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Assessing clusters of comorbidities 
in rheumatoid arthritis: a machine learning 
approach
Daniel H. Solomon1,2*, Hongshu Guan1, Fredrik D. Johansson3, Leah Santacroce1, Wendi Malley4, Lin Guo4 and 
Heather Litman4 

Abstract 

Background Comorbid conditions are very common in rheumatoid arthritis (RA) and several prior studies have clus-
tered them using machine learning (ML). We applied various ML algorithms to compare the clusters of comorbidities 
derived and to assess the value of the clusters for predicting future clinical outcomes.

Methods A large US-based RA registry, CorEvitas, was used to identify patients for the analysis. We assessed the pres-
ence of 24 comorbidities, and ML was used to derive clusters of patients with given comorbidities. K-mode, K-mean, 
regression-based, and hierarchical clustering were used. To assess the value of these clusters, we compared clusters 
across different ML algorithms in clinical outcome models predicting clinical disease activity index (CDAI) and health 
assessment questionnaire (HAQ-DI). We used data from the first 3 years of the 6-year study period to derive clusters 
and assess time-averaged values for CDAI and HAQ-DI during the latter 3 years. Model fit was assessed via adjusted 
R2 and root mean square error for a series of models that included clusters from ML clustering and each of the 24 
comorbidities separately.

Results 11,883 patients with RA were included who had longitudinal data over 6 years. At baseline, patients were 
on average 59 (SD 12) years of age, 77% were women, CDAI was 11.3 (SD 11.9, moderate disease activity), HAQ-DI 
was 0.32 (SD 0.42), and disease duration was 10.8 (SD 9.9) years. During the 6 years of follow-up, the percentage 
of patients with various comorbidities increased. Using five clusters produced by each of the ML algorithms, multi-
variable regression models with time-averaged CDAI as an outcome found that the ML-derived comorbidity clusters 
produced similarly strong models as models with each of the 24 separate comorbidities entered individually. The 
same patterns were observed for HAQ-DI.

Conclusions Clustering comorbidities using ML algorithms is not computationally complex but often results in clus-
ters that are difficult to interpret from a clinical standpoint. While ML clustering is useful for modeling multi-omics, 
using clusters to predict clinical outcomes produces models with a similar fit as those with individual comorbidities.

Introduction
Most patients with rheumatoid arthritis (RA) have 
multimorbidity, but not all. Prior studies found that 
between 50 and 84% of patients with RA had some 
comorbidity with a mean of 2 comorbidities based on 
the Charlson Index [1, 2]. In addition, patients with 
RA develop comorbidities at an increased rate after the 
diagnosis of RA compared with matched controls [3]. 
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Some of the excess morbidities may be directly related 
to RA (i.e., interstitial lung disease) and others are likely 
part of the systemic inflammatory milieu caused by RA. 
Comorbidities are important in RA as they strongly 
associate with disease activity, response to treatment, 
and overall mortality [4, 5].

Several prior studies have used machine learning (ML) 
to identify clusters of comorbidities in RA [6, 7], and 
similar clustering analyses have been pursued across 
other rheumatic diseases [8, 9]. Developing clusters of 
comorbidities through the use of ML is relatively easy 
to achieve, but it is important to consider the purpose 
of the clustering: do clusters of comorbidities (versus 
individual comorbidities) provide new insights or act 
to predict or possibly explain clinical outcomes. While 
prior comorbidity cluster studies have created clus-
ters, it has not always been clear what motivated prior 
studies. In addition, prior comorbidity cluster studies 
have been derived from single academic medical cent-
ers with unclear generalizability. They also have defined 
comorbidity clusters using data at one point in time 
without respect to the longitudinal accumulation of 
comorbidities.

Relatively little work has focused on determining the 
value of comorbidity clusters in the longitudinal mod-
eling of clinical outcomes. We compared results for 
different ML algorithms employed to cluster patients 
based on comorbidities among RA patients in CorEvi-
tas, a large US-based registry. We assessed how clus-
ters of patients with given comorbidities predict future 
outcomes, including physical function and RA disease 
activity, and compared the prediction of outcomes 
using comorbidity clusters versus individual comor-
bidities. We hypothesized that the supervised ML algo-
rithms would be fitted to predict outcomes as well as 
individual comorbidities.

Methods
Study population and design
We used the CorEvitas RA registry to identify a cohort 
of patients potentially eligible. From this group, patients 
were required to have at least 6  years of experience in 
the registry, between 2011 and 2021, but patients could 
have entered the CorEvitas before 2011. The first visit 
in the CorEvitas RA registry was considered baseline 
with follow-up through the last visit in the registry. The 
full longitudinal dataset was used to identify patients in 
comorbidity clusters during the first phase of these analy-
ses. For the second phase, the comorbidity clusters were 
assessed using the first 3  years of consecutive available 
data with the next 3 consecutive years used to determine 
clinical outcomes.

Comorbidities of interest
The comorbidities of interest are collected at baseline 
and then updated in CorEvitas. These include condi-
tions summarized in Supplemental Table  1. The list 
of comorbidities included is quite similar to what has 
been reported in prior papers examining frequent 
comorbidities in RA [2, 10]; this grouping of comor-
bidities has been found to be associated with relevant 
clinical outcomes in RA.

Comorbidities are recorded at the time of enrollment 
in the registry and updated by patients and clinicians 
at subsequent visits that typically occur twice per year. 
Since we focused on chronic comorbidities, i.e., comor-
bidities accumulated over time. In other words, if one of 
these chronic comorbidities (e.g., diabetes or coronary 
artery disease) was reported, then it was assumed to be 
ongoing at subsequent visits.

Specific questions on comorbidities in CorEvitas 
changed in 2011. To determine the impact of changes in 
the collection of comorbidities, a secondary analysis was 
conducted only using participants who entered in 2011 
or after (see Supplemental Table  2). The reporting of 
comorbidities appeared similar to the total cohort. Thus, 
this sub-analysis was not pursued further.

Outcomes
The first phase of analyses focused on deriving comor-
bidity clusters using ML algorithms; therefore, the clus-
ters were the outcomes. The second phase focused on 
whether comorbidity clusters associated with future clin-
ical outcomes. The clinical outcomes of interest in phase 
two were the clinical disease activity index (CDAI) and 
function as measured by the Health Assessment Ques-
tionnaire—Disability Index (HAQ-DI) [11, 12].

CDAI and HAQ-DI are measured at almost all visits in 
CorEvitas. CDAI is a continuous scale from 0 to 76 with 
well-accepted thresholds for different levels of disease 
activity [11]. CDAI includes four components: patient 
global arthritis activity (0–10), physician (assessor) global 
arthritis activity (0–10), tender joint count (0–28), and 
swollen joint count (0–28). Since we assessed the out-
comes during the final 3  years of the study period, the 
time-averaged CDAI from those years was used as the 
primary disease activity outcome. The time-averaged 
CDAI was calculated based on a weighted average of the 
CDAI, using the number of months between visits as the 
weighting factor. In other words, the CDAI at a given visit 
was multiplied by the number of months after a given 
visit; each segment (CDAI x months) was added together 
and then divided by 36  months. A secondary outcome 
was the change in time-averaged CDAI between the first 
3 years and the second 3 years of the study period.
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The HAQ-DI encompasses 20 items across eight 
domains, each item scored 0–3 based on how much help 
is required to complete a given task (i.e., dressing and 
grooming, arising, eating, walking, hygiene, reach, grip, 
and activities) [12]. The average score for each domain is 
calculated, and then the average across the eight domains 
is used as a summary. The same method was used for the 
HAQ-DI to assess outcomes during the final 3  years of 
the study period, using a time-averaged HAQ-DI. Just as 
with the CDAI, change in time-averaged HAQ-DI was 
considered a secondary outcome.

Statistical analyses
We assessed patient characteristics at baseline and at 
year 3 of follow-up and then examined the comorbidity 
distribution across the population throughout 6  years 
of longitudinal follow-up. During the first phase of this 
work, the results of five different ML algorithms for 
clustering the patients’ comorbidities over the 6-year 
period were examined; the ML algorithms included 
K-mode, K-mean, agglomerative hierarchical divi-
sive analysis clustering (DIANA), agglomerative nest-
ing clustering (AGNES), and model-based clustering 
(VarSelLCM) [13, 14]. Three, four, five, and six clusters 
were each assessed. We chose 5 as the number of clus-
ters for all clustering algorithms based on the “elbow” 
method from the K-mode clustering [15]. The data 
were clustered by patient. (For K-means, center = 5; for 
K-modes, modes = 5; for AGNES and DIANA, cut the 
tree at k = 5. For VarselCluster, we selected all comor-
bidity variables and chose the highest probability group 
among 5 groups as the patient’s cluster group.)

In the second phase of this work, we compared the 
performance of the different clustering algorithms, with 
respect to their association with clinical outcomes. For 
all ML algorithms, the five-cluster solution was cho-
sen based on statistical methods that look for an inflec-
tion point in the sum of squares [13] (see Supplemental 
Fig. 1). The two clinical outcomes selected were the time-
averaged CDAI and time-averaged HAQ-DI. The clusters 
were defined using data from the first 3 years of follow-
up and the clinical outcomes defined in the next 3 years.

To understand the value of the different clusters, we 
compared the model fit for three sets of models. These 
included the following as independent variables: (a) only 
demographics and RA variables; (b) demographics, RA 
variables, and each comorbidity; (c) demographics, RA 
variables, and the clusters. This was repeated for each of 
the ML clustering algorithms. Sensitivity analyses consid-
ered sex-stratified models, models with only comorbidi-
ties recorded since baseline, and the secondary outcome 
(change in CDAI or HAQ-DI).

R (version 4.3.0) and SAS (version 9.4) statistical com-
puting packages were used for all analyses.

Results
Among all RA patients in the CorEvitas RA registry, 
nearly 12,000 patients had accumulated the minimum 
6 years of longitudinal data. Characteristics of the study 
cohort at baseline and year 3 are shown in Table  1. At 
baseline, patients were on average 59 (SD 12) years of age, 
77% were women, CDAI was 11.3 (SD 11.9, moderate 
disease activity), HAQ-DI was 0.32 (SD 0.42), and disease 
duration was 10.8 (SD 9.9) years. Almost all reported 
current use of a DMARD at both years 1 and 3. In addi-
tion, the use of medications for common comorbidities 
was frequent. Table  2 shows the percentage of patients 
that reported a comorbidity over the 6-year study period. 
The median number of comorbidities at baseline was 2 
(IQR 1, 3). As anticipated, cardiovascular comorbidi-
ties (i.e., coronary artery disease, hypertension, diabetes, 
and hyperlipidemia) are all common. Osteoporosis is 
reported in almost one-quarter of patients, acute kidney 
injury in one-sixth, and mental health issues in over half.

Clusters of patients were generated based on their comor-
bidities using five different ML algorithms; five cluster 
results were a focal point as they appeared to best describe 
the data (Supplemental Fig. 1 and Supplemental Table 3a-e) 
[13]. Using 5 clusters, 24 comorbidities, and 11,883 subjects, 
each ML algorithm provided different clusters. K-modes 
and K-means gave similar results: both generated one clus-
ter that had few patients who had few comorbidities; both 
generated one cluster with many patients having cardio-
vascular comorbidities; and both generated a cluster with 
mental health issues and fibromyalgia. The model-based 
clustering algorithm generated clusters with a broad distri-
bution of comorbidities. Lymphoma and skin cancers were 
relatively more frequent in one cluster and fibromyalgia 
and mental health issues in another cluster. The agglom-
erative hierarchical methods gave similar answers to each 
other that were different than the first three methods. The 
DIANA and AGNES algorithms each created one cluster 
with much higher frequencies of all comorbidities.

To better understand the potential role of the different 
ML clustering algorithms in clinical research, we exam-
ined their relationship with two different outcomes—
CDAI and HAQ-DI. Distribution of CDAI and HAQ-DI 
during the first 3 years and the subsequent 3 years were 
assessed (Fig. 1). At baseline, approximately 50% of CDAI 
scores were in the remission or low disease activity range 
and the remainder were evenly split between moderate 
and high disease activity. At follow-up, these proportions 
remained stable. For the HAQ-DI, at baseline, approxi-
mately 90% had scores of 1 or below (little or no assistance 
with typical activities). This remained stable at follow-up.
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The regression models for time-averaged CDAI are 
shown in Table 3. The first model (far left) includes only 
demographics and RA variables and no comorbidities; 
the R2 was 0.30 and RMSE 7.07. Adding all comorbidi-
ties individually demonstrated a slightly higher R2 (0.33) 
and a slightly lower RMSE (6.95). When the five clus-
ters from K modes were substituted for the individual 
comorbidities, the model fit hardly changed. The same 
was observed for clusters generated by regression and 

the DIANA agglomerative hierarchical algorithm. The 
same pattern was observed for the time-averaged HAQ-
DI endpoint (Table  4). The sensitivity analyses—sex-
specific stratified analyses, baseline versus post-baseline 
comorbidities, and change in time-averaged CDAI or 
HAQ-DI—found very similar results (see Supplemental 
Tables 4, 5, and 6). However, the models with a change in 
time-averaged outcome had slightly better model fit than 
the models with the primary outcome.

Table 1 Characteristics of patients with rheumatoid arthritis from the CorEvitas registry included in the analyses, at baseline and after 
2 years of follow-up

a Non-RA medications: Diabetes medications: metformin, insulin, glipizide, glimepiride, Invokana, Jardiance, januvia, pioglitazone, rosiglitazone, alogliptin, linagliptin, 
saxagliptin, sitagliptin, exenatide, dulaglutide, semaglutide, dapagliflozin, canagliflozin, empaglifozin. Anti-hypertensive medications: metoprolol, atenolol, nadolol, 
amlodipine, diltiazem, nifedipine, verapamil, hydrochlorothiazide, chlorthalidone, amiloride, triamterene, spironolactone, lisinopril, enalapril, fosinopril, ramipril, 
candesartain, irbesartan, valsartan, doxazosin, prazosin, labetalol, hydralazine. Osteoporosis medications: alendronate, risedronate, zoledronic acid, denosumab, 
teriparatide, abaloparatide, romosozumab. Lipid-lowering drugs: atorvastatin, Fluvastatin, lovastatin, pravastatin, rosuvastatin, simvastatin. Anti-depressant drugs: 
sertraline, fluoxetine, Paroxetine, venlafaxine, citalopram, vilazodone. Analgesics: tramadol, oxycodone, hydrocodone, codeine

Baseline (N = 11,883) At Two Years (N = 10,887)
N (%) unless noted

Age, years (SD) 59.06 (11.96) 60.78 (11.92)

Female sex 9142 (76.93) 8354(76.73)

Race/ethnicity

 White 10,079 (84.82) 9309 (85.51)

 Black 654 (5.50) 555 (5.10)

 Hispanic 678 (5.71) 606 (5.57)

 Asian 184 (1.55) 166 (1.52)

 Other 288 (2.42) 251 (2.31)

Duration of RA, years (SD) 10.78 (9.86) 12.40 (9.86)

Erosions 3636 (30.60) 3643 (33.46)

Serologic status, positive 5717 (76.21) (n = 7502) 5483 (76.61) (n = 7157)

CDAI (SD) 11.28 (11.94) 8.82 (10.00)

HAQ-DI (SD) 0.32 (0.42) 0.31 (0.42)

Medications—RA

 NSAIDs 7405 (62.32) 7288 (66.94)

 Glucocorticoids 3765 (31.68) 2534 (23.28)

 Methotrexate 7682 (64.65) 6813 (62.58)

 Leflunomide 918 (7.73) 1021 (9.38)

 Hydroxychloroquine 2382 (20.05) 2212 (20.32)

 Sulfasalazine 599 (5.04) 618 (5.68)

 TNF blocker 5025 (42.29) 4862 (44.66)

 IL6 blocker 372 (3.13) 561 (5.15)

 Abatacept 862 (7.25) 983 (9.03)

 JAK inhibitor 1115 (9.38) 1459 (13.40)

 Rituximab 404 (3.40) 502 (4.61)

Medications—non-RAa

 Diabetes medications 553 (4.65) 1224 (11.24)

 Anti-hypertensive medications 2088 (17.57) 4978 (45.72)

 Osteoporosis medications 460 (3.87) 783 (7.19)

 Lipid-lowering medications 3176 (26.73) 3333 (30.61)

 Anti-depressant medications 2554 (21.49) 2971 (27.29)

 Opioid analgesics 2231 (18.77) 2781 (25.54)
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Discussion
It has become popular to attempt to examine how patients 
cluster based on their comorbidities in rheumatic diseases 
[6–8]. This is often achieved with some form of ML clus-
tering algorithm. While clustering of patients based on 
comorbidities is intended to provide a deeper understand-
ing of the heterogeneity of diseases, such as RA, the clus-
ters are not always very interpretable; further, it is hard to 
gauge whether the clusters have provided more informa-
tion than the individual comorbidities. To examine this 
issue, we used a very large longitudinal RA registry to 
characterize comorbidity clusters using ML algorithms. 
The clusters varied based on the ML algorithm used. To 
examine whether the different algorithms provided new 
information about the individual comorbidities, clinical 
outcomes models were assessed for CDAI and HAQ-DI. 
Model results demonstrated that the clusters performed 
similarly to each other and similar to models with individ-
ual comorbidities; this was true across outcomes.

Two recent studies, both using ML, have examined 
whether informative patient clusters based on comor-
bidities among patients with RA could be identified. 
The first one used data from a single center registry and 
developed principal components which were then clus-
tered using K-mean clustering [7]. From 1443 patients, 5 
clusters were determined that differed in disease activity, 
comorbidity scores, and outcomes such as infection. This 
study was limited in several important ways. In addition 
to it comprising only one academic rheumatology prac-
tice, cluster analyses were applied to baseline comor-
bidities only, without accounting for the development 
over time of additional comorbid conditions. Further, 
it was not clear how the clusters of comorbidities were 
added incrementally over considering each comorbid 
condition individually. The second study, from the Mayo 
Clinic, included 1409 patients with RA [16]. Several ML 
algorithms were used, including hierarchical cluster-
ing, network analysis, and latent class analysis. Different 
methods yielded different numbers of clusters.

Machine learning algorithms permit relatively easy 
methods to cluster many variables across hundreds or 
thousands of patients. These methods have become 
popular in various types of high dimensional data, such 
as proteomics, transcriptomics, and genomics. It is natu-
ral for clinical researchers to import such methods into 
analyses of clinical variables; however, it is not clear 
whether these methods add much over more traditional 
analyses. While the current analyses did not suggest 
that comorbidity clusters explained much of the vari-
ation in CDAI or HAQ-DI, these clusters may be more 
useful in explaining other clinical outcomes, i.e., treat-
ment response. Our findings suggest that ML clustering 
algorithms can be used on comorbidity data to define 
groups of patients based on the many varied conditions 
patients have other than RA. However, the algorithms 
can be difficult to interpret. Not surprisingly, the clusters 
derived from these ML algorithms are not better predic-
tors than individual comorbidities, but they do produce 
clinical models with similar overall fit. Similar fit with 
the clusters is impressive; however, the clusters cannot 
be produced without knowing the individual comorbidi-
ties. Thus, the value of clustering comorbidities in clinical 
analyses is not perfectly clear. In addition, since the clus-
ters collapse 24 variables into five, this approach is statis-
tically more efficient.

The fact that the clusters have similar value as the 
individual comorbidities suggests that the 23 different 
comorbidities may not need to be collected if the clus-
ters are known. Since the clusters do not have clear face 
validity, it is not apparent that clinicians can recognize 
patients that occupy one cluster or another. Cluster-
ing algorithms can be used to describe phenotypes of 

Table 2 Comorbidities of patients with rheumatoid arthritis 
from the CorEvitas registry included in the analyses, at baseline 
and during follow-up

DVT/PE deep venous thrombosis/pulmonary embolus, NMSC non-melanoma 
skin cancer, GI gastrointestinal

Baseline Year 2 Year 4 Year 6

N subjects 11,883 10,887 10,609 10,721

Total # comorbidities 22,946 26,900 29,966 33,466

Percentages

Mental health 41.8 51.2 55.6 59.1

Hypertension 36.4 51.8 56.4 60.4

Osteoporosis 22.7 23.3 23.3 23.4

Hyperlipidemia 9.8 10.5 11.1 11.3

Diabetes 9.5 13.6 15.6 17.1

Coronary artery disease 7.1 9.6 11.1 12.7

Acute kidney injury 7.0 10.1 13.4 16.7

NMSC 6.3 9.6 12.3 14.4

Asthma/COPD 5.5 5.8 6.3 6.7

Other cancer 5.0 6.1 7.0 8.1

Psoriasis 4.3 5.3 5.6 5.7

Fibromyalgia 3.7 6.2 10.4 12.1

Gastrointestinal bleed 3.6 3.6 3.7 3.7

Liver disease 3.4 4.0 4.0 4.3

RA Lung 2.9 3.1 3.2 3.3

Stroke/TIA 2.2 2.9 3.9 4.8

Solid tumor 2.0 2.6 3.2 3.9

DVT/PE 1.7 2.1 2.4 2.9

Melanoma 1.0 1.9 2.8 3.6

Heart failure 0.9 1.4 2.0 2.8

Arrhythmia 0.4 0.5 0.6 0.9

Demyelinating 0.4 0.5 0.5 0.5

Lymphoma 0.4 0.5 0.8 1.1
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Fig. 1 Distribution of CDAI and HAQ-DI. Time-averaged value of CDAI at baseline (A) and during the final 3 years of study follow-up for patients 
in CorEvitas (B). Time-averaged value of HAQ-DI at baseline (C) and during the final 3 years of study follow-up for patients in CorEvitas (D)
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Table 3 Multivariable regression models comparing models for time-averaged CDAI outcome, individual comorbidities versus 
comorbidity clusters

All models included age, gender, and all RA medications from Table 1. K-mean and AGNES clustering results are not shown but give very similar results as other 
clustering algorithms

DVT/PE deep venous thrombosis/pulmonary embolus, TIA transient ischemic attack, NMSC non-melanoma skin cancer

No comorbidities  + Individual 
comorbidities

 + Clustering K-mode  + Clustering regression  + Clustering DIANA

Beta coefficient (95% confidence interval)

Race/ethnicity

 Asian  − 0.31 (− 1.34, 0.73) 0.23 (− 0.78, 1.25)  − 0.05 (− 1.08, 0.97)  − 0.09 (− 1.11, 0.94)  − 0.29 (− 1.33, 0.74)

 Black 0.70 (0.14, 1.26) 0.72 (0.16, 1.29) 0.68 (0.12, 1.25) 0.68 (0.12, 1.24) 0.69 (0.13, 1.26)

 Hispanic  − 0.08 (− 0.64, 0.48)  − 0.01 (− 0.56, 0.53)  − 0.04 (− 059, 0.51)  − 0.03 (− 0.58, 0.52)  − 0.08 (− 0.63, 0.45)

 Other 0.43 (− 0.40, 1.26) 0.54 (− 0.28, 1.36) 0.47 (− 0.35, 1.30) 0.56 (− 0.27, 1.38) 0.42 (− 0.41, 1.26)

 White reference reference reference reference reference

Duration of RA, years 0.03 (0.01, 0.04) 0.02 (0.01, 0.04) 0.02 (0.01, 0.04) 0.03 (0.01, 0.04) 0.03 (0.01, 0.04)

Erosions 0.50 (0.21, 0.79) 0.61 (0.32, 0.89) 0.48 (0.19, 0.76) 0.57 (0.29, 0.86) 0.49 (0.21, 0.78)

Serologic status, positive  − 0.88 (− 1.18, − 0.58)  − 0.72 (− 1.02, − 0.43)  − 0.84 (− 1.14, − 0.54)  − 0.76 (− 1.06, − 0.46)  − 0.88 (− 1.18, − 0.58)

CDAI, baseline 0.30 (0.29, 0.32) 0.29 (0.28, 0.30) 0.30 (0.29, 0.31) 0.30 (0.28, 0.31) 0.30 (0.29, 0.32)

HAQ-DI, baseline 3.43 (3.08, 3.79) 2.60 (2.24, 2.96) 3.11 (2.76, 3.47) 3.00 (2.64, 3.35) 3.43 (3.08, 3.79)

Individual comorbidities

 Coronary artery disease --- 0.77 (0.33, 1.21) --- --- ---

 Heart failure --- 1.78 (0.78, 2.78) --- --- ---

 Hypertension --- 0.58 (0.29, 0.85) --- --- ---

 DVT/PE --- 0.72 (− 0.15, 1.58) --- --- ---

 Stroke/TIA --- 0.68 (− 0.03, 1.40) --- --- ---

 Arrhythmia ---  − 0.64 (− 2.36, 1.08) --- --- ---

 Gastrointesinal bleed --- 0.72 (0.05, 1.39) --- --- ---

 Liver disease --- 0.50 (− 0.15, 1.16) --- --- ---

 Solid tumor ---  − 0.19 (− 0.96, 0.57) --- --- ---

 NMSC --- 0.11 (− 0.32, 0.54) --- --- ---

 Lymphoma --- 0.67 (− 0.89, 2.24) --- --- ---

 Other cancer ---  − 0.01 (− 0.53, 0.51) --- --- ---

 Melanoma --- 0.57 (− 0.30, 1.44) --- --- ---

 Diabetes --- 0.54 (0.17, 0.92) --- --- ---

 Hyperlipidemia --- 0.57 (0.29, 0.85) --- --- ---

 Osteoporosis --- 0.11 (− 0.22, 0.44) --- --- ---

 Demyelinating ---  − 1.01 (− 2.79, 0.78) --- --- ---

 Mental health --- 1.42 (1.15, 1.68) --- --- ---

 Fibromyalgia --- 3.01 (2.54, 3.48) --- --- ---

 Psoriasis --- 0.21 (− 0.35, 0.76) --- --- ---

 Asthma/COPD --- 0.20 (− 0.33, 0.74) --- --- ---

 RA Lung --- 0.41 (− 0.34, 1.15) --- --- ---

 Acute kidney injury ---  − 0.06 (− 0.47, 0.34) --- --- ---

Clusters from ML

 1 --- --- reference reference reference

 2 --- --- 0.03 (− 0.48, 0.54) 2.84 (2.22, 3.47)  − 0.18 (− 2.15, 1.78)

 3 --- --- 1.48 (1.00, 1.97) 0.29 (− 0.25, 0.83)  − 0.53 (− 2.73, 1.67)

 4 --- --- 1.32 (0.78, 1.87)  − 0.70 (− 1.19, − 0.21) 0.24 (− 2.33, 2.82)

 5 --- ---  − 0.41 (− 0.91, 0.09) 0.60 (0.03, 1.16)  − 2.98 (− 11.2, 5.27)

Degrees of freedom 22 46 26 26 26

Model fit statistics

 Adjusted R2 0.30 0.33 0.31 0.31 0.30

 Root mean square error 7.07 6.95 7.03 7.00 7.07
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Table 4 Multivariable regression models comparing models for time-averaged HAQ-DI outcome, individual comorbidities versus 
comorbidity clusters

All models included age, gender, and all RA medications from Table 1

DVT/PE deep venous thrombosis/pulmonary embolus, TIA transient ischemic attack, NMSC non-melanoma skin cancer

No comorbidities  + Individual 
comorbidities

 + Clustering K mode  + Clustering regression  + Clustering DIANA

Beta coefficient (95% confidence interval)

Race/ethnicity

 Asian  − 0.00 (− 0.05, 0.04) 0.02 (− 0.02, 0.06) 0.01 (− 0.03, 0.05) 0.01 (− 0.04, 0.05)  − 0.00 (− 0.05, 0.04)

 Black 0.02 (− 0.00, 0.05) 0.02 (− 0.00, 0.04) 0.02 (− 0.00, 0.05) 0.02 (− 0.00, 0.04) 0.02 (− 0.00, 0.04)

 Hispanic 0.02 (− 0.00, 0.04) 0.02 (0.00, 0.05) 0.02 (− 0.00, 0.05) 0.02 (− 0.00, 0.05) 0.02 (− 0.00, 0.04)

 Other 0.06 (0.02, 0.09) 0.06 (0.03, 0.10) 0.06 (0.02, 0.09) 0.06 (0.03, 0.10) 0.06 (0.02, 0.09)

 White reference reference reference reference reference

Duration of RA, years 0.00 (0.00, 0.00) 0.00 (0.00, 0.00) 0.00 (0.00, 0.00) 0.00 (0.00, 0.00) 0.00 (0.00, 0.00)

Erosions  − 0.00 (− 0.02, 0.01)  − 0.00 (− 0.01, 0.01)  − 0.01 (− 0.02, 0.01)  − 0.00 (− 0.01, 0.01)  − 0.00 (− 0.02, 0.01)

Serologic status, positive  − 0.02 (− 0.04, − 0.01)  − 0.02 (− 0.03, − 0.00)  − 0.02 (− 0.03, − 0.01)  − 0.02 (− 0.03, − 0.01)  − 0.02 (− 0.04, − 0.01)

CDAI, baseline 0.00 (0.00, 0.00) 0.00 (− 0.00, 0.00) 0.00 (0.00, 0.00) 0.00 (0.00, 0.00) 0.00 (0.00, 0.00)

HAQ-DI, baseline 0.63 (0.61, 0.64) 0.59 (0.57, 0.60) 0.61 (0.60, 0.63) 0.61 (0.59, 0.62) 0.63 (0.61, 0.64)

Individual comorbidities

 Coronary artery disease --- 0.03 (0.02,0.05) ---

 Heart failure --- 0.12 (0.07, 0.16) ---

 Hypertension --- 0.04 (0.02, 0.05) ---

 DVT/PE --- 0.04 (-0.00, 0.07) ---

 Stroke/TIA --- 0.05 (0.02, 0.08) ---

 Arrhythmia ---  − 0.01 (− 0.08, 0.06) ---

 GI bleed --- 0.01 (− 0.02, 0.04) ---

 Liver disease ---  − 0.01 (− 0.04, 0.02) ---

 Solid tumor ---  − 0.01 (− 0.04, 0.03) ---

 NMSC ---  − 0.00 (− 0.02, 0.02) ---

 Lymphoma ---  − 0.02 (− 0.08, 0.05) ---

 Other cancer --- 0.01 (− 0.01, 0.03) ---

 Melanoma --- 0.02 (− 0.02, 0.06) ---

 Diabetes --- 0.04 (0.02, 0.05) ---

 Hyperlipidemia ---  − 0.01 (− 0.03, 0.01) ---

 Osteoporosis --- 0.02 (0.01, 0.04) ---

 Demyelinating --- 0.03 (− 0.04, 0.11) ---

 Mental health --- 0.07 (0.06, 0.08) ---

 Fibromyalgia --- 0.12 (0.10, 0.14) ---

 Psoriasis --- 0.03 (0.01, 0.06) ---

 Asthma/COPD --- 0.01 (− 0.01, 0.03) ---

 RA Lung --- 0.02 (− 0.01, 0.05) ---

 Acute kidney injury --- 0.01 (− 0.01, 0.02) ---

Clusters from ML

 1 --- --- reference reference reference

 2 --- ---  − 0.01 (− 0.03, 0.01) 0.12 (0.10, 0.15)  − 0.03 (− 0.11,0.05)

 3 --- --- 0.07 (0.05, 0.09) 0.02 (− 0.00, 0.04)  − 0.06 (− 0.16,0.03)

 4 --- --- 0.08 (0.06, 0.10)  − 0.03 (− 0.05, − 0.01)  − 0.05 (− 0.16, 0.06)

 5 --- ---  − 0.02 (− 0.04, 0.00) 0.05 (0.02, 0.07)  − 0.08 (− 0.43, 0.26)

Degrees of freedom 22 46 26 26 26

Model fit statistics

 Adjusted R2 0.47 0.50 0.48 0.48 0.47

 Root mean square error 0.30 0.29 0.29 0.29 0.30
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heterogeneous disease, like RA; however, comorbid-
ity data may not be that helpful for defining these sub-
phenotypes. Further, the different ML algorithms defined 
different clusters, suggesting that the clustering did not 
describe a “biologic” truth; rather, it likely represented a 
statistical phenomenon.

This study has several important strengths, including 
a very large sample size with longitudinal data. In addi-
tion, the cohort is derived from many practices across 
the USA, including both community-based and aca-
demic rheumatology practices. Limitations include the 
fact that comorbidity reporting may be incomplete and 
not consistently defined across clinicians. Also, some 
of the comorbid conditions are self-reported and thus 
there is likely misclassification.

Conclusions
In conclusion, we defined clusters of RA patients based 
on comorbidities, using a ML algorithm. Different algo-
rithms produced different clusters, many of which were 
hard to understand clinically. However, in clinical out-
comes models, the clusters performed similarly to each 
other and to the individual comorbidities. Comorbidity 
clusters seem to be useful in clinical outcomes mod-
els due to their statistical efficiency. However, it is not 
clear that they provide new insights beyond the indi-
vidual variables. While ML clustering algorithms have 
a clear role in multi-dimensional biologic data, their 
role in clinical research in rheumatology needs contin-
ued assessment. We recommend that future comorbid-
ity clustering studies be designed with a clear purpose 
in mind for the clustering, such as identifying a small 
number of clusters that best predict future outcomes.
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