of well-defined financial lexicon lists (Gupta,
engre, Kheruwala, & Shah, 2020). To our knowledge there are cur-

ently no open access domain (finance and climate) specific annotated
ata sets available.

With this study we aim to respond to several of the challenges
utlined above. Based on previous manual analysis of how banks
iscuss climate change and sustainability (Elliott & Löfgren, 2022),

1 It is also worth pointing out that there are important applications in
inance beyond looking at financial reports using language modeling and deep
earning. Prominent examples include constructs of an index based on the
requency of specific words in news coverage of major US newspapers to
tudy the effect of policy uncertainty on firm-level and aggregate economic
utcomes (Baker, Bloom, & Davis, 2016). Other examples include Chen, Wu,
nd Wu (2022) in which the authors use a deep learning approach to predict
anks’ stock prices, Hilal, Gadsden, and Yawney (2022) who provides a survey
f computational linguistic methods to detect financial frauds, and studies
ocusing on central banks’ communications and reports such as Benchimol,
aspi, and Kazinnik (2023) and Correa, Garud, Londono, and Mislang (2021).
2

we are able to offer a data-driven framework – climateBUG – with
the overall objective of using NLP techniques to search, classify, and
summarize bank reports using modern deep learning techniques to
better understand banks’ narratives around climate change and their
related activities by extracting relevant information from annual bank
reports in a structured and scalable way. The framework climateBUG is
human-centric in the sense that despite having automation as its main
functionality, the construction is heavily influenced by the knowledge
of domain experts. The primary objective of its outcome is to be inter-
pretable by a broad range of end users including academia, government
representatives, journalists, and commercial banks’ sustainability man-
agers. We contribute to the research community by providing a trained
NLP model open access, a finance and climate corpus based on annual
and sustainability reports from EU commercial banks, a database with
annotated data that can be used as training data, and expert-driven
keywords offering a domain specific dictionary (see Appendix C). Most
importantly, climateBUG is optimized based on an iterative process
between manual annotation and model optimization, focusing specif-
ically on banks’ annual reporting language related to sustainability
and climate change. Finally, the performance of the framework and its
components is evaluated and transparently reported.

The outline of the article is as follows; we provide an overview
of the climateBUG framework and its component details in Section 2;
Section 3 presents the development of the data derived from our corpus
(climateBUG-Data); Section 4 presents the development of the trained
NLP Model (climateBUG-LM); Section 5 introduces applications of the
framework and additionally provides a simple step-by-step instruction
on how to use the framework for more tailored analysis; and Section 6
concludes.

2. The climateBUG framework

In this section, we provide an overview of the framework and
discuss each component and module in detail.

2.1. System overview

The climateBUG framework consists of three main modules that
users can interact with (see illustration in Fig. 1):

(1) An ingestion pipeline to extract information from a corpus data
consisting of statements from annual reports and sustainability
reports published by commercial (EU) banks;

(2) A configurable database, climateBUG-DB, containing advanced
statistics extracted using the ingestion pipeline;

(3) A set of APIs, climateBUG-API, to query and visualize informa-
tion from climateBUG-DB.

In addition, climateBUG provides two standalone components that
users can utilize for customized analyses:

• climateBUG-Data: an annotated corpus that focuses on both
finance and climate. The corpus data consists of statements from
annual reports and sustainability reports published by commercial
EU banks from 2015- 2020 (discussed further in Section 3);

• climateBUG-LM: a deep learning model adapted to the domains
of finance and climate (discussed further in Section 4).

For these two standalone deliverables of climateBUG, users can access
and query information with commonly used deep learning program-
ming interfaces such as the Huggingface API.

These components and their respective deliverables are summarized
in Table 1. Note that although climateBUG-Data is part of climateBUG,
it is not marked as a system component since its primary contribution
is to train climateBUG-LM.
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Fig. 1. System overview of climateBUG.
Table 1
Deliverables of this project.

Component Description Publicly available
deliverables

Type

climateBUG-
LM

A language model
adapted to climate
and finance

A deep learning
trained model

Standalone,
system
component

climateBUG-
Data

An annotated
corpus of sampled
European bank
reports from 2015
to 2020

1115M annotated
statements (917K
automated
annotations and
198K manual
annotations)

Standalone

climateBUG-
DB

A database that
contains advanced
statistics about how
bank reports talk
about certain
expert-driven
keywords

A database System
component

climateBUG-
API

A set of functions
used to query data
from climateBUG-DB

API functions System
component

2.2. Ingestion pipeline

In order to populate climateBUG-DB, a pipeline is executed to col-
lect, analyze and extract information from bank reports. This pipeline,
shown in Fig. 2, is called the ingestion pipeline, where ingestion refers to
the action of importing information to a persistent database for future
downstream analyses. Within this pipeline, there are two ingestion
steps: the data ingestion step and the statistics ingestion step.

2.2.1. Step 1: data ingestion
Bank reports (typically in PDF format) are manually downloaded

and fed to the data ingestion step. First, these reports are parsed into
machine-readable strings of characters. These strings are then split into
statements, where each statement is essentially a sentence. Statements
are then passed into a tailor-made deep learning language model,
climateBUG-LM, that is adapted to the domains of finance and climate.
The purpose of climateBUG-LM is to automatically identify and remove
a statement if it is not about climate-related subjects.
3

In the scope of this paper, the annotated corpus, climateBUG-
Data contains annual financial and non-financial reporting from 2015–
2020. However, in practice, the data set and the corresponding lan-
guage model can be updated if new bank reports and annotations are
added to climateBUG-Data. The development of climateBUG-Data and
climateBUG-LM are discussed in Sections 3 and 4, respectively.

2.2.2. Step 2: statistics ingestion
In this step, climateBUG applies text analysis tools (e.g. full-text

search, word count, word cloud generation, etc.) and deep learning
based semantic analysis methods (e.g. keyword extraction, latent fea-
ture vector analysis, etc.) to extract and analyze statistics to populate
the climateBUG-DB.

Statistics ingestion is configurable, meaning that users can modify
the focus of the analysis given their specific context of interest. A
number of possible user configurations in this step are described below.

A. User configurations. There are two input parameters that the user
needs to provide before executing the statistics ingestion step: the
partitioning strategy and expert-driven keywords.

Partitioning refers to the action of dividing a set of statements into
disjoint subsets. Each subset is called a partition. More specifically,
given a set of statements , a partition 𝑖 is a subset of  with the
following properties:

• 𝑖 ≠ ∅, ∀𝑖
• 𝑖 ∩ 𝑗 = ∅, ∀𝑖 ≠ 𝑗
•  =

⋃

∀𝑖
𝑖

A partition provides a semantic context within a subset of state-
ments . For instance, one partitioning could be to divide  into an
environmental, social and governance, (commonly referred to as ESG)
related context (partition 1) and an ‘‘other’’ context (partition 2). Each
of these partitions then provides a semantically meaningful context for
the analysis.

The partitioning is produced by a partitioning strategy. A partitioning
strategy is essentially a function that takes a statement as its input
and produces a categorical value that represents to which partition
this statement belongs. Note that the partitioning strategy will only be
applied to climate-related statements since climateBUG has filtered out
the non-climate statements before this step. Therefore, the partitioning
strategy will be applied to the output of the see Section 3.3.
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Fig. 2. This figure illustrates the ingestion pipeline proposed by this work.
In practice, this strategy can be either supervised (e.g. classification
with user-defined class labels) or unsupervised (e.g. clustering). For
instance, a supervised partitioning strategy could be to split statements
into the two aforementioned classes (i.e. ESG vs. non-ESG), where a
classifier can be trained to place unlabeled statements into one of
these two classes. A partitioning strategy can also be unsupervised.
For example, statements can be grouped into two mutually exclusive
clusters based on their semantics using clustering techniques.

Note that the model used for the partitioning strategy is not part
of the climateBUG framework. Users are responsible for choosing a
partitioning strategy that is suitable for their use case. If the user does
not provide a partitioning strategy, climateBUG will by default see all
statements as one partition. Once it is configured, climateBUG will
automatically divide the input statements according to the partitioning
strategy.

Besides the partitioning strategy, a second user configurable pa-
rameter is a set of expert-driven keywords. An expert-driven keyword
is a phrase of interest provided by the user. Expert-driven keywords
are used in the following way. For each expert-driven keyword, first,
cliamteBUG searches for statements that include that keyword within
each partition. This step results in a subset of statements for each
partition. Next, climateBUG extracts a collection of data-generated key-
words from each of these subsets to gain an understanding of how
each expert-driven keyword is being discussed. The data-generated
keywords can be extracted using any state-of-the-art NLP techniques. In
climateBUG, we have three alternatives: simple word frequency, Term
Frequency-Inverse Document Frequency (TF-IDF) and deep learning
embedding similarity (Reimers & Gurevych, 2019). The choice depends
on the application: if the application requires full transparency and
interpretability, word frequency or TF-IDF may provide a sufficient and
satisfying outcome, whereas if the application is rather exploratory,
a deep learning based approach would be more appropriate. A list
of expert-driven keywords can also help to provide a check of the
data-generated keywords and focus the analysis from the model on spe-
cific research questions. The relation between expert-driven keywords,
data-generated keywords and partitions can be visualized in Fig. 3.

Keyword search. Statistics ingestion depends on (both expert-driven
and data-generated) keyword search, meaning that we need means to
determine if a keyword is present in a sentence. Let us use the symbol
∈∗ to denote inclusion, where ‘‘keyword 𝑘 ∈∗ statement 𝑠’’ is read as
‘‘statement 𝑠 contains keyword 𝑘’’. When searching for statements that
contains a keyword, we apply different searching criteria depending on
the type of the keyword. There are three types of keywords.

• Literal key terms: These are keywords with specific meanings
(e.g. Paris Agreement, Green Deal, etc.). For these keywords,
4

Fig. 3. Visualization of all climate statements and the relation between partitions,
expert-driven keywords and data-generated keywords (denoted as 𝑇 in the figure).

we use string search (∈∗∶=∈) to determine their presence in a
statement.

• Literal key phrases: These refer to words which the basic root
form is of interest. For example, for the keyword sustainable, if
the word ‘‘sustainability’’ is contained within a statement, we
consider the word as present. For this type of word, we first
apply stemming to both the keyword and the statement, and we
use string search on the stemmed version of the text (denoted as
∈∗∶=∈stem).

• Fuzzy key subjects: This category contains keywords and phrases
that have a more free format, where permutations and transfor-
mations of words are also of our interest. For instance, the key
subject ‘‘sustainable finance’’ and its variations such as ‘‘financial
sustainability’’ and ‘‘financial system that supports sustainable
growth’’ are all considered relevant for this key subject. For this
category, we use Sentence-BERT, deep learning based embedding
algorithms, and cosine similarity (Reimers & Gurevych, 2019) to
identify the relation between the key phrase and the statement
(denoted as ∈∗∶=∈cos). More precisely, if the similarity between a
fuzzy key subject and a sentence is larger than a certain threshold
(which is a design choice for the user), then the statement is
considered to contain the key subject.

The resulting information is then used to populate climateBUG-DB.

B. Statistics ingestion steps. climateBUG groups statements from bank
reports based on partitioning and a keyword search. Information ex-
tracted from each group constitutes one entry in climateBUG-DB.

Step 0: As a pre-processing step, statements are partitioned according
to the partitioning strategy. In practice, this step can be im-
plemented by a classification step in a supervised manner or
clustering without predefined categories.
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Fig. 4. A high level description of the climateBUG-DB structure.

In the subsequent steps, let 𝑦 denote the set of statements from
year 𝑦 and a given partition. For the sake of simplicity, we
neglect the partition index in the notation since the partitions
are mutually exclusive and statements from each partition are
analyzed independently.

Step 1: For each year 𝑦 and expert-driven keyword 𝑘, search for all
statements that contain 𝑘; denote the set as 𝑦

𝑘 = {𝑠 ∣ 𝑘 ∈∗
𝑠, 𝑠 ∈ 𝑦}, where ∈∗ depends on the aforementioned type of
the keyword.

Step 2: Create a count-based word cloud from 𝑦
𝑘 for each year and

show it as a word cloud.

Step 3: Estimate word frequency of 𝑘 for each year 𝑦

𝑓 𝑦
𝑘 =

∣ 𝑦
𝑘 ∣

∣ 𝑦 ∣
(1)

This information is stored as the word frequency.

Step 4: Extract top 𝑁𝑇 = 10 data-generated keywords from each set
𝑦
𝑘 and denote the set of data-generated keywords as  𝑦

𝑘 .

Step 5: For each data-generated keyword 𝑡,

𝑡 ∈
⋃

∀𝑦
 𝑦
𝑘 ,

select all statements that contain 𝑡. Denote the set as 𝑦
𝑘,𝑡 = {𝑠 ∣

𝑡 ∈cos 𝑠, 𝑠 ∈ 𝑦
𝑘}, where ∈cos indicates that the statements are

selected using the fuzzy semantic search algorithm.

Step 6: Estimate the conditional word frequency (in percentage)

𝑔𝑦𝑘,𝑡 =
∣ 𝑦

𝑘,𝑡 ∣

∣ 𝑦
𝑘 ∣

This information is stored as the data-generated keyword fre-
quency

Step 7: Sort 𝑔𝑦𝑘,𝑡 within each year 𝑦 and select the top 𝑁𝑦
𝑇top

= 10
data-generated keywords for each year.

The full ingestion pipeline then populates the database, climateBUG-
DB.

2.3. climateBUG-DB

Following from the ingestion pipeline, climateBUG-DB, shown in
Fig. 4, is a relational database that stores the statistical information,
which can then be queried using a set of API functions provided by
climateBUG.

2.4. climateBUG-API

Once climateBUG-DB is populated, users can utilize a set of interface
functions, climateBUG-API, to extract information from climateBUG-
DB for different purposes. Details of these functions can be found in
Appendix A.
5

3. climateBUG-data

Our data set focuses on the intersection between climate and fi-
nance. With approximately 1.1M (1,070,070) data points, we believe
that this data set is one of the largest data sets to reflect this scope.

3.1. Corpus

The corpus of this current data set comes from annual reports and
sustainability reports published by commercial EU banks on their web-
sites from 2015–2020. An annual report is a public document that cor-
porations publish annually to highlight what shareholders should know
about the company. Updates may depend on the relevant jurisdiction’s
legislation, but a report generally includes a financial disclosure and
a discussion of both financial and non-financial updates and strategies
from the company. Sustainability reports are also public reports that
a company publishes annually which focus on various non-financial
aspects of the company. These reports may also, for example, be called
corporate social responsibility (CSR) reports, and they may be pub-
lished along with the annual report in an integrated report. Discussions
in a sustainability report generally include the bank’s activities related
to promoting human rights, the environment, sustainable development,
and other relevant social issues.

While annual and sustainability reports respectively have aligned
broadly to cover the same topics, especially when focusing on the
annual reports of one industry like the financial sector, there is no
consistent format for these reports where the information disclosed can
be easily parsed into relevant categories. Companies, including banks,
can interject their own narratives into these reports and have subtly
different ways of discussing the same issue (for example, discussions of
investment related to climate can be included in a number of headline
topics like ‘‘responsible’’ investment, ‘‘sustainable’’ investment, ‘‘green’’
investment, and ‘‘ethical’’ investment). Therefore, while there may be a
lot of key information about how a company says they are responding
to an issue like climate change within these reports, it is difficult to
comprehensively and systematically analyze the relevant statements
using only simple keyword search or qualitatively analyze this amount
of data by reading the reports.

The analysis is on a statement level, meaning that bank reports are
parsed into a collection of sentences, where each sentence is referred
to as a statement. The statistics of the corpus can be found in Fig. 5.

As a first step, climateBUG classifies statements from bank reports as
relevant or irrelevant to climate issues and sustainability. If a statement
is marked as relevant, it will be passed to the next step in the analysis
climateBUG pipeline. Otherwise, it will be discarded. This classification
process partially depends on the presence of certain climate-related
keywords, but it also relies upon the context of the statement.

Deep learning is among the most efficient approaches when it comes
to this type of complex and context-dependent classification task (Deng
& Liu, 2018), especially given the recent advances in pre-trained NLP
models (Devlin et al., 2018; Liu et al., 2019a; Sanh, Debut, Chaumond,
& Wolf, 2019a). A deep learning based classifier is trained to filter out
irrelevant statements.

3.2. Data annotation guidelines and manual process

To build an annotated data set for training the classifier, four
annotators (master’s students with an academic interest in climate and
sustainability) were hired from January to August 2022 to help in
the manual annotation process. The annotators worked for 8 h each
week, which included 7 h annotation on their own and a one-hour
group check-in meeting almost every week. The annotators manually
reviewed a large subset of the data (sentence/statement level) to con-
firm whether the statement was about climate change and sustainability
or not. The annotators were provided with an annotation guide which
included a list of key terms that related to our focus of climate change
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Fig. 5. Statistics of the annotated corpus.

mitigation, climate change adaptation, and sustainable finance. The
annotators were provided guidance on what to include and exclude (see
Appendix B).

That being said, the annotators could not blindly rely on the key
terms and to a certain extent had to critically judge the context of a
statement to say if it was relevant to discussions about climate change
or sustainability related to climate change. For example, a phrase like
‘‘working towards a sustainable future’’, depending on the context of
the sentence and potentially the surrounding sentences, could be about
working towards a more green future or could be about the long-term
profitability of the business. Therefore, the annotators had to at times
use their judgment to decide if a statement was relevant to the data set.

To minimize manipulation the annotators were provided the state-
ments randomly by bank and year. The statements before and after
were presented together with the statement they were about to anno-
tate (hence providing potential helpful context). Also, as a part of the
annotation process, the annotators and project leads met once a week
to review statements and further collectively hone the focus of what
would be considered a part of the data set. Initially, these meetings
were used to review the annotation guidelines and discuss general
questions about the process. The meetings then quickly developed to
reviewing tricky statements or themes of statements that the annotators
sent in beforehand. When reviewing tricky statements, the annotators
6

were asked to provide their instinctual response on whether to classify
the statement as relevant or not and why. The project lead would
then facilitate a discussion about the statement and ultimately decide if
the statement should be considered relevant. These discussions proved
extremely useful to ensure that the project leads and the annotators
were consistent in annotation and aware of any problems arising from
potentially difficult groups of statements as well as to build the annota-
tors’ knowledge of the subject matter. The outcomes of the discussions
were noted in reviews that were sent to the group for future reference
and used to further develop the annotation guidance.

3.3. Ensemble learning and automated annotation strategy

To speed up the annotation process, we developed a simple and
interpretable semi-supervised active learning strategy. The objective of
this automation was twofold:

1. To speed up the annotation process;
2. To minimize the chance of missing out on positive examples and

potentially ‘‘tricky’’ negative examples.

In order to achieve these objectives, the process was implemented
in three steps. We started with 1M unlabeled statements.

Step 1 Manual bootstrapping: As described above, human an-
notators manually annotated approximately 80K statements into
relevant or irrelevant class, among which, around 5% are anno-
tated as relevant. It is important to highlight that we assume
the statements from the manually annotated dataset and the
unlabeled dataset are identically and independently distributed
(i.i.d.). If there is a shift in distribution, it becomes challenging to
produce reliable automated annotations for the unlabeled data. In
our research, the 80K manually labeled statements are uniformly
drawn from all the bank reports to ensure the validity of this
assumption.
Step 2 Active learning using meta pseudo-labels: Since our
data
set was highly imbalanced with substantially fewer positive ex-
amples (i.e., relevant statements), our approach was to capture
all unlabeled (not yet classified) statements that were potentially
relevant or borderline irrelevant and subject these statements
to manual annotation given the budget and time scope of the
manual process. The borderline cases were useful for triggering
interesting discussions between annotators and project leads so
as to iterate and align on the manual annotation guideline and
strategy for further improving the manual annotation quality.
In order to produce reasonable pseudo-labels, three classifiers
(uncased Bert Devlin et al., 2018, FinBert Araci, 2019 and Cli-
mateBert Bingler, Kraus, Leippold, & Webersinke, 2021; We-
bersinke, Kraus, Bingler, & Leippold, 2021) were fine-tuned on
the 80K manually annotated statements based on a 80%–20%
training-validation split. The reason for training three models
and using the ensemble to produce automated annotations is to
reduce potential bias caused by training a classifier using its own
predictions. After the fine-tuning step, these three classifiers were
applied to the 80K labeled statements to predict the labels. The
final prediction was determined by the ensemble of the three
classifiers based on the majority vote. Each prediction was then
compared to their corresponding manual label and annotated
as True Positives (TPs), True Negatives (TNs), False Positives
(FPs) or False Negatives (FNs), which is referred to as the meta
label. A meta classifier was then based on the nearest centroid
algorithm was trained to predict the meta label. The feature space
of this classifier was constructed by stacking the softmax outputs
(i.e. the output of the deep learning model before the categorical
classification output Goodfellow, Bengio, & Courville, 2016) from
the three deep learning models into a three dimensional vector.
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Fig. 6. Meta classifier constructed to curate interesting statements for manual annota-
tion. In particular, the statements predicted to be potential TP, FP and FN are selected
and sent for manual annotation.

Table 2
Summary of the annotated statements.

Manual/automatic Relevant/irrelevant Statements

Manual Relevant 49,695
Manual Irrelevant 100,921
Automatic Irrelevant 919,454

An illustration of the meta classifier can be found in Fig. 6. In
particular, FNs were expected to contain both relevant statements
and borderline negative statements. The training data for this step
was the 80K manually annotated statements. This meta classifier
was applied to all the 990K unlabeled statements. The outcome
of this step was a meta label for each unlabeled statement that
indicated if the statement was potentially a TP, TN, FP or FN.
After a manual plausibility check step, statements predicted to
be TP, FP and FN were sent for manual annotation. TNs were
discarded to improve efficiency.
The outcome of this step was 70K curated statements in total.
Step 3 Final manual annotation:

In the final step, the 70K statements curated by step 2 were manu-
lly annotated following the annotation steps described in Section 3.2.

A summary of the annotated statements can be found in Table 2.

.4. Evaluation of climateBUG-Data

In this section, we evaluate our methodology for the development
f climateBUG-Data.

.4.1. Semi-automated annotation strategy
In Section 3.3, we discussed the semi-automated annotation strategy

or speeding up the manual process.
To characterize the effectiveness of this strategy, we define the

ollowing terminology:

• Hit: if a statement is relevant and it is selected for manual
annotation;

• Miss: if a statement is relevant but it is not selected for manual
annotation;

• Cost: if a statement is irrelevant but it is selected for manual
annotation.

• Recall: 𝑟𝑒𝑐𝑎𝑙𝑙 = 𝐻𝑖𝑡
𝐻𝑖𝑡+𝑀𝑖𝑠𝑠

• Precision: 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝐻𝑖𝑡
𝐻𝑖𝑡+𝐶𝑜𝑠𝑡

The objective is to maximize the recall within the available annotation
budget and time scope. In addition, we are also interested in borderline
irrelevant statements to be sent for manual analysis and annotation.

To evaluate this strategy, we used 56,253 statements for training the
meta-classifier and evaluated the prediction results on the 14,064 val-
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idation statements. The confusion matrix illustrating the classification
Table 3
Statistics of sending only relevant statements for manual annotation. Note that for our
use case, we want to capture as many potentially climate-related data points as possible,
which is reflected by the recall.

Method Total sent Hit Miss Cost Recall Precision

Ensemble classifier 726 604 160 122 0.79 0.83
Meta classifier 818 624 140 194 0.82 0.76

Table 4
Selected statements sent for the final manual annotation process. We evaluated hit and
cost after the statements were annotated.

Total Hit Cost

FN 12,806 4454 8352
FP 9040 5458 3582
TP 47,027 39,660 7367
Total 68,873 49,572 19,301

performance can be found in Eq. (2). The result is further summarized
in Table 3. A sensible alternative would be to subject only the state-
ments that were predicted positive (i.e. TPs and FNs) to the ensemble
model (i.e. majority vote by ClimateBert, FinBert and Uncased Bert) for
annotation. Our strategy is compared with this alternative. As a result,
we increase the recall by 3% (20 statements) with a cost of 72 out of
14,064 statements in total. This is considered beneficial for our use case
since (1) relevant statements are rare, so we do not miss any potentially
relevant ones, and (2) the irrelevant statements in the cost category are
considered tricky ones and hence interesting to go through manually.

⎡

⎢

⎢

⎢

⎢

⎢

⎣

FN FP TN TP
FN(𝑠𝑒𝑛𝑡) 20(hit) 0(cost) 72(cost) 0(hit)
FP(𝑠𝑒𝑛𝑡) 0(hit) 61(cost) 0(cost) 122(hit)

TN 140(miss) 0(−) 13106(−) 0(miss)
TP(𝑠𝑒𝑛𝑡) 0(hit) 61(cost) 0(cost) 482(hit)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(2)

The meta classifier was applied to all unlabeled statements, where
predicted TP, FP and FN were sent for manual annotation. After we
got back the annotation results, we evaluated the meta classifier again
based on the number of statements that are hit and cost respectively
(see Table 4).

4. climateBUG-LM

climateBUG-LM is a deep learning based language model fine-tuned
on climateBUG-Data. Its primary task is to classify each statement into
a relevant or irrelevant class depending on if the statement is talking
about climate-related subjects or not. For recent advances of general
purposed NLP systems, see Sakshi and Kukreja (2023) and Shao, Zhao,
Yuan, Ding, and Wang (2022).

A common practice is to adapt an off-the-shelf language model to
the domains of interest by fine-tuning a pre-trained backbone on the
domain-specific corpus (Howard & Ruder, 2018). There are several
reasons for this, among them that for a given task, training a language
model from scratch requires significant resources (Strubell, Ganesh,
& McCallum, 2019). Given these considerations, the development of
climateBUG-LM consisted of three steps: expansion of the vocabu-
lary, masked-language model fine-tuning, and downstream classifier
fine-tuning.

4.1. Vocabulary expansion

To apply deep learning models to specific domains, it is important to
expand the vocabulary due to the domain-specific terminology (Guru-
rangan et al., 2020). To this end, we chose the vocabulary provided
by the RoBERTa model (Liu et al., 2019b) as the base vocabulary,
which was then modified to include relevant words and phrases from
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Table 5
Training hyperparameters for climateBUG-LM backbone fine-tuning.

Hyperparameter Value

Interface Huggingface
Learning rate 2e−6
Epochs 30
Warmup steps 1000
Batch size 24
Early stopping 3 steps
MLM probability 0.2
Weight decay 0.01
FP16 True

Table 6
Training hyperparameters for climateBUG-LM downstream classifier fine-tuning.

Hyperparameter Value

Interface Huggingface
Learning rate 1e−6
Epochs 100
Warmup steps 1000
Batch size 32
Early stopping 6 steps
Weight decay 0.01
FP16 True

the domains of climate and finance. In particular, our curated list
includes phrases related to business acronyms, EU legislation, bank’s
name, bank’s products and services, renewable energy, key commit-
ments, types of climate-related risks, sustainability, policy proposal,
and initiatives. A full list of added vocabulary and the reasoning behind
the vocabulary can be found in Appendix C.

4.2. Masked-language model

The second step for domain adaptation was to fine-tune the back-
bone language model given the expanded vocabulary and corpus.
We chose the popular and efficient backbone language model Distil-
RoBERTa (Sanh, Debut, Chaumond, & Wolf, 2019b) and fine-tuned it
on the masked-language modeling task (MLM). The corpus for fine-
tuning the MLM consisted of approximately 150K manually annotated
statements as shown in Table 2. The annotations were not needed in
this language model fine-tuning step. However, the annotations were
provided in order to construct a class-balanced (i.e. relevant vs irrel-
evant) corpus for the fine-tuning step. Among these 150K statements,
90% were randomly selected for fine-tuning and 10% for validation. A
list of configurations and hyperparameters can be found in Table 5.

4.3. Downstream classification model

The primary task of climateBUG-LM is to analyze the semantic of
a statement in EU bank reports such as classifying a statement into
a relevant or irrelevant class. In order to achieve this, the language
model needs to be fine-tuned for the downstream classification task.
We adopted the same data setup as in Section 4.2, where the exact
same training-validation split is used. Some key hyperparameters for
this fine-tuning step are described in Table 6.

4.4. Evaluation of climateBUG-LM

The primary task of the language model climateBUG-LM is to auto-
matically identify if a statement is relevant to climate related subjects
or not. To this end, climateBUG-LM is first fine-tuned on the cor-
pus described in Section 3.1 and then fine-tuned on the downstream
classification task based on the annotations in climateBUG-Data.

To evaluate the performance of climateBUG-LM, we used bank
statements from year 2015 to 2019 for training and 2020 for validation.

Standard classification metrics are calculated to compare the per-
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formance. Each has its own unique strengths.
• F1 (weighted): This metric is the harmonic mean of precision
and recall.

• F1 (macro): The macro version of the F1 metric computes the
F1 score independently for each class and then takes the average.
This treats all classes equally, regardless of their prevalence in the
dataset. This metric was added to address the imbalanced nature
of the dataset.

• Accuracy: This metric is a straightforward measure of the pro-
portion of correct predictions made by our model. It gives a
high-level view of the model’s performance but is complemented
by the F1 scores, which offer a more nuanced understanding in
the context of class imbalance.

The result in terms of accuracy and F1 score are reported in Table 7.
In particular, the classification performance was compared to a base-
line model Bert (uncased) that is based on a generic vocabulary and
corpus, and two other domain-specific language models, ClimateBert
and FinBert. Bert and its variants are widely used in various application
domains, and they are proven to be among the most effective language
models in terms of training efficiency and performance (Khurana,
Koli, Khatter, & Singh, 2023; Koroteev, 2021; Wolf et al., 2020; Zhou
et al., 2023). Therefore, we primarily focus on comparing our model to
this family of models. All models were fine-tuned on the downstream
classification task, while only the backbone of climateBUG-LM was fine-
tuned using Masked Language Modeling (Devlin et al., 2018) on the
domain-specific corpus.

Results suggest that climateBert outperforms FinBert and uncased
Bert due to its stronger domain relevance. However, the best perfor-
mance was achieved by climateBUG-LM thanks to domain adaptation.

As for the choice of our training and testing periods, it was deter-
mined to focus on temporal validation, a strategy commonly adopted
in predictive modeling, especially when predicting future events is the
goal. By training on report statements from 2015–2019 and testing on
2020 data, we ensure that our model is able to predict ‘‘future’’ events
based on ‘‘past’’ data. This reflects a realistic use case scenario where
the model would be deployed to analyze upcoming annual reports
based on learnings from past reports. The high performance of the
model on this unseen data, which represents a different time period,
validates our hypothesis that our model is reliable in that it is capable of
handling potential minor domain shifts given an updated time period.

When considering other potential domains, such as applying the
climateBUG framework to bank reports outside Europe, the inherent
adaptability of the semi-automated annotation strategy used in our
model comes into play, where users can use climateBUG-Data to boot-
strap annotations on the new data. This approach allows the model
to adjust to new data distributions efficiently, ensuring its ability
to accommodate new domain shifts with replicable results and with
lesser need for new annotated data. It can also be noted that the
language used in annual reporting related to climate change domain
has a certain universal character due to the global nature of climate
change discussions within the banking industry and common financial
terminologies (Elliott & Löfgren, 2022). However, if a larger domain
shift is observed, for example by introducing drastically different time
periods or industries or seeing a major change in the discussion on
climate change, the model should be updated using the methodology
(including new annotations) as outlined in Section 5.3. Whether or not
a domain shift is large enough to warrant an updating of the model
will necessarily be a subjective decision based on the evaluation of the
model in relation to the specific use case. In such cases, the annotation
guidelines and annotated data as part of the climateBUG framework are
helpful as a basis for researchers but would also potentially need to be

updated to fit the specific research interests.
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Table 7
Evaluation of the classification performance. The masked language model and the downstream classifier are both fine-tuned on the corpus of
EU bank reports from 2015 to 2019. The classifier is then evaluated on unseen statements from the year 2020.
Backbone Domain Number of parameters Vocabulary size F1 (weighted) F1 (macro) Accuracy

Bert (uncased) Generic 109,484,547 30 522 90.92% 90.81% 90.88%
FinBert Finance 109,484,547 30 522 90.93% 90.82% 90.88%
ClimateBert Climate 82,301,187 50 500 91.18% 91.07% 91.13%
climateBUG-LM Climate + finance 82,300,418 50 421 91.47% 91.36% 91.42%
Fig. 7. Annual expert-driven keyword frequency extracted from a single partition.

5. Application of the climateBUG

First, we note that the current climateBUG-Data has already been
through an iteration of the model to classify the data based on state-
ments’ relevance to climate or sustainability, as discussed in Section 3.
Therefore, the data we analyze has already been classified as climate-
related and non-climate statements (which were discarded from the
set). This process itself is an example of the application of climateBUG
in creating a data set that is focused on the nexus of finance and
climate change. In this section we present two applications of how the
climateBUG-data can be processed and analyzed, as well as providing
a step-by-step instruction of how to use the climateBUG framework for
more tailored analysis.

5.1. Expert-driven keywords

To show the various ways climateBUG can be used to analyze the
current dataset, we highlight three example keywords to show how key-
words can be used to provide analytical insight in our analysis: green
bond, Taskforce for Climate-Related Financial Disclosures (TCFD), and
taxonomy.

Defining each keyword in turn, green bond is a keyword because
it is an example of how banks are moving investments into more
environmentally friendly projects. This can provide insights into how
this investment mechanism is discussed in relation to other green
mechanisms or respond to the question of if recent legislation has had
an effect on the discussion of green bonds.

Taskforce for Climate-Related Financial Disclosures (and its acronym,
TCFD) is a keyword because it is an example of an international
initiative to promote a standardized climate-related risk disclosure for
businesses (Taskforce on Climate-related Financial Disclosures, 2017).
This can provide insights into how this initiative has been incorporated
into other reporting or disclosure strategies or respond to the question
of to what extent this initiative has been adopted since its introduction
in 2017.

Taxonomy is a keyword as it relates to a key aspect of the EU
Sustainable Finance legislation for defining and categorizing financial
products as sustainable (European Parliament, 2020). This can provide
insights into how this legislation is being discussed in its upcoming
implementation and respond to the question of how the taxonomy has
affected the discussion of a bank’s financial products.

Looking at Fig. 7 the word frequency of the three keywords ‘‘green
bond’’, ‘‘taxonomy’’, and ‘‘TCFD’’, highlight some key observations
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from the data. While we do not provide a thorough analysis of these
observations to show causality in our analysis, we want to point to some
interesting potential correlations and trends which exemplify some
research questions that can be further pursued.

Starting with ‘‘TCFD’’, we would expect that the keyword would
sharply increase with the introduction of the TCFD recommendations
in 2017. The graph indeed shows an increase in both 2017 and 2018
as a lot of the banks included in this data set (20 out of the 35 banks
included) sign up to supporting the TCFD recommendations by the end
of 2018. We also see that the word frequency remains fairly consistent
from 2018 to 2020. We suggest this is because the TCFD is an annual
disclosure process, so banks would consistently discuss their TCFD
disclosure yearly.

Moving to the keyword ‘‘taxonomy’’, we would also expect a sud-
den increase in frequency in 2018 when the EU taxonomy concept
was introduced in the 2018 EU Action Plan on Financing Sustainable
Growth (European Commission, 2018). The keyword continues to rise
in frequency through 2020 as the taxonomy potentially is becoming
more prevalent in discussion as it gets closer to its expected application
date starting in 2022. We note that ‘‘taxonomy’’ is used substantially
less than the other keywords, and we suggest this is because ‘‘taxon-
omy’’ is an example of a keyword of developing, upcoming legislation
without clear disclosure standards. We expect ‘‘taxonomy’’ to continue
to increase in the near future as banks start to apply the taxonomy
to relevant financial products subsequent to the mandatory application
timeline.

Finally, we look at the keyword ‘‘green bond’’. We would expect that
the frequency of ‘‘green bond’’ would increase from 2018 to 2020 as the
EU Action Plan also highlighted a focus on promoting and standardizing
green bonds through upcoming legislation. Instead, we find that ‘‘green
bond’’ rises in 2017 and then remains fairly consistent with minor
fluctuations up and down through 2020. We note that, in comparison
to the other keywords ‘‘green bond’’ has been a term used before the
data set begins and is related to a financial product rather than a
developing international or legislative initiative. We suggest that this
trend in ‘‘green bond’’ frequency may reflect more the market of green
bonds, which has notable increases in amounts issued between 2016–
2019 (Climate Bonds Initiative, 2022). Further research could follow
whether the market or upcoming legislature or initiatives affect the use
of ‘‘green bond’’.

5.2. Clustering as a partitioning strategy

Clustering is a form of unsupervised machine learning where the
goal is to group similar data points together for more targeted anal-
ysis (Benchimol et al., 2022; Reimers & Gurevych, 2019; Xu & Tian,
2015). Clustering is widely used in many fields, including image recog-
nition, customer segmentation, and recommendation systems. In text
analysis, clustering can be used to automatically group texts with
similar topics together and enable the user to extract meaningful in-
formation from large, unstructured datasets. More specifically, in the
context of climateBUG-Data, bank statements in the same cluster are
expected to be more semantically similar to each other than to state-
ments in other clusters. This unsupervised technique can be used as a
partitioning strategy for exploring the climateBUG-Data.

This type of analysis provides a more powerful way that NLP can be
used to draw observations beyond simple word frequency or keyword
analysis.
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Fig. 8. Unsupervised multi-cluster partitioning and data-generated keyword frequency.

In Fig. 8, we offer an example of unsupervised multi-cluster par-
titioning, where the model partitioned climateBUG-Data into clusters
based on data-generated keywords. We can see that the clusters created
by the model include the keywords ESG, environmental, sustainabil-
ity, climate change, CO2 emissions, bank, green bond, and renewable
energy. These clusters point to key themes within banks’ narratives
related to their actions regarding climate change and sustainability.
For example, green bonds and renewable energy are initiatives that
the banks can actively promote through their products. CO2 emissions
are a key indicator used to measure a company’s impact on climate,
and therefore it is interesting that it is highlighted as a cluster in
the analysis. Finally, the model has picked up semantic differences in
the clusters of ESG, environmental, sustainability, and climate change;
while these terms may be used interchangeably in some ways (as shown
by the ways the data points overlap substantially in these categories),
it is notable that the model still was able to identify clear clusters for
each keyword. Further analysis within each cluster would be needed
to make more substantial claims about banks’ discussion of their activ-
ities against climate change, but we argue that the partitioning itself
provides a much-needed first step in analyzing this amount of data in
a feasible, more systematic, and comprehensive way.

5.3. Step-by-step instruction for using climateBUG for more tailored analy-
sis

The examples above are potential ways in which the model can be
used to look at the intersecting discussion between finance and climate
change. Beyond these examples, there are multiple other applications
where the model can be used, such as understanding how policy can
potentially change how finance and climate change are discussed,
detecting references to key policy instruments, and identifying novel
topics (such as in relation to offsetting) over time.

In practice, the intended use case is to combine both user config-
urations, the partitioning strategy, and keywords to generate compre-
hensive statistics by analyzing statements from EU bank reports. Below
follows a succinct step-by-step instruction on how to use the framework
for more tailored analysis on how to understand how EU banks talk
about climate change.

Step 1 Choosing a partitioning strategy: This strategy can be any algo-
rithm that splits the statements into mutually exclusive subsets
(cf. Section 2) (e.g. a simple partitioning strategy could be K-
means clustering with 8 clusters as shown in Fig. 8 presented in
Section 5.2.
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Step 2 Choosing the keywords of interest: The user can choose any
keywords of interest, e.g. Green Bond, Taskforce for Climate
Related Financial Disclosures, and Taxonomy presented in Sec-
tion 5.1).

Step 3 Executing the statistics ingestion pipeline to populate the
climate-DB database: Relevant statistics will be cached in the
database for the user to query.

Step 4 Visualization: After the statistics ingestion step, the user is able
to visualize the statistics queried from the database.

6. Concluding remarks

Based on a corpus of European banks’ annual reports, climateBUG
offers a framework to detect latent information about how banks
discuss their activities related to climate change. The framework is
built on an ingestion pipeline to extract information from the corpus
data, a configurable database, and a set of API’s. The framework
has been developed using an interdisciplinary approach consisting of
domain knowledge from financial reporting and climate economics an-
alyzed through the lens of advanced computational linguistics natural
language processing.

In addition, climateBUG provides two standalone components that
can be used for customized analyses; climateBUG-Data and
climateBUG-LM. The climateBUG-data is a unique annotated corpus
with the scope of climate change and finance with approximately
1.1M data points available open access that can be used as train-
ing data for further model optimization. The climateBUG-LM is a
deep-learning model adapted to the corpus. When benchmarking on
classification performance, climateBUG-LM outperforms other models
currently available (Bert uncased, FinBert, and ClimateBert). An impor-
tant feature of the framework climateBUG is that it is human-centric in
the sense that, despite having automation as its main functionality, the
construction is heavily influenced by the knowledge of domain experts.
Based on the inherent adaptability of the semi-supervised learning
approach used in our model, this approach allows the model to adjust
to new data distributions, ensuring its ability to accommodate new
domain shifts with little need for new annotated data. We anticipate
that adding new yearly reports from banks or adding new bank re-
ports from different jurisdictions would be similar to the currently
trained domain. For a significant domain shift, like adding annual and
sustainability reports from different industries or a drastic change in
sustainability discussion, a phase of manual annotation can be used to
further fine-tune the model.

We also provide examples of how the framework can be applied
by users by looking at trends in how banks talk about green bonds,
TCFD, and the EU Taxonomy, as it relates to climate. We additionally
include a simple step-by-step introduction on how to use the frame-
work, tailored for readers with less experience in utilizing NLP and
deep learning models. The primary objective of its outcome is to be
interpretable by a broad range of end users including academia, govern-
ment representatives, journalists, and commercial banks’ sustainability
managers.
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Appendix A. Climatebug-api functions

Function name Arguments Return value
(data type)

Description

get_statements Partition,
expert-driven
keywords,
years,
data-generated
keywords

A set of
statements (a
list of strings)

Statements given
the search criteria
on the arguments

get_wordcloud Partition,
expert-driven
keywords,
years,
data-generated
keywords

Words and
their
frequencies (a
hashmap with
words as its
keys and
frequency as
its values)

Words with top
frequencies from
statements given
by the search
criteria on the
arguments

get_keyword_freq partition,
expert-driven
keyword, year

Frequency (a
real value with
range [0, 1])

Keyword
frequency for a
given
expert-driven
keyword within a
partition

get_dgkeys partition,
expert-driven
keyword, year

A set of
data-generated
keywords (a
list of strings)

Within a
partition, this
function returns
data-generated
keywords
extracted from
sentences that
contain a given
expert-driven
keyword.

get_dgkey_freq partition,
expert-driven
keyword,
data-generated
keyword, year

Frequency (a
real value with
range [0, 1])

This function
computes the
frequency of an
extracted
data-generated
keyword from
statements given
by the search
criteria on the
11

arguments
Appendix B. Annotation guidelines

Generally accept Generally reject

Climate change Gibberish
Green Languages not in English
Non-financial risks (if related to
environment/climate change)

Sustainability not related to
the environment (i.e.
sustainable profits)

Green bond Circular economy
Carbon Recycling not related to banks

own operations
Global warming Nature conservation efforts
Paris Agreement Prompts from disclosure

standards (i.e. GRI or TCFD)
Scope 1, 2, or 3 emissions Section headings or titles
Sustainable finance Statements that are part of a

table of contents
ESG (environmental, social,
governance)

Table figures

Fossil fuels (if related to environment)
Energy industry (if related to
environment)
Sustainable development goals (if
related to environment)
Energy efficiency (in operations of bank
or related to lending)
Operational recycling efforts by bank
Reference to disclosures (if related to
environment/climate change)
Non-financial risks (if related to
sustainability related to environment)
Equator Principles
Task Force on Climate Disclosures
(TCFD)
RE100
UN Global Compact
UN Environmental Programme (UNEP)
UNEP Finance Initiative
Principles for Responsible Banking
(PRB)
Principles for Responsible Investing
(PRI)
Carbon Disclosure Project (CDP)
2 Degrees Investing Initiative
EU Green New Deal
EU Taxonomy
EU 2019/2088
EU 2019/2089
EU 202/852

Appendix C. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.eswa.2023.122162.

References

Araci, D. (2019). Finbert: Financial sentiment analysis with pre-trained language
models. arXiv preprint arXiv:1908.10063.

Baker, S. R., Bloom, N., & Davis, S. J. (2016). Measuring economic policy uncertainty.
The Quarterly Journal of Economics, 131(4), 1593–1636.

Benchimol, J., Caspi, I., & Kazinnik, S. (2023). Measuring communication quality of
interest rate announcements. The Economists’ Voice.

Benchimol, J., Kazinnik, S., & Saadon, Y. (2022). Text mining methodologies with R:
An application to central bank texts. Machine Learning with Applications, 8, Article
100286.

ingler, J. A., Kraus, M., Leippold, M., & Webersinke, N. (2021). Cheap talk and
cherry-picking: What ClimateBert has to say on corporate climate risk disclosures.
Corporate Finance: Governance.

ouckaert, S., Pales, A. F., McGlade, C., Remme, U., Wanner, B., Varro, L., et al. (2021).

Net zero by 2050: A roadmap for the global energy sector.

https://www.climatebug.se/
https://doi.org/10.1016/j.eswa.2023.122162
http://arxiv.org/abs/1908.10063
http://refhub.elsevier.com/S0957-4174(23)02664-7/sb2
http://refhub.elsevier.com/S0957-4174(23)02664-7/sb2
http://refhub.elsevier.com/S0957-4174(23)02664-7/sb2
http://refhub.elsevier.com/S0957-4174(23)02664-7/sb3
http://refhub.elsevier.com/S0957-4174(23)02664-7/sb3
http://refhub.elsevier.com/S0957-4174(23)02664-7/sb3
http://refhub.elsevier.com/S0957-4174(23)02664-7/sb4
http://refhub.elsevier.com/S0957-4174(23)02664-7/sb4
http://refhub.elsevier.com/S0957-4174(23)02664-7/sb4
http://refhub.elsevier.com/S0957-4174(23)02664-7/sb4
http://refhub.elsevier.com/S0957-4174(23)02664-7/sb4
http://refhub.elsevier.com/S0957-4174(23)02664-7/sb5
http://refhub.elsevier.com/S0957-4174(23)02664-7/sb5
http://refhub.elsevier.com/S0957-4174(23)02664-7/sb5
http://refhub.elsevier.com/S0957-4174(23)02664-7/sb5
http://refhub.elsevier.com/S0957-4174(23)02664-7/sb5
http://refhub.elsevier.com/S0957-4174(23)02664-7/sb6
http://refhub.elsevier.com/S0957-4174(23)02664-7/sb6
http://refhub.elsevier.com/S0957-4174(23)02664-7/sb6


Expert Systems With Applications 239 (2024) 122162Y. Yu et al.

C

C

C

D
D

E

E

E

E

G
G

G

H
H

H

J

K

K

L

L

L

L

R

R

S

S

S

S

S

T

V

W

W

X

Z

Z

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., et al. (2020).
Language models are few-shot learners. Advances in Neural Information Processing
Systems, 33, 1877–1901.

Chen, Y., Wu, J., & Wu, Z. (2022). China’s commercial bank stock price prediction
using a novel K-means-LSTM hybrid approach. Expert Systems with Applications, 202,
Article 117370.

limate Bonds Initiative (2022). Explaining green bonds. Available at https://www.
climatebonds.net/market/explaining-green-bonds.

onroy, J. M., & O’Leary, D. P. (2001). Text summarization via hidden markov models.
In Proceedings of the 24th annual international ACM SIGIR conference on research and
development in information retrieval (pp. 406–407).

orrea, R., Garud, K., Londono, J. M., & Mislang, N. (2021). Sentiment in central banks’
financial stability reports. Review of Finance, 25(1), 85–120.

eng, L., & Liu, Y. (2018). Deep learning in natural language processing. Springer.
evlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of

deep bidirectional transformers for language understanding. arXiv preprint arXiv:
1810.04805.

l-Haj, M., Rayson, P., Walker, M., Young, S., & Simaki, V. (2019). In search of
meaning: Lessons, resources and next steps for computational analysis of financial
discourse. Journal of Business Finance & Accounting, 46(3–4), 265–306.

lliott, J., & Löfgren, Å. (2022). If money talks, what is the banking industry saying
about climate change? Climate Policy, 1–11.

uropean Commission (2018). Action plan: Financing sustainable growth. https://eur-
lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52018DC0097.

uropean Parliament (2020). Regulation EU 2020/852 of the European parliament and
of the council of 18 june 2020 on the establishment of a framework to facilitate
sustainable investment, and amending regulation (EU) 2019/2088. Available at
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:32020R0852.

oodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press.
upta, A., Dengre, V., Kheruwala, H. A., & Shah, M. (2020). Comprehensive review of

text-mining applications in finance. Financial Innovation, 6(1), 1–25.
ururangan, S., Marasović, A., Swayamdipta, S., Lo, K., Beltagy, I., Downey, D., et al.

(2020). Don’t stop pretraining: adapt language models to domains and tasks. arXiv
preprint arXiv:2004.10964.

arris, Z. S. (1954). Distributional structure. Word, 10(2–3), 146–162.
ilal, W., Gadsden, S. A., & Yawney, J. (2022). Financial fraud: a review of anomaly

detection techniques and recent advances. Expert Systems with Applications, 193,
Article 116429.

oward, J., & Ruder, S. (2018). Universal language model fine-tuning for text
classification. arXiv preprint arXiv:1801.06146.

elinek, F., Lafferty, J. D., & Mercer, R. L. (1992). Basic methods of probabilistic context
free grammars. Springer.

hurana, D., Koli, A., Khatter, K., & Singh, S. (2023). Natural language processing:
State of the art, current trends and challenges. Multimedia Tools and Applications,
82(3), 3713–3744.

oroteev, M. (2021). BERT: a review of applications in natural language processing
and understanding. arXiv preprint arXiv:2103.11943.
12
amperti, F., Bosetti, V., Roventini, A., & Tavoni, M. (2019). The public costs of
climate-induced financial instability. Nature Climate Change, 9(11), 829–833.

ewis, C., & Young, S. (2019). Fad or future? Automated analysis of financial text and
its implications for corporate reporting. Accounting and Business Research, 49(5),
587–615.

iu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., et al. (2019a). Roberta: A
robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692.

iu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., et al. (2019b). Roberta: A robustly
optimized BERT pretraining approach. CoRR abs/1907.11692. arXiv:1907.11692.
URL http://arxiv.org/abs/1907.11692.

eimers, N., & Gurevych, I. (2019). Sentence-bert: Sentence embeddings using siamese
bert-networks. arXiv preprint arXiv:1908.10084.

ish, I., et al. (2001). An empirical study of the naive Bayes classifier. In IJCAI 2001
workshop on empirical methods in artificial intelligence, Vol. 3 (pp. 41–46).

akshi, & Kukreja, V. (2023). Recent trends in mathematical expressions recognition:
An LDA-based analysis. Expert Systems with Applications, 213, Article 119028.

anh, V., Debut, L., Chaumond, J., & Wolf, T. (2019a). Distilbert, a distilled version of
BERT: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108.

anh, V., Debut, L., Chaumond, J., & Wolf, T. (2019b). Distilbert, a distilled version of
BERT: smaller, faster, cheaper and lighter. arXiv arXiv:1910.01108.

hao, Z., Zhao, R., Yuan, S., Ding, M., & Wang, Y. (2022). Tracing the evolution of
AI in the past decade and forecasting the emerging trends. Expert Systems with
Applications, 209, Article 118221.

trubell, E., Ganesh, A., & McCallum, A. (2019). Energy and policy considerations
for deep learning in NLP. In Proceedings of the 57th annual meeting of the
association for computational linguistics (pp. 3645–3650). Florence, Italy: Association
for Computational Linguistics.

askforce on Climate-related Financial Disclosures (2017). Final report - recommen-
dations of the task force on climate-related financial disclosures. Available at
https://assets.bbhub.io/company/sites/60/2021/10/FINAL-2017-TCFD-Report.pdf.

aswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., et al.
(2017). Attention is all you need. Advances in Neural Information Processing Systems,
30.

ebersinke, N., Kraus, M., Bingler, J. A., & Leippold, M. (2021). Climatebert: A
pretrained language model for climate-related text. arXiv preprint arXiv:2110.
12010.

olf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., et al. (2020). Trans-
formers: State-of-the-art natural language processing. In Proceedings of the 2020
conference on empirical methods in natural language processing: system demonstrations
(pp. 38–45).

u, D., & Tian, Y. (2015). A comprehensive survey of clustering algorithms. Annals of
Data Science, 2, 165–193.

hang, Y., Jin, R., & Zhou, Z.-H. (2010). Understanding bag-of-words model: a statistical
framework. International Journal of Machine Learning and Cybernetics, 1, 43–52.

hou, C., Li, Q., Li, C., Yu, J., Liu, Y., Wang, G., et al. (2023). A comprehensive survey
on pretrained foundation models: A history from bert to chatgpt. arXiv preprint
arXiv:2302.09419.

http://refhub.elsevier.com/S0957-4174(23)02664-7/sb7
http://refhub.elsevier.com/S0957-4174(23)02664-7/sb7
http://refhub.elsevier.com/S0957-4174(23)02664-7/sb7
http://refhub.elsevier.com/S0957-4174(23)02664-7/sb7
http://refhub.elsevier.com/S0957-4174(23)02664-7/sb7
http://refhub.elsevier.com/S0957-4174(23)02664-7/sb8
http://refhub.elsevier.com/S0957-4174(23)02664-7/sb8
http://refhub.elsevier.com/S0957-4174(23)02664-7/sb8
http://refhub.elsevier.com/S0957-4174(23)02664-7/sb8
http://refhub.elsevier.com/S0957-4174(23)02664-7/sb8
https://www.climatebonds.net/market/explaining-green-bonds
https://www.climatebonds.net/market/explaining-green-bonds
https://www.climatebonds.net/market/explaining-green-bonds
http://refhub.elsevier.com/S0957-4174(23)02664-7/sb10
http://refhub.elsevier.com/S0957-4174(23)02664-7/sb10
http://refhub.elsevier.com/S0957-4174(23)02664-7/sb10
http://refhub.elsevier.com/S0957-4174(23)02664-7/sb10
http://refhub.elsevier.com/S0957-4174(23)02664-7/sb10
http://refhub.elsevier.com/S0957-4174(23)02664-7/sb11
http://refhub.elsevier.com/S0957-4174(23)02664-7/sb11
http://refhub.elsevier.com/S0957-4174(23)02664-7/sb11
http://refhub.elsevier.com/S0957-4174(23)02664-7/sb12
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://refhub.elsevier.com/S0957-4174(23)02664-7/sb14
http://refhub.elsevier.com/S0957-4174(23)02664-7/sb14
http://refhub.elsevier.com/S0957-4174(23)02664-7/sb14
http://refhub.elsevier.com/S0957-4174(23)02664-7/sb14
http://refhub.elsevier.com/S0957-4174(23)02664-7/sb14
http://refhub.elsevier.com/S0957-4174(23)02664-7/sb15
http://refhub.elsevier.com/S0957-4174(23)02664-7/sb15
http://refhub.elsevier.com/S0957-4174(23)02664-7/sb15
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52018DC0097
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52018DC0097
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52018DC0097
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:32020R0852
http://refhub.elsevier.com/S0957-4174(23)02664-7/sb18
http://refhub.elsevier.com/S0957-4174(23)02664-7/sb19
http://refhub.elsevier.com/S0957-4174(23)02664-7/sb19
http://refhub.elsevier.com/S0957-4174(23)02664-7/sb19
http://arxiv.org/abs/2004.10964
http://refhub.elsevier.com/S0957-4174(23)02664-7/sb21
http://refhub.elsevier.com/S0957-4174(23)02664-7/sb22
http://refhub.elsevier.com/S0957-4174(23)02664-7/sb22
http://refhub.elsevier.com/S0957-4174(23)02664-7/sb22
http://refhub.elsevier.com/S0957-4174(23)02664-7/sb22
http://refhub.elsevier.com/S0957-4174(23)02664-7/sb22
http://arxiv.org/abs/1801.06146
http://refhub.elsevier.com/S0957-4174(23)02664-7/sb24
http://refhub.elsevier.com/S0957-4174(23)02664-7/sb24
http://refhub.elsevier.com/S0957-4174(23)02664-7/sb24
http://refhub.elsevier.com/S0957-4174(23)02664-7/sb25
http://refhub.elsevier.com/S0957-4174(23)02664-7/sb25
http://refhub.elsevier.com/S0957-4174(23)02664-7/sb25
http://refhub.elsevier.com/S0957-4174(23)02664-7/sb25
http://refhub.elsevier.com/S0957-4174(23)02664-7/sb25
http://arxiv.org/abs/2103.11943
http://refhub.elsevier.com/S0957-4174(23)02664-7/sb27
http://refhub.elsevier.com/S0957-4174(23)02664-7/sb27
http://refhub.elsevier.com/S0957-4174(23)02664-7/sb27
http://refhub.elsevier.com/S0957-4174(23)02664-7/sb28
http://refhub.elsevier.com/S0957-4174(23)02664-7/sb28
http://refhub.elsevier.com/S0957-4174(23)02664-7/sb28
http://refhub.elsevier.com/S0957-4174(23)02664-7/sb28
http://refhub.elsevier.com/S0957-4174(23)02664-7/sb28
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1908.10084
http://refhub.elsevier.com/S0957-4174(23)02664-7/sb32
http://refhub.elsevier.com/S0957-4174(23)02664-7/sb32
http://refhub.elsevier.com/S0957-4174(23)02664-7/sb32
http://refhub.elsevier.com/S0957-4174(23)02664-7/sb33
http://refhub.elsevier.com/S0957-4174(23)02664-7/sb33
http://refhub.elsevier.com/S0957-4174(23)02664-7/sb33
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108
http://refhub.elsevier.com/S0957-4174(23)02664-7/sb36
http://refhub.elsevier.com/S0957-4174(23)02664-7/sb36
http://refhub.elsevier.com/S0957-4174(23)02664-7/sb36
http://refhub.elsevier.com/S0957-4174(23)02664-7/sb36
http://refhub.elsevier.com/S0957-4174(23)02664-7/sb36
http://refhub.elsevier.com/S0957-4174(23)02664-7/sb37
http://refhub.elsevier.com/S0957-4174(23)02664-7/sb37
http://refhub.elsevier.com/S0957-4174(23)02664-7/sb37
http://refhub.elsevier.com/S0957-4174(23)02664-7/sb37
http://refhub.elsevier.com/S0957-4174(23)02664-7/sb37
http://refhub.elsevier.com/S0957-4174(23)02664-7/sb37
http://refhub.elsevier.com/S0957-4174(23)02664-7/sb37
https://assets.bbhub.io/company/sites/60/2021/10/FINAL-2017-TCFD-Report.pdf
http://refhub.elsevier.com/S0957-4174(23)02664-7/sb39
http://refhub.elsevier.com/S0957-4174(23)02664-7/sb39
http://refhub.elsevier.com/S0957-4174(23)02664-7/sb39
http://refhub.elsevier.com/S0957-4174(23)02664-7/sb39
http://refhub.elsevier.com/S0957-4174(23)02664-7/sb39
http://arxiv.org/abs/2110.12010
http://arxiv.org/abs/2110.12010
http://arxiv.org/abs/2110.12010
http://refhub.elsevier.com/S0957-4174(23)02664-7/sb41
http://refhub.elsevier.com/S0957-4174(23)02664-7/sb41
http://refhub.elsevier.com/S0957-4174(23)02664-7/sb41
http://refhub.elsevier.com/S0957-4174(23)02664-7/sb41
http://refhub.elsevier.com/S0957-4174(23)02664-7/sb41
http://refhub.elsevier.com/S0957-4174(23)02664-7/sb41
http://refhub.elsevier.com/S0957-4174(23)02664-7/sb41
http://refhub.elsevier.com/S0957-4174(23)02664-7/sb42
http://refhub.elsevier.com/S0957-4174(23)02664-7/sb42
http://refhub.elsevier.com/S0957-4174(23)02664-7/sb42
http://refhub.elsevier.com/S0957-4174(23)02664-7/sb43
http://refhub.elsevier.com/S0957-4174(23)02664-7/sb43
http://refhub.elsevier.com/S0957-4174(23)02664-7/sb43
http://arxiv.org/abs/2302.09419

	climateBUG [ctr=0]eswa122162-sfx1: A data-driven framework for analyzing bank reporting through a climate lens
	Introduction
	The climateBUG framework
	System overview
	Ingestion pipeline
	Step 1: data ingestion
	Step 2: statistics ingestion

	climateBUG-DB
	climateBUG-API

	climateBUG-Data
	Corpus
	Data annotation guidelines and manual process
	Ensemble learning and automated annotation strategy
	Evaluation of climateBUG-Data
	Semi-automated annotation strategy


	climateBUG-LM
	Vocabulary expansion
	Masked-language model
	Downstream classification model
	Evaluation of climateBUG-LM

	Application of the climateBUG
	Expert-driven keywords
	Clustering as a partitioning strategy
	Step-by-step instruction for using climateBUG for more tailored analysis

	Concluding Remarks
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix A. climateBUG-API Functions
	Appendix B. Annotation guidelines
	Appendix C. Supplementary data
	References


