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Abstract. The current framework for dark matter (DM) searches at beam dump and fixed
target experiments primarily relies on four benchmark models, the so-called complex scalar,
inelastic scalar, pseudo-Dirac and finally, Majorana DM models. While this approach has
so far been successful in the interpretation of the available data, it a priori excludes the
possibility that DM is made of spin-1 particles — a restriction which is neither theoretically
nor experimentally justified. In this work we extend the current landscape of sub-GeV DM
models to a set of models for spin-1 DM, including a family of simplified models (involving
one DM candidate and one mediator — the dark photon) and an ultraviolet complete model
based on a non-abelian gauge group where DM is a spin-1 Strongly Interacting Massive
Particle (SIMP). For each of these models, we calculate the DM relic density, the expected
number of signal events at beam dump experiments such as LSND and MiniBooNE, the
rate of energy injection in the early universe thermal bath and in the Intergalactic Medium
(IGM), as well as the helicity amplitudes for forward processes subject to the unitary bound.
We then compare these predictions with experimental results from Planck, CMB surveys,
IGM temperature observations, LSND, MiniBooNE, NA64, and BaBar and with available
projections from LDMX and Belle II. Through this comparison, we identify the regions
in the parameter space of the models considered in this work where DM is simultaneously
thermally produced, compatible with present observations, and within reach at Belle II and,
in particular, at LDMX. We find that the simplified models considered here are strongly
constrained by current beam dump experiments and the unitarity bound, and will thus be
conclusively probed (i.e. discovered or ruled out) in the first stages of LDMX data taking. We
also find that the vector SIMP model explored in this work predicts the observed DM relic
abundance, is compatible with current observations and within reach at LDMX in a wide
region of the parameter space of the theory.
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1 Introduction

The lack of discovery of Weakly Interacting Massive Particles (WIMPs) at dark matter
(DM) direct detection experiments has motivated the exploration of a variety of alternative
theoretical and experimental paradigms over the past decade [1, 2]. In this exploration,
emphasis has been placed on probing DM candidates lying outside the canonical WIMP
mass window, with most of these efforts focusing on the MeV–GeV mass range [3]. This
choice is supported by at least three reasons [4]. First, a DM candidate lighter than a
nucleon would not carry enough kinetic energy to induce an observable nuclear recoil in a
direct detection experiment, thereby explaining in a simple and economical way the lack
of discovery of WIMPs. Second, the present cosmological density of particles in this mass
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range can match the one observed for DM by the Planck satellite [5]. This can occur via
the chemical decoupling mechanism if the new sub-GeV states have interactions that involve
new particle mediators in the same mass range, thus evading the Lee-Weinberg bound [6].
Finally, the sub-GeV DM hypothesis can be tested experimentally using existing methods,
including direct detection experiments sensitive to DM-induced electronic excitations in
materials, as well as beam dump and fixed target experiments. Especially important for
this work are the operating beam dump experiments LSND [7] and MiniBooNE [8], and the
fixed target experiment LDMX [9], as they can effectively probe sub-GeV DM models with
DM-electron or -nucleon scattering cross sections that are suppressed by small DM velocities
or momentum transfers.

The theoretical framework currently used in the analysis of operating beam dump
experiments, as well as in assessing the prospects of next-generation beam dump and fixed
target experiments consists of four benchmark models [10–15], often referred to as complex
scalar DM, scalar inelastic DM, pseudo-Dirac DM, and, finally, Majorana DM. While
reviewing these four models goes beyond the scope of this introduction, it is apparent that
this theoretical framework a priori excludes the possibility that DM consists of spin-1 particles.
However, as pointed out by different groups in a series of recent works focusing on the direct
detection of vector DM [16–20], there is no theoretical or experimental argument supporting
this restriction.

The main purpose of this work is to extend the current framework for DM searches at
beam dump and fixed target experiments to the case of spin-1 DM. As a first step towards
this extension, we study the phenomenology of a set of simplified models for vector DM
featuring a kinetic mixing between an ordinary and a “dark photon” [21, 22]. The latter is
responsible for mediating the interactions between DM and the known electrically charged
particles. These simplified models conceptually extend the Standard Model (SM) of particle
physics in the same minimal way as the four benchmark models listed above. Next, we will
focus on the phenomenology of an ultraviolet complete model where DM is made of Strongly
Interacting Massive Particles (SIMPs) [23]. In both cases, we identify the regions in the
parameter space of the theory where DM can be thermally produced, is not excluded by
current experiments and, finally, is within reach at LDMX [24]. One usually refers to these
regions as thermal targets.

We find that the simplified models for spin-1 DM that we consider here are subject to
strong constraints from existing beam dump experiments, as well as from the unitarity of the
S-matrix. We also find that the regions in the parameter space of these models that are not
already ruled out by existing theoretical and experimental constraints will soon be probed at
LDMX, which will conclusively discover or exclude this family of models in the early stage
of data taking. In contrast, in the case of vector SIMP DM, we find that the observed DM
cosmological density can be reproduced in a broader region of parameter space. A significant
fraction of this is not excluded by existing beam dump experiments, and is within reach
at LDMX.

This article is organised as follows. We start by introducing the spin-1 DM models
explored in our work in section 2. We then review the experimental and theoretical constraints
these models have to fulfill in section 3. The main results of our analysis are reported in
section 4, where we identify the regions of the parameter space of our models in which DM is
not ruled out by current experiments, is thermally produced, and is within reach at LDMX.
Finally, we summarise and conclude in section 5. Useful scattering cross section formulae are
listed in the appendices.
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2 Models for vector dark matter

In this section, we provide a brief review of the spin-1 DM models that we consider in this
work. We focus on so-called “simplified models” featuring one DM candidate and a single new
particle mediator in the mass spectrum, as well as on a renormalisable, ultraviolet complete
model where the DM candidate is a Strongly Interacting Massive Particle (SIMP). The first
framework enables us to extend the study of DM at fixed target and beam dump experiments
in a way that can directly be compared with the existing literature on scalar and fermionic DM.
As we will see, this first approach is constrained by existing data and subject to strong bounds
from the unitarity of the S-matrix, and will therefore be conclusively probed in the early stages
of LDMX data taking. The second framework is by construction compatible with the unitarity
of the S-matrix, and it complements our simplified model analysis by focusing on a different
mechanism to explain the present DM cosmological density. Specifically, the relic abundance
of SIMPs is set by so-called 3 → 2 processes and 2 → 2 forbidden annihilations, whereas in
the simplified models we consider here the relic abundance is set by pair annihilation into
visible particles.

2.1 Simplified models
We start our exploration of spin-1 DM by considering a general set of simplified models [25].
These models extend the Standard Model (SM) of particle physics by a complex vector field,
Xµ, playing the role of DM, and a mediator particle described by the real vector field A′µ.
The following Lagrangian specifies the interactions between the complex and real vector fields
Xµ and A′µ, respectively, and the Dirac spinors f associated with the electrically charged
SM fermions,

L = −
[
ib5X

†
ν∂µX

νA′µ + b6X
†
µ∂

µXνA
′ν + h.c.

]
−
[
b7εµνρσ

(
X†µ∂νXρ

)
A′σ + h.c.

]
− h3A

′
µfγ

µf, (2.1)

where, as anticipated, f includes electrons, muons, taus, and quarks (neutrinos are not
included). The first line in eq. (2.1) describes interactions that can be generated in models for
non-abelian spin-1 DM, as reviewed in section 2.2 and shown in detail in [23]. The strength
of these interactions is parametrized by the coupling constants b5 and b6. Without loss of
generality b5 can be taken to be real, while the coupling constant b6 is in general complex.
The second line in eq. (2.1) describes interactions that can arise from abelian spin-1 DM
models [26], and is characterised by the in general complex coupling constant b7. Finally, the
last line in eq. (2.1) corresponds to the coupling between the electrically charged SM fermions
and a “dark photon”, here associated with the vector field A′µ. In order to make the analogy
with the dark photon model explicit, one could identify h3 with h3 = eε, where, ε is the
so-called kinetic mixing parameter, which enters the Lagrangian of the dark photon model
via the term −(ε/2)FµνF

′µν , Fµν and F ′µν being the field strength tensors of the ordinary
and dark photon, respectively. In our numerical applications, we consider the following cases
in which only one b-coupling at a time and h3 are non-zero: (h3, b5) ̸= 0, (h3,Re[b6]) ̸= 0,
(h3, Im[b6]) ̸= 0, (h3,Re[b7]) ̸= 0, and (h3, Im[b7]) ̸= 0. To further facilitate the comparison
between our results and the existing literature on the dark photon model, we later write
the non-zero DM couplings in terms of αD = g2

D/(4π), where gD is one of b5, Re[b6], Im[b6],
Re[b7] or Im[b7]. As far as the DM and mediator particle mass are concerned, we denote
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them by mX and mA′ , respectively. In the simplified models of this section, they are free,
independent parameters.

In this analysis, we restrict ourselves to the case where mA′ ≥ 2mX . Under this mass
hierarchy, and since gD ≫ eε, dark photons are produced on shell and decay dominantly
to DM at fixed target experiments. This choice allows for easy comparison with previous
literature on invisible signatures at fixed target experiments [10, 24]. If mA′ ≤ 2mX , the
predicted signal yield for missing energy/momentum signatures is suppressed, resulting in
less sensitive predicted exclusion bounds [10, 27] and visible dark photon decay signatures
becoming more relevant [10].

2.2 Non-abelian SIMPs
As a second framework for vector DM, we consider a model where the DM candidate is a
Strongly Interacting Massive Particle, or SIMP [23]. In this model, the SM gauge group is
extended by a local SUX(2) × U(1)Z′ symmetry group under which none of the SM particles
is charged. The corresponding gauge couplings are gX and gZ′ . The model also features an
extended Higgs sector including a scalar singlet, S, and a second scalar HX transforming
non-trivially under SUX(2) × U(1)Z′ . The gauge bosons associated with the new symmetry
group are denoted by Xi,µ, i = 1, 2, 3 and Z ′

µ, or, equivalently, by Xµ ≡ (X1,µ + iX2,µ)/
√

2,
X†

µ ≡ (X1,µ − iX2,µ)/
√

2, X3,µ and Z ′
µ, respectively. The SU(2) × U(1)Z′ gauge group is

spontaneously broken by the vacuum expectation values of S, i.e. vS , and HX , i.e. vX . This
generates one complex and two real mass eigenstates, corresponding to Xµ and two linear
combinations of Z ′

µ and X3,µ, denoted here by Z̃ ′
µ and X̃3,µ, respectively. Their masses

are [23],

m2
X = 1

2g
2
XIv

2
X ,

m2
Z̃′ = g2

XI
2v2

X

(
1 − cot θ′

X gZ′/gX

)
,

m2
X̃3

= g2
XI

2v2
X

(
1 + tan θ′

X gZ′/gX

)
, (2.2)

where

tan(2θ′
X) = 2cXsX

c2
X − αs2

X

, (2.3)

with sX = gZ′/
√
g2

X + g2
Z′ , cX = gX/

√
g2

X + g2
Z′ and, finally α ≡ 1 + q2

Sv
2
S/(I2v2

X). Here
qS is the UZ′(1) charge of S, while I labels the representation of SUX(2) under which HX

transforms, e.g. I = 1/2 for a doublet, I = 1 for a triplet, and I = 3/2 for a quadruplet. The
interaction Lagrangian containing the cubic self-interactions between these mass eigenstates
is [23],

L3 = − igX cos θ′
X

[
(∂µXν − ∂νXµ)X†

µX̃3,ν −
(
∂µXν† − ∂νXµ†

)
XµX̃3,ν

+XµX
†
ν

(
∂µX̃ν

3 − ∂νX̃µ
3

) ]
− igX sin θ′

X

[
(∂µXν − ∂νXµ)X†

µZ̃
′
ν −

(
∂µXν† − ∂νXµ†

)
XµZ̃

′
ν

+XµX
†
ν

(
∂µZ̃ ′ν − ∂νZ̃ ′µ

) ]
. (2.4)

– 4 –



J
C
A
P
1
1
(
2
0
2
3
)
0
5
8

The model also predicts quartic interactions between mass eigenstates. These are relevant in
relic density calculations, and have explicitly been calculated in [23]. Finally, “neutral current”
interactions between Z̃ ′

µ, X̃3µ and the charged SM fermions arise from a kinetic mixing term
added to the Lagrangian of this SUX(2) × U(1)Z′ gauge model. Specifically, they are given
by [23]

Lmix = −eε cos(θ′
X) Z̃ ′

µ fγ
µf + eε sin(θ′

X) X̃3µ fγ
µf . (2.5)

Eq. (2.2) shows that for tan θ′
X < 0 and gZ′/gX | tan θ′

X | < 1/2, the predicted mass hierarchy is

m2
X < m2

X̃3
< m2

Z̃′ . (2.6)

For example, for sin(2θ′
X) = −0.1 and αD ≡ g2

X/(4π) = 0.5, eq. (2.6) is always satisfied for
perturbative values of gZ′ . Consequently, when the mass hierarchy in eq. (2.2) is realised, Xµ

is a stable DM candidate, while X̃3 and Z̃ ′ mediate the interactions between Xµ and the SM
fermions via eq. (2.5). Finally, let us note that for cos(θ′

X) = 1, eq. (2.4) reduces to the first
line in eq. (2.1) with b5 = −2Im[b6] = gX , if one integrates by part the second line in eq. (2.4)
and uses the equation of motion for Xµ (i.e. Proca equation), which implies ∂µX

µ = 0.

2.3 Vector DM phenomenology: general considerations

In this subsection, we highlight the main differences between the models defined in section 2.1
and in section 2.2 focusing on the predicted DM relic abundance, kinetic equilibrium, mediator
production and decay rates, and, finally, relativistic DM-electron and -nucleon scattering
cross sections.

2.3.1 Relic density
Let us denote the DM particle associated with Xµ by X+ and the corresponding DM
antiparticle by X−. Also, let nX+ be the cosmological number density of DM particles
and nX− be the corresponding cosmological density of DM antiparticles. In the case of the
CP-preserving simplified or SIMP DM models that we consider here, nX+ = nX− , and the
total DM number density, nX = nX+ + nX− , evolves with time according to the following
Boltzmann equation [23],

ṅX + 3HnX = − 1
2⟨σvrel⟩X+X−→ff (n2

X − n2
X,eq)

− 1
2⟨σv2

rel⟩X+X+X−→X+X̃3

(
n3

X − nXn
2
X,eq

)
+ 2 ⟨σvrel⟩X̃3X̃3→X+X− n

2
X̃3,eq

(
1 − n2

X

n2
X,eq

)
. (2.7)

In general, eq. (2.7) shows that nX evolves from an equilibrium configuration to a constant
co-moving value as a result of the DM chemical decoupling from the thermal bath, i.e. the
so-called freeze-out or chemical decoupling mechanism. The first term in the right-hand-side of
eq. (2.7) describes the time evolution of the DM number density due to DM pair annihilation
into SM fermions. For ε ∼ 10−4 (10−6) and mX ∼ 100 MeV (1 MeV), this term alone can
account for the entire DM relic density. We will explore this DM production channel within
the framework of simplified models for vector DM introduced above. The second and third
line in eq. (2.7) describes the time evolution of the DM number density due to 3 → 2 processes
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and 2 → 2 forbidden annihilations that are specific to the vector SIMP model introduced
above (i.e. they are zero in the simplified model framework). The DM to X̃3 mediator mass
ratio determines whether the DM relic abundance is set by 3 → 2 processes or 2 → 2 forbidden
annihilations, as shown in figure 3 of [23]. We will explore the interplay of these two DM
production mechanisms in the case of SIMP DM.

2.3.2 Kinetic equilibrium

In eq. (2.7) we implicitly assumed the mass hierarchy of eq. (2.6) for the SIMP DM model
we introduced in section 2.2. We also assumed that the associated mediator X̃3 is in
kinetic equilibrium with the SM thermal bath during the DM freeze-out. Interestingly,
the in-equilibrium decay of X̃3 into SM particles, combined with the effective scattering of
DM with the X̃3 mediator induced by the cubic and quartic interactions introduced above,
serve as mechanisms to keep the DM particles in kinetic equilibrium during freeze-out, and
thereby satisfy the strong constraints from structure formation on the DM kinetic decoupling
temperature [23]. For a given gX , sin(2θ′

X), mX and mX̃3
, the value of ε required for X̃3 and,

consequently, for the DM particles to be in kinetic equilibrium at the freeze-out temperature
Tf can be estimated from

nX̃3,eq(Tf )ΓX̃3
> H(Tf )nX,eq(Tf ) , (2.8)

where H(Tf ) is the Hubble rate at Tf , and the equilibrium densities for X and X̃3 are given by

nX,eq = 45x2

2g∗s(T )π4 sK2(x) ,

nX̃3,eq =
45m2

X̃3
x2

4g∗s(T )π4m2
X

sK2

(
mX̃3

x

mX

)
, (2.9)

where s is the entropy density, g∗s(T ) is the effective number of entropic relativistic degrees of
freedom at the temperature T , K2 is a modified Bessel function of the second kind and x ≡
mX/T . In eq. (2.8), ΓX̃3

is the total decay rate of X̃3, for which the expression is given in [23].

2.3.3 Mediator production and decay

Key to our exploration of spin-1 DM is the production and subsequent decay of mediator
particles in fixed target and beam dump experiments. In the case of the simplified models of
section 2.1, we generically expect that A′ particles are produced through the kinetic mixing
term in eq. (2.1), either via dark bremsstrahlung or via meson decays. These A′s are then
expected to decay into a DM particle/anti-particle pair for values of ε that are consistent with
the observed relic density set via the first term in the right-hand side of eq. (2.7). In contrast,
in the case of the vector SIMP DM model introduced in section 2.2, both the X̃3 and the
Z̃ ′ mediator can in principle be produced in fixed target and beam dump experiments. In
our calculations we will focus on sin(2θ′

X) = −0.1, which implies that only Z̃ ′ particles can
significantly be produced via the interaction in eq. (2.5), and that, once produced, these Z̃ ′

particles will dominantly decay invisibly via gauge bosons self-interactions, as long as ε is
small compared to gX . Consequently, for sin(2θ′

X) = −0.1, the simplified and SIMP models
behave similarly from the point of view of “dark vector boson” production at fixed target and
beam dump experiments.

– 6 –
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2.3.4 Scattering by electrons and nuclei
Finally, we also need the (relativistic) cross sections for DM-electron and -nucleon scattering
in order to compare the simplified models of section 2.1 and the SIMP DM model of section 2.2
with the experimental constraints reviewed in section 3. This in particular applies to the
analysis of DM direct detection experiments and of beam dump experiments, where DM
particles produced by the decay of A′ mediators (in the case of simplified models) or Z̃ ′

mediators (in the case of SIMPs) are searched for in electron or nuclear recoil events in a
downstream detector.

We calculate these cross sections by implementing the models of section 2 in FeynRules [28]
and then using CalcHEP [29] to generate analytic expressions for the squared modulus of
the spin-averaged scattering amplitudes. We finally validate the outcome of this symbolic
calculation through direct analytical calculations of a subset of selected cross sections. In
appendices B and A, we list the relativistic DM-electron and -nucleon scattering cross sections
that we find for the simplified models of section 2.1. In appendix C, we report the scattering
cross sections that we obtain for the SIMP DM model of section 2.2 as explained above. In the
calculation of DM-nucleon scattering cross sections, we use the mediator-nucleon interaction
Lagrangian,

LN = eεF1ψγ
µψA′

µ + eε
F2

2mN

[
ψσµν (∂νψ) +

(
∂νψ

)
σµνψ

]
A′

µ , (2.10)

in the case of simplified models. For the case of SIMP DM, we use eq. (2.10) but with
F1(F2) → cos(θ′

X)F1(F2) and A′ → Z̃ ′. Here, F1 and F2 are nuclear form factors, and we list
them in appendix A.

3 Experimental and theoretical constraints

In this section, we introduce a selection of constraints and projections from, respectively,
operating and future DM search experiments that apply to the models of section 2. By
complementing these constraints and projections with bounds from the unitarity of the
S-matrix, in section 4 we will identify the regions of the parameters space of the vector DM
models we consider in this work where DM is simultaneously: 1) thermally produced, 2)
experimentally allowed and, finally 3) detectable. We refer to these regions in parameter
space as thermal targets.

3.1 Relic density

Accurate measurements of the Cosmic Microwave Background (CMB) angular power spectrum
by the Planck collaboration set strong constraints on the present DM cosmological density [5].
The spin-1 DM models considered in this work, introduced in section 2, are capable of producing
the observed DM relic abundance consistent with Planck by the freeze-out mechanism. In the
case of simplified models (section 2.1), the freeze-out of DM pair annihilations into visible
SM particles sets the DM relic density, whereas in the case of vector SIMP DM (section 2.2)
the present DM cosmological density arises from the freeze-out of 3 → 2 and forbidden
annihilations, as one can see from eq. (2.7). Below, we discuss the two scenarios separately.

In the case of simplified models, we are interested in the region of parameter space
where mA′ > 2mX . In this region, the relic abundance is set dominantly by direct DM
annihilation into SM fermions through an s-channel. Comparing our theoretical predictions
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A
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Vector DM: <[b7]
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Scalar DM

Pseudo-Dirac DM

Majorana DM

Figure 1. Contours consistent with the observed DM abundance for each of the simplified models
for spin-1 DM introduced in section 2.1 (coloured solid contours) and for scalar, pseudo-Dirac, and
Majorana DM (dashed, dotted, and dash-dot) with mA′ = 3mX , and αD = g2

D/(4π) = 0.5, where gX

is the corresponding b-coupling in the legends. Results are presented in the plane spanned by the DM
particle mass and the standard “coupling constant” y.

based on eq. (2.1) with CMB data, we calculate the thermally averaged cross sections for
direct annihilation using the MicrOMEGAS software [30]. We then compute the DM relic
density by using our own Boltzmann solver, which relies on the freeze-out approximation
from [31]. Our software results agree with MicrOMEGAS, although we include the contributions
from DM annihilation into hadronic final states [32–34]. Figure 1 shows the contour lines
consistent with the Planck DM abundance, or relic targets, for each of the simplified models
introduced in section 2.1 in addition to three benchmark models from [10] (and mentioned
in the introduction, namely complex scalar, pseudo-Dirac, and Mjorana DM). Each of the
simplified models for spin-1 DM in figure 1 is defined as having all couplings in eq. (2.1) set
to 0 except for h3 and the b-coupling specified in the legends. There are kinks in the curves
occurring at mX ≈ mµ, where DM annihilation into muons become kinematically accessible.
The resonance features appear because of resonances in the cross sections for DM annihilation
into hadrons.

In the case of vector SIMP DM, we rely on previus results from [23]. For each given
αD = g2

X/(4π) (gX is one of the gauge couplings introduced in section 2.2) and sin(2θ′
X) we

extract the value of the mX̃3
/mX ratio that gives the correct DM relic density from figure 3

in [23]. While for αD = 0.1 the correct relic abundance can be obtained for DM masses above
approximately 10 MeV, for αD = 0.5 vector SIMP DM can account for the whole cosmological
abundance of DM only for masses above about 80 MeV. This effect is illustrated in figure 2,
which shows the DM relic abundance as a function of the DM mass and of the mX̃3

/mX ratio,
focusing on the case in which 3 → 2 are the dominant production mechanism. As one can see
from this figure, for mX̃3

/mX = 2 the DM relic abundance drops to zero, independently of
the DM particle mass. This is due to the fact that for mX̃3

/mX > 2, the 3 → 2 process is
kinematically not allowed.
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Figure 2. DM relic abundance, Ωh2, as a function of mX and mX̃3
/mX for SIMP DM thermally

produced by the freeze-out of 3 → 2 processes. Here we take αD = 0.5. The horizontal dashed line
corresponds to the observed value of Ωh2. Coloured lines have been obtained by evaluating eq. (40)
from [23].

3.2 Direct detection
In principle, DM direct searches via electronic transitions in detector materials located deep
underground also place important constraints on sub-GeV DM models, e.g. [21]. For spin-1
DM, the current most competitive constraints are from Xenon1T and Xenon10, which only
appear in our plots for the b5 and Re[b7] models. We take the 90% C.L. exclusion limits from
the work of [21].

3.3 Energy injection
DM annihilations in the early universe can inject energetic particles into the photon-baryon
plasma or into the intergalactic medium (IGM), altering the CMB or the IGM temperature,
respectively. However, CMB limits are only competitive for s-wave annihilating DM [35, 36].
Among the models introduced in section 2, only the model with Im[b7] ̸= 0 gives rise to s-wave
dominant annihilation cross sections, thus we include 95% C.L. exclusion bounds from the
CMB for this model. For all remaining spin-1 models in section 2, including the SIMP DM
model, the predicted annihilation cross section is p-wave. CMB limits on p-wave annihilation
cross sections have been computed here [37]. We find that they are weaker than the IGM
limits on the spin-1 models we consider in this work. Consequently, we set 95% C.L. exclusion
limits from measurements of the IGM temperature extracted from Lyman-α observations on
our p-wave annihilating DM models. Specifically, we require that the predicted thermally
averaged annihilation cross section is smaller than the upper bounds reported in [38] as
a function of the DM mass. In this analysis, we calculate the relevant annihilation cross
sections analytically, and then compare them with the output of MicrOMEGAS. These IGM
upper limits only appear in the top left corner of our parameter space for certain mass ratios
(mA′/mX) and models.
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3.4 Beam dumps and fixed target experiments

A beam of protons or electrons incident on a fixed target creates cascades of interactions at
beam dump experiments. The goal is to produce DM in these cascades, which can then be
detected in a downstream detector. Calculating the experimental reach of these experiments
involves modeling the processes that give rise to DM production and detection, which is
done through Monte Carlo (MC) simulations. These simulations include the details of the
detector, the beam, the interactions which produce DM, and the DM model. With this
objective, we use a modified version of the numerical tool BdNMC, a beam dump Monte
Carlo software package [12], in which we implement our spin-1 DM models to simulate DM
production and interactions. BdNMC has the benefit of providing a simple and rigorous
framework for simulating the relevant experiments Mini-Boone and LSND. In the following
section, 90% C.L. limits on the model parameter space calculated from these simulations
are presented, showing the reach of current experiments including beam dump and missing
energy/momentum experiments which give rise to the most competitive constraints on spin-1
DM. Below, each experiment considered is introduced.

LSND and MiniBooNE. At proton beam dump experiments LSND [7, 15] and Mini-
BooNE [8], a proton beam is incident on a target and the following chain of interactions
occur producing DM: pp → Xπ0;π0 → γA′;A′ → DMDM , where in the inclusive process,
pp → Xπ0, X denotes an unspecified/unmeasured set of particles, whereas π0 can also be η in
the case of MiniBooNE where the energy is sufficient. In addition, dark proton bremsstrahlung
also produces DM in the case of MiniBooNE. The produced DM can then be detected in the
downstream detector through DM-electron and for MiniBooNE also DM-nucleon scattering.
We compute the expected number of signal events using a modified version of the software
BdNMC [12], a MC simulation tool for beam dumps. We added to BdNMC the model
dependent DM-electron and -nucleon scattering cross section reported in the appendix A
and B as well as the relevant branching ratios for dark photon decay.

At LSND, 55 non standard events were observed at 90% confidence level. A factor of 2 is
included to account for the uncertainty in the pion production rate, so we take the 90% C.L.
at 110 events. We perform MC simulations of DM events at LSND, taking into account our
model dependent cross sections, and we draw the contours in y vs mX space that corresponds
to 110 signal events. In this work, we adopt the standard notation y = ε2αD(mX/mA′)4.

Similarly, we perform MC simulations of MiniBooNE to calculate the expected number
of signal events. No events were observed at MiniBooNE, thus we take the contour in y vs
mX space at 2.3 events which corresponds to a 90% C.L. exclusion limit.

E137. Limits from the electron beam dump experiment E137 are not competitive with
MiniBooNE and LSND, thus we do not include them in our analysis.

NA64. The missing energy experiment NA64 [39], where an electron beam is incident on
a target, aims to produce a DM flux from dark bremsstrahlung and detect these signals by
their missing energy. No signal events have been observed at this experiment. We report 90%
confidence limits extracted from [39], which we project onto the y vs mX plane.

LDMX. LDMX is a future missing momentum experiment [10, 24] with an 8 GeV electron
beam incident on a tungsten target with 1016 EOT. The ultimate reach at 90% C.L. is
calculated using the expected number of DM signal events from simulations and we project
this expected limit onto our parameter space. In addition, we include the projected 90 % C.L.
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exclusion limits from the analysis of [40], where bremsstrahlung photons are converted into
vector mesons and then decay to invisible states, giving an extended sensitivity reach in the
larger DM mass regime.

3.5 Monophoton searches

We also include searches for single photon events at e+e− colliders, where DM is produced
through the process e+e− → γA′, A′ → DMDM .

BaBar. The BaBar detector at the PEP-II B-factory searches for a narrow peak in the
missing mass distribution in the events with one high energy photon. BaBar has observed no
signal events, and we take the 90% C.L. limits on ε vs mX from [41] and project them onto
our parameter space.

Belle-II. For the future experiment Belle-II, we use the expected 90% C.L. limits on ε vs
mX for phase 3 of Belle-II reported in [42], to obtain the expected exclusion limits on our
spin-1 DM model.

3.6 Unitarity bound

In general, simplified DM models can violate perturbative unitarity in some regions of pa-
rameter space [43]. Due to the energy dependence introduced in the cross section by the
longitudinal component of the vector DM polarization vectors, as well as from the underlying
derivative couplings, the simplified models for spin-1 DM introduced in section 2.1 predict
large and un-physical scattering amplitudes. Therefore, their parameter space is subject to a
“unitarity bound”, or in other words a bound of theoretical validity. Violations of this bound
indicate either that the theory is non perturbative (all terms in the perturbative expansion of
the S-matrix are equally important), or that it is not complete, and thus additional fields have
to be included to cancel out energy dependent, un-physical contributions to scattering cross
sections. Unitarity violation from DM self-scattering was investigated in [44], while here we cal-
culate the DM-e− scattering amplitude to determine at which parameters unitarity is violated.
Following [43], we implement the unitary bound by requiring that in the (y,mX) plane,

|Im(MJ
i→i)| ≤ 1 ,

2|Re(MJ
i→i)| ≤ 1 , (3.1)

where i → i = Xe− → Xe−, J = 0, and

M0
Xe−→Xe−(s) = β

32π

∫ 1

−1
d cos θMXe−→Xe−(s, cos θ) . (3.2)

4 Thermal targets identification

We now present our spin-1 thermal targets for DM searches at beam dump and fixed target
experiments. As anticipated, in these regions of parameter space DM is simultaneously
thermally produced, not excluded by existing experimental results, and within reach at Belle
II or LDMX. We discuss the simplified models of section 2.1 and the vector SIMP model of
section 2.2 separately.

– 11 –



J
C
A
P
1
1
(
2
0
2
3
)
0
5
8

10−3 10−2 10−1 100

mX [GeV]

10−16

10−15

10−14

10−13

10−12

10−11

10−10

10−9

10−8

10−7
y

=
ε2
α
D

( m
X

m
A
′) 4

LDMX
Belle II

NA64

MiniBooNE

LSN
D

BaBar

Xenon10 Xenon1t

αD = 0.5

mA′/mX = 3.0

Vector DM: b5

Ωh2 = 0.12

(a)

10−3 10−2 10−1 100

mX [GeV]

10−16

10−15

10−14

10−13

10−12

10−11

10−10

10−9

10−8

10−7

y
=
ε2
α
D

( m
X

m
A
′) 4

LDMX
Belle II

NA64

MiniBooNELSN
D

BaBar

αD = 0.5

mA′/mX = 3.0

Complex Scalar DM

Ωh2 = 0.12

(b)

10−3 10−2 10−1 100

mX [GeV]

10−16

10−15

10−14

10−13

10−12

10−11

10−10

10−9

10−8

10−7

y
=
ε2
α
D

( m
X

m
A
′) 4

LDMX
Belle II

IGM

NA64

MiniBooNE

LSND

BaBar
Xenon10 Xenon1t

αD = 0.5

mA′/mX = 2.5

Vector DM: b5

Ωh2 = 0.12

(c)

10−3 10−2 10−1 100

mX [GeV]

10−16

10−15

10−14

10−13

10−12

10−11

10−10

10−9

10−8

10−7

y
=
ε2
α
D

( m
X

m
A
′) 4

LDMX
Belle II

NA64

MiniBooNE

LSND

BaBar

αD = 0.5

mA′/mX = 2.5

Complex Scalar DM

Ωh2 = 0.12

(d)

Figure 3. Panels 3(a) and 3(c). Exclusion limits from MiniBooNE, LSND, NA64, BaBar, IGM
temperature observations and direct detection experiments (coloured shaded regions) and projected
reach for Belle II and LDMX (dashed line) on the simplified model with b5 ̸= 0 (see section 2.1) in the
parameter space, y vs mX for αD = 0.5. The contours consistent with the observed relic abundance
(Ωh2 ≈ 0.12) are drawn in solid black. The top panel is for mA′ = 3mX , whereas the bottom panel
assumes mA′ = 2.5mX . The model is strongly constrained by MiniBooNE. Panels 3(b) and 3(d).
Same as the left panels, now for complex scalar DM.

4.1 Simplified models

Figures 3, 4, and 5 summarize the constraints and projections on the (mX , y) plane that
we obtain as explained in section 3 for the simplified models introduced in section 2.1.
Here, y = ε2αD(mX/mA′)4 and the black curves on these figures show the contours that
are consistent with the observed abundance of DM measured by Planck [5]. The scientific
potential of the upcoming experiment LDMX, the area above the red dashed curves of the
figures, is significant for sub-GeV DM, since it is projected to probe down to much smaller
couplings than previous experiments.

Specifically, the left panels in figure 3 show current and expected exclusion limits on
the spin-1 model with b5 ̸= 0 for both mA′/mX = 3 and mA′/mX = 2.5. The excluded
areas in orange, green, blue and purple correspond to the MiniBooNE, LSND, NA64, and
BaBar experiments, respectively. For comparison, we also include the exclusion limits on
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Figure 4. Same as figure 3, now for the Re[b6], Im[b6], Re[b7], and Im[b7] models with αD = 0.5 and
mA′ = 3mχ. The models with Re[b7] ̸= 0 and Im[b6] ̸= 0 are strongly constrained by beam dump
experiments, while the model with Im[b7] ̸= 0 is ruled out by CMB observations. The Re[b6] model
predicts the current DM relic abundance while also being compatible with observations and within
reach at LDMX in the mass range between about 40 MeV and 200 MeV.

the y coupling obtained in [21] from the null result reported by the Xenon10 and Xenon1T
experiments. Finally, the expected exclusion limits for LDMX are compared with the expected
reach of Belle II. Independently of the (mA′/mX) ratio, this model is ruled about by current
beam dump experiments. The right panels in figure 3 shows the same set of constraints and
projections now for the familiar complex scalar DM model, which we recompute as described
in section 3 to calibrate our codes, and for comparison. Indeed, the complex scalar DM model
exhibits the same derivative coupling between DM and the dark photon as in the model with
b5 ̸= 0. The only difference between the two models is in the Feynman rules for incoming and
outgoing DM particles, which in the latter case involves momentum dependent polarisation
vectors. This difference produces a cross section for DM-nucleon scattering that is enhanced
by a factor of (Ep/mX)2 ≫ 1 relative to the case of the complex scalar DM model, where Ep

is the relativistic energy of the incoming DM particle in the rest frame of the downstream
detector. As a result, the MiniBooNE constraints on the b5 model are much stronger than in
the case of complex scalar DM.
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Figure 5. Same as figure 4, now for the mass ratio mA′ = 2.5 mχ. For this choice of parameters, the
Re[b6] model predicts the current DM relic abundance, is compatible with observations, and is within
reach at LDMX in the mass range between about 10 MeV and 300 MeV.

Let us now focus on figure 4. This figure shows current and expected exclusion limits on
the spin-1 models with Re[b6] ̸= 0 and Im[b6] ̸= 0 (top left and top right panels) as well as on
the models with Re[b7] ̸= 0 and Im[b7] ̸= 0 (bottom left and bottom right panels). In all panels
we assume mA′/mX = 3, while the colour code is the same as in figure 3. Current beam dump
experiments, LSND and MiniBooNE (green and orange shaded regions respectively), and
BaBar (pink shaded regions) are able to rule out large parts of the (mX , y) plane for the Re[b7],
Im[b6] and Im[b7] models, while leaving the Re[b6] ̸= 0 spin-1 model still compatible with
observations in the mass range between approximately 40 MeV and 200 MeV. Remarkably, the
constraints from MiniBooNE on y are much stronger in the case of the Im[b6] model than for the
Re[b6] model. This is due to the fact that for the Im[b6] model the cross section for DM-nucleon
scattering is enhanced by a (Ep/mX)2 ≫ 1 factor relative to the analogous cross section for
the Re[b6] model. Here Ep is the energy of the DM particle in the downstream detector rest
frame. As anticipated above, a similar enhancement is also present in the case of the b5 ≠ 0
spin-1 model. Finally, in the case of the Re[b6] model, top left panel in figure 4, we also report
the unitary bound on y arising from the helicity amplitude for DM-electron scattering, which
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is one of the processes directly entering the calculation of the constraints in figure 4.
It should also be noticed that for the Im[b7] spin-1 model, figures 4(d) and 5(d), the

DM annihilation cross section is s-wave dominant in contrast to being p-wave dominant as in
the other models we consider, leading to a strong constraint from CMB measurements on
this scenario.

Figure 5 shows current and expected exclusion limits on the same models as in figure 4,
now assuming the different mass ratio, mA′/mX = 2.5. While this leaves are conclusions
qualitatively unchanged, the range of DM masses that are compatible with all observations
in the case of the Re[b6] model is now significantly broader, varying from about 10 MeV to
300 MeV.

4.2 Non-abelian SIMPs

We now turn our attention to the case of vector SIMP DM. We start by reviewing some of the
features of the model, and its differences with the simplified models. In the SIMP model, the
DM relic abundance is set by the freeze-out of 3 → 2 processes and forbidden annihilations,
and is thus independent of the coupling y. At the same time, for the thermal production of
SIMP DM to work, DM has to be in kinetic equilibrium in the early universe. As anticipated,
this occurs via effective DM-X̃3 mediator scattering processes combined with in-equilibrium
X̃3 decays into SM particles. Since the decay rate of X̃3 depends on ε [23], only above a
certain critical value for y vector SIMP DM can effectively be thermally produced in the right
amount. As described in section 2, we calculate this lower bound by using eq. (2.8). The
result of this calculation defines a region in the parameter space of the model above which
SIMPs are in kinetic equilibrium at their chemical decoupling, and the freeze-out mechanics
can in principle successfully predict the present DM cosmological density. Whether or not the
whole cosmological DM abundance is in the form of vector SIMPs depends on the choice of
αD. For example, for αD = 0.1 vector SIMPs can constitute the entire DM in our universe
for masses above about 10 MeV, whereas for αD = 0.5 this is only possible for masses above
about 80 MeV. Here and in the figures below, we assume the benchmark value for the mixing
angle sin(2θ′

X) = −0.1.
Keeping these general considerations on SIMP DM in mind, we are now ready to

compare the predictions of the vector SIMP DM model with the experimental and theoretical
constraints of section 3. Figure 6 shows the current and expected exclusion limits on the y
coupling as a function of the DM mass that we obtain from a reanalysis of data collected
at NA64, MiniBooNE, LSND, and BaBar, as well as from projections for LDMX and Belle
II. We obtain these exclusion limits by comparing theory and observations as described
in section 3, while the colour code in the figure is the one of the figures in the previous
sections. Remarkably, in the case of SIMP DM the strongest bound on y arises from NA64,
rather than from MiniBooNE or LSND. This is due to the fact that the NA64 bound on y is
model-independent, while the cross section for DM-nucleon and -electron scattering for SIMP
DM is suppressed by cancellations between contributions from the mZ̃′ and mX̃′

3
mediators. In

figure 6, we assume αD = 0.5, mA′/mX = 3, and mX̃3
/mX ≃ 2. Figure 7 reports the results

of an analogous analysis where we assume a different combination of parameters, namely
αD = 0.1, mA′/mX = 3, and mX̃3

/mX ≃ 2. The main difference between the analyses is the
range of masses for which the whole cosmological DM abundance is in the form of vector
SIMPs. As explained above, this difference is due to the different assumptions made for αD

in the two figures.
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Figure 6. Current and expected exclusion limits on vector SIMP DM in the (mX , y) plane from NA64,
MiniBooNE, LSND, and BaBar, as well as from projections for LDMX and Belle II. The colour code is
the one used in previous figures. The strongest bound on y arises from N64, rather than from MiniBooNE
or LSND. This is due to the fact that the N64 bound on y is model-independent, while the cross
section for DM-nucleon and -electron scattering for SIMP DM is suppressed by cancellations between
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5 Conclusion

In this analysis, we extended the current landscape of sub-GeV DM models considered in the
context of various experiments such as MiniBooNE, LSND and LDMX to a set of models for
spin-1 DM, including a general family of simplified models (involving one DM particle and one
mediator — the dark photon) and an ultraviolet complete model based on a non-abelian gauge
group (now including two mediators and an extended Higgs sector) where DM is a vector
SIMP. For each of these models, we calculated the DM relic density, the expected number of
signal events in beam dump experiments such as LSND and MiniBooNE, the rate of energy
injection in the early universe thermal bath and in the IGM, as well as the helicity amplitudes
for forward processes subject to the unitary bound. We then compared these predictions with
a number of different experimental results from Planck, CMB observations, direct detection
experiments (Xenon10 and Xenon1T), data on the IGM temperature from Lyman alpha
observations, LSND, MiniBooNE, NA64, and BaBar and with available projections from
LDMX and Belle II. Through this comparison, we identified the regions in the parameter
space of the models considered in this work where DM is simultaneously thermally produced,
compatible with present observations, and within reach at Belle II and, in particular, at LDMX.

We found that the simplified models for spin-1 DM investigated in our analysis are
strongly constrained by LSND and MiniBooNE, as well as from bounds on the unitarity of
the S-matrix. The only model not already excluded by these experimental and theoretical
constraints is the one characterised by the coupling constants h3 and Re[b6]. For a dark
photon to DM mass ratio of 3 (2.5), this model is compatible with current observations, within
reach at LDMX and admits a thermal DM candidate for DM masses in a window between
about 40 (10) MeV and 200 (300) MeV. In this mass range, the model has a relic density
contour lying very close to current 90% C.L. exclusion limits from beam dump experiments
in the (mX , y) plane, and will thus be conclusively probed (i.e. excluded or discovered) in the
first LDMX run.

At the same time, we found that the vector SIMP model explored in this work admits
thermal DM candidates that are not ruled out by beam dump experiments and within reach
at LDMX in a wide region of the underlying parameter space. The model features a DM
production mechanism that is complementary to the freeze-out of DM pair annihilations
into SM particles of simplified models, and is based on the interplay of 3 → 2 processes
and forbidden annihilations. It also exhibits a lower bound on the DM particle mass arising
from the relic density constraint. The larger αD, the larger the minimum admissible DM
particle mass.

Ultimately, our investigation bridges a gap in the current knowledge of sub-GeV DM
by providing the DM community with new sub-GeV spin-1 thermal targets lying in the
experimentally accessible region of next-generation beam dump and fixed target experiments
such as LDMX.
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A Cross sections for relativistic dark matter-nucleon scattering

In this appendix, we provide analytic expressions for the differential cross sections for
relativistic DM-nucleon scattering for the spin-1 DM models of section 2. As anticipated,
we obtain these cross sections by implementing the models of section 2 in FeynRules [28]
and then using CalcHEP [29] to generate analytic expressions for the squared modulus of
the spin-averaged scattering amplitude. We finally validate the outcome of this symbolic
calculation through direct analytical calculations of a subset of selected cross sections. In the
laboratory frame, we find

dσNX(Ep, Ep′)
dEp′

= 1
32πmN (E2

p −m2
X) |MNX(Ep, Ep′)|2 , (A.1)

where Ep (Ep′) is the initial (final) DM particle energy and the squared scattering amplitude
is given by

|MNX(Ep, Ep′)|2 = η2 [F 2
1 Aη(Ep, Ep′) + F 2

2 Bη(Ep, Ep′) + F1F2Cη(Ep, Ep′)
]

3m4
X

[
2mN (Ep − Ep′) +m2

A′
]2 . (A.2)

Here, a dependence of the nucleon form factors F1(q2) and F2(q2) on the momentum transfer
q = p− p′ is understood. The three functions, Aη(Ep, Ep′), Bη(Ep, Ep′) and Cη(Ep, Ep′) in
eq. (A.2) are model dependent and have dimension of mass to the eighth power, so that
|MNX(Ep, Ep′)|2 is dimensionless. η is the coupling constant characterising the underlying
DM model. Below, we specify Aη(Ep, Ep′), Bη(Ep, Ep′) and Cη(Ep, Ep′) for different choices
of η.

• For η = b5, we find

Ab5(Ep, Ep′) = 8mN

[
Ep′

(
2EpmN +m2

X

)
− Epm

2
X

]∑
s

εs
µε

sµ∗ ,

Bb5(Ep, Ep′) = 2mN

(
Ep − Ep′

) [
E2

p + 2(Ep +mN )Ep′ + E2
p′ − 2EpmN − 4m2

X

]
×
∑

s

εs
µε

sµ∗ ,

Cb5(Ep, Ep′) = −8mN

(
Ep − Ep′

) (
−mNEp′ + EpmN + 2m2

X

)∑
s

εs
µε

sµ∗ , (A.3)

where the sum over spin configurations of the product of DM polarisation vectors is
given by∑

s

εs
µε

sµ∗ =
{
E2

pm
2
N +mNEp′

[
mNEp′ − 2

(
EpmN +m2

X

)]
+ 2EpmNm

2
X + 3m4

X

}
.

(A.4)
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• For η = Re(b6), we obtain

ARe(b6)(Ep, Ep′) = 8m2
Nm

2
X

(
Ep − Ep′

) [
Ep′

(
mNEp′ +m2

N −m2
X

)
+m2

X(Ep − 2mN )

+EpmN (Ep −mN )] ,

BRe(b6)(Ep, Ep′) = 4mNm
2
X

(
Ep − Ep′

)2 [
Ep′

(
2EpmN −m2

N +m2
X

)
+Ep(mN −mX)(mN +mX) + 2mNm

2
X

]
,

CRe(b6)(Ep, Ep′) = 16m2
Nm

2
X

(
Ep − Ep′

)2 (−mNEp′ + EpmN + 2m2
X

)
. (A.5)

• For η = Im(b6), the model dependent functions in eq. (A.2) can explicitly be written as
follows

AIm(b6)(Ep,Ep′) = 8m2
N

(
Ep−Ep′

){
Ep′

[
2E2

pm
2
N −2Epm

2
NEp′ +mNm

2
X(2Ep+mN )

−m4
X

]
−Epm

2
Nm

2
X +m4

X(Ep−2mN )
}
,

BIm(b6)(Ep,Ep′) = 2mN

(
Ep−Ep′

)2{
E2

pm
2
N (Ep−2mN )

+Ep′

[
−m2

NEp′
(
Ep′ +Ep+2mN

)
+Epm

2
N (Ep+4mN )

+ 2mNm
2
X(2Ep+mN )+2m4

X

]
−2Epm

2
Nm

2
X −2m4

X(Ep−2mN )
}
,

CIm(b6)(Ep,Ep′) = −8m2
N

(
Ep−Ep′

)2 [
E2

pm
2
N +m2

NEp′
(
Ep′ −2Ep

)
−4m4

X

]
. (A.6)

• For η = Re(b7), we find

ARe(b7)(Ep, Ep′) = 8mNm
2
X

(
−mNEp′ + EpmN + 2m2

X

) [
Ep′

(
mNEp′ +m2

N −m2
X

)
+m2

X(Ep − 2mN ) + EpmN (Ep −mN )
]
,

BRe(b7)(Ep, Ep′) = 4m2
X

(
Ep − Ep′

) (
−mNEp′ + EpmN + 2m2

X

)
×
[
Ep′

(
2EpmN −m2

N +m2
X

)
+ Ep(mN −mX)(mN +mX)

+2mNm
2
X

]
,

CRe(b7)(Ep, Ep′) = 16mNm
2
X

(
Ep − Ep′

) (
−mNEp′ + EpmN + 2m2

X

)2
. (A.7)

• Finally, for η = Im(b7), we obtain

AIm(b7)(Ep, Ep′) = 8m2
Nm

2
X

(
Ep − Ep′

) [
E2

pmN + Ep′

(
mNEp′ +m2

N +m2
X

)
−Ep

(
m2

N +m2
X

)]
,

BIm(b7)(Ep, Ep′) = 4m2
Nm

2
X

(
Ep − Ep′

)2 [(2Ep −mN )Ep′ + EpmN − 2m2
X

]
,

CIm(b7)(Ep, Ep′) = 16m2
Nm

2
X

(
Ep − Ep′

)2 (−mNEp′ + EpmN −m2
X

)
. (A.8)
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B Cross sections for relativistic dark matter-electron scattering

In the laboratory frame, the differential cross section for DM-electron scattering can be written
as follows

dσeX(Ep, Ek′)
dEk′

= 1
32πme(E2

p −m2
X) |MeX(Ep, Ek′)|2 , (B.1)

where Ek′ is the final state electron energy. As for the case of DM-nucleon scattering,
we evaluate eq. (B.1) by the combined use of FeynRules [28], CalcHEP [29] and analytical
calculations for validation. Here, we express the squared modulus of the scattering amplitude
in eq. (B.1) as

|MeX(Ep, Ek′)|2 = η2h2
3 Dη(Ep, Ek′)

3m4
X

[
2me(Ek′ −me) +m2

A′
]2 . (B.2)

Below, we specify the model dependent function Dη(Ep, Ek′) for different choices of coupling
constant η:

Db5(Ep, Ek′) = 8me

[
m2

e(Ek′ −me)2 + 2mem
2
X(Ek′ −me) + 3m4

X

]
×
[
2Epme(−Ek′ + Ep +me) +m2

X(me − Ek′)
]
,

DRe(b6)(Ep, Ek′) = 8m2
em

2
X(Ek′ −me)

{
me

[
E2

k′ − Ek′(2Ep + 3me) + 2
(
E2

p + Epme +m2
e

)]
+m2

X(Ek′ − 3me)
}
,

DIm(b6)(Ep, Ek′) = −8m2
e(Ek′ −me)

{
−mem

2
X

[
−Ek′(2Ep +me) + 2E2

p + 2Epme +m2
e

]
+2Epm

2
e(me − Ek′)(−Ek′ + Ep +me) −m4

X(Ek′ − 3me)
}
,

DRe(b7)(Ep, Ek′) = −8mem
2
X

(
−Ek′me +m2

e − 2m2
X

){
me

[
E2

k′ − Ek′(2Ep + 3me)

+2
(
E2

p + Epme +m2
e

)]
+m2

X(Ek′ − 3me)
}
,

DIm(b7)(Ep, Ek′) = 8m2
em

2
X(Ek′ −me)

{
me

[
E2

k′ − Ek′(2Ep + 3me) + 2
(
E2

p + Epme +m2
e

)]
+m2

X(me − Ek′)
}
. (B.3)

C Scattering cross sections for SIMP DM

For the DM-electron scattering cross section for the non-abelian SIMP model, we find the
expression

dσ
dEe

= 1
192πm4

X

sin2(2θ′
X)e2ε2g2

X

E2
p −m2

X

{
A (Ee)

[
E2

p − (Ee −me)Ep

]
− B(Ee)

}
C (Ee) , (C.1)

where we collected terms depending on different powers of Ep, and introduced the two
coefficients

A (Ee) = 2(Ee −me)2m3
e + 10(Ee −me)m2

em
2
X + 24mem

4
X , (C.2)
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and

B(Ee) = (Ee −me)m2
X

[
(Ee −me)m3

e + (3Ee −me)mem
2
X + 12m4

X

]
. (C.3)

The overall factor C (Ee) arises from the propagators due to Z̃ ′ and X̃3 exchange, and it is
given by

C (Ee) =
(

1
2Eeme − 2m2

e +m2
Z̃′

− 1
2Eeme − 2m2

e +m2
X̃3

)2

. (C.4)

In the non-relativistic limit, eq. (C.1) reduces to eq. (66) from [23] if integrated from 0 to
2µ2v2/me, where µ is the DM-electron reduced mass, while v is the DM-electron relative
velocity.

For the DM-nucleon scattering cross section for the non-abelian SIMP model, we find
the expression

dσ
dEp′

= 1
192πm4

X

sin2(2θ′
X)e2ε2g2

X

E2
p −m2

X

[
F 2

1 A1(Ep, Ep′) + F 2
2 A2(Ep, Ep′) + 2F1F2A12(Ep, Ep′)

]
×

D(Ep, Ep′)
4 , (C.5)

where

A1(Ep, Ep′) = 4
{

2Epm
3
NE

3
p′ + 2Ep′

[
E3

pm
3
N + Epm

2
Nm

2
X(5Ep +mN )

+mNm
4
X(15Ep +mN ) + 6m6

X

]
−mNE

2
p′

[
4E2

pm
2
N +mNm

2
X(10Ep +mN ) + 3m4

X

]
− Epm

2
X

[
Epm

3
N +mNm

2
X(3Ep + 2mN ) + 12m4

X

]}
, (C.6)

A2(Ep, Ep′) =
(
Ep − Ep′

) {
E3

pm
2
N (Ep − 2mN ) + 2E2

pmNm
2
X(2Ep − 5mN )

+ Ep′

[
6E2

pm
3
N + Ep′

(
mNEp′(mNEp′ + 2m2

N − 4m2
X) − 2Epm

2
N (Ep + 3mN )

− 2mNm
2
X(4Ep + 5mN ) + 10m4

X

)
+ 4m4

X(7Ep + 9mN )

+ 4EpmNm
2
X(2Ep + 5mN )

]
+ 2Epm

4
X(5Ep − 18mN ) − 48m6

X

}
, (C.7)

A12(Ep, Ep′) = −2
(
Ep − Ep′

) (
−mNEp′ + EpmN + 2m2

X

){
E2

pm
2
N +mNEp′

[
mNEp′

− 2
(
EpmN +m2

X

) ]
+ 2EpmNm

2
X + 12m4

X

}
, (C.8)

and

D(Ep, Ep′) =
(

1
m2

Z̃′ + 2mN (Ep − Ep′) − 1
mX̃3

+ 2mN (Ep − Ep′)

)2

. (C.9)
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