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A B S T R A C T

Data Assimilation (DA) algorithms has been successfully employed in geotechnical problems to jointly estimate
the state of the system and model parameters, however, the impact of the field monitoring setup on the
performance of DA is often overlooked. In this paper, the impact of the field monitoring setup on the
performance of DA is studied. The Ensemble Kalman Filter is used as the DA algorithm as part of a synthetic
experiment which includes a fully coupled hydromechanical numerical model of an embankment constructed
on soft ground. The results of the assimilated parameters show different rate of convergence toward their
synthetic true value which corroborates well with the results of the global sensitivity analysis performed in
this study. In order to investigate the difference in influence between the quantity and type of measurement,
different monitoring strategies were chosen in this study. The results indicate that the effective friction angle
and Poisson’s ratio are better estimated when the horizontal displacement is included along with the vertical
displacement in the observation space of the DA procedure. Finally, the strong correlation between observation
type and parameter convergence is independent of the type of initial prior knowledge, but strongly depends
on the measurement location.
1. Introduction

Efficient design for geotechnical infrastructure in terms of service-
ability limit state depends greatly on accurately forecasting the current
and future response. Deterministic forward models are commonly used
to predict the behaviour of a geotechnical system. The system re-
sponse, however, is susceptible to various uncertainties that stem from
limited knowledge and/or poor understanding of the physical phe-
nomena. Improving the performance of these models can be achieved
by adjusting their parameters to values that are more close to the
system response, preferably through an inverse method, by utilising
measurements, which can help to estimate the poorly known model
parameters.

With recent technological advancements, projects are now equipped
with tools for real-time monitoring, leading to new possibilities for val-
idating the ever-growing optimisation techniques for inverse analysis
and subsequent uncertainty reduction in the model forecast. However,
dealing with monitoring data can be challenging due to the quality of
the acquired dataset leading to uncertainties. In order to accurately
determine the probable range of behaviours with a practical margin
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of error, it is crucial to consider the uncertainties arising from both the
monitoring data and the numerical simulation.

In recent times, there has been a growing interest in employing the
Bayesian statistical framework to address the task of jointly estimating
the state and parameters using monitoring data (Wu et al., 2007; Zhang
et al., 2010; Juang et al., 2013). Recent developments in other scientific
domains have shown the efficacy of a powerful method known as
Data Assimilation (DA), which rigorously incorporates observations
into numerical forecasting models accounting for uncertainties. The
Ensemble Kalman Filter (EnKF), a sequential DA technique that incor-
porates data into the model prediction as they become available (i.e.,
sequentially), is one of the many techniques in the DA framework that
has lately gained popularity in geotechnical applications (Liu et al.,
2018; Tao et al., 2020; Mohsan et al., 2021; Tao et al., 2021, 2022). The
probability distributions are represented by their sample realisation,
referred to as ensembles, and hence can easily deal with nonlinear
state equations making it feasible for geotechnical applications. This
prior work shows that EnKF is an efficient Bayesian statistical method
and has been successfully employed in geotechnical problems, how-
ever, it is still not fully attractive for general geotechnical practice
vailable online 16 November 2023
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since many issues remain unanswered. For example, the impact of
the field monitoring setup on the performance of DA, particularly in
geotechnical engineering, is frequently underestimated and overlooked,
with recommendations typically relying on experience. While empirical
decisions are generally not incorrect, the measurement arrangement,
i.e., the quantity, type and location, exert a major influence on the
results of the back-analysis. This is because not all model parameters
have the same influence on the state response and the sensitivity of
those parameters vary in the spatiotemporal domain. The variation
in sensitivity can result in different results in terms of accuracy and
precision for each parameter when employing Data Assimilation with
different monitoring configurations. In view of this, it makes sense to
pose the following questions:

1. Does an increased quantity of measurements give a ‘‘significant’’
improvement in the accuracy and precision of the parameters
and prediction of the system performance?

2. What type, or combination, of measurements are needed for an
accurate prediction of the parameters?

3. How much influence does the spatiotemporal sensitivity of the
parameters have on the convergence of the parameters during
Data Assimilation ?

4. Does the type of prior information included in the Data Assimi-
lation procedure influence the results?

5. What are the effects of the measurement location on the perfor-
mance of Data Assimilation?

This paper aims to answer the above questions through a synthetic
umerical experiment of an embankment constructed on soft soil. In
his study, the constitutive behaviour of the soil is modelled using the
oft Soil model, available in general geotechnical Finite Element code
LAXIS (Plaxis, 2015). The chosen geometry of the embankment, the
oil type and the aforementioned constitutive model are ideal in nature,
o it should be noted that the conclusions made for the above questions
ay not be generic but offer a detailed insight and a way forward for

esearchers to pursue the above questions in other scenarios. In this
tudy the sensitivity of the parameters is calculated using the factorial
nalysis (Tahershamsi and Dijkstra, 2022) due to its computational
fficiency.

This paper is organised as follows: First, an overview of the concepts
nd methods of Data Assimilation are presented, and the theory un-
erpinning the Ensemble Kalman Filter (EnKF) is elaborated. Then the
ethodology where the process of integrating Data Assimilation in a

inite Element code is explained along with the details of the synthetic
xperiment and Global Sensitivity Analysis (GSA) used in this study.
his is followed by an initial exercise where the state of the system
nd the parameter vector are jointly back-calculated from a pre-defined
earch space using Data Assimilation. The primary objective here lies in
he statistical assessment of the identified parameters and the state of
he system for a given monitoring setup. Then the subsequent sections
eal with the aforementioned questions where the effect of sensor
trategy and type of prior distribution on the performance of the Data
ssimilation is evaluated. Finally, the paper concludes with the results
f the findings and future research steps.

. Data assimilation

Data Assimilation (DA) is a versatile approach to estimate the state
f a dynamic system by combining observational data with a numerical
odel forecast of the system. Considering a time window i.e., 𝑡 ∈

[0, 𝑇 ], the evolution of the state in the spatiotemporal domain, 𝑓 (𝑡, 𝑥),
is dictated by the forward model F ∶ 𝑓 (𝑡, 𝑥) → 𝑓 (𝑡 + 𝛥𝑡, 𝑥), ∀(𝑡, 𝑥) ∈
[0, 𝑇 ]×𝛺 as shown in Eq. (1) where the state of the system, represented
by 𝜓𝑘 ∈ R𝑚, is evolved using the forward dynamics:

𝜓𝑘 =
(

𝑢𝑘
𝑝𝑘

)

∈ R𝑚
(1)
2

𝜓𝑘 = 𝐹 (𝜓𝑘−1) + 𝑞𝑘−1
where, 𝑢𝑘 and 𝑝𝑘 are the nodal displacement and excess porewater
pressure vector respectively for time-step 𝑘 of the discretised system
and 𝑞𝑘 ∼ 𝑁(0, 𝜎𝑞) is the process noise vector for the modelling errors.
𝜓𝑘 ∈ R𝑚 is often called the ‘model space’ or ‘prediction space’. The
true behaviour of the system is observed via a set of discrete points in
the domain (representing instruments in the ground) and this is often
termed as the ‘observation space’ modelled by 𝑦𝑘 ∈ R𝑛. The mapping
from the model space to the observation space is performed via the
operator H ∶ 𝑓 (𝑡, 𝑥) → 𝑔(𝑡, 𝑥), ∀ (𝑡, 𝑥) ∈ [0, 𝑇 ] ×𝛺:

𝑦𝑘 = 𝐻𝜓
𝑘 (𝜓𝑘) + 𝑣𝑘 (2)

where, 𝑣𝑘 ∼ 𝑁(0, 𝜎𝑣) is the noise corrupting the measurement. The error
covariance matrix for the process noise is given as 𝐸[𝑞𝑘 𝑞𝑇𝑘 ] → 𝑄𝑘 and
for the observation error the covariance matrix is defined as 𝐸[𝑣𝑘 𝑣𝑇𝑘 ] →
𝑅𝑘.

The state space, 𝜓 ∈ R𝑚, needs to be augmented to form a
combined state-parameter space, to simultaneously estimate the model
parameter set, 𝜃 ∈ R𝑝, along with the evolving model state. The joint
space 𝑥𝑘 enables to simultaneously update both the model parameters
and the state variables during the assimilation process (Iglesias et al.,
2013; Bocquet and Sakov, 2013):

𝑥𝑘 =
(

𝜓𝑘
𝜃𝑘

)

∈ R𝑚+𝑝 (3)

The augmented system state can be integrated with the governing equa-
tions for the evolution of the model state, following the usual approach.
It is important to note, however, that the observation operator needs
to be augmented as well, since the parameters are not part of the
observation space:

𝐻𝑘 =
(

𝐻𝜓
𝑘 0

)

∈ R𝑛×(𝑚+𝑝) (4)

The augmented state vector allows for the calculation of the cross-
covariance between the states and parameters. The inference of the
unobserved parameter and its uncertainty for the joint state-parameter
estimation relies crucially on the cross covariance matrix (see Eq. (5)).
The off-diagonal elements of the (augmented) state error covariance
matrix 𝐸 [ (𝑥 − 𝐸[𝑥]) (𝑥 − 𝐸[𝑥])𝑇 ] pass information from the data as-
similated state, to improve the estimate of the unobserved parameters:

𝐸 [ (𝑥 − 𝐸[𝑥]) (𝑥 − 𝐸[𝑥])𝑇 ] =
(

𝑃𝜓𝜓 𝑃𝜓𝜃
𝑃𝜃𝜓 𝑃𝜃𝜃

)

(5)

In this study, the explicit consideration of model error is not included
due to the adopted persistence model (𝑑𝜃∕𝑑𝑡 = 0), i.e., the param-
eter set remains constant during the model state evolution until the
subsequent assimilation cycle. This is because the uncertainty in the
parameters implicitly accounts for the model error, and introducing
any further errors potentially diminishes the importance of previous
assimilation results, thus affecting the convergence (Trudinger et al.,
2008).

In this work, the overall convergence rate of the parameters is
analysed by the normalised trace of the parameter covariance matrix,
termed as the Uncertainty Ratio, 𝑍𝐴 given in Eq. (6). For assessing
the rate of convergence for each individual parameter, the normalised
variance of its estimate is given in terms of the Uncertainty ratio, 𝑍, as
shown below:
𝑍𝐴 = Tr (𝑃𝜃𝜃)∕ Tr (𝑃 0

𝜃𝜃)

𝑍 = 𝜎2𝜃𝜃∕𝜎
2
𝜃𝜃0

(6)

Using all the available noisy observations until time ‘𝑘’ (𝑦1∶𝑘 = {𝑦1, 𝑦2...
𝑦𝑘}), the state of the system can be updated to construct the posterior
density. For this, the prior distribution at time ‘𝑘’ is required which,
based on the Chapman–Kolmogorov equation, is obtained by projecting
the previous posterior at time ‘𝑘-1’ forward in time using the forward
model (Chatzi and Smyth, 2009).

𝑝(𝑥𝑘|𝑦1∶𝑘−1) = 𝑝(𝑥𝑘|𝑥𝑘−1) 𝑝(𝑥𝑘−1|𝑦1∶𝑘−1) 𝑑𝑥𝑘−1 (7)
∫
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Fig. 1. Illustration of the working of sequential Data Assimilation (𝑡1 to 𝑡5 are time
intervals).

Subsequently the updated posterior at time ‘𝑘’ can be obtained, by
incorporating the latest observation likelihood:

𝑝(𝑥𝑘|𝑦1∶𝑘) =
𝑝(𝑦𝑘|𝑥𝑘) 𝑝(𝑥𝑘|𝑦1∶𝑘−1)

𝑝(𝑦𝑘|𝑦1∶𝑘−1)
(8)

The process of this sequential assimilation of observations is sum-
marised in Fig. 1. The typical assimilation scheme consists of two main
stages: (1) a prediction/forecast step that serves as the prior for that
timestep, and (2) an update/analysis step that incorporates the obser-
vations to obtain the posterior. From Fig. 1, the predicted result from
time 𝑡1 to 𝑡2 using the forward model represents the prior knowledge at
𝑡2. The observation at time 𝑡2 is then integrated to obtain the posterior.
Using this posterior and the forward model, the state at 𝑡3 is predicted.
As there is no observation in this time period, the simulation continues.
At time 𝑡4, when the observation is made available, the prior is updated
using this observation to obtain the posterior which is then propagated
to time 𝑡5. However, solving the Bayesian integral equation is usually
intractable, particularly for highly nonlinear problems. Therefore, it is
essential to employ algorithms that provide approximate solutions, one
of those will be discussed in the following section.

2.1. Ensemble Kalman filter

The Ensemble Kalman Filter (EnKF) is a variation of the Kalman
filter (Kálmán, 1960) introduced by Evensen (1994). In EnKF the
statistical properties of the state variable are represented by a col-
lection of ensemble members, thereby approximating the covariance
matrix, which are evolved over time using the nonlinear dynamics of
the system. Thus instead of storing the full covariance matrix, EnKF
can represent the same error statistics using an appropriate set of
ensembles. As the population of the ensemble increases, the error in the
approximation decreases. In the strict sense, EnKF always introduces
error due to its finite-size approximation of the covariance matrix.
Subsequently, by assuming gaussian approximation, the ensemble set
is subjected to the standard Kalman filter to compute the posterior
3

mean and variance at each assimilation step. The Ensemble Kalman
Filter (EnKF) is attractive due to its ability to effectively handle high-
dimensional problems with a small ensemble size (Schillings and Stuart,
2016). Despite its use in geoscience, EnKF is still a relatively new
approach in geotechnics. Recent studies have investigated the potential
of EnKF in geotechnics (e.g Vardon et al., 2016; Liu et al., 2018;
Mavritsakis, 2017). The workflow of EnKF is shown in Fig. 2:

The ensemble representation of the augmented state vector is ex-
pressed as:

𝑥𝑁𝑘 =
(

𝜓1
𝑘 𝜓2

𝑘 … 𝜓𝑁𝑘
𝜃1𝑘 𝜃2𝑘 … 𝜃1𝑘

)

∈ R𝑁×(𝑚+𝑝) (9)

he mean, anomaly and the subsequent covariance matrix of the aug-
ented ensemble forecast state vector is estimated as:

𝑥𝑓𝑘 = 𝑥𝑓,𝑁𝑘 . 𝟏𝑁

𝑿𝑓
𝑘 = 1

√

𝑁 − 1
(𝑥𝑓,𝑁𝑘 − 𝑥𝑓𝑘 )

𝑒,𝑓
𝑘 = (𝑿𝑓

𝑘 )(𝑿
𝑓
𝑘 )
𝑇 ≈ 𝑃 𝑓𝑘

(10)

here superscript 𝑒 represents the quantities estimated from ensem-
les with 𝟏𝑁 representing the equal weight vector for calculating the
ean. An ensemble of perturbed observation with covariance 𝑹 is
efined (Burgers et al., 1998) as follows:

𝑦𝑗𝑘 = 𝑦𝑡𝑘 + 𝑣
𝑗
𝑘 𝑗 = 1, 2,… , 𝑁

𝒀 ′
𝑜 =

1
√

𝑁 − 1

[

𝑣1𝑘, 𝑣
2
𝑘,… , 𝑣𝑁𝑘

]

𝑹𝑒 = (𝒀 ′
𝑜)(𝒀

′
𝑜)
𝑇 ≈ 𝑹

(11)

The ensemble based Kalman gain matrix 𝑲𝑒 is obtained from the
approximate background covariance matrix and observation operator
(shown below as time-independent and linear, as used in this study)
and each ensemble member is updated in the analysis step:

𝑲𝑒 = 𝑃 𝑒,𝑓
𝑘 𝐻𝑇

[

𝐻𝑃 𝑒,𝑓
𝑘 𝐻𝑇 +𝑹𝑒

]−1

𝑥𝑎𝑛,𝑘 = 𝑥𝑓𝑛,𝑘 + 𝑲𝑒 [𝑦𝑛,𝑘 −𝐻𝑥
𝑓
𝑛,𝑘], 1 ≤ 𝑛 ≤ 𝑁

𝑃 𝑒,𝑎
𝑘 = [𝑰 −𝑲𝑒𝐻] 𝑃 𝑒,𝑓

𝑘

(12)

According to Verlaan and Heemink (2001), EnKF can be used for
strongly nonlinear problems. Even though the EnKF does not solve the
Bayesian update of a non-Gaussian probability density function, the
updated ensemble inherits most of the non-Gaussian properties from
the forecast ensemble since only the updates defined by the right-
hand side of Eq. (12) for calculating 𝑥𝑎𝑛,𝑘 are linear. Due to this, the
resampling of the posterior is avoided making EnKF computationally
efficient (Carrassi et al., 2017).

3. Methodology

The Data Assimilation (DA) framework allows for the estimation of
model parameters by analysing sequential measurements taken under
known varying traction boundary conditions. Fig. 3 illustrates the
integration of the Ensemble Kalman filter (EnKF) into a geotechnical
application implemented within the commercial Finite Element code
PLAXIS (Plaxis, 2015). The behaviour of the system is simulated in
a controlled setting by producing synthetic measurement data with
noise, specifically vertical and horizontal displacements. The Data As-
similation (DA) procedure is then implemented for the considered
time-dependent geotechnical system, which involves an embankment
on soft soil undergoing consolidation.

Following initialisation, the numerical forecasting model utilises the
set of ensembles, each with a unique set of model parameters, to predict
the geotechnical response in the time domain up to a specified time
step. These ensembles represent the prior belief of the parameter values
leading up to the time of the available measurement. The predicted
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Fig. 2. Illustration of the principle of the Ensemble Kalman Filter.
Fig. 3. Illustration of the integrated workflow of PLAXIS with Ensemble Kalman Filter.

state in the model space is subsequently transformed into the observa-
tion space, and through the use of DA, the posterior distribution of the
parameter set is estimated.

The displacement at a specific time interval depend not only on
the magnitude of the model parameters but also on the state variables,
such as stress, strain, and porewater pressure distribution, at each time
step. The evolution of these states depend on the loading history of
the problem and a recursive algorithm is therefore necessary to update
these states along with the model parameters at each assimilation cycle
to achieve proper convergence, albeit, at an unavoidably increased
computational cost (Mohsan et al., 2021). The converged parameters
are assessed in terms of physical meaningfulness and subsequent model
performance on future forecasts in the prediction window.

A coupled hydro-mechanical finite element model (FEM) simulation
serves as the forward model. The study investigates the impact of
various factors such as sensor characteristics, prior distribution type,
and parameter sensitivity on the Bayesian update of embankment
behaviour. The entire workflow is implemented and solved in a Python
environment (Van Rossum and Drake Jr., 1995), utilising the PLAXIS
Python interface to automate the finite element calculations in PLAXIS
and integrating it with the DA algorithm in the same Python script. A
basic version of this script is made available on GitHub (https://github.
com/amaran1988/DA-PLAXIS2D.git).
4

4. Numerical experiment

This paper presents a numerical experiment that involves integrat-
ing the Ensemble Kalman Filter (EnKF) into a Finite Element code to
update the behaviour of an embankment based on available monitoring
information. The embankment is constructed in two stages. In the first
stage, the embankment is constructed within a time span of 60 d to
an height of 2.0m, and allowed to consolidate for 1 year. During this
consolidation period monitoring information is made available. This
period ranging between 60 to 425 days after start of construction
is treated as the assimilation window. The Ensemble Kalman Filter
(EnKF) is then used to calibrate the parameters of the model using
the monitoring data. In the second stage, i.e. after 425 d, the height of
the embankment is further raised to 3 m over a period of 60 d. This
second stage is treated as the prediction window without monitoring
data in which the efficiency of the Data Assimilated/calibrated model
is assessed based on the accuracy and precision of the prediction for an
altered system. The embankment is 4m wide with 6 m on either side
sloping toward the toe constructed with a slope of 1:2 with an embank-
ment material that has a unit weight of 17 kN∕m3. The discretisation
of the mesh along with the dimensions of the Finite Element model is
shown in Fig. 4. The numerical model is discretised to a total of 5859
15-noded triangular elements leading to a total of 47475 nodes. The
behaviour of the embankment is considered deterministic and modelled
as a drained material with Mohr–Coulomb constitutive model with a
Young’s modulus of 40000 kPa and Poisson’s ratio of 0.35. The strength
of the embankment material is prescribed using an effective friction
angle 𝜙′ of 35◦. The problem is simplified to a homogeneous soil profile
with phreatic level at the ground surface. The hydraulic properties are
assumed isotropic (𝐾𝑣 = 𝐾ℎ).

4.1. Constitutive model for the soft soil

The assumed soil behaviour reflect those of a slightly overconsoli-
dated to normally consolidated soft soil deposit, therefore, the Soft Soil
(SS) constitutive model has been chosen. Although inspired from the
Modified Cam Clay (MCC) model (Roscoe and Burland, 1968), it cannot
be classified as a Critical State Model due to the modified formulation
for the yield surface. This modification enables the SS model to predict
a reasonable value for the 𝐾0, at normally consolidated region while the
MCC model predicts overly high values. The SS model assumes an as-
sociated flow rule (e.g., Karstunen and Amavasai, 2017; Plaxis, 2015).
The trade-off for the aforementioned modification is that a separate
failure condition needs to be imposed using the Mohr–Coulomb failure
criterion. Also SS does not allow stress states that exceed the Mohr–
Coulomb failure criterion, hence, strain softening is not permitted.
However, in the current study, SS is appropriate since the soil is not
heavily overconsolidated.

https://github.com/amaran1988/DA-PLAXIS2D.git
https://github.com/amaran1988/DA-PLAXIS2D.git
https://github.com/amaran1988/DA-PLAXIS2D.git
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Fig. 4. Mesh discretisation and dimensions of the numerical model.
Table 1
Synthetic truth and feasible space of parameters for the Soft Soil model.

Parameter Unit Synthetic truth Feasibility space

𝜆∗ – 0.280 0.200–0.520
𝜅∗ – 0.030 0.015–0.039
𝜈′𝑢𝑟 – 0.200 0.150–0.380
𝜙′ degrees 27.00 24.0–59.0
POP kPa 5.000 2.10–5.50
𝑘 m/day 0.006 0.005–0.030

4.2. Generation of synthetic data

Table 1 shows the parameter values used to generate the synthetic
truth from which the monitoring data will be sampled. The forward
simulation is performed using the numerical model built in PLAXIS.
The measured nodal displacements are obtained at specific locations
beneath the embankment, at depths of 0.5m, 1.0m, 2.0m, and 3.0m. The
set of measurements includes four sensors beneath the centre to moni-
tor vertical displacement (p1, p2, p3 and p4) and four sensors below the
toe of the embankment to monitor horizontal displacement (p5, p6, p7
and p8) as shown in Fig. 4. The objective is to show that the posterior
updating is sensitive to the location of the sensors. For example, friction
angle becomes more important where a shear plane is located. So, to
demonstrate this in a synthetic setting, the location of the sensors were
chosen accordingly. These synthetic measurements are obtained at time
intervals following standard practice for settlement retrieval, with more
frequent measurements at the beginning of embankment construction
and progressively reduced intervals as time progresses (see Table 2).
Synthetic data for time-dependent displacements are generated with
Gaussian noise added to the observation data. For this study, a noise
level of 5mm is selected to generate noise around the true synthetic
displacements.

4.3. Generation of ensemble population

In practical applications, numerically evolving the (nonlinear)
model dynamics can be time-consuming, and there is a limitation on
the size of the ensemble that can be utilised. EnKF always introduces
error due to its finite-size approximation but this may become more
pronounced with a reduced sample size. Drawing from a comparable
case study (Mohsan et al., 2021), it is concluded that reasonable
accuracy can be attained by employing an ensemble size of 50, which
is adopted in this study. While the Ensemble Kalman Filter (EnKF) is
typically formulated based on Gaussian assumptions, some studies in
geotechnical engineering have employed prior information with non-
Gaussian distributions (Tao et al., 2020, 2022). Considering this, a
multivariate uniform distribution was assumed for the prior probability
5

Table 2
Temporal monitoring points.

Monitoring ID Time [days]

1 62.165
2 66.495
3 72.990
4 81.651
5 88.146
6 103.302
7 116.292
8 133.613
9 150.934
10 185.576
11 220.218
12 263.520
13 315.483
14 367.445
15 402.087
16 425.000

density function of the uncertain parameters. The distribution is inde-
pendently defined within lower and upper bounds. The calculations
were repeated 10 times using different initial samples, to eliminate
randomness. The mean values were intentionally set differently (and
far) from the synthetic true parameter values. The feasibility space,
as shown in Table 1, is determined by selecting bounds that ensured
a consistent coefficient of variation (COV) of 0.25 for all parameters
except for the hydraulic conductivity since a larger variation (COV =
0.40 is chosen in this study) is usually observed in practice.

4.4. Global sensitivity analysis

Global Sensitivity Analysis (GSA) refers to a set of systematic ap-
proaches that aim to comprehensively investigate the sources of un-
certainty in any process or system. One of the primary advantages of
GSA methods is their ability to systematically explore the entire space
of input parameters (Saltelli et al., 2008). Such methods are required
in order to assess the effect of sensor type and their location towards
the performance of a Data Assimilation procedure. Tahershamsi and
Dijkstra (2022) have illustrated the advantages of using GSA methods
both in the spatial and the temporal domain within geotechnical FE
modelling. In addition, the authors have shown that factorial design
is more economical for geotechnical models with a limited number of
model parameters (<15) compared to the most commonly used Sobol
method, without a significant compromise in accuracy.

In this study, a factorial design is chosen as the GSA method to
evaluate the spatio-temporal sensitivity of the model parameters. A
predetermined number of levels is chosen for each factor of interest,
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Fig. 5. Convergence of model parameters for the soil using the Ensemble Kalman Filter.
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llowing for execution of all possible combinations. The primary ben-
fit of a factorial design is its ability to provide comprehensive data
orresponding to various responses observed in each trial, representing
he main effects of the parameters (Box et al., 2009). In a two-level
actorial design involving 𝑘 input parameters, the main effects are
easured by using Eq. (13). In this equation, C represents contrast

matrix, R response vector, E vector of effects, and 𝑛 is the total number
of simulations (e.g., Tahershamsi and Dijkstra, 2022).
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he levels for this study are set to maintain a relative range of 35%
onsistently for all parameters, as illustrated in Table 3. All the spatial
onitoring points (p1 to p8) mentioned in Section 4.2 are considered

or the sensitivity analysis. With regards to the temporal domain, all
6

ime periods from Table 2 are selected. p
Table 3
Chosen levels of each factor.

Factor Unit − +

𝜆∗ – 0.224 0.325
𝜅∗ – 0.020 0.029
𝜈′𝑢𝑟 – 0.200 0.290
𝜙′ degrees 24.00 35.0
POP kPa 5.000 7.250
𝑘 m/day 8e−3 11.6e−3

5. Results

5.1. Parameter estimation

Fig. 5 shows the convergence of parameters of the Soft Soil model.
The final assimilated ensembles represented by their mean and COV
values are summarised in Table 4, while Fig. 6 shows the uncertainty
ratio, 𝑍 (from Eq. (6)), of each parameter.

The hydraulic conductivity 𝑘 exhibits the highest rate of conver-
ence, followed by the effective friction angle 𝜙′, the modified com-
ressibility index 𝜆∗ and preoverburden pressure POP. The difference
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Table 4
Post-assimilated values of the model parameters.

Parameter Unit Synthetic
truth

Prior
mean

Prior
COV

Assimilated
mean

Assimilated
COV

𝜆∗ – 0.280 0.333 0.250 0.275 0.013
𝜅∗ – 0.0300 0.0279 0.250 0.0282 0.061
𝜈′𝑢𝑟 – 0.200 0.273 0.250 0.209 0.054
𝜙′ degrees 27.00 40.360 0.250 27.857 0.013
POP kPa 5.000 3.685 0.250 4.797 0.024
𝑘 m/day 0.006 0.0176 0.400 0.0059 0.004

Fig. 6. Uncertainty ratio of model parameters.

in the convergence can be attributed to the varying sensitivity of each
parameter to the measurement data included in the Data Assimilation
process. Also the change in effective stress level affects the sensitivity
of each parameter e.g., the modified swelling index 𝜅∗ is only relevant
when the effective stress level is below the preconsolidation pressure
and that for modified compressibility index 𝜆∗ afterwards.

5.2. State estimation

After the first stage of embankment construction, the displacements
are monitored and this information is used in the Data Assimilation
process to estimate the state, i.e., the displacements of the subsoil.
Fig. 7 shows the difference in predicted displacements between the
ensemble mean of the prior knowledge of the parameters and those
updated with Data Assimilation, for a point 2.0 m below the centre
(settlements) and toe (horizontal displacements) of the embankment.
The time series shows the mean of the ensemble calculated up to that
7

time when observation is available and then restarted from the initial
time period to update the states (as mentioned in Section 3). Using
prior knowledge alone, the settlements are overestimated (Fig. 7a)
for the complete time period and the horizontal displacements are
underestimated after 120 days (Fig. 7b). Using Data Assimilation, the
model is able to capture the synthetic true values of the settlement
and the horizontal displacement quite accurately. Regarding precision,
represented by the standard deviation, the estimate from the settlement
of the monitoring points, p1 to p4, ranges from 0.67 to 1.39mm, while
the estimate from the horizontal displacement of points p5 to p8 ranges
from 0.34 to 0.96mm showing a high level of precision achieved.

As mentioned in Section 4, the embankment is raised to 3m af-
er 425 days where the subsequent long-term consolidation is not
onitored. The difference in prediction, after the second stage of em-

ankment construction, between the calibrated model and using only
rior knowledge is shown in Fig. 8. The results indicate that the model
ith assimilated parameters captures the response of the embankment

n the prediction window more accurately.
Although in this study, the porewater pressure is not included as

art of the observation space in the Data Assimilation procedure, the
stimation of excess porewater pressure is sufficiently close to the
ynthetic truth in both the assimilation and prediction window (see
ig. 9). This is reasonable, since a synthetic dataset is created from a
odel with pre-specified hydraulic and mechanical parameters which,

n most cases, is straightforward to back-calculate due to the controlled
nvironment. When dealing with in-situ measurements, however, dif-
erences may arise in predictions between mechanical and hydraulic
roperties due to a lot of hidden uncertainties and various sources of
ariability which are difficult to capture.

.3. Effect of different monitoring strategy

As shown in Figs. 5 and 6, there obviously exist differences in the
ccuracy, precision and rate of convergence between the parameters.
lthough some parameters fall behind in terms of either accuracy or
recision, the state estimate, as shown in Section 5.2 for the vertical and
orizontal displacements, is still captured reasonably well. This is due
o the fact that the sensitivity of some parameters dictate the accuracy
nd precision of the state prediction. In order to understand the effect of
arameter sensitivity on the performance of Data Assimilation (DA), it
s necessary to present the difference in influence between the quantity
nd type of information. For this, three cases with different monitoring
trategies are chosen:

• Case-1: 4 sensors below the centre of the embankment at depths
0.5m, 1.0m, 2.0m and 3.0m below the ground surface to monitor
only the vertical displacement → 𝑈𝑦 (monitoring points p1 to p4
from Section 4.2).
Fig. 7. Estimation of displacements using Data Assimilation in the assimilation window until 425 days at 2 m depth (a) for vertical displacement under the centre of the
mbankment and (b) for horizontal displacement under the toe of the embankment.
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Fig. 8. Estimation of displacements using Data Assimilation in the assimilation and prediction window at 2 m depth (a) for vertical displacement under the centre of the embankment
and (b) for horizontal displacement under the toe of the embankment.
Fig. 9. Estimation of excess porewater pressure at 7.5 m depth (a) under the centre of the embankment and (b) 2 m left of the embankment.
• Case-2: Along with the setup mentioned in Case-1, 4 additional
sensors 2.0m left of the centre of the embankment with the
same depth are chosen i.e., all 8 sensors monitor the vertical
displacements only → 𝑈𝑦 + 𝑈𝑦.

• Case-3: The original set-up with 8 sensors as mentioned in Sec-
tion 4.2 → 𝑈𝑦 + 𝑈𝑥 (monitoring points p1 to p8).

For all 3 cases, the ensembles generated in Section 4.3 are chosen
for the Data Assimilation procedure. In terms of parameter estimation,
the final assimilated parameter values from the assimilation window
(i.e., up to 425 days) are shown in Table 5. Furthermore, the rate of
convergence of all parameters in each case is represented as the uncer-
tainty ratio 𝑍𝐴 (from Eq. (6)) and shown in Fig. 10. A improvement is
obtained in terms of precision and accuracy for the model parameters,
by increasing the number of sensors (Case-1 → Case-2) but it is not
substantial.

In terms of state estimation, Fig. 11 shows the prediction in terms
of ensemble mean for Case-2. It can be observed that the vertical
displacement and excess porewater pressure are captured reasonably
well, while the synthetic truth of the horizontal displacement is not
captured, as data on the horizontal displacements is not included in
the observation space of the DA algorithm.

The Case-3 monitoring strategy, which is the reference already dis-
cussed in Section 4.2, shows significant improvement in terms of both
accuracy and precision compared to Cases 1 and 2. Due to the combina-
tion of different types of observation, all the parameters achieve better
convergence e.g., the effective friction angle and Poisson’s ratio are
better estimated using Case-3, when included in the observation space
in the Data Assimilation procedure. This explains the overall improved
8

convergence for Case-3 compared to the other cases in Fig. 10. The
Fig. 10. Uncertainty ratio of model parameters.

behaviour at the toe of the embankment is better captured in the
prediction window (also shown in Fig. 8b), due to the inclusion of the
horizontal displacement as part of the monitoring scheme.

In this study, the factorial analysis (Section 4.4 for details) is used to
evaluate the sensitivity of the parameters. Physical monitoring points
p1 to p4 are used for analysing the sensitivity of the parameters to
the vertical displacement while points p5 to p8 are used for the same
purpose but for horizontal displacement. Fig. 12 shows the result of
the sensitivity of the parameters with respect to vertical displacement
𝑈 for the points below the centre of the embankment (p1 to p4). In
𝑦
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Table 5
Post-assimilated values of the parameters for all cases.

Parameter Unit Truth Prior Case-1 Case-2 Case-3

mean COV mean COV mean COV mean COV

𝜆∗ – 0.280 0.333 0.25 0.273 0.020 0.276 0.014 0.275 0.013
𝜅∗ – 0.030 0.0279 0.25 0.028 0.148 0.0283 0.119 0.0282 0.061
𝜈′𝑢𝑟 – 0.200 0.273 0.25 0.184 0.203 0.181 0.184 0.209 0.054
𝜙′ degrees 27.00 40.360 0.25 33.582 0.096 33.771 0.075 27.857 0.013
POP kPa 5.000 3.685 0.25 4.394 0.065 4.448 0.048 4.797 0.024
𝑘 m/day 0.006 0.0176 0.40 0.0062 0.029 0.0063 0.022 0.0059 0.004
Fig. 11. State estimation of Case-2 at 2.0 m depth for (a) vertical displacement under centre of embankment (b) horizontal displacement at toe of embankment and at 7.5 m
depth for excess porewater pressure (c) below the centre of embankment and (d) 2 m left of the embankment.
the initial phase, the hydraulic conductivity 𝑘 has the largest influence
on the vertical displacement. This corroborates well with the rapid
convergence of its ensembles when employing Data Assimilation in
the initial phase of the simulation (see Fig. 5). However, as shown in
Fig. 12, its influence reduces with time and the modified compressibil-
ity index 𝜆∗ along with the preoverburden pressure (POP) gradually
gain high sensitivity on the vertical displacement as time progresses.
Hierarchically, this is followed by the effective friction angle 𝜙′, mod-
fied swelling index 𝜅∗ and the Poisson’s ratio 𝜈′𝑢𝑟. These results are

more or less consistent with depth for all physical monitoring points
(p1 to p4). Fig. 13 shows the uncertainty ratio for each parameter for
Case-1. Clearly, the information of the rate of convergence of each
parameter from Data Assimilation correlates well with the hierarchical
sensitivity information of the parameters. This shows that the perfor-
mance of the Data Assimilation procedure is strongly influenced by the
spatiotemporal sensitivity of the parameters.

Since the prior knowledge for the parameters in this study are pur-
posely chosen to be far away from the synthetic truth, the accuracy and
9

precision of the relatively low sensitive parameters is heavily affected
e.g., the effective friction angle and the Poisson’s ratio for Cases 1 and
2, as shown in Table 5, show poor performance. Their final assimilated
mean in both cases fail to reach the synthetic true value and the COV
is still large after the assimilation process, showing that an increased
quantity of sensors is not a complete solution to this problem since
the included observation data does not have the necessary information
pertaining to those parameters to achieve convergence.

Before analysing the effect of the type of observation, the influ-
ence of the choice of the prior distribution of parameters on the
results (i.e., Table 5) is investigated. For this, Case-2 is repeated with
a well-informed prior distribution for the parameters. A log-normal
distribution with mean values closer to the synthetic true value than
previously is considered. A COV value of 0.10 consistent for all param-
eters is chosen for this demonstration (denoted as Prior-2 in Table 6).
The previously considered weakly-informed prior distribution is here
denoted as Prior-1 for comparison in Table 6. The results show that
the final assimilated values for the parameters 𝜙′ and 𝜈′ for the
𝑢𝑟
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Table 6
Post-assimilated values of the parameters for different initial prior distributions for Case-2.

Parameter Unit Truth Prior-1 Assimilated-1 Prior-2 Assimilated-2

mean COV mean COV mean COV mean COV

𝜆∗ – 0.280 0.333 0.25 0.276 0.014 0.320 0.10 0.277 0.013
𝜅∗ – 0.030 0.0280 0.25 0.0283 0.119 0.0280 0.10 0.0250 0.075
𝜈′𝑢𝑟 – 0.200 0.273 0.25 0.181 0.184 0.230 0.10 0.189 0.057
𝜙′ degrees 27.00 40.36 0.25 33.771 0.075 36.00 0.10 34.174 0.066
POP kPa 5.000 3.685 0.25 4.448 0.048 4.200 0.10 4.412 0.038
𝑘 m/day 0.006 0.0176 0.40 0.0063 0.022 0.008 0.10 0.0062 0.020
Fig. 12. Sensitivity of parameters with respect to the vertical displacement (𝑈𝑦) at different time period for physical points below the centre of the embankment (a) p1 [0.5 m]
(b) p2 [1.0 m] (c) p3 [2.0 m] (d) p4 [3.0 m].
Fig. 13. Uncertainty ratio of model parameters for Case-1.

well-informed prior distribution still fails to converge toward the syn-
thetic truth and there is little to no significant improvement from the
previously considered weakly-informed prior distribution.

Although the quantity of sensors between Cases 2 and 3 are the
same, the difference in the DA performance is highly apparent and the
reason is better explained with the sensitivity results from Figs. 14 and
15. Fig. 14 shows the sensitivity of the parameters with respect to the
horizontal displacement (𝑈𝑥) for multiple points as function of depth
below the toe of the embankment (p5 to p8). Contrary to the previous
case, parameters 𝑘, 𝜆∗ and POP show relatively less sensitivity to the
horizontal displacement. The Poisson’s ratio shows the highest sensi-
tivity for all spatial points considered. The sensitivity of the effective
10
friction angle (𝜙′) gradually increases with time but is not consistent
with depth for this particular problem. The high sensitivity of 𝜙′ to
the horizontal nodal displacement is also reported by Mohsan et al.
(2021) for a slope analysis problem involving different constitutive
models. Since the monitoring points p5 to p8 are considered in Case-
3 as part of its observation space, the higher sensitivity of 𝜙′ and 𝜈′𝑢𝑟
is captured, thereby achieving better convergence than the other two
cases, as shown in Fig. 5. Although in Fig. 6, the convergence of 𝜈′𝑢𝑟
for Case-3 is shown to be marginal compared to other parameters,
this can be attributed to the combined effect between vertical and
horizontal displacement. In a relative sense, a significant improvement
is achieved, as is evident in Fig. 15 and Table 5.

As mentioned earlier, the sensitivity of the effective friction angle
𝜙′ is not consistent i.e., its influence on the horizontal displacement
decreases with depth as shown in Fig. 14. In view of this, the Case-3
monitoring strategy is modified to study the effect of changing sensor
location on the performance of DA, herein denoted as Case-3b. For
this, the spatial monitoring points p1 to p4 are retained to obtain
information on the vertical displacements with depth. However, to
monitor the horizontal displacements, the spatial monitoring points
are chosen at depths 3 m, 4 m, 5 m and 6 m below the toe of the
embankment. As shown in Fig. 15, there is an apparent difference in
the rate of convergence, between Case-3 and Case-3b, for parameters
𝜈′𝑢𝑟 and 𝜙′ with the latter showing the expected relative decrease in the
rate of convergence.

6. Conclusions

The performance of the Ensemble Kalman Filter, a Data Assimilation
algorithm (DA), is analysed in a synthetic experiment. A two-stage em-
bankment construction is simulated with a hydro-mechanically coupled
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Fig. 14. Sensitivity of model parameters with respect to the horizontal displacement (𝑈𝑥) at different time period for spatial points below the toe of the embankment (a) p5 [0.5
m] (b) p6 [1.0 m] (c) p7 [2.0 m] (d) p8 [3.0 m].
Fig. 15. Uncertainty ratio for the 4 cases for parameters (a) Poisson’s ratio (𝜈′𝑢𝑟) & (b) Effective friction angle (𝜙′).
Finite Element (FE) model. The FE model was used to generate the
synthetic monitoring data for vertical and horizontal displacements and
as the forward model in the DA algorithm. The Soft Soil model has been
used to estimate the constitutive behaviour of the subsoil.

The results of the assimilated parameters using Ensemble Kalman
Filter exhibit different rate of convergence toward their synthetic true
value. For example, in this chosen scenario, the hydraulic conductivity
exhibits the highest rate of convergence, followed by the effective
friction angle, the modified compressibility index and the preoverbur-
den pressure. With regards to state estimation, the model with the
assimilated parameters is able to capture the synthetic true values of
the vertical and horizontal displacements with sufficient accuracy and
precision in the assimilation window and in the prediction window
where monitoring data is not available. In order to investigate the
difference in influence between the quantity and type of measurement,
different monitoring strategies were chosen in this study. The results
indicate that the effective friction angle and Poisson’s ratio parameters
are better estimated when the horizontal displacement is included
along with the vertical displacement in the observation space of the
Data Assimilation procedure than for cases hat include only vertical
displacement, regardless of the increased quantity of sensors, showing
that the latter is not a complete solution to this problem since the
included observation data does not have the necessary information
pertaining to those parameters to achieve convergence. This finding
corroborates well with the results of the global sensitivity analysis
11
performed in this study. The hierarchical sensitivity of the parameters
holds a strong influence on their corresponding rate of convergence in
the Data Assimilation procedure. The influence on the choice of the
prior distribution of the parameters on the Data Assimilation perfor-
mance has been studied. It is found that there is little to no significant
improvement when choosing between log-normal or uniform distribu-
tion. The sensitivity of the effective friction angle to the horizontal
displacement gradually increases with time but is not consistent with
depth in this particular case. In this regard, by modifying the moni-
toring location for the horizontal displacement, a significant difference
in the rate of convergence of the effective friction angle parameter is
observed showing the effect of sensor location on the Data Assimilation
performance.

It is important to acknowledge that this study focuses solely on a
synthetic scenario and makes assumptions on the measurement errors.
In future work, the current study needs to be extended to explore a
configuration that incorporates more realistic soil properties, such as
the spatial variability of the ground conditions, as this can significantly
affect the required quantity, quality, type and location of monitoring
points.
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