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Renormalization-Group Invariant Formulation of Chiral Effective Field Theory
Applied to the Nucleon-Nucleon System
Oliver Thim
Department of Physics
Chalmers University of Technology

Abstract
Chiral effective field theory (χEFT) promises a systematically improvable de-
scription of the strong interaction between nucleons consistent with the symme-
tries of quantum chromodynamics (QCD). A sound power counting (PC) scheme
is vital to organize the order-by-order contributions of interaction diagrams to
nuclear observables in compliance with renormalization-group (RG) invariance.
Numerical values of the low-energy constants (LECs), governing the strengths
of pion-nucleon and nucleon-contact diagrams, must be inferred from data and
vary with the high-momentum cutoff to remove any dependence on the arbitrary
regularization procedure. To date, most χEFT predictions of nuclear systems
rely on a PC introduced in the 1990s that does not comply with RG-invariance.
One can argue that the lacking RG-invariance makes the connection with QCD
muddled and that predictive power is lost. I have developed Bayesian methods
for inferring the probability distributions for the numerical values of the LECs
at leading order in a recent and RG-invariant PC by Long and Yang. I find
that conditioning the inference on neutron-proton (np) scattering observables,
rather than scattering phase shifts as is typically done, significantly impacts the
results. Furthermore, I use distorted-wave perturbation theory to compute pre-
dictions for low-energy np scattering observables up to the fourth chiral order
in this PC using point estimates for the LECs. I find a clear order-by-order im-
provement in the theoretical description of experimental scattering data. This
work is an important step towards enabling a Bayesian analysis of low-energy
nuclear observables with the aim of assessing whether χEFT, formulated using
an RG-invariant PC, accurately predicts the physics of atomic nuclei.
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Chapter 1

Introduction

Nuclear physics research strives to describe the inner workings of atomic nuclei
and their interactions with other nuclei, matter, and fields. A good understand-
ing of nuclei and their properties plays an important role in the basic as well as
applied sciences, e.g., astrophysics, particle physics, and medical physics. This
thesis work focuses on the fundamental theoretical description of the strong
nuclear interaction, which is responsible for the binding of constituent protons
and neutrons in finite nuclei and nuclear matter.

A quantum system of neutrons and protons, collectively referred to as nucle-
ons, is believed to be governed by the time-independent many-body Schrödinger
equation

H |Ψ⟩ = E |Ψ⟩ , (1.1)

where |Ψ⟩ denotes a quantum state with energy E, and H = T + V is the
Hamiltonian operator consisting of the kinetic energy operator (T ) and potential
energy operator (V ). To obtain |Ψ⟩, one needs two things; a model for V ,
describing the nuclear interaction, and a method for solving Eq. (1.1). This
thesis will mainly focus on the former. For this purpose, Eq. (1.1) will mainly be
solved for neutron-proton (np) scattering states (E > 0), where the Schrödinger
equation can be cast into an equivalent form, called the Lippmann-Schwinger
(LS) equation.

Before delving into the details, we will first take a step back and look at
how the nuclear interaction has been modeled historically, and what ideas have
led up to the present descriptions. Modeling of the atomic nucleus started with
its discovery by Rutherford in 1911 [1]. Following Chadwick’s discovery of the
neutron in 1932 [2], it was suggested that both the proton and the neutron were
fundamental constituents of nuclei. The coexistence of neutrons and electrically
charged protons in the nucleus prompted the compelling assumption that an
attractive force must act between them — the nuclear force.

From known binding energies of a variety of nuclei, Wigner [3] inferred that
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Introduction

the nuclear force must be of short range, and relatively strong within that
range, which gave the nuclear force its other name: the strong force. In 1935,
Yukawa [4] proposed that a new elementary particle could be responsible for
the strong interaction. This particle was suggested to have a mass somewhere
in between that of the electron and the proton. Since 1947 we have known
this proposed particle as the pion (π), which indeed plays an important role in
modeling the nuclear force.

It was soon understood that the nuclear force carried a complicated struc-
ture compared to the other known forces at the time. Building on the ideas of
Yukawa, meson-exchange models were created and rather successfully applied
to model the nuclear force. In these models, the nuclear force is characterized
by the exchange of pions, as well as heavier mesons with varying spin and parity
properties, thus imparting unique force characteristics. Following the progress
in nucleon-nucleon (NN) scattering experiments and the development of effec-
tive range theory [5] in the 1940’s, more could be learned about the structure
of the nuclear force. Despite the success of the meson-exchange models, there
was still a lack of solid theoretical justification for the zoo of different mesons;
for a more complete historical review see, e.g., Ref. [6].

The theoretical understanding of the origin of the nuclear force brightened
in the 60’s and 70’s with the formation of quantum chromodynamics (QCD) [7],
in which both nucleons and mesons are predicted and described as composite
particles consisting of quarks. Following the discovery of QCD, the task of
understanding how the strong force among the composite particles emerges from
the strong interaction between quarks started. This turned out to be challenging
since QCD is highly non-perturbative in the low-energy regime where nuclear
physics resides.

A breakthrough came when Weinberg [8] applied the ideas of effective field
theory (EFT) to low-energy QCD with the aim of modeling the nuclear force.
Even though the underlying theory, QCD, consists of quarks and gluons, the
effective theory is formulated in terms of the effective degrees of freedom — in
this case nucleons and pions. As dictated by the so-called folk theorem [8], the
dynamics of the effective degrees of freedom (nucleons and pions) is described by
the most general effective Lagrangian consistent with the underlying symmetries
of QCD. Besides the spacetime symmetries, the approximate chiral symmetry
of low-energy QCD plays an important role in constraining the pion-nucleon
interaction, since the pion can be described as a pseudo Nambu-Goldstone boson
of this spontaneously broken chiral symmetry [9].

The effective Lagrangian contains an infinite number of pion-pion, pion-
nucleon, and nucleon-contact interaction terms [10]. To truncate the Lagrangian
in a meaningful way, and only consider the most important terms, some principle
is needed to assess their relative importance. This kind of organizational prin-
ciple is known as power counting (PC). Since the EFT is a low-energy effective
description of QCD, it is expected to be accurate below a certain momentum
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scale, called the breakdown scale (Λb), whose exact value is unknown a priori.
The breakdown scale can however be estimated to be of the order where ne-
glected explicit degrees of freedom become important, such as heavier mesons,
e.g. ρ(770).

Using a PC scheme, a chiral order (ν) can be assigned to each Feynman
diagram emerging from the effective Lagrangian. The chiral order describes the
scaling of the given diagram as (Q/Λb)ν , where Q denotes the relevant low-
energy scale, which in the case of NN scattering could be the center of mass
(c.m.) external momenta, and the pion mass. The orders ν = 0, 1, 2, ... will also
be denoted as leading order (LO), next-to-leading order (NLO), next-to-next-to-
leading order (N2LO) and so on. Crucial to the success of the EFT framework is
that the relevant low-energy scales are much smaller than the breakdown scale
Λb, which means that only relatively low-energy phenomena are expected to be
accurately captured by the EFT.

Following Weinberg’s EFT idea, Gasser et al. [11, 12] worked out pion-pion
(ππ) and pion-nucleon (πN) scattering in perturbation theory to one loop. This
EFT, including at most one nucleon, is referred to as chiral perturbation theory
(χPT). In the past decades, χPT has seen great success, see, e.g., Ref. [13].

In the multi-nucleon sector, where the EFT is referred to as chiral effective
field theory (χEFT), the theoretical description turns out to be more challenging
since a non-perturbative treatment is required due to the existence of nuclear
bound states. In a series of papers [14–16], Weinberg proposed calculating nu-
clear amplitudes by first deriving NN potentials perturbatively from the chiral
Lagrangian using χPT followed by inserting the potentials in the Schrödinger or
LS equation. This canonical approach is referred to as Weinberg power counting
(WPC), and will be discussed in Chapter 2.

It is interesting to conclude that more than half a century after the proposal
by Yukawa, the pion is reborn as an effective degree of freedom emerging as a
pseudo Nambu-Goldstone boson of the spontaneously broken chiral symmetry
of low-energy QCD. Although simple, the pion-exchange process is a central
part of the nuclear force and will be discussed in much detail in this thesis.

Using WPC, Ordonez et al. [17–19] derived NN potentials up to order ν = 3
in time-ordered perturbation theory in the early 90’s. With those works, the
era of constructing quantitative nuclear forces from χEFT began. Kaiser et
al. [20–24] applied covariant perturbation theory and dimensional regularization
to study perturbative NN amplitudes up to ν = 3, as well as working out loop
contributions of high orders. Epelbaum et al. [25–27] constructed potentials
with the method of unitary transformations up to ν = 4, which eliminated
the scattering energy dependence of the potentials. Furthermore, Epelbaum et
al. [28] also computed three-nucleon forces, which arise naturally. The natural
description of many-nucleon forces is one of the great strengths of χEFT. In
2003, Entem et al. constructed potentials up to ν = 4 [29] and demonstrated that
one can achieve sufficient precision for describing NN scattering and nuclear
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structure at this order.
Although χEFT provides strong constraints on the possible interaction terms

through symmetries, the strength of the interaction terms is parametrized by
so-called low-energy constants (LECs) whose values are a priori undetermined.
Calibration of the LECs can, for example, be performed by minimizing some χ2

measure using experimental NN scattering phase shifts or observables [29, 30].
A significant advantage of working with an EFT model is that the theoretical
(or model) error emerges naturally in the description and can be quantified via
the (Q/Λb)ν expansion. An early attempt to utilize this was made by Carlsson
et al. [31] where an estimated EFT model error, as well as bound state (E < 0)
observables, were used in the calibration of LECs.

In later years, Bayesian inference methods have been employed for the cali-
bration of WPC interactions with the benefit of systematically quantifying both
the experimental and EFT model errors [32–40]. The Bayesian framework is
ideal for properly including prior assumptions as well as for offering a proba-
bilistic interpretation of uncertainties in the LECs and predicted observables.
Assessing both experimental and model errors and their impact on the result-
ing theoretical predictions is a crucial element for enabling precision studies of
nuclear observables.

To date, WPC is the dominating approach to construct NN forces, and it has
been used to construct χEFT NN interactions up to ν = 5 [41, 42]. Combining
the chiral forces with methods to solve the Schrödinger equation, such as the
no-core shell model [43] or coupled cluster theory [44], has enabled the study of
nuclei from an ab initio perspective during the last decades [45–47]. In recent
years, ab initio computations have advanced to encompass increasingly heavier
systems, including the nuclei 48Ca, 132Sn, and 208Pb [48–50]. In particular,
the neutron skin thickness of heavy nuclei is linked to the structure and size of
neutron stars via the neutron-matter equation of state [51–53]. This means that
ab initio predictions can connect multimessenger astrophysical information with
the EFT description of the nuclear force [50, 54], which in turn connect to QCD
and the Standard Model. Beyond the study of nuclear properties, precision
ab initio studies of nuclear physics can also be applied to study fundamental
symmetries and physics beyond the Standard Model. One example is the study
of the unitarity of the Cabibbo-Kobayashi-Maskawa quark mixing matrix, which
requires electroweak radiative corrections from nuclear theory [55, 56]. Another
is the study of neutrinoless double beta decay (0νββ). This is a hypothetical
radioactive process that, if observed, would be a first signal of lepton number
violation and would prove that the neutrino is a Majorana fermion and its own
antiparticle [57, 58].

A cornerstone in theoretical ab initio studies is the modeling of the nuclear
interaction, and doing so in a statistically sound manner by the inclusion of
quantified uncertainties. It is here my work enters. To date, the dominating
PC used to construct nuclear interactions and study the above questions is
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WPC. Although quite successful, theoretical investigations of WPC — already
several decades ago — indicated that WPC did not provide amplitudes that
are renormalized order by order [59], which was later confirmed by numerical
studies [60, 61]. What this means is that the physical predictions acquire a
dependence on the specific regularization procedure used to separate short- and
long-range physics in the process of renormalization. Renormalization group
(RG) invariance is the requirement that physical predictions at each order in
the EFT are independent of the arbitrary regularization procedure. It can be
argued that the lack of RG invariance in WPC leads to the connection with
QCD becoming muddled, and predictive power being reduced.

Using lessons from a simpler nuclear EFT, including only nucleons, Kaplan
et al. [62, 63] proposed a PC for χEFT where pions are added in perturbation
theory, which would remove the renormalization problems in χEFT. Unfor-
tunately, this scheme did not improve the range of convergence in momenta
beyond what was achievable in an EFT completely without pions [64].

The origin of the renormalization problems in χEFT can be traced to the
fact that the emerging potentials are singular [65, 66]. Singular potentials can
still produce RG-invariant amplitudes provided that divergence absorbing coun-
terterms are included [60]. But, the addition of counterterms in the infinitely
many partial waves where the potential is singular would introduce an infi-
nite number of LECs, and ruin the predictive power. Fortunately, since the
centrifugal barrier weakens the singular potential for high angular momentum,
new counterterms are only needed in a few partial waves, namely those with
angular momentum quantum number ℓ < ℓc, for ℓc ≈ 2 [67, 68]. Potentials be-
yond LO are in general increasingly singular. However, Long and van Kolck [69]
have shown that no additional counterterms need to be added beyond the ones
already present, as long as sub-leading potential corrections are treated in per-
turbation theory.

Based on these findings, several modifications of WPC have been proposed
and studied [61, 68, 70–78]. Good overviews are contained in Refs. [79, 80].
A proposal dating back to 2005 [60] is to modify the PC by Kaplan et al. and
treat pions perturbatively only in partial waves with ℓ ≥ ℓc. The argument is
that the interaction is sufficiently strong in the first few partial waves to require
a non-perturbative treatment.

The approach of including pions partly perturbatively was further developed
by Long and Yang in Refs. [75–77]. They analyzed partial wave amplitudes in
detail to determine at which order certain counterterms with associated LECs
should appear to retain RG invariance at each order. In their study, they com-
puted np scattering phase shifts up to N2LO, and N3LO in selected channels,
finding a satisfactory description of empirical phase shifts [81]. In the light of
this new PC proposal, the perturbative investigations of NN scattering initial-
ized in Ref. [68] was further explored in Refs. [67, 82] to include higher-order
NN potentials from χEFT.
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The PC proposed by Long and Yang is in this thesis referred to as mod-
ified Weinberg power counting (MWPC) and will be outlined in Section 2.2.
This PC has to date only been used to study a few selected nuclear observ-
ables. In Ref. [83], nuclear ground state energies for 3H, 3,4He, 6Li and 16O
were studied up to NLO. The resulting binding rendered 16O prone to decay
to four α-particles, and 6Li to an α-particle plus a deuteron. The apparent
failure can be due to many factors, including a lack of many-nucleon forces and
insufficient pion exchanges at LO. Another possible culprit proposed in Ref. [83]
is that fine-tuning in the nuclear interaction requires more careful calibration
of the LECs. Yang et al. [83] renormalized the LECs by demanding the exact
reproduction of selected phase shifts at single scattering energies, which might
induce overfitting in the interactions sufficient to produce unphysical results for
the studied observables.

The possibility of realistically describing nuclear properties in a PC other
than WPC is to date an open problem. This thesis aims to take the first steps to
construct interactions with quantified uncertainties using the MWPC developed
by Long and Yang. Constructing nuclear interactions with quantified LEC-
uncertainties using a PC that complies with RG-invariance is not yet explored
and, if done successfully, would provide an entirely new avenue of analyzing
properties of finite nuclei and nuclear matter.

The key questions regarding MWPC that will be addressed in this thesis
can be summarized as follows:

1. How to infer/calibrate the unknown LECs from data?

2. How to build an accurate model for the EFT truncation error, and how
to test it?

3. How well can np scattering observables be described?

4. How can the order-by-order convergence be used to learn about the per-
turbativeness of the χEFT expansion?

Specifically, this thesis will address questions (1) and (2) in Paper I, and (3)
and (4) in Paper II. Another important question is how to efficiently compute
bound-state observables to sufficiently high orders in perturbation theory. This
question and further developments are left for future work. The thesis is or-
ganized as follows. Chapter 2 contains a more detailed introduction to χEFT,
WPC and MWPC to motivate and understand the potentials and calculations
performed in this thesis. Chapter 3 discusses how to compute NN scattering
observables in MWPC and presents some key results from the appended Papers
I and II. In Chapter 4, the findings and conclusions of this thesis are summarized
and future directions of studies are discussed.
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Chapter 2

Power Counting in Chiral
Effective Field Theory

To describe a nuclear system using the Schrödinger equation (1.1), an interac-
tion potential modeling the strong force is the crucial input. In this chapter,
we will discuss how to construct NN potentials in χEFT using appropriate PC
schemes. The goal is to motivate the use of the specific MWPC scheme proposed
in Refs. [69, 75–77, 79], in which the predicted amplitudes are RG-invariant.
Natural units in which ℏ = c = 1 will be used in this chapter and throughout
the thesis.

2.1 Chiral Effective Field Theory
Quantum chromodynamics (QCD) is to date the most fundamental theory de-
scribing the strong interaction in the Standard Model of particle physics. One
remarkable property of QCD is that the strong interaction weakens at high
energy scales which enables the use of perturbation theory. This is known as
asymptotic freedom [84]. On the contrary, the interaction becomes stronger
and highly non-perturbative in the low-energy regime of QCD (∼ MeV) rele-
vant to nuclear physics. One way to tackle the non-perturbative problem at
low energies is Lattice QCD, which is a numerical approach to solve the full
equations of QCD on an Euclidean space-time lattice [85]. While some success
is seen, see e.g. Refs. [86, 87], the vast numerical complexity of this method
makes large simulations exceedingly challenging and insofar does not present an
operational approach to analyze atomic nuclei. Another approach to handle the
non-perturbativeness is provided by χEFT, which utilizes an effective (approx-
imate) description of low-energy QCD in terms of more appropriate/effective
degrees of freedom trading the quarks and gluons for interacting nucleons and
pions. The power of this approximate approach is that it is consistent with
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the symmetries of low-energy QCD, systematically improvable and, most im-
portantly, it enables numerical studies of atomic nuclei [50].

An analogy
The EFT paradigm rests on the physical principle that fine details of high-
energy physics should not impact low-energy observables. This principle is as
old as physics itself since it implicitly has been used throughout history to
model physics phenomena without knowing the details of underlying processes
at higher-energy scales. The goal of an EFT is therefore to capture the most
general dynamics among low-energy degrees of freedom that are consistent with
the assumed symmetries of the underlying interaction.

As an example, Fermi’s theory of weak interactions [88] can be seen as an
EFT of the Standard Model below the mass of the W (mW ≈ 80 GeV) and
Z (mZ ≈ 91 GeV) bosons. The Standard Model amplitude describing β-decay
involves an exchange of a W -boson. In β-decay, typical momentum transfers
are limited to a few tens of MeV, and hence much less than mW [89]. This
small momentum transfer means that the exchanged W -boson must be highly
virtual and thus short-lived. A short lifetime will make the interaction local
within a first approximation with corrections of order O(q2/m2

W ) where q is
the momentum transfer. One advantage of viewing this theory as an EFT is
that the impact of corrections from the Standard Model can be systematically
computed; another is that the theoretical error, compared to the Standard
Model amplitude, can be estimated since we know that the dominant neglected
terms should scale as O(q2/m2

W ).

The power of χEFT
Chiral symmetry is an important feature of low-energy QCD that can be used to
constrain pion-pion and pion-nucleon interactions. This symmetry is not exact,
but in fact broken both spontaneously and explicitly. Spontaneous symmetry
breaking is known to give rise to massless Nambu-Goldstone bosons. The three
pions (π+, π−, π0) can be identified as the pseudo Nambu-Goldstone bosons of
the spontaneously broken chiral symmetry. They are not exactly massless as
a result of the accompanying explicit symmetry breaking due to the non-zero
quark masses. Formulating an effective theory of interacting nucleons and pions
as the only degrees of freedom neglects, for example, known heavier mesons such
as the ρ meson (mρ ∼ 770 MeV) and nucleon excitations such as the ∆(1232).
As a result, χEFT is only expected to be accurate for momenta where the
effects of neglected degrees of freedom can be represented as point-like. This
is the fundamental reason for the existence of a breakdown scale, Λb, beyond
which the predictive power of the χEFT vanishes.
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Figure 2.1: Illustration of momentum regimes where QCD and χEFT are per-
turbative. The blue line shows the approximate running of the strong coupling,
αs, revealing the asymptotic freedom [90]. The χEFT expansion parameter,
(Q/Λb), shown in green is, on the contrary, small in the low-energy regime rel-
evant to nuclear physics. Here, Λb = 600 in accordance with a recent analysis
[35].

Shifting to effective degrees of freedom and utilizing the approximate chi-
ral symmetry in constructing an effective pion-nucleon Lagrangian, low-energy
processes involving nucleons and pions can be described in a systematically
improvable framework. Such an approach is expected to be accurate at low
energies where the low-energy scales Q ∼ p, mπ are much smaller than Λb.
Here, p denotes the modulus of the external momentum in the c.m. frame and
mπ ≈ 138 MeV is the average pion mass. This is in complete analogy to the
example of Fermi’s theory.

The power of describing the low-energy regime of QCD in terms of χEFT is
illustrated in Fig. 2.1. The strong coupling constant, αs, governs where QCD
can be treated perturbatively, namely when αs ≪ 1, which is fulfilled in the high
energy regime p ≳ 1 GeV. This regime is relevant in, for example, high-energy
accelerator experiments probing the inner quark-structure of hadrons [90]. On
the contrary, χEFT is expanded in powers of (Q/Λb)ν , where ν denote the chiral
order, and a systematic perturbative treatment is possible in the low-energy (∼
MeV) regime relevant to nuclear physics. The major advantages of using χEFT
to describe nuclear forces are:
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Power Counting in Chiral Effective Field Theory

1. χEFT provides a framework for deriving a low-energy theory that is rooted
in the underlying theory of QCD through symmetries.

2. χEFT provides a systematically improvable description of low-energy ob-
servables where the model error can be quantified.

3. Many-nucleon interactions and currents, important for describing heavier
nuclei and decays, can consistently be derived within χEFT.

In this work, we will only study two-nucleon processes while many-nucleon
forces and currents will not be considered. Next, we will delve into how NN
potentials are constructed in χEFT by using PC to order contributions. In the
next section, we will start to describe WPC.

Weinberg PC and infrared enhancement
To construct an EFT consistent with the underlying theory one has to write
down the most general Lagrangian for the considered degrees of freedom re-
specting the relevant symmetries. Using this principle, the infinite set of La-
grangian terms for χEFT can be derived using the non-linear realization of the
spontaneously broken chiral symmetry of low-energy QCD along with relevant
space-time symmetries [8]. The effective Lagrangian in the two-nucleon sector
can be divided into pion-pion (ππ), pion-nucleon (πN), and nucleon-nucleon
(NN) parts as

Leff = Lππ + LπN + LNN . (2.1)

Each of these terms can be expanded in the power of low-energy scales (Qν)
appearing [91]

Lππ = L(2)
ππ + L(4)

ππ + . . . (2.2)

LπN = L(1)
πN + L(2)

πN + L(3)
πN + . . . (2.3)

LNN = L(0)
NN + L(2)

NN + L(4)
NN + . . . , (2.4)

where the upper index denotes ν. The fact that it is possible to do this expansion
gives an effective theory that is predictive for low energies (Q/Λb < 1) since only
a finite number of terms will contribute up to a given order ν. To describe non-
relativistic systems, it is sufficient to have a non-relativistic expansion of the
effective Lagrangian which simplifies the calculations [91]. A common way to
compute the non-relativistic expansion is to apply the so-called heavy-baryon
formalism, in which nucleons are treated as heavy static sources [92, 93].

Quantum mechanical interaction potentials can be constructed by consider-
ing two-nucleon scattering in the c.m. frame described by Leff . The kinematics
of two-nucleon scattering is illustrated in Fig. 2.2 in the laboratory and c.m.
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Tlab
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p −p

p′

−p′
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Figure 2.2: Illustration of np scattering see in the laboratory frame (a) and c.m.
frame (b). Tlab denotes the laboratory scattering energy and p (p′) the ingoing
(outgoing) scattering momentum in the c.m. frame.

frames respectively. Two-nucleon scattering states can be described in the c.m.
frame by the momentum basis states

|p, s, ms, t, mt⟩ , (2.5)

where p denotes the two-nucleon c.m. momentum. The quantum numbers of
NN isospin (T ), angular momentum (L) and spin (S) are denoted t, ℓ and s
respectively. The NN spin and isospin projections are denoted ms and mt. In
this thesis, the following normalization is employed

⟨p′, s′, m′
s, t′, m′

t|p, s, ms, t, mt⟩ = (2π)3
δ3 (p′ − p) δs′sδm′

sms
δt′tδm′

tmt
. (2.6)

In the case of np scattering, mt = 0 and t = 0, 1 are possible. The Pauli
principle constrains the quantum numbers, ℓ, s, and t to obey (−1)ℓ+s+t =
−1, which means that t is implicitly given by ℓ and s and can be dropped
from the notation. Antisymmetric np partial-wave states are characterized by
|p, ℓ, s, j⟩ where p = |p| and j is the quantum number associated with the total
angular momentum operator, J = L + S. Spectroscopic notation 2s+1ℓj , where
ℓ = 0, 1, 2, 3, . . . is denoted S, P, D, F, . . . will be used to identify partial waves.
An np scattering channel is characterized by the conserved quantum numbers
s, j and Π = (−1)ℓ. If ℓ (ℓ′) denotes the angular momentum in the ingoing
(outgoing) state, then channels where ℓ′ = ℓ are referred to as uncoupled, and
channels where ℓ′ = j ± 1 and ℓ = j ± 1 are referred to as coupled.

Feynman diagrams and associated Feynman rules contributing to np scatter-
ing can be derived using Leff [14]. The chiral dimension, ν, of a given Feynman
diagram can be calculated by counting the power of low energy scales appearing
in the expression. It is given by

ν = 4L − 2Iπ − IN +
∑

i

diVi, (2.7)
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(a) (b)

Figure 2.3: Feynman diagrams of order ν = 0; contact interaction (a), and
one-pion exchange (b). Solid lines represent nucleons and dashed lines pions.

where L is the number of loops, Iπ (IN ) is the number of pion (nucleon) prop-
agators and di is the number of derivatives/pion masses for vertex type i, and
Vi is the number of vertices of type i. The PC resulting from Eq. (2.7) is some-
times referred to as naive dimensional analysis (NDA). Examples of diagrams
with ν = 0 (ν = 2) are shown in Fig. 2.3 (Fig. 2.4).

The Lagrangians L(0)
NN and L(2)

NN consist of purely nucleon-nucleon interac-
tions, and are thus called contact Lagrangians. These give rise to the following
contact potentials in momentum space respectively,

V
(0)

ct (p′, p) ≡ ⟨p′|V (0)
ct |p⟩ = CS + CT σ1 · σ2, (2.8)

V
(2)

ct (p′, p) ≡ ⟨p′|V (2)
ct |p⟩ = C1q2 + C2k2 +

(
C3q2 + C4k2)σ1 · σ2+

+ C5

(
− i(σ1 + σ2)

2 · (q × k)
)

+

+ C6 (σ1 · q) (σ2 · q) + C7 (σ1 · k) (σ2 · k) , (2.9)

where p (p′) is the c.m. momentum for one of the ingoing (outgoing) nucleons,
q = p′ −p and k = (p′ +p)/2. The operators σi (τi) are the spin (isospin) oper-
ators for nucleon i = 1, 2. The potential V

(0)
ct will be projected into S-waves and

V
(2)

ct into S- and P -waves1 and will act as contact interactions (counterterms) in
these channels. The LECs: CS , CT , Ci, i = 1, . . . , 7 parameterizing the inter-
action strengths will thus only act in partial waves with ℓ ≤ 1. This illustrates
the fact that predictions in partial waves with ℓ > 1 are entirely constrained by
chiral symmetry up to this order. Similarly, the diagram in Fig. 2.3b can be
calculated and the resulting one-pion-exchange (OPE) potential reads

V
(0)

1π (p′, p) = − g2
A

4f2
π

(σ1 · q) (σ2 · q)
q2 + m2

π

(τ1 · τ2) , (2.10)

where gA is the axial coupling and fπ the pion decay constant.
1From the partial wave decomposition, it can be deduced that contact terms of order ν

appear only in partial waves with ℓ ≤ ν/2 [91].
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(a) (b)

Figure 2.4: Examples of two-pion exchange Feynman diagrams with ν = 2 that
are irreducible (a) and reducible (b). Solid lines represent nucleons and dashed
lines pions.

Equation (2.7) describes a perturbative PC where only a finite number of di-
agrams are present at each order, e.g., two at ν = 0. This cannot be the full PC
for describing nuclear physics since a perturbative PC provides no way of gen-
erating bound states. Bound states can only be generated non-perturbatively,
and thus require some enhancement of diagrams with ν > 0 necessitating a non-
perturbative summation of an infinite number of diagrams at LO. In Ref. [15]
Weinberg points out the presence of an infrared enhancement in diagrams that
contain purely nucleonic intermediate states, i.e. diagrams that are two-nucleon
reducible2. The infrared enhancement will mandate the promotion of certain
parts of these diagrams from their order assigned by Eq. (2.7). In particular,
there will be an infinite sum of diagrams at LO able to generate nuclear bound
states.

The infrared enhancement can be illustrated by considering the two-nucleon
reducible box diagram shown in Fig. 2.4b. The chiral dimension of this diagram
is ν = 2 according to Eq. (2.7), and it should therefore contribute at N2LO in
our notation. However, it can be shown [17, 91, 94, 95] that this box diagram
can be broken into two parts

V
(2)

2π,box = V it
2π,box + V irr

2π,box, (2.11)

where V irr
2π,box is called the irreducible part and V it

2π,box the iterated part. The
irreducible part will scale with the correct chiral dimension as shown in explicit
calculations, in this case ν = 2. The correct scaling for irreducible parts holds
in general, and these diagrams can be evaluated and renormalized using, e.g.,
dimensional regularization.

The iterated part, however, will not follow the scaling assigned by Eq. (2.7)
due to the infrared enhancement. This part of the two-pion exchange diagram

2A diagram is called two-nucleon reducible if two nucleon lines can be cut to form two new
and allowed Feynman diagrams. Otherwise, the diagram is two-nucleon irreducible.
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+ + + . . .

Figure 2.5: Diagrammatic representation of iterating the irreducible potential
diagrams in the LS-equation (Eq. (2.16)). The ellipsis represents higher-order
loops.

can be written as

V it
2π,box(p′, p) = g2

AmN

16f4
π

(3 − 2τ1 · τ2)∫
d3l

(2π)3
(σ1 · q1) (σ2 · q1)

q2
1 + m2

π

1
p2 − l2 + iϵ

(σ1 · q2) (σ2 · q2)
q2

2 + m2
π

(2.12)

where the momentum transfers are q1 = p′ + l and q2 = p + l [91]. This
expression can be identified as the second-order term in the Born series for
V

(0)
1π , namely

⟨p′| V
(0)

1π G+
0 V

(0)
1π |p⟩ =

∫
d3l

(2π)3 V
(0)

1π (p′, l) mN

p2 − l2 + iϵ
V

(0)
1π (l, p) , (2.13)

where
G+

0 = mN

p2 − l2 + iϵ
(2.14)

is the Schrödinger propagator in momentum space for an on-shell momentum
|p|. The neutron and proton masses are denoted mn and mp, respectively while
mN = 2mpmn/(mp + mn) denotes the nucleon mass. The scaling of V it

2π,box
in Eq. (2.12) is Q2(mN /Q), with an enhancement of (mN /Q) compared to
V irr

2π,box. To mandate the treatment of V it
2π,box at LO, which is necessary to be

able to describe bound states, Ref. [15] concludes that mN must be treated
as larger than the breakdown scale mN ∼ Λ2

b/Q. This can also be formulated
as (Q/mN ) = (Q/Λb)2, i.e. factors of (Q/mN ) are equivalent to two chiral
orders. The enhancement of the iterated part will analogously appear for all
two-nucleon reducible diagrams. With this enhancement, an infinite number of
diagrams will contribute at LO, which can be treated by iterating potentials in
the LS-equation to obtain the full amplitude.

WPC can now be summarized as follows. Potentials, V (ν), are constructed
according to the PC rule from Eq. (2.7):

V (ν) = sum of all irreducible Feynman diagrams of order ν. (2.15)
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The full scattering amplitude is obtained by solving the LS-equation with V (ν)

to obtain the scattering T -operator3

T (ν) = V (ν) + V (ν)G+
0 T (ν). (2.16)

Inserting the potential in the LS equation will take care of the summation of
the enhanced part of diagrams with purely nucleonic intermediate states as can
be seen by writing the Born series for Eq. (2.16)

T (ν) = V (ν) + V (ν)G+
0 V (ν) + V (ν)G+

0 V (ν)G+
0 V (ν) + . . . . (2.17)

The second term is seen to generate the expression in Eq. (2.13). This summa-
tion can be illustrated diagrammatically as shown in Fig. 2.5 where the blobs
represent the potential

(
V (ν)) and the internal lines correspond to Schrödinger

propagators, G+
0 . When solving the LS-equation there is a need to introduce a

momentum cutoff, Λ, to render results finite. The cutoff should be on the order
of the breakdown scale or higher. An implicit assumption in WPC is that the
solution of the LS-equation and associated loops does not bring any new cutoff
dependence as opposed to that already taken care of by the renormalization of
the irreducible parts of the pion loop diagrams. This assumption turns out to
be false [60] which is a result of the potentials being singular, which will be
elaborated upon in the next sub-section.

Singular potentials
Potentials derived from χEFT (and EFTs in general) tend to be singular. An
attractive potential is singular near the origin if its short-range behavior in
position space is −λ/rn where n ≥ 2, and r is the relative position of the
nucleons and r = |r|. For the limiting case n = 2, the potential is singular only
for sufficiently large λ > 0 [65, 96]. Particles interacting via attractive singular
potentials will collapse into the origin r = 0 with increasing velocity. The reason
why n = 2 is the turning point in non-relativistic quantum mechanics can be
explained by the uncertainty principle, which implies the scaling ∼ 1/r2 for the
kinetic energy in the vicinity of the origin. The singular potential, on the other
hand, scales as −λ/rn, n ≥ 2. For n > 2 (or n = 2 with sufficiently large λ)
the kinetic energy term will be overcome by the potential for sufficiently small
r. This leads to the total energy being unbounded from below which prohibits
a well-defined solution to the Schrödinger equation.

The OPE potential is singular in some partial waves, which can be seen by

3Remember that the LS-equation is nothing more than the Schrödinger equation with
scattering boundary conditions and knowing the T -operator is equivalent to knowing the full
scattering state.
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transforming the OPE potential in Eq. (2.10) to position space

V
(0)

1π (r) =
∫

d3q

(2π)3 V
(0)

1π (p′, p) = (2.18)

= mπ

12π

(
gA

2fπ

)2
τ1 · τ2 [T (r)S12 + Y (r)σ1 · σ2] , (2.19)

where q = p′ − p is the momentum transfer and

S12 = 3 (σ1 · r̂) (σ2 · r̂) − σ1 · σ2 (2.20)

T (r) = e−mπr

mπr

[
1 + 3

mπr
+ 3

(mπr)2

]
, (2.21)

Y (r) = e−mπr

mπr
, (2.22)

where r̂ = r/r. The short-range behavior in attractive spin-triplet partial waves
will be singular due to T (r) ∼ 1/r3 for sufficiently small r. Whether specific
partial waves are attractive or repulsive depends on the sign of the matrix
element of the tensor operator τ1 · τ2S12.

More generally, it can be shown that potentials with chiral order ν behave
as V (ν)(r) ∼ 1/r3+ν for mπr ≪ 1. Thus, potentials at higher chiral order
are increasingly singular which is explained by the presence of higher powers of
momenta in momentum space. These high powers in momentum space translate
to high powers of r in the denominator in position space4.

Singular potentials can be modified to possess a well-defined solution to
the Schrödinger equation (or LS equation) by adding a local counterterm that
absorbs the divergent short-range behavior [66, 98]. With this approach the
singular potentials possess a well-defined limit when the momentum-space cutoff
introduced in the LS equation is taken to infinity, Λ → ∞5, and predictions are
independent of the arbitrary choice of Λ. This independence is not exact, but
there can be a residual dependence on inverse powers of the cutoff that only
vanishes in the infinite limit.

Nogga et al. [60] identified infinitely many spin-triplet partial waves of OPE
which possess singular attraction. This is problematic in WPC since all the
identified waves, except 3S1−3D1, do not have a counterterm at LO to coun-
teract the singularities. This entails that the scattering amplitude obtained by
solving Eq. (2.16) receives a Λ-dependence. This dependence can be absorbed
by promoting counterterms with ν > 0 to LO in the singular partial waves, and
thus modifying WPC. The goal of modified PCs is to provide predictions inde-
pendent of the cutoff, i.e., RG invariant, analogous to other EFTs [12]. However,

4Singular potentials and non-renormalizable field theories are tightly connected [97].
5Note that the r → 0 limit in position space corresponds to the Λ → ∞ limit in momentum

space.
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in practical calculations, only finite cutoffs can be explored and the cutoff inde-
pendence can only be verified numerically. After cutoff independence is verified,
you can of course choose a cutoff that is most appropriate for making calcula-
tions. Another possible way of dealing with singular potentials is to keep the
cutoff finite in a range that proves to be phenomenologically successful, which
is the approach used in WPC and advocated by Refs. [27, 42, 99–103]. We will
not pursue the latter approach further in this work. Instead, we will proceed to
analyze predictions of NN observables using a specific proposed modification
of WPC, namely MWPC as formulated by Long and Yang.

2.2 Modified Weinberg Power Counting
As discussed in the previous section, attractive singular potentials require addi-
tional counterterms to fulfill RG invariance. A modified PC can be constructed
using RG invariance as a guiding principle. A momentum cutoff (or more gener-
ally, any type of regulation) is nothing more than a way of splitting short-range
physics between loops and LECs. Changing Λ in the LS equation will explic-
itly include more or less short-range physics, which can be compensated by
adjusting the LECs. Thus, to obtain cutoff independence, i.e. RG invariance, it
is central to include the necessary counterterms with associated LECs at each
order. This is one of the primary tasks in developing an RG-invariant PC.

As demonstrated by Nogga et al. [60] there is an infinite number of singular
attractive partial waves for the OPE potential, all of which would need a coun-
terterm by the arguments in the previous section. This would call for an infinite
number of parameters in the theory already at LO, which is problematic. How-
ever, a counterterm is only necessary for a singular potential if the potential is
treated non-perturbatively. In fact, in partial waves with high enough orbital
angular momentum, the interactions can be treated in perturbation theory.

Perturbative peripheral waves
It is a well-established fact that the strength of the nuclear interaction decreases
as the quantum number of orbital angular momentum, ℓ, increases. This weak-
ening effect eventually allows for a perturbative treatment, given sufficiently
low scattering energies. More specifically, the OPE potential is perturbative in
peripheral waves as explicitly studied in [94]. For sufficiently small scattering
energies the singular short-range behavior of the potential is shielded by the
centrifugal barrier, which adds an effective repulsive term to the potential that
becomes stronger with increasing ℓ

V (r) → V (r) + ℓ(ℓ + 1)
mN r2 . (2.23)
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The critical c.m. scattering momentum, pcr, below which OPE can be treated
perturbatively was studied in Ref. [68] in various partial waves. It was shown
that pcr ≳ 400 MeV for ℓ ≥ 2, which would imply that only partial waves
with ℓ < 2 need to be treated non-perturbatively up to p ≈ 400 MeV and
thus only a few attractive singular partial waves need to be provided with an
additional counterterm. This avoids the need to introduce an infinite number
of counterterms.

The approach of treating OPE exactly in partial waves with low ℓ and per-
turbatively in the remaining peripheral waves is sometimes referred to as partly
perturbative pions. This can be seen as a modification to the early attempt of
Refs. [62, 63] to include pions entirely perturbatively.

As argued in the previous section, higher-order chiral potentials tend to be
increasingly singular. To obtain RG-invariant predictions beyond LO it was
shown in Ref. [69]6 that the inclusion of sub-leading potentials must be done in
distorted-wave perturbation theory, with the distortion made by the LO poten-
tial. As pointed out in Ref. [79], including corrections in perturbation theory
has the advantage of providing an additional consistency check if corrections in-
deed are perturbative with respect to LO, as they should be. This consistency
check can not be taken advantage of in the approach of solving for all potentials
exactly as in WPC [79, 104].

To summarize, modified in MWPC means both promoted counterterms to
lower chiral order than they are assigned by NDA as well as strictly perturbative
inclusion of sub-leading orders. The MWPC follows the principles

(i) The chiral order of the irreducible parts of pion-exchange diagrams will be
the same as for WPC dictated by NDA.

(ii) Counterterms are promoted to lower chiral order only if it is required to
achieve cutoff independence (RG-invariance).

(iii) Corrections beyond LO are included perturbatively in distorted wave per-
turbation theory.

How perturbative computations of amplitudes in MWPC are implemented will
be discussed in Chapter 3.

Potentials at LO
The modified expressions for the potentials used in this work are contained in
Refs. [67, 75–77] and summarized in Paper II. As an example, we here look at
how the LO potential is modified. In WPC the LO potential is in all partial

6This result is debated in Ref. [103] due to the existence of so-called exceptional points in
the cutoff domain.
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waves given by

V
(0)

WPC(p′, p) = − g2
A

4f2
π

(σ1 · q) (σ2 · q)
q2 + m2

π

(τ1 · τ2) + C1S0 P̂1S0 + C3S1 P̂3S1 , (2.24)

where P̂X (CX) denotes the projector (LEC) for the indicated partial wave
described by the LS-term 2s+1ℓj . The potential is the sum of OPE and two
non-derivative S-wave contact interactions coming from partial wave projection
of the ν = 0 contact potential in Eq. (2.8).

In MWPC, only the channels: 1S0, 3P0, 1P1, 3P1, 3S1−3D1 and 3P2−3F2
are treated non-perturbatively. In these channels, the LO potential reads

V
(0)

MWPC(p′, p) = − g2
A

4f2
π

(σ1 · q) (σ2 · q)
q2 + m2

π

(τ1 · τ2) + C1S0 P̂1S0+

+ C3S1 P̂3S1 +
(

D3P0 P̂3P0 + D3P2 P̂3P2

)
p′p. (2.25)

This potential has two more counterterms in singular triplet P -waves as com-
pared to V

(0)
WPC (2.24). In channels that are treated perturbatively the potential

at LO vanishes, i.e. V
(0)

MWPC(p′, p) = 0. For more detailed information about
the potential expressions up to N3LO, the reader is referred to Paper II.
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Chapter 3

Predictions from Modified
Weinberg Power Counting

In this chapter, we proceed to study predictions from MWPC for np scattering
observables. We start with a brief overview of computing two-nucleon scattering
observables in Section 3.1 and move on to the calibration of the unknown nu-
merical values of the LECs in Section 3.2. Finally, selected results from Papers
I and II are presented and discussed in Sections 3.3 and 3.4.

3.1 Neutron-Proton Scattering Observables
Studying np scattering is valuable in revealing information about unknown
parameters in interaction potentials due to the abundance of experimental
data. Indeed, there exists a database [105, 106] containing 3514 data points
for several np scattering observables, covering laboratory scattering energies
Tlab = 10−6 MeV to 350 MeV. The highest scattering energy considered in this
work will however be Tlab = 200 MeV. Figure 2.2 in Chapter 2 illustrates the
kinematics of the two-nucleon scattering process. Note that the c.m. scattering
angle, θc.m., is defined as the angle between the ingoing (p) and outgoing (p′)
scattering momenta in the c.m. frame. This work focuses on the strong inter-
action in np scattering and isospin breaking as well as electromagnetic effects
will be neglected.

Since nucleons are fermions with spin 1
2 , the Pauli matrices for nucleon

k = 1, 2, denoted {σkx, σky, σkz} and σk0 ≡ 1, form a basis for the respective
one-particle spin density operator. A basis for the combined two-nucleon spin
density operator, ρ, can be formed by considering tensor products of the basis
states for each nucleon

Sµ = {σ1i ⊗ σ2j} , i, j = 0, x, y, z. (3.1)
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giving the basis {Sµ, µ = 1, . . . , 16}. The two-nucleon spin density operator
can in this basis be written as

ρ = 1
4

16∑
µ=1

Sµ Tr (ρSµ) , (3.2)

using the orthogonality relation Tr
(
SµSλ

)
= 4δµλ.

In the two-nucleon scattering process the spin density operator for the in-
going state, ρi, is by the interaction transformed to a spin density operator, ρf ,
for the outgoing state for a given scattering energy Tlab and a scattering angle
θc.m.. This can be summarized in the equation

ρf = MρiM
†, (3.3)

where the 4-dimensional spin scattering matrix, M(Tlab, θc.m.), contains all dy-
namical information about the scattering process. Note that ρf is not neces-
sarily properly normalized. The expectation value of a spin observable, O, for
the outgoing two-nucleon state is simply given by the Born rule for density
operators

⟨O⟩f = Tr (ρf O)
Tr ρf

=
Tr
(
MρiM

†O
)

Tr (MρiM †) . (3.4)

However, this equation does not take the probability of getting ρf given ρi into
account, i.e., the spin-averaged differential cross section which can be expressed
as [107]

dσ

dΩ = Tr (ρf )
Tr (ρi)

= 1
4 Tr

(
MM †) . (3.5)

Using Eq. (3.4) together with Eqs. (3.2) and (3.5) the expectation value for a
basis state O = Sµ can be expressed as

⟨Sµ⟩f × dσ

dΩ =
Tr
(
MρiM

†Sµ
)

Tr (ρi)
= 1

4

16∑
λ=1

⟨Sλ⟩i Tr
(
MSλM †Sµ

)
, (3.6)

where ⟨·⟩i (⟨·⟩f ) denotes the expectation value with respect to ρi (ρf ). Since
both ρi and O have 16 possible basis states there are 256 possible spin-scattering
experiments. Fortunately, it can be shown that parity conservation, the Pauli
principle, and time reversal invariance limit this to 25 independent possibilities
[108]. To calculate the various scattering observables we must solve the dynam-
ics of the scattering process and construct M . In the next section, we express
M using the partial wave T -matrix for the np scattering process.
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Scattering amplitudes at leading order
Two-nucleon potentials, for example the ones defined in Eq. (2.24) or Eq. (2.25),
are naturally derived and expressed in the c.m. momentum basis, |p, s, ms⟩, as
illustrated in the previous chapter. The explicit relation between the partial
wave states |p, ℓ, s, j⟩ introduced in Section 2.1 and this momentum basis reads

⟨p′, ℓ, s, j, mj |p, s, ms⟩ = iℓ (2π)3/2 δ(p′ − p)
p2 C

jmj

sℓ;ms,mj−ms
Y ∗ℓ

mj−ms
(p̂). (3.7)

where Cj,m
j1,j2;m1m2

and Y ℓ
m(p̂) denote Clebsch-Gordan coefficients and spherical

harmonics, respectively. The quantum number mj associated with the projec-
tion of j can in Eq. (3.7) be set to zero by rotational invariance and will be
dropped in the notation defining the partial wave states.

Matrix elements of the potential using the partial wave basis defined in
Eq. (3.7) are written

V js
ℓ′ℓ(p′, p) = ⟨p′, ℓ′, s, j|V |p, ℓ, s, j⟩ , (3.8)

which indicates the conservation of both j and s, where the latter is a result
of the Pauli principle in combination with parity invariance and assumed exact
isospin symmetry. The partial-wave projection is in practice made in a helicity
formalism to simplify calculations, following Ref. [109].

For a given potential V , the scattering T -matrix describing the quantum
mechanical scattering amplitude is obtained as the solution to the LS-equation
(see Eq. (2.16)) [110] which in the partial wave basis reads

T js
ℓ′ℓ(p

′, p; p0) = V js
ℓ′ℓ(p′, p) +

+
∑
ℓ′′

∫ ∞

0
dk k2 V js

ℓ′ℓ′′(p′, k) mN

p2
0 − k2 + iϵ

T js
ℓ′′ℓ(k, p; p0). (3.9)

The partial-wave form of the T -matrix is expressed completely analogous to
Eq. (3.8). For an incoming neutron with kinetic energy Tlab the corresponding
on-shell momentum, p0, is given by

p0 =

√
m2

pTlab(2mn + Tlab)
(mn + mp)2 + 2mpTlab

, (3.10)

using relativistic kinematics. The on-shell elastic scattering amplitude is given
by the matrix element T js

ℓ′ℓ(p0, p0; p0) [107, 111]. The LS-equation can be solved
numerically using, e.g., Gauss-Legendre quadrature [112, 113] to turn the in-
tegral equation into a linear system of equations. The typical number of dis-
cretization points needed for converged results is on the order of 100.

As mentioned in Section 2.1, the infinite momentum integral appearing in
Eq. (3.9) needs to be regulated due to the infinite integration limit which renders
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singular potentials divergent. The regulation is implemented by applying the
transformation

V js
ℓ′ℓ(p′, p) → fΛ(p′)V js

ℓ′ℓ(p′, p)fΛ(p), (3.11)

to the potentials, where common choices of the regulating function are

fΛ(p) = exp
[
− p2n

Λ2n

]
, (3.12)

with either n = 2 or n = 3 since they have a simple form and prove more
numerically stable than a sharp cutoff [91]. One is of course free to choose any
regulator function as long as it goes to zero sufficiently fast in the Λ → ∞ limit.
In Papers I and II we employ slightly different regulating functions to comply
with earlier studies. The regulation effectively suppresses the high momentum
components p′, p ≫ Λ curing possible divergences in Eq. (3.9) and enables
a numerical discretization on a finite interval. In Paper I we also use a so-
called minimal relativity factor which makes the T -matrix satisfy a relativistic
extension of the LS-equation [6, 114]. The minimal relativity factor can be
implemented by modifying the regulating function as

fΛ(p) → fΛ(p)
√

mN

E(p) , E(p) =
√

m2
N + p2. (3.13)

Minimal relativity is a percent-level effect for np scattering in the energy range
that we consider (Tlab ≲ 200 MeV) and it was excluded from the analysis in
Paper II.

With the partial-wave basis definition used in this thesis, the relation be-
tween the on-shell partial wave T - and S-matrix elements reads

Sjs
ℓ′ℓ(p0, p0) = δℓ′ℓ − iπmN p0T js

ℓ′ℓ(p0, p0; p0). (3.14)

The partial-wave S-matrix in uncoupled channels (where ℓ′ = ℓ) is a unitary
one-by-one matrix that is trivially parameterized by a real phase shift, δ,

Sjs
ℓℓ = e2iδ. (3.15)

In coupled channels, the orbital angular momenta take the possible values ℓ′ =
j ± 1, ℓ = j ± 1, and the 2 × 2 unitary S-matrix can be parametrized in terms
of three real phase shifts: δ1, δ2, and ϵ using the Stapp convention [115]

Sjs =
(

Sjs
ℓ′=j−1,ℓ=j−1 Sjs

ℓ′=j−1,ℓ=j+1
Sjs

ℓ′=j+1,ℓ=j−1 Sjs
ℓ′=j+1,ℓ=j+1

)
=

=
(

cos(2ϵ)e2iδ1 i sin(2ϵ)ei(δ1+δ2)

i sin(2ϵ)ei(δ1+δ2) cos(2ϵ)e2iδ2

)
. (3.16)
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The phase shifts can be expressed in terms of partial-wave scattering amplitudes
T js

ℓ′ℓ(p0, p0; p0) by inverting Eqs. (3.15) and (3.16) and using Eq. (3.14).
The unitarity of the partial-wave S-matrix relies on the scattering ampli-

tude being calculated exactly using Eq. (3.9). In the next section, sub-leading
chiral potentials will be added in perturbation theory, which adds corrections
to T js

ℓ′ℓ. This means that the unitarity of the partial-wave S-matrix will be
perturbatively violated leading to slightly complex phase shifts if computed via
Eq. (3.15) or Eq. (3.16).

Adding sub-leading orders using distorted-wave perturba-
tion theory
Adding higher order corrections to the leading order potential can be formulated
as adding an extra potential, VII, representing the sub-leading corrections. If
VI denotes the LO potential the Hamiltonian in the c.m. frame can be written

H = p2

mN
+ VI + VII, (3.17)

where VII includes all the sub-leading corrections, which formally can be in-
finitely many. Denoting chiral potentials at order ν as V (ν), VI and VII read

VI = V (0), (3.18)

VII =
∞∑

ν=1
V (ν). (3.19)

The LO amplitude, T (0), is computed exactly by solving the LS-equation

T (0) = V (0) + V (0)G+
0 T (0), (3.20)

for each partial wave. One approach to add the higher order corrections is to
solve the LS-equation for the entire potential V = VI + VII. This is the ap-
proach taken in WPC, as discussed in Section 2.1. A central part to obtain
RG-invariant results at orders beyond LO in the MWPC is, however, to include
the corrections (VII) in perturbation theory, as discussed in Section 2.2. Since
higher-order potentials in a sound PC should bring perturbative corrections,
even if treated exactly, they should be amenable to a strict perturbative treat-
ment. The difference between the exact and perturbative calculations should
be a higher-order effect.

The starting point of including VII perturbatively is to express the full scat-
tering amplitude, T , from the Hamiltonian Eq. (3.17) as a distorted-wave Born
(DWB)-series [116]

T = T (0) + Ω†
−VII

∞∑
n=0

(
G+

1 VII
)n Ω+. (3.21)
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The Møller wave operators are given by

Ω+ = 1+ G+
0 T (0), (3.22)

Ω†
− = 1+ T (0)G+

0 , (3.23)

which, acting upon plane-wave states, produce the corresponding distorted
waves due to the presence of VI. Furthermore, the propagator for the LO Hamil-
tonian is given by

G+
1 = Ω+G+

0 . (3.24)
The DWB series is completely analogous to the Born series, but instead of ex-
panding the amplitude around zero, one starts from the LO amplitude. Treating
VII as a perturbation and truncating the sum in Eq. (3.21) at n = N produces
the N :th order DWB approximation.

The perturbative potential corrections in Eq. (3.19) are in principle an in-
finite sum of higher-order chiral potentials. In this work, the highest order
considered is V (3), which we refer to as N3LO. Completely analogous to con-
structing the potentials from irreducible diagrams by counting the chiral order,
the T -matrix corrections, T (ν), are constructed from Eq. (3.21) by applying the
same PC rules. Inserting Eq. (3.19) in Eq. (3.21), expanding both sums and
organizing terms according to chiral orders give the expressions for the first,
second, and third corrections with respect to the LO amplitude:

T (1) = Ω†
−V (1)Ω+, (3.25)

T (2) = Ω†
−

(
V (2) + V (1)G+

1 V (1)
)

Ω+, (3.26)

T (3) = Ω†
−

(
V (3) + V (2)G+

1 V (1) + V (1)G+
1 V (2)+

+ V (1)G+
1 V (1)G+

1 V (1)
)

Ω+. (3.27)

Note that these are the corrections. The full amplitude at, e.g., third order
is given by the sum T (0) + T (1) + T (2) + T (3). The above equations for the
perturbative T -matrix corrections are solved numerically by projecting to the
partial wave basis, in a fashion completely analogous to the solution of the LS-
equation. The implementation and solution of Eqs. (3.25) to (3.27) are discussed
in more detail in Paper II. The higher-order corrections to the T -matrix allow
for the computation of higher-order phase shifts. In Paper II we describe how to
perturbatively obtain corrections to the phase shifts in Eqs. (3.15) and (3.16) via
a Taylor expansion. Perturbative corrections of phase shifts are also discussed
in Refs. [77, 117].

It is now clear how we perturbatively obtain T -matrix amplitudes from a
given set of chiral potentials {V (ν)}ν≤3. The construction of the spin-scattering
matrix can now be revisited, which is the final step to computing scattering
observables.
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Computing observables from partial-wave amplitudes
The partial wave S-matrix for a given on-shell momentum, p0, is constructed by
summing the on-shell T -matrix contributions up to the given order and using
Eq. (3.14) yielding

S
(ν)js
ℓ′ℓ (p0, p0) = δℓ′ℓ − iπmN p0

×
[
T

(0)js
ℓ′ℓ (p0, p0; p0) + · · · + T

(ν)js
ℓ′ℓ (p0, p0; p0)

]
. (3.28)

For ν ≥ 1, the partial wave T -matrix amplitudes, T
(ν)js
ℓ′ℓ , are computed pertur-

batively as described in the last section, and the resulting partial-wave S-matrix
is not unitary. Non-unitarity is a common feature in all types of perturbative
calculations. However, some care must be taken when calculating observables.
For example, calculating the total cross section in np scattering using the optical
theorem [110] is no longer exact. Instead, the discrepancy between the result
using the optical theorem and integration of the differential cross section will
give a quantitative measure of the unitary breaking. Since the sum for ν → ∞
in Eq. (3.28) should give a unitary amplitude, the unitary breaking at some
order ν should be a (ν + 1)-order effect which should be reflected in the uni-
tary breaking being smaller at higher orders. Consequences of the non-unitary
amplitudes are something we discuss in more detail in Paper II.

The matrix elements of the spin-scattering matrix, M , can be expressed in
terms of partial-wave scattering amplitudes as [107, 118, 119]

Ms
m′

sms
(p0, θc.m., ϕ) =

√
4π

2ip0

∑
j,ℓ,ℓ′

iℓ−ℓ′
(2j + 1)

√
2ℓ + 1

×
(

ℓ′ s j
ms − m′

s m′
s −ms

)(
ℓ s j
0 ms −ms

)
(3.29)

× Y ℓ′

ms−m′
s
(θc.m., ϕ)

(
S

(ν)js
ℓ′ℓ (p0, p0) − δℓ′ℓ

)
.

for the total spin (s) and its projections in the ingoing state (ms) and outgoing
state1 (m′

s). The angles θc.m. ∈ [0, π] and ϕ ∈ [0, 2π) are the polar and azimuthal
scattering angles, respectively. The latter can be set to zero by cylindrical
symmetry and is from now on omitted. Note that this sum implicitly takes
the Pauli principle into account since only proper antisymmetrized partial-wave
states are included. The matrices in Eq. (3.29) are Wigner 3j-symbols2 and

1Since Tlab and p0 are equivalent by Eq. (3.10) either one can be used to indicate the
energy dependence of M -matrix elements.

2The relation between Clebsch-Gordan coefficients and Wigner 3j-symbol is [110].

Cj,m
j1,j2;m1m2

≡ ⟨j1, j2; m1m2|j1j2; jm⟩ = (−1)j1−j2+m
√

2j + 1
(

j1 j2 j
m1 m2 −m

)
.
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the sum over j, ℓ′, and ℓ is taken with respect to the spin-coupling rules and
truncated at some jmax. One generally needs higher jmax for larger Tlab. In np
scattering without electromagnetic effects, jmax ≈ 15 is more than enough to
obtain convergence up to Tlab = 200 MeV,

Using the elements given in Eq. (3.29) the M matrix can be constructed.
In the uncoupled NN spin basis {|m1, m2⟩ , m1 = ± 1

2 , m2 = ± 1
2 }3 given by

the spin projections of the respective nucleon, the M matrix can be written in
terms of a Kronecker product as

M =


M1

11
1√
2 M1

10
1√
2 M1

10 M1
1−1

1√
2 M1

01
1
2
(
M0

00 + M1
00
) 1

2
(
−M0

00 + M1
00
) 1√

2 M1
0−1

1√
2 M1

01
1
2
(
−M0

00 + M1
00
) 1

2
(
M0

00 + M1
00
) 1√

2 M1
0−1

M1
−11

1√
2 M1

−10
1√
2 M1

−10 M1
−1−1

 . (3.30)

Given the M matrix, expressions for some relevant spin-observables can be
formed using Eq. (3.6). The simplest observation in the final state of the scat-
tering process is to ignore the spin polarization, corresponding to the observable
O = 11 ⊗12. Analogously, the simplest initial density operator representing an
average over the possible initial spin polarization is given by ρi = (11 ⊗ 12)/4.
Using Eq. (3.6) this setup reduces to the spin-averaged differential cross section
already defined in Eq. (3.5). Other important classes of observables are spin-
polarization and spin-correlation observables. Examples of these are Pb and
Ayy, defined as

Pb × dσ

dΩ = 1
4 Tr

{
M (σ1 · n̂) M †}, (3.31)

Ayy × dσ

dΩ = 1
4 Tr

{
M
[

(σ1 · n̂) ⊗ (σ2 · n̂)
]
M †}, (3.32)

where n̂ is normal to the scattering plane, which by convention is chosen as
the xz-plane [108]. The dimensionless observable Pb gives a measure of the
asymmetry in the differential cross section induced by polarizing one nucleon.
Analogously, the dimensionless observable Ayy gives a measure of the spin-
correlation induced by the scattering process.

3The uncoupled basis |m1, m2⟩ is related to the coupled spin basis |s, ms⟩ as

|s, ms⟩ =
∑

m1,m2

Cs,ms

1/2,1/2;m1m2
|m1, m2⟩ .
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3.2 Connecting Theory and Experiment
Having looked at both the construction of interaction potentials from χEFT in
Chapter 2 and how to numerically compute scattering observables at each chiral
order in Section 3.1, it is time to consider the connection between theory and
experiment. This connection is of course important for evaluating the validity of
the theoretical description, but also central for calibrating the unknown LECs
appearing in the χEFT potentials.

The Bayesian approach
In later years Bayesian inference has been increasingly used in nuclear theory,
and in particular dealing with interactions from EFT [33–38], expanding on
early developments [32]. Much of this work is analogously applied in perturba-
tive QCD [120]. As discussed in Section 2.1, a strength of the EFT approach
is the naturally arising expression for the EFT model error. We will now ex-
plicitly look at how this model error (also referred to as the EFT truncation
error) arises and how it naturally can be incorporated in the analysis of the link
between theory and experiment using a Bayesian approach.

The power of using a Bayesian approach is twofold. Firstly, the model
parameters (LECs) are seen as random variables, and hence are characterized
by a probability distribution and not just a set of some ”optimal” values. This
gives a natural way of propagating errors. Secondly, there is the transparency
of assumptions through the prior probability distribution, which can include
various physical principles, such as expected naturalness.

The assumed χEFT expansion for an observable, y, is

y = y0

∞∑
n=0

cn

(
Q

Λb

)n

, (3.33)

where y0 is a natural scale of the observable, {cn}n≥0 are dimensionless ex-
pansion coefficients and Q/Λb is the EFT expansion parameter [34]. Note that
c1 = 0 in WPC by parity and time-reversal symmetry [91]. Truncating this sum
gives the theoretical prediction at order ν, and a remaining term

y = y
(ν)
th + y0

∞∑
n=ν+1

cn

(
Q

Λb

)n

. (3.34)

The remaining term naturally characterizes the EFT truncation error at order
ν

δyth = y0

∞∑
n=ν+1

cn

(
Q

Λb

)n

. (3.35)
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At order ν, the leading EFT truncation error is proportional to (Q/Λb)ν+1 and
captures the fact that this low-energy EFT is more accurate at low energies
(∼ mπ) rather than high (∼ Λb).

The relation between experimental data, yexp, and a theoretical prediction,
y

(ν)
th , of an observable can be modeled as

yexp = y
(ν)
th + δyth + δyexp, (3.36)

where δyth, and δyexp are random variables representing the theoretical and
experimental errors respectively. The experimental error is commonly modeled
as a normal distribution with a standard deviation σexp as

pr (δyexp) = N
(
0, σ2

exp
)

, (3.37)

where N
(
µ, σ2) denotes a normal distribution with mean µ and variance σ2 and

pr (·) denotes the probability density function (pdf). Moreover, the theory error
can be calculated quantitatively using some prior assumptions on the coefficients
{cn}n>ν giving a typical distribution

pr (δyth) = N
(
0, σ2

th
)

, (3.38)

where the variance σ2
th depends on the assumptions being made. As an example,

in Paper I we follow Ref. [34] where {cn}n>ν are assumed to be independent
and identically distributed (i.i.d) as N

(
0, c̄2). This gives

σ2
th =

y2
0 c̄2
(

Q
Λb

)4

1 −
(

Q
Λb

)2 , (3.39)

where the parameter c̄ governs the variance of {cn}n>ν . In the above model,
c1 = 0 by parity and time-reversal symmetry [91]. The likelihood of observing
a given experimental datum can be expressed as

pr
(

yexp|α(ν), I
)

= N
(

y
(ν)
th

(
α(ν)

)
, σ2

th + σ2
exp

)
, (3.40)

assuming independent experimental and theoretical errors. Here, α(ν) denote
the LECs present in the potentials up to order ν and I encapsulates additional
information and assumptions included in the error models. As an example, for
the LO potential in Eq. (2.25) we define α(0) = (C1S0 , C3S1 , D3P0 , D3P2).

Given a data set D = {yexp} of measured observables, the likelihood for the
data set can be converted to a posterior probability density for the LECs using
Bayes’ rule

pr
(

α(ν)|D, I
)

=
pr
(
D|α(ν), I

)
· pr

(
α(ν)|I

)
pr (D|I) . (3.41)
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Here, pr
(
α(ν)|I

)
denotes the prior and pr (D|I) the model evidence which here

serves as a normalization factor. Using Eq. (3.41) one naturally incorporates the
prior information of the naturalness of LECs through pr

(
α(ν)|I

)
. The likelihood

for the full data set, pr
(
D|α(ν), I

)
, can be constructed as the product of the

individual likelihoods in Eq. (3.40) under the assumption that the model errors
are independent, which is the approach taken in Paper I. It is possible to relax
the assumption of independence and describe the model errors collectively using
a covariance matrix, Σth. This approach is explored in Refs. [36, 121] but not
considered in this work.

Evaluating Eq. (3.41) at LO for varying cutoffs Λ is the main focus of Paper I.
This is done using a Bayes linear approach known as history matching [50,
122–124], and Markov chain Monte Carlo (MCMC) sampling. The resulting
pdfs pr

(
α(ν)|D, I

)
quantify the uncertainties of the LECs stemming from the

various sources of error. In particular, we find that including the model-error
information provides a more robust inference since it effectively weights the
information content in the experimental data, where low-energy data is expected
to give more information about the EFT.

Having a probabilistic representation of the LECs allows for properly prop-
agating uncertainties to predictions via marginalization

pr (y|D, I) =
∫

dα(ν) pr
(

y|α(ν), D, I
)

pr
(

α(ν)|D, I
)

, (3.42)

where pr (y|D, I) is called the posterior predictive distribution (ppd) for the
observable y. When evaluating the above integral we can incorporate the EFT
truncation error in the model prediction via

pr
(

y|α(ν), D, I
)

= N
(

y
(ν)
th

(
α(ν)

)
, σ2

th

)
. (3.43)

The model error can also be excluded by using a delta distribution

pr
(

y|α(ν), D, I
)

= δ
(

y − y
(ν)
th

(
α(ν)

))
, (3.44)

which corresponds to only propagating the LEC uncertainty. The ppd quantifies
the model prediction for an observable as a pdf, given the calibration data, D,
and assumptions I.

This section has shown a specific example of how the relation between ex-
periment and theory can be used in χEFT to infer LECs and make predictions.
In particular, we saw how the model error term arises and how it can be in-
cluded in the inference of LECs through Bayes’ rule. The two following sections
summarize some of the main results of Paper I and Paper II.
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Figure 3.1: Posterior pdf for the parameters θ =
(
α(0), c̄

)
for cutoff Λ = 450

MeV. The units of the LECs are 104 GeV−2 and 104 GeV−4 for the S- and
P -waves respectively. The median and the 68% equal-tailed credible interval
are indicated for the univariate marginal pdfs.
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3.3 Bayesian Analysis of MWPC at LO
In Paper I we performed a thorough Bayesian analysis of the LEC values of the
LO potential in MWPC conditioned on np scattering data. The main motivation
was to test the hypothesis of overfitted LECs put forward by Yang et al. [83] as
a possible explanation for MWPC predictions failing in nuclei beyond A = 4,
as discussed in the introduction. The LECs used in Ref. [83] were inferred from
phase shifts, which possibly induced sufficient overfitting to render unphysical
predictions of nuclear observables. We investigated the calibration of LECs
at LO in MWPC, conditioning the inference on np scattering data as well as
incorporating the EFT model error. Since we used a relatively weakly informed
error model, spin-polarization observables were not included in the inference.

When doing the LEC inference we varied the cutoff in the LS-equation in a
rather large interval ranging from Λ = 400 MeV to Λ = 4000 MeV. The singular
nature of the LO potential induces limit-cycle-like behavior and spurious bound
states which makes the LEC values change rapidly as a function of the cutoff.
The rapid variation of LECs posed challenges in the initialization of MCMC
chains for the large span of cutoffs. We mitigated this problem by employing
history matching to efficiently identify relevant initialization domains for the
LECs.

Figure 3.1 shows the posterior pdf for the LEC-values for the cutoff Λ =
450 MeV. This pdf also includes c̄, parametrizing the size of the EFT truncation
error (3.39), which we also inferred from the data. Given the posterior pdf for
the LECs, we computed ppds for both phase shifts and observables. Figure 3.2
shows the ppd for phase shifts compared to the empirical partial wave analysis in
Ref. [81] and the study in Ref. [83]. In particular, it was demonstrated that the
phase shifts in some P -waves are quite different in our analysis, which confirms
that the inference procedure highly impacts the final results.

Moreover, we computed ppds for scattering observables and the deuteron
ground state energy confirming that our inferred LECs indeed produced a sat-
isfactory description of np observables and that the results were independent
of the cutoff. The results of this study demonstrated that using scattering ob-
servables rather than phase shifts as calibration data has a large impact on the
resulting LECs, and thus on the resulting predictions.
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Figure 3.2: Predicted phase shifts (in degrees) with Λ = 450 MeV represented
by the median of the ppd (solid purple line) and the 95% equal-tailed credible
interval (purple band). Note that the EFT error is not included. Our results are
compared to the phase shifts of [83] and the Nijmegen partial-wave analysis [81].
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3.4 Predictions from MWPC up to N3LO
In Paper II, we move on to computing np scattering observables in perturbation
theory up to N3LO in MWPC. This work aims to establish a computational
framework and to make a first attempt at quantitatively describing np scattering
observables in MWPC. In this first analysis, we employ a simpler method to
infer the LEC values compared to Paper I. We follow the procedure used in
Refs. [75–77] and infer the LEC values by reproducing phase shifts from Ref. [81]
at certain energies. Using the method described in the previous sections in this
chapter we compute np scattering observables up to N3LO.

The most important results of Paper II are summarized in Fig. 3.4. The
figure shows the scattering observables dσ

dΩ , Pb and Ayy, defined in Eqs. (3.5),
(3.31) and (3.32) respectively, for a selection of scattering energies in the inter-
val Tlab = 10 to Tlab = 100 MeV. The bands in the figure are defined by results
computed at two different momentum cutoffs, Λ = 500 MeV and Λ = 2500 MeV.
While these bands lack statistical meaning, they still provide a useful indica-
tion of the anticipated size of the model error. A satisfactory order-by-order
description of data is observed, which confirms that a perturbative description
of scattering observables up to scattering energies Tlab ≲ 100 MeV is possible.

Furthermore, we also compute the total cross section for np scattering using
two methods; (i) the optical theorem and (ii) integrating the differential cross
section. We use the difference between these two calculations as a way of as-
sessing the unitary breaking in the perturbative calculation. As expected, we
observe more unitary breaking at the lower chiral orders.
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Chapter 4

Summary and Outlook

Describing atomic nuclei from first principles using the Schrödinger equation is
a task that contains multiple challenging elements. In this thesis, the focus has
been on describing the nuclear interaction from χEFT in the MWPC proposed
by Long and Yang. The OPE potential entering at order ν = 0 turns out
to have a central role, which is quite interesting from a historical perspective.
The pion-exchange description from Yukawa is still highly relevant, but here it
appears in the modern light of χEFT.

The problems of lacking RG-invariance in WPC, stemming from singular
potentials, have been known for more than two decades and have spurred several
proposals for new ways of doing the PC. In this work, we have analyzed the
proposal by Long and Yang by computing np scattering observables to N3LO
and by conducting a detailed Bayesian inference study of the LO potential
including its truncation error.

In the Bayesian study of the LO interaction, presented in Paper I, we address
how to properly calibrate LECs from data with models of the EFT truncation
error. It is clear from the analysis in Paper I that the inference procedure has
a large impact on the resulting posteriors of the LECs, and that the inclusion
of EFT truncation errors has a significant role in mitigating overfitting. How-
ever, the inference method employed in Paper I can still be improved. The
weakly informed error model made it challenging to include spin-polarization
observables in the inference. The results, however, demonstrate that a sound
inference procedure including dominant sources of uncertainty might provide
a solution to the challenge of obtaining realistic predictions for ground-state
energies observed in Ref. [83].

In Paper II we studied how well MWPC can describe np scattering ob-
servables up to N3LO. The predicted cross sections exhibit an order-by-order
convergence consistent with expectations. The observed convergence pattern
hints that the breakdown of the perturbative expansion might be as low as

39



Summary and Outlook

Tlab = 100 MeV in its current formulation. Further studies are warranted and
will hopefully reveal more information about how well the perturbative expan-
sion is performing and guide the construction of the LO potential.

The Bayesian inference analysis at LO would be greatly improved by em-
ploying an error model informed by the convergence pattern of observables.
For this, computations at higher orders are essential. The results in Paper II
demonstrate that such a program can be pursued.

The next step is therefore to extend and improve the Bayesian inference of
LECs performed in Paper I to (at least) N3LO in the np sector. However, in-
ference beyond LO based on perturbative calculations of np scattering presents
several challenges compared to non-perturbative calculations. Perturbative cal-
culations (i) include more LECs, (ii) might induce cancellations and correlations
between contributions at different orders, and (iii) are computationally more
costly.

A key question to address in future work is how MWPC potentials describe
properties of nuclei with mass-number A > 2. For this, there is a need to
develop efficient many-body methods for computing bound state properties in
MWPC to high chiral orders.

As stressed in this thesis, the LO contribution to the nuclear potential is
highly important in perturbative calculations since it is the foundation upon
which all subsequent orders rest. There are several indications that the present
LO descriptions fail to capture the relevant low-energy dynamics of the nuclear
force. Consequently, several recent works have addressed the question of how LO
can be modified [125–127]. The perturbative framework of MWPC, presented
in this thesis, is a valuable starting point for continued efforts to address the
possible modifications of the PC used in χEFT.
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