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Executive Summary 
Several computational models explaining interactions between AVs and the VRUs pedestrians 

and cyclists have been developed in SHAPE-IT. For instance, there are now models predicting 

whether a pedestrian or cyclist will cross or yield at an intersection. Further, interaction models 

were developed and/or verified using different types of data collected in experiments or ‘in the 

wild’. These data were combined and fed to different algorithms that leveraged machine 

learning to describe road-user behaviour. 

This deliverable address both pedestrian and cyclist interactions with AVs, utilising both 

naturalistic data and data collected in controlled environments. The former comprised site-

based and in-vehicle data collections. The latter included data from several virtual 

environments (e.g., driving simulators, riding simulators, and pedestrian simulation 

environments). 

The main conclusion of this deliverable is that the potential for computational models of 

AV/VRU interaction to promote AV safety while reducing the cost and time of AV development 

is high. However, more data is needed before human behaviour (especially in critical 

scenarios) is captured precisely and comprehensively enough that their integration into virtual 

simulations delivers explainable, accurate, and reliable results. This deliverable is rather a 

stepping stone to be used to define intermediate goals for the eventual development of 

computational models of AV/VRU interaction and their integration into virtual simulations for 

safety benefit assessment. 

Within SHAPE-IT, ESR3, ESR13, and ESR14 developed everyday-driving models that may 

be used directly in traffic simulations, while the focus of ESR15 has been on methods related 

to and applications of counterfactual simulations. 
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Introduction 

1.1 AV/VRU interaction: mobility needs and safety threats 

The interactions between VRUs and AVs present both mobility opportunities and safety 

challenges in the evolving landscape of transportation. As self-driving technology advances, 

the potential benefits of improved traffic flow, reduced congestion, and enhanced accessibility 

are promising. However, as we transition to a mixed environment where AVs coexist with 

pedestrians, cyclists, and traditional vehicles, addressing mobility needs and safety threats 

becomes paramount. 

Mobility needs are a key driver in AV/VRU interactions. Autonomous vehicles have the 

potential to revolutionise transportation for individuals with limited mobility, such as the elderly 

and people with disabilities. These groups often face barriers in using traditional transportation 

modes, and AVs could offer newfound independence, enabling them to travel more easily to 

work, social activities, and healthcare appointments. 

Furthermore, AVs can contribute to more efficient urban mobility for all by optimising routes, 

reducing congestion, and providing seamless integration with public transportation systems. 

These upgrades will lead to decreased travel times, lower emissions, and enhanced 

accessibility, particularly in most densely populated areas. 

However, ensuring the safety of all road users in this mixed environment is a significant 

concern. For example, pedestrians and cyclists may have hard-to-predict behaviours that AVs 

must learn to anticipate. Understanding human behaviour (in order to, for example, detect and 

respond appropriately to hand signals, sudden movements, and crossings at non-standard 

locations) poses challenges for AVs' perception systems. 

In addition to the challenge of predicting human behaviour, other requirements for AVs to 

address safety threats include robust sensor systems, reliable communication infrastructure, 

and comprehensive risk assessment. Cybersecurity is also a critical aspect, as vulnerabilities 

in AV systems could potentially be exploited by malicious actors, posing risks not only to the 

AV occupants but also to VRUs and the broader transportation network. 
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As AV/VRU interactions evolve, public education and awareness campaigns are essential. 

People need to understand the importance of following traffic rules, respecting the right-of-

way, and interacting cautiously with AVs. Meanwhile, developers and regulators must 

continually refine AV algorithms, validate safety measures, and collaborate with urban 

planners to design infrastructure that supports safe and efficient AV/VRU coexistence. 

In conclusion, the interactions between AVs and VRUs hold great potential to revolutionise 

mobility, particularly for individuals with limited mobility, while also presenting complex safety 

challenges. Balancing these opportunities and threats requires ongoing technological 

advancement, thoughtful regulation, public engagement, and a commitment to creating a 

transportation ecosystem that prioritises both mobility and safety. 

 

1.2 Computational models for AV/VRU interactions 

Computational models play a crucial role in helping researchers understand and improve the 

interaction between AVs and VRUs. In fact, these models can be used to help researchers, 

engineers, and policymakers design safer and more efficient transportation systems. 

Simulations of one or more AVs interacting with one or more VRUs can be used to quantify 

crash risk, and involving large numbers of AVs and VRUs can simulate safety and travel 

efficiency at the system level. The models can also be used in real time in AV control systems 

to predict VRU behaviour and select appropriate AV actions.   

Computational models for AV/VRU interactions encompass a range of aspects, including 

perception, prediction, decision-making, and communication. 

• Perception Models: AVs need to accurately perceive the presence, location, and 

intent of VRUs to ensure safe interactions. Perception models use sensor data, such 

as LiDAR, radar, and cameras, to detect and track VRUs in real time. These models 

are essential for recognising pedestrians at crosswalks, cyclists in bike lanes, and 

other dynamic elements in the environment. Improving perception accuracy is critical 

to prevent accidents and ensure smooth coexistence. 
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• Prediction Models: Predicting the future actions of VRUs is essential for AVs to 

anticipate and respond appropriately. These models use historical data and real-time 

observations to forecast the likely trajectories and behaviours of pedestrians and other 

VRUs. This helps AVs make informed decisions, such as yielding to a pedestrian 

preparing to cross the street or adjusting speed to accommodate a cyclist's movement. 

Computational models guide AVs in making safe and efficient decisions when 

interacting with VRUs. These models integrate perception and prediction data to 

determine actions like yielding at an intersection, changing lanes, or signalling 

intentions. The decision-making process considers traffic rules, VRU behaviour, and 

the AV's objective to minimise risks and promote smooth traffic flow. 

• Decision-making Models: Understanding human behaviour is a key component in 

making AV/VRU interactions safe. Computational models that incorporate human 

psychology, social norms, and cultural factors can enhance the realism of AV 

behaviour, leading to more predictable and acceptable interactions with VRUs. 

• Communication Models: AVs and VRUs can benefit from effective communication to 

enhance safety. Computational models for communication include protocols for AVs 

to signal their intent to nearby VRUs (e.g., decelerating for pedestrians) and for VRUs 

to convey their intentions (e.g., hand signals). Ensuring clear and reliable 

communication is crucial for avoiding misunderstandings and accidents. 

As AV technology advances, these computational models must be continuously refined and 

validated through real-world and virtual-simulation testing to monitor the safety benefits of AV. 

A multidisciplinary approach involving expertise in computer vision, machine learning, control 

systems, and transportation engineering is necessary to develop comprehensive models that 

address the complexity of AV/VRU interactions. The ultimate goal is to create a transportation 

ecosystem where AVs and VRUs coexist safely and harmoniously, promoting mobility while 

minimising risks to all road users. 

 

1.3 Virtual simulation testing for safety benefit assessment of AV 

To improve traffic safety, many researchers have studied crashes and crash mechanisms to 

understand why crashes happen. It has been found that human factors contribute to more 
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than 90% of all traffic crashes (NHTSA, 2015). Therefore, the development of ADAS and ADS, 

which either assist the driver or drive autonomously (at least under specific conditions), is 

likely to improve traffic safety, since these systems specifically target the human factors 

aspects of crash causation.  

Safety assessments of ADAS and ADS during their development are necessary to make sure 

the systems have a positive effect on safety (Jeong & Oh, 2017; Lemmen et al., 2012; 

Wimmer, 2023), and preferably to quantify the effect size. Further, a system’s safety 

performance needs to be verified before product release to satisfy regulatory constraints (ISO, 

2021, 2022) and consumer testing programs (C-NCAP, 2018, 2020; Euro NCAP, 2021, 2022). 

The safety assessment of ADS is particularly important, as is it taking over the entire driving 

task; its safety should be compared to human drivers’ performance, in order to demonstrate 

ADS’s safety performance both in conflict situations and crash avoidance (UNECE, 2021). 

The use of virtual simulations to assess safety stands out for its cost effectiveness and 

flexibility (Yang, 2023). They are especially suitable for fast, iterative system-design 

assessments during the system development phrase. 

There are two main virtual safety assessment approaches: 1) counterfactual simulations and 

2) traffic simulations. A main difference between the two is that counterfactual simulations 

simulate all aspects of the traffic situation under assessment (i.e., everything is modelled), 

while in traffic simulations virtual representations of individual real-world crashes are used as 

the baseline, and then compared with the same virtual representations but with the system(s) 

virtually applied (Bjorvatn et al., 2021). That is, counterfactual simulation relies directly on real-

world crashes, simulating what could have happened if the ADAS or ADS had been installed 

in a vehicle before a specific crash happened (Cicchino, 2017; Sander, 2017, Bjorvatn et al., 

2021). Typically, the real-world crash kinematics of (at least) one of the road-users is kept, 

while other road-users’ behaviour may be replaced by computational behaviour models. This 

approach ensures that the prevalence (exposure) of the individual crashes for which virtual 

simulations are performed is that of crashes in real traffic. As counterfactual simulations are 

typically based on a limited set of crash data, scenario generation is sometimes a 

complementary component in counterfactual simulations (Yang, 2023). However, although 

counterfactual simulations may also include modifications to the original crashes (i.e., scenario 



  
This project has received funding from the European Community's 

Horizon 2020 Framework Programme under grant agreement 860410 
 

Deliverable 2.3 Data collection methodologies for AV/VRU interaction and virtual simulation testing of AV 
 

PUBLIC  11/49 

generation through model parameter variations and the inclusion of models of crash causation; 

Bärgman et al., 2022), the underlying original-crash exposure is kept in the analysis. On the 

other hand, in traffic simulation-based safety benefit assessments the exposure must be 

simulated, which comes with its own challenges. 

The second approach, traffic simulation, has been widely used in traffic flow control and 

environmental assessment (e.g., Bjorvatn et al., 2021). It is also gradually being used to 

assess safety (Archer, 2005; Bjorvatn et al., 2021). Traffic simulations do not use direct 

representations of real-world crashes, so computational models of road-user behaviour are 

needed for all aspects of the simulations (although data from real-world crashes may be used 

to set the initial conditions of the simulations; Bjorvatn et al., 2021). Both normal everyday 

driving (non-conflict; Mohammadi et al., 2023, Zhang et al., 2021, Kalantari et al., 2023) and 

the mechanisms of crash causation must typically be included in the behaviour models 

(Bärgman et al., 2022, Yang, 2023, Van Lint 2018). Unlike in counterfactual simulations, in 

traffic simulations the exposure needs to be simulated. In practice, simulating the exposure 

means that the traffic simulation aims to either a) produce crashes (possibly across conflict 

scenarios) with the prevalence and severity (e.g., impact speeds) similar to the real world, or 

b) produce the prevalence (e.g., measured per 1000 km, the number of lane changes or the 

times to collision under a specific value) of driving scenarios similar to the real world. These 

numbers are then used as proxies for crash prevalence (Bjorvatn et al., 2021). Simulating 

exposure with a prevalence value seems to be more common, but this practice has an inherent 

problem in that the link between the proxies and the crashes they are intended to represent is 

often far from obvious.     

In summary, both counterfactual and traffic simulations require models of road-user 

behaviours: counterfactual simulations typically include crash-causation models and models 

of road-user responses to critical events, while traffic simulations also include models of 

everyday driving. ESR3, ESR13, and ESR14 contributed the development of everyday-driving 

models that can be used directly in traffic simulation models, while the focus of ESR15 has 

been on methods related to, and applications of, counterfactual simulations. However, there 

is some overlap; part of the work of ESR3, ESR13, and ESR14 can also be used in 

counterfactual simulations, and the methods developed by ESR15 can be used in traffic 
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simulations. Table 1, below, shows the topic addressed by each ESR and highlights the ESR 

who contributed to SHAPE-IT with road-user behaviour modelling. 

 

Table 1- Topics of the early-stage researchers (ESR) in SHAPE-IT (italics indicate a direct 
contribution to this deliverable). 

ESR Title and related work package (WP) within SHAPE-IT Institution 
1 Understanding Driver/AV Interaction Using Neuroergonomics 

(WP1) 
Ulm 

2 Long-Term Effects of Automation on User Behaviour (WP1) TUM 
3 Predicting Pedestrian Behaviour Considering Interactions Between 

AVs/vehicles and Pedestrians Using AI (WP2) 
UGOT 

4 Long Term Effects of AV Exposure on AV/VRU Interactions (WP1) Leeds 
5 Developing more comfortable, pleasant, and acceptable AV- 

kinematic cues for drivers (WP1) 
Leeds 

6 Internal Interface for Transparent Automation (WP1) Ulm 
7 Assessing AV Transparency (WP1) TUM 
8 Human Factors in AI-based Automation Design (WP1) UGOT 
9 Assessing Interactions Between AVs and VRUs Using 

Virtual/Augmented Reality (WP2) 
TU Delft 

10 HMIs Promoting Safe AV/cyclist Interactions (WP2) TU Delft 
11 Cooperative Interaction Strategies Between AVs and Mixed 

Motorised Traffic (WP2) 
Ulm 

12 AV Occupants Perception of Safety in Relation to AV Behaviour 
(WP1) 

TU Delft 

13 Computational Vehicle/Pedestrian Interaction Models (WP2) Leeds 
14 Computational AV/Cyclist Interaction Models (WP2) Chalmers 
15 Safety Evaluation of Automation Using Counterfactual Simulations Chalmers 

 

2 Data for computational models of AV/VRU interaction 

Data for transportation research may be collected from different environments. Some enable 

more control over the experimental conditions than others. Usually, as the environment is 

more controlled, the collected data becomes “cleaner” but less ecologically valid. For instance, 

driving simulators may provide very consistent experimental conditions across participants; 

however, the environment is artificial. The extent to which the data are representative of real-

world conditions must be evaluated from case to case. On the other end of the spectrum, 



  
This project has received funding from the European Community's 

Horizon 2020 Framework Programme under grant agreement 860410 
 

Deliverable 2.3 Data collection methodologies for AV/VRU interaction and virtual simulation testing of AV 
 

PUBLIC  13/49 

naturalistic studies produce data with high ecological validity, but the environmental conditions 

are entirely uncontrolled and can vary widely across participants. Below, we introduce the 

different methodologies for data collection employed in SHAPE-IT and present the actual 

datasets that SHAPE-IT analysed. 

2.1 Controlled environments 

2.1.1 Driving simulators 

Driving simulators are advanced tools used to replicate real-world driving environments and 

scenarios. They are often equipped with a realistic cockpit that mimics the interior of a typical 

vehicle, providing an immersive experience for the driver (Figure 1). Driving simulators are 

routinely used by the automotive industry and research community, resulting in extensive 

human-behaviour data representing active drivers and AV users. 

The visual environment in a driving simulator is usually projected onto a wide, curved screen 

(often covering 180 degrees or more), using high-quality projectors. The goal is to create a 

realistic driving experience that closely resembles the road and surroundings that a driver 

would actually encounter. 

Various software solutions are employed to design and control the traffic environment within 

the simulator. These tools allow the customisation of road conditions, traffic patterns, and 

vehicle dynamics, enabling researchers to simulate a wide range of driving scenarios. 

The vehicle's dynamics, including acceleration, braking, and steering, are controlled in real 

time using specialised simulation systems. Data related to the vehicle's movement and the 

surrounding traffic can be logged and analysed, providing valuable insights into driver 

behaviour and vehicle performance. 

Many driving simulators also include features that simulate automated driving functions such 

as Adaptive Cruise Control (ACC). These algorithms can be implemented and tested within 

the simulator, allowing researchers to explore the interactions between automated vehicles 

and human drivers. 

The Human-Machine Interface (HMI) within the simulator often includes indicators and 

warnings that inform the driver about the status of various systems. These indicators and 
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warnings can include visual cues, such as colour-coded warnings to signal that the driver 

needs to take control or indicators to show that an automated system is functioning properly. 

Overall, driving simulators provide a controlled, safe environment for studying and 

understanding complex interactions between vehicles, drivers, and the road. They are 

valuable tools in the development and testing of both conventional and autonomous driving 

technologies, contributing to advancements in safety, efficiency, and the overall driving 

experience. 

  
Figure 1- Delft Advanced Vehicle Simulator (DAVSi) at Delft University of Technology 

2.1.2 Riding simulators 

Riding simulators, advanced virtual environments designed to replicate real-world cycling 

experiences, offer a range of benefits for testing scenarios involving cyclists. These simulators 

leverage cutting-edge technology to provide a highly immersive and controlled training 

environment, allowing researchers to investigate different aspects of cyclists' behaviour, 

especially when they interact with AVs. It is only very recently that a range of riding simulators 

has been introduced; few studies have validated them and used them to study rider behaviour. 

Here are some key benefits of cycling simulators:  

• Realistic Interaction Scenarios: Cycling simulators can replicate a wide range of 

real-world interaction scenarios between cyclists and AVs. Realism is crucial for 

capturing the complexities of road interactions, including merging, passing, yielding, 

and reacting to unexpected events. By studying various scenarios, researchers can 

better understand the dynamics of AV-cyclist interactions and fine-tune their models 

accordingly. 



  
This project has received funding from the European Community's 

Horizon 2020 Framework Programme under grant agreement 860410 
 

Deliverable 2.3 Data collection methodologies for AV/VRU interaction and virtual simulation testing of AV 
 

PUBLIC  15/49 

• Controlled Environment: Simulators provide a controlled environment, which is 

essential for isolating specific factors and variables that influence AV-cyclist 

interactions. Researchers can manipulate parameters such as AV behaviour, cyclist 

actions, road conditions, and traffic density to study how these elements impact the 

safety and efficiency of the interaction. 

• Data Generation: Cycling simulators can generate extensive datasets capturing AV-

cyclist interactions. These datasets serve as valuable inputs for training and 

validating computational models. Researchers can use the data to analyse the 

effectiveness of AV detection, prediction, and decision-making algorithms when 

encountering cyclists. 

• Iterative Model Improvement: Simulators allow researchers to iterate and refine 

their computational models rapidly. By comparing simulated results with real-world 

observations or benchmark data, researchers can identify areas where the models 

need improvement. This iterative process accelerates the development of more 

accurate and reliable models of AV-cyclist interactions. 

• Safety: Safety is a paramount concern when studying AV-cyclist interactions. Cycling 

simulators provide a risk-free environment to test and validate AV algorithms and 

cyclist-awareness features before the AVs are brought to market. This process 

ensures that AVs can reliably detect and respond to cyclists' actions, reducing the 

likelihood of accidents when these technologies are deployed on the road. 

• Customisation and Scalability: Cycling simulators can be customised to represent 

specific cities, road layouts, and cycling infrastructure, which enables researchers to 

study AV-cyclist interactions in diverse urban environments. Additionally, simulators 

can scale up to simulate high-density cyclist scenarios, which is challenging to 

achieve in real-world testing. 

• Efficiency: Conducting experiments in cycling simulators is more efficient than 

conducting large-scale on-road tests. Researchers can simulate numerous 

interactions in a shorter time frame and with relatively lower cost compared to other 

data collection methods, allowing them to gather a wealth of data to validate their 

models comprehensively. 
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It is worth noticing that the bullets above also apply to driving simulators. However, cycling 

simulators may also try to recreate the balancing task that cyclists perform while riding (but is 

not necessary for drivers). Further, cycling simulators often use head-mounted displays 

(HMDs) to provide full immersion for the cyclist. This addition makes the environment more 

realistic by, for instance, making it possible to perform shoulder-checks; however, it also 

contributes to motion sickness. In other words, the fully immersive, dynamic experience makes 

experiments in the cycling simulator more vulnerable to drop-outs because of nausea than 

driving simulators. 

In summary, cycling simulators offer a controlled, efficient platform for observing cyclists’ 

behaviour. However, the extent to which the environment in the simulator is ecologically valid 

should be evaluated in a different study. Even though data collection in simulators is more 

straightforward than naturalistic data collection, a significant amount of time should be 

dedicated to preparing a realistic scenario in the simulators. In the picture below the cycling 

simulator that was used in ESR 14’s study is depicted. 
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Figure 2- Cycling simulator at VTI facilities 

 

2.1.3 Pedestrian simulation environments 

Pedestrian simulation environments for experiments are usually created using HMDs and 

CAVE (Cave Automatic Virtual Environment) systems. Irrespective of which display type is 

used, pedestrian simulators vary based on their potential to provide stereo vision (depth 

perception) and the inclusion of auditory cues. Pedestrian simulators enable virtual movement 

through manual control (using devices like joysticks or keyboards), natural walking, and 

treadmill usage. It has been shown that factors such as display type, presence and type of 

auditory feedback, and the ability to replicate walking movements can influence how 

pedestrians behave in simulated environments (Schneider & Bengler, 2020). 
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The use of HMDs is cost-effective and convenient, requiring only a helmet featuring 3D 

goggles that project high-quality images and a space for walking (Mestre, 2017). Additionally, 

HMDs are intrinsically different than stationary displays. Despite their limited field of vision 

(around 110° vertically and 100° horizontally), HMDs offer a 360° panoramic perspective, 

enhancing the sense of immersion by isolating the viewer from the real world (LaViola Jr et 

al., 2017). 

The CAVE system is composed of expansive screens that project computer-generated images 

of high resolution, delivering an immersive experience for users. This arrangement facilitates 

the naturalistic observation and measurement of realistic street-crossing scenarios (Pala et 

al., 2021b). Figure 3 shows the Highly Immersive Kinematic Experimental Research (HIKER) 

CAVE-based lab at the University of Leeds, where ESR 13 conducted his research on 

pedestrians. 

 

 

Figure 3- The HIKER pedestrian lab at the University of Leeds 
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A comparison of HMDs and CAVE reveals that each has advantages and disadvantages. 

Previous research suggests that HMDs can induce motion sickness (Deb et al., 2017) and 

postural instability (Robert et al., 2016), whereas CAVE technology may limit these issues but 

it is more costly and requires more space than HMDs. Additionally, unlike HMDs, the 

immersive sensation of the CAVE can be disrupted—if users look at areas lacking screens 

(Pala et al., 2021a). 

 

2.2 Naturalistic approaches 

Real-world behaviour data, or so-called naturalistic data, can be collected through site-based 

observation or vehicle-based observation. 

2.2.1 Site-based 

Site-based traffic data collection is a fundamental component of naturalistic data collection 

when the focus is on studying transportation and mobility patterns. In this approach, various 

data collection tools (such as traffic cameras, sensors, and GPS tracking devices) are 

deployed at specific locations within the transportation network (such as intersections or 

highways). These tools enable researchers to passively monitor and record real-world traffic, 

including vehicle speeds, traffic flow, congestion patterns, and driver behaviours. By gathering 

data directly from the traffic sites, researchers can unobtrusively gain an authentic perspective 

on how people navigate within the transportation system and interact with each other. This 

wealth of site-specific traffic data plays a vital role in improving traffic management, road 

safety, and urban planning, ultimately contributing to more efficient and sustainable 

transportation systems. 
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Figure 4- View from mounted sensor capable of extracting road users’ trajectories at an unsignalised 

intersection 

 

Site-based data collection has numerous benefits, like accurate real-world data which reflects 

actual traffic conditions and behaviours. In addition, this type of data collection is cost effective, 

and the data are valuable resources for validating and cross-checking data obtained from 

other sources. In summary, site-based traffic data collection is a valuable methodology for 

transportation professionals, researchers, and policymakers, offering a wealth of detailed, 

real-world information that can enhance traffic management, safety, and overall urban 

planning. 

2.2.2 Vehicle-based 

Naturalistic driving data collection methods focus on observing drivers in real-world, everyday 

driving scenarios without intervention, generally over extended periods. This approach 

captures a comprehensive picture of driver behaviour, road user interactions, and potential 

risk factors under actual conditions. As technology has advanced, various methods for 

collecting naturalistic data have emerged. Initial approaches often involved mounting cameras 
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on tall buildings to observe interactions between various road users, such as vehicles and 

VRUs. Over the past two decades, the vehicle-based data collection method has become 

increasingly popular. This method involves fitting vehicles with advanced instrumentation, 

including cameras, radars, and control area network (CAN) systems, to capture detailed 

driving behaviour and interactions in real-world conditions. Multiple cameras are mounted to 

record both the driver's actions inside the vehicle and the traffic conditions outside, as shown 

in Figure 5. Radars are typically used to monitor the distance and relative speed between the 

equipped vehicle and other road users. The CAN data gathers real-time information about 

vehicle speed, throttle position, brake application, steering angle, and many other parameters. 

Together, this multifaceted data collection approach is crucial for deriving meaningful insights 

and making informed decisions about road safety, driver education, and vehicle design. Some 

of the largest vehicle-based naturalistic data collection initiatives include SHRP2 (Second 

Strategic Highway Research Program) in the United States (Antin et al., 2019) and UDRIVE 

(Eenink et al., 2014) and L3Pilot (Rösener et al., 2019) in Europe. 

 

 

Figure 5- Instrumented vehicle to collect naturalistic driving data (published with author’s permission) 
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The vehicle-based data collection method offers several benefits. Firstly, it provides an 

unobtrusive way to observe drivers in their natural settings without the potential bias 

introduced by laboratory simulations or observer presence. Such genuine data is invaluable 

in understanding real-world driving habits, distractions, and decision-making processes in 

variety of traffic conditions, such as a driver's response to a pedestrian (Rasch et al., 2020) or 

while overtaking a cyclist (Kovaceva et al., 2019). Additionally, with the aid of technologies like 

radars and CAN, intricate details about vehicle operation, such as acceleration patterns, 

braking intensity, and steering angles, can be recorded, offering a holistic view of driving 

scenarios. 

 

2.3 Data and data collection in SHAPE-IT 

2.3.1 Data collected in SHAPE-IT 

Data from the riding simulator at VTI, Gothenburg, Sweden 

A bike simulator was used to collect data from participants riding through an 

unsignalised intersection. Participants were instructed to pass the intersection several 

times. The environment was shown to the participants by a virtual reality headset. As 

the participants neared the intersection, a car approached from the right, and they 

needed to decide what to do. The effects of the difference in time to arrival at the 

intersection (DTA) and the field of view (FOV) distance on the cyclists’ response 

process were investigated. Sensory and questionnaire data were used to determine 

how cyclists interact with cars  and what the influencing factors in their decision-

making are. Participants filled out a questionnaire about their experience in the 

simulator after the test.  
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Figure 6- Riding simulator 

 

Data from the pedestrian simulator at the University of Leeds, UK 

Pedestrian data were collected in a CAVE-based pedestrian lab (the HIKER lab) as part of a 

distributed simulator study (Figure 7). In this study, 32 driver-pedestrian pairs interacted with 

each other under different scenarios consisting of different vehicle kinematics and crossing 

location types. The pedestrians wore 14 motion trackers (attached to their head, arms, chest, 

pelvis, elbows, hands, thighs, ankles, and feet) to track their position as they moved freely 

during the experiment. They were represented as a group of pink spheres to the drivers. Ten 

VICON Vero v2.2 cameras were placed on the upper edges of the glass walls of HIKER, with 

their signals processed by a VICON Tracker (version 3.7). The virtual reality presented to the 
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participant responded to their head movements through the use of HIKER glasses, ensuring 

a perspective-correct experience. The pedestrians were instructed to stand at a designated 

point on the HIKER floor, where they could see cars going both ways on a two-way road but 

could not anticipate when the human-driven vehicle would approach. They were told to step 

forward to the next designated point once they heard an auditory prompt. The second point 

was placed at the curb of the virtual road, where they needed to decide whether to cross in 

front of the vehicle or wait for it to pass first. Road user interaction outcome (i.e., pedestrians 

crossed first or waited), trajectories, and kinematics (including pedestrians’ crossing 

initiation/duration time, walking speed, and waiting time) were recorded throughout the 

experiment (Kalantari, Yang, Pedro, et al., 2023). 

 

Figure 7- The driver’s view of the pedestrian (left) and the pedestrian’s view of the vehicle in the 

HIKER lab (right) 

Data from the driving simulator at TME, Brussels, Belgium 

A driving simulator was used to observe drivers’ behaviour when they interact with an 

approaching cyclist at an unsignalised intersection. Participants were instructed to cross the 

same intersection several times and interact with an approaching cyclist at the intersection. 

The independent variables in this study consisted of the cyclist’s speed, DTA, and visibility 

condition (i.e., how early the cyclist was visible for the driver). Sensory data from this 

experiment included vehicle position and speed as well as gas- and brake-pedal use. In 

addition, questionnaire data about participant's’ experience inside the simulator and 

demographics were collected after the experiments.   

Data from the driving simulator at the University of Delft, Netherlands 
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The motorway driving environments used for collecting data on perceived risk and trust were 

meticulously created on the Delft Advanced Vehicle Simulator (DAVSi), equipped with a 

Yaris cockpit (Fig. x).  

 

Figure 8- Delft Advanced Vehicle Simulator (DAVSi) at Delft University of Technology 

The immersive environment is projected onto a cylindrical 180-degree screen by three high-

quality projectors, providing a realistic driving experience (Khusro et al., 2020). CarMaker 8.0.1 

software was utilised to craft the motorway traffic environment, while an Auris 4 model was 

employed to simulate the subject vehicle's dynamics. The dynamics and surrounding traffic 

were controlled in real time using Simulink on the dSPACE SCALEXIO simulation system. 

Motion data for the subject vehicle and other vehicles were logged at a frequency of 10 Hz. 

Automated lateral control of the subject vehicle was executed by the IPG driver model 

provided by CarMaker. A non-linear full-range Adaptive Cruise Control (ACC) algorithm was 

implemented (Mullakkal-Babu et al., 2016). The Human-Machine Interface (HMI) was a simple 

indicator on the dashboard, displaying the automation's working status through two colours: 

green (indicating that the system is activated and functioning properly) and yellow (warning 

the driver to take over control). This setup provided a controlled environment for understanding 

and modelling some of the complex interactions between AVs and VRUs, contributing valuable 

insights to the field of autonomous driving technology. 

Continuous perceived risk data were collected by a pressure sensor fixed on the steering 

wheel (Fig. xA), obtaining visual feedback through an LED bar (Fig. xB). The participants were 

tasked to press the sensor whenever they felt unsafe; the harder they pressed, the more 

unsafe they felt. So, no force (zero active LEDs) indicates no perceived risk and the maximum 
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(ten active LEDs) means very high risk. The continuous rating was recorded at 60 Hz. Three 

physiological signals were measured to assess their predictive value for trust and perceived 

risk: cardiovascular activity (ECG), galvanic skin response (GSR), and pupil dilation. ECG was 

measured on Lead II (between the left inner ankle and right inner wrist, with the ground on the 

right inner ankle) and recorded using a TMSi amplifier at 1024 Hz (Fig. xC). Heartbeats were 

identified using BioSigKit (Sedghamiz, 2018).  GSR was measured on the right palm with a 

Groove GSR sensor at 60 Hz and de-convolved into phasic and tonic components using 

Ledalab-349 (Benedek and Kaernbach, 2010). Pupil dilation (diameter) of the left eye was 

measured at 50 Hz using a Tobii head-mounted eye tracker (Fig. xD) and postprocessed with 

a 4 Hz low-pass filter (Kret and Sjak-Shie, 2019). 

 

Figure 9- (a) Pressure sensor for reporting continuous perceived risk. (b) LED bar- Visual feedback of 

reported continuous perceived risk. (c) ECG device TMSi to measure cardiovascular activity (d) Eye 

tracker Tobii Pro Glasses 2 to measure pupil dilation. 

Several experiments were conducted, resulting in models of perceived risk and trust for AV 

users (He et al., 2022). The findings demonstrate that interfaces showing (or verbally 

communicating) what the AV perceives and what actions it takes convey many benefits, such 

as enhancing users’ perceived safety and trust in, and acceptance, of AVs (Nordhoff et al., 

2021). 

 

Naturalistic data from Viscando systems in the UK 

A naturalistic study conducted in Leeds, UK used state-of-the-art sensors to investigate road 

user interactions in real time. Two Viscando camera sensors, known as OTUS3D, were 

utilised for the data collection. The sensors collected road user type and trajectory over 

discrete time intervals. Two marked crossings were selected based on safety concerns (a 
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history of many crashes) and the prevalence of one-to-one vehicle-pedestrian interactions. 

One is a staggered crossing situated at Belle Isle Road (53°46′07″N, 001°31′48″W) and the 

other is a zebra crossing on Queensway Road (53°44′45″N, 001°36′16″W). Data was gathered 

over a period of 14 days, with each location being observed for seven days. Road user 

interaction outcome, time, position, and movement-based factors were analysed and 

modelled. The findings of the study were compared to those of the simulator study. 

 

 

Figure 10- Bird’s eye view of Queensway Road (left) and Belle Isle Road (right) 

 

2.3.2 Data from the SHAPE-IT partners 

Naturalistic data from Viscando systems in Sweden 

Data were also from an unsignalised intersection in Gothenburg, Sweden, using Stereovision 

and an AI-based sensor from Viscando. Fourteen days of data were collected from the 

intersection and trajectories of all the road users were recorded.  Data were gathered each 

day between 6:00 and 18:00. The identified groups of road users included pedestrians, 

cyclists, vehicles, and heavy vehicles. The trajectory information encompassed positions, 

speeds, and headings, all recorded at a rate of 20 Hz. These data were made available to 
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SHAPE-IT and used to model the interaction between cyclists and drivers. The models provide 

a reference driver whose behaviour can be compared to that of AVs as well as predictive 

algorithms which AVs can use to make interactions with cyclists safer. 

2.3.3 Open datasets in SHAPE-IT 

High-quality datasets are important for modelling VRU behaviour. For pedestrian behaviour 

prediction, we reviewed a large selection of existing studies to identify useful tools for 

prediction and open datasets that are commonly used for evaluation (Zhang and Berger, 

2023). The same effort was made for cyclist behaviour prediction; however, within SHAPE-IT 

we only used open data for modelling pedestrians’ behaviour. Using open data for modelling 

cyclist interactions was not as appealing, for many reasons. One reason was that their quality 

was not as high as the alternative datasets we had available or could acquire within our 

facilities, especially considering the specific scenario (unsignalised intersections) that we 

targeted. Further, open datasets often provide only trajectory data and we also wanted to 

consider non-kinematic-related factors (e.g., gestures or helmet wearing) in our modelling 

effort. The two open datasets that SHAPE-IT used for modelling pedestrian behaviour both 

included naturalistic data. 

Waymo Open Dataset (naturalistic) 

The Waymo Open Dataset (Sun et al., 2020) is a large-scale, real-world open dataset 

collected in road scenarios. It contains 1,150 scenarios (recently updated in March 2023 to 

2,030 segments) that each last 20 seconds, collected from the vehicle's view. The data were 

collected with high-resolution cameras and LIDARs. The urban street scenarios were used in 

our research to investigate pedestrian behaviour (Zhang et al., 2021, Zhang and Berger, 

2022a, Zhang and Berger, 2022b, Zhang, 2022, Zhang et al. 2023b). 

The 450 urban scenarios include 374 training records and 76 test records. The ground truth 

of pedestrian behaviour is annotated with 2D and 3D positions on camera and LIDAR images. 

In our research we used the 3D position data for trajectory prediction. Public URL: 

https://waymo.com/open/. 

https://waymo.com/open/
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Figure 11- A snapshot of an urban traffic scenario in the Waymo Open Dataset (Sun et al., 2020) 

 

ETH and UCY Datasets (naturalistic) 

The ETH (Pellegrini et al., 2009) and UCY (Lerner et al., 2007) datasets are popular and widely 

used for studies on pedestrian trajectory prediction. These two datasets contain five fixed 

scenarios, collected from a bird's-eye view using a camera. These datasets were used in our 

research to investigate the transferability of our models (Zhang et al., 2023b). 

Public URL:  

• ETH (accessed on 2023 Aug 14):  

https://icu.ee.ethz.ch/research/datsets.html 

 download:  

https://ethz.ch/content/dam/ethz/special-interest/itet/cvl/vision-

dam/documents/ewap_dataset_light.tgz 

 https://data.vision.ee.ethz.ch/cvl/aem/ewap_dataset_full.tgz 

  

https://icu.ee.ethz.ch/research/datsets.html
https://icu.ee.ethz.ch/research/datsets.html
https://ethz.ch/content/dam/ethz/special-interest/itet/cvl/vision-dam/documents/ewap_dataset_light.tgz
https://ethz.ch/content/dam/ethz/special-interest/itet/cvl/vision-dam/documents/ewap_dataset_light.tgz
https://data.vision.ee.ethz.ch/cvl/aem/ewap_dataset_full.tgz
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• UCY (accessed on 2023 Aug 14):  

https://graphics.cs.ucy.ac.cy/home  

download: 

 https://graphics.cs.ucy.ac.cy/research/downloads/crowd-data 

 

Figure 12- A snapshot of a scenario in the ETH (Pellegrini et al., 2009) dataset. 

https://graphics.cs.ucy.ac.cy/home
https://graphics.cs.ucy.ac.cy/research/downloads/crowd-data
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Figure 13- A snapshot of a scenario in the UCY (Lerner et al., 2007) dataset. 

 

2.4 Data and data collection challenges from SHAPE-IT experience 

2.4.1 Methodology limitations 

Each data type comes with limitations which are often due to a trade-off between costs, 

experimental control, safety, and ethical considerations during the collection phase. Therefore, 

not all methodology limitations can be overcome. It is fundamental for the analyst to be aware 

of the limitations in order to make the best use of the data. In other words, understanding the 

constraints of the acquisition methodology makes it possible to appreciate the validity of the 

results from the data analysis. It is also important to understand how to combine datatypes to 

leverage their advantages and compensate for their disadvantages. As an example, simulator 

data may be easier to use for developing behavioural models, while real-world data may be 

best for the models’ validation. 
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Riding, driving, and walking simulator (controlled environments) 

Riding Simulator 

The experiment faced a limitation in terms of participant recruitment, partly because of the on-

going pandemic. Further, motion sickness led a significant number of participants to drop out, 

affecting data collection. Unfortunately, the ecological validity of the riding simulator is 

unknown, because (as is the case for most simulators) it has not been validated with real-

world data. 

Driving Simulator 

The TU Delft study included highway driving, a situation in which car simulators are widely 

applied; they are considered valid but not perfect. No motion sickness was reported. 

In the study involving urban interactions with cyclists, motion sickness resulted in a high 

dropout rate among participants in the driving simulator. As with the riding simulator, the 

ecological validity of the results from the driving simulator is hard to estimate, especially 

because creating a realistic interaction scenario with cyclists within the driving simulation 

environment posed challenges.  

Simulated environments lacking real-world motion could create disparities in perception and 

response, potentially affecting the simulation's validity. Variations in brightness within the 

simulation were found to significantly impact pupil dilation, potentially complicating the 

analysis of that physiological response’s relation to perceived risk. Further, controlled 

scenarios in the driving simulations tended to become predictable after repeated trials, 

introducing learning effects that may have introduced bias in the results. 

Walking Simulator 

In the walking simulator study, pedestrians and drivers were unable to perceive each other 

before pedestrians reached the curb, leading to limits in the interaction approach phase. The 

influence of pedestrian group size on interaction outcomes was disregarded due to limitations 

in the simulator's capacity (the simulator is meant for one person). The use of spheres for 

pedestrians instead of more realistic, calibrated avatars hindered the study of pedestrian pose, 

gait, and eye contact in interactive behaviours. 
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Overall, these limitations underscore the need for careful consideration and interpretation of 

data collected from simulators, particularly when assessing their applicability to real-world 

scenarios and interactions. 

  

Naturalistic studies (uncontrolled environment) 

Critical Events 

The utilisation of naturalistic data for modelling interactions is subject to several limitations. 

Firstly, the dataset may feature only a small number of critical interaction events, potentially 

failing to represent the diversity and comprehensiveness of the interactions under study. The 

limited variety will inevitably constrain the model's ability to encompass the full spectrum of 

real-world scenarios. Additionally, distances estimated from cameras may not be sufficiently 

precise or accurate, which could affect the fidelity of the results of the modelling process and, 

in turn, the model’s performance in predicting road-user behaviour. Furthermore, when the 

data collection process occurs exclusively at a single location, data are inevitably biased. This 

geographical constraint can limit the applicability and generalisability of the resultant models, 

as they may not effectively account for the variability of interactions across different settings. 

Road User Behaviour 

When applying naturalistic data to model road user interactions, the researcher needs to 

understand certain limitations related to the scope of the study that produced the data. 

Specifically, due to the specific modelling objectives, the analysis focused solely on one-on-

one car-road-user interactions, without considering multiagent interactions which might be of 

interest in future research endeavours. Furthermore, interactions involving different vehicle 

types and pedestrians were omitted from the study, due to the complexity of the modelling 

requirements. It is important to recognise that the exploration of road user behaviour was 

confined to a single driving lane and direction: the specific infrastructure under consideration 

also imposed limitations. This point may be particularly important for pedestrian behaviour 

analysis, as previous research findings suggest that pedestrians might exhibit different 

behaviour patterns on streets with two-way traffic (Dommès et al., 2021). 
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Large Data 

Employing naturalistic data sets for modelling interactions within dynamic environments 

presents a series of computational and practical challenges. Notably, the continuous operation 

of an array of sensors generates voluminous datasets that necessitate substantial 

computational resources for storage, processing, and subsequent analysis. Moreover, the 

installation and upkeep of the data acquisition system entail considerable financial expense. 

Ensuring consistent data quality across various vehicles/collection sites also poses a 

formidable challenge. Addressing these challenges demands robust methodologies and 

strategies for data management and maintenance. In addition to these technical 

considerations, privacy emerges as a pivotal concern. The collection of video footage and data 

from real-world driving situations carries the inadvertent risk of capturing personal and 

sensitive information, with the potential to create ethical and legal dilemmas. Finally, humans 

are still in part responsible for video reduction, adding a subjective dimension to the 

interpretation of naturalistic data. 

Complexity in pedestrian behaviour 

The utilisation of naturalistic data for modelling pedestrian interactions introduces inherent 

complexities and limitations that warrant careful consideration. One central challenge involves 

disentangling a pedestrian's initial intention from their actual observed actions within the 

naturalistic data. This difficulty in discerning intention-action dynamics can impede accurate 

interpretation and analysis. Furthermore, extracting information about pedestrians' personality 

traits from the data has proven to be impractical so far. The intricate interplay of latent variables 

that can influence pedestrian behaviour further complicates the study of interaction factors. 

Developing effective algorithms based on naturalistic data necessitates meticulously labelled 

datasets, a resource-intensive endeavour. The cost associated with producing well-annotated 

data might serve as a barrier to algorithm development and refinement (Zhang, 2022; Zhang 

et al., 2023a). 

2.4.2 Data limitations 

The issue of incomplete data, which can stem from sensor failures, is a recurring one. 

Alongside this, noisy data can introduce errors and inaccuracies into the dataset, as noted by 
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Singh and Kathuria (2021). Additionally (and as mentioned before), the vast amount of data 

available, coupled with limited computational resources, makes the processing of data a 

challenging task. 

The available sample size of the data can significantly impact the reliability of research 

outcomes. Inadequate sample sizes may fail to capture the full range of driving behaviours, 

rendering analyses less comprehensive. Moreover, data collected from surveys, naturalistic 

driving studies, or driving simulators may carry inconsistencies, inaccuracies, or biases that 

affect the robustness of predictive models. Such biases can arise from factors like the location 

of data collection, demographics of the studied population, or the sampling methods. 

Even well-established open datasets, such as ETH and UCY, have intrinsic limitations, as 

pointed out by Zhang et al. (2021). These datasets might not possess the necessary size and 

diversity to comprehensively represent the subject matter. For instance, the exclusion of 

densely populated urban traffic situations and pedestrian-vehicle interactions in these 

datasets can impact the applicability of findings based on them. Similarly, the Waymo Open 

Dataset's focus on the US might omit considerations vital for low-income countries. Factors 

like geographical variations, crowd densities, and cultural influences might not be captured if 

they do not align with the dataset's scope. 

Certain datasets suffer from limitations in data collection frequency, particularly in capturing 

fine-grained details of driving behaviour. This is particularly true for event data recorder data, 

as highlighted by NHTSA (Thomson et al., 2013). Moreover, data obtained from real crash 

scenarios tend to favour more severe crashes, resulting in the under-representation of non-

injury or low-severity crashes. This bias impacts the overall understanding of crash dynamics. 

Limited data availability from a single location can hinder the generalisation of research 

findings to broader populations. In studies involving simulators, the issue of motion sickness 

can introduce bias into the data collection. Furthermore, discrepancies in accuracy between 

naturalistic driving datasets and simulator-generated data can complicate comparisons. 

Efforts to enhance datasets, such as adding specific features, can require substantial 

preparation efforts. 
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The role and quantity of confounding variables in naturalistic data often remain undetermined, 

leading to correlational rather than causal relationships between variables. Simulators, while 

valuable, might lack scenarios that involve varying constant speeds of approaching vehicles. 

Additionally, both lab and naturalistic data tend to lack critical scenarios like crashes and near-

crashes, essential for some specific applications, like testing autonomous vehicles. These 

limitations constrain the scope of investigations and modelling possibilities. 

Data related to perceived risk have their own set of limitations. Perceived risk data collected 

without vehicle motion may introduce bias, as it fails to replicate the complete driving 

experience. Physiological signals used to assess perceived risk might not provide the 

precision required for computational modelling, especially in less obviously hazardous 

situations. The focus on specific driving scenarios in simulator-based studies, while valuable, 

overlooks aspects like lateral risk and lacks broader generalisability. Human-Machine 

Interface effects are often omitted, reducing the comprehensiveness of analyses focused on 

driver behaviour and perception. 

For any researcher, navigating data limitations is integral to gauging the accuracy and 

reliability of research outcomes. Acknowledging these challenges is the first step in devising 

strategies to minimise their impact, enhance the validity of findings, and interpret the results 

for what they are. While data constraints may pose hurdles, addressing them paves the way 

for more informed, nuanced insights in research. 

2.5 How to improve data and data collection, according to SHAPE-IT 

• Enriching Data Quantity and Quality 

To fuel robust analyses, it is imperative to expand the sample size. Embrace a wider spectrum 

of participants by avoiding geographical and demographic limitations. Collaborative efforts and 

sensor synchronisation harmonise data inputs, bolstering quality. Employing random sampling 

strategies mitigates bias, ensuring a representative dataset. 

• Innovating Data Representation in Pedestrian Studies 

In pedestrian studies, calibrated avatars would transcend simplistic representations, 

enhancing realism. Incorporate scenarios featuring complex interactions, like two-lane road 
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crossings. Leverage networked HMIs to analyse group dynamics. Make use of diverse 

scenarios encompassing intersections and jaywalking behaviours, to encompass the breadth 

of real-world interactions. 

• Integrating Multi-Agent Scenarios and Mixed-Method Approaches 

Extend data collection to scenarios involving multi-agent dynamics. Capture the intricacies of 

real-world interactions by embracing a mixed-method approach, which entails merging 

passive crash reports with active site-based data collection, in order to foster a holistic 

understanding of location-specific incidents. 

• Enhancing Realism in Simulated Environments 

Simulated environments offer controlled settings, yet incorporating motion cues bridges the 

gap between these and real-world experiences. Consistent lighting conditions, crucial for eye-

tracking data, ensure accurate metrics. Implementing randomisation in scenario selection 

minimises learning effects, rendering collected data more authentic and valid. 

• Bridging Simulation and Reality for Holistic Insights 

For a well-rounded dataset, consider on-road testing alongside simulations. Real-world 

conditions provide nuanced insights often overlooked in controlled settings. Urban 

environments and varied scenarios enrich perceived-risk data, amplifying the dataset's 

applicability. Delve into Human-Machine Interface (HMI) impact in order to decode driver 

responses to automated systems comprehensively. 

In conclusion, the journey to enhance data and data collection transcends individual research 

domains and projects. By unifying strategies that amplify quantity, quality, and realism, while 

embracing diverse scenarios and innovative approaches, we pave the way for more profound 

insights in future research projects. Advances in technology may help overcome many 

limitations in data collection, by providing more cost-effective solutions and better sensing. 
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3 Challenges for the integration of computational models 
into virtual simulations 

Computational road-user models are widely used in virtual simulations for safety benefit 

assessment. The models play a pivotal role in simulating traffic interactions, finding application 

in various contexts such as traffic simulations and counterfactual simulations. There are 

several challenges with integrating computational models into virtual simulations for system 

performance assessment. These include the differences in data needs and data availability 

across models and across safety benefit assessment approaches, software interoperability, 

and computational load and simulation optimisation. These topics are described in turn.  

3.1 Data availability and data needs across models and across 
assessment approaches 

The main reason it is difficult to use virtual safety benefit assessments to assess different 

safety solutions is the lack of data available to develop crash causation and critical event 

response models. Both traffic simulations and counterfactual simulations require such models. 

Traffic simulations also require everyday traffic-interaction models, but those data can be 

collected in relatively short times (and at relatively low cost), either naturalistically (Krajewski 

et al., 2018, Bärgman et al., 2017, Hankey et al., 2016, Mohammadi et al., 2023, Kalantari et 

al., 2023, Sun et al., 2023), on test tracks, or in driving/riding simulators (Mohammadi et al., 

2023, Kalantari et al., 2023). Data for developing models of driver responses to critical events 

require much longer data collection times when collecting data naturalistically, as critical 

events are rare. However, data for developing models of crash causation to be used for 

scenario generation require even more data (longer collection duration and different method), 

as it is important to capture the prevalence and variability of the different crash causation 

mechanisms (Bärgman et al., 2023). Further, it is more difficult to develop both critical event 

response models and crash causation models based on test track and driving/riding simulators 

than it is to develop everyday driving models using the same study environments. The main 

reason is that the same drivers/riders have multiple exposures to the critical events: if 

drivers/riders are put in a situation where a conflict occurs on a test track or in a driving 

simulator, they are likely to behave substantially differently the next time they encounter critical 
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events during the same situation (Aust et al, 2013). Consequently, study designs need to be 

adapted accordingly, typically requiring substantially more participants, who require more 

overall study time (to include introductions, training, etc.). Further, test tracks and driving 

simulator studies cannot accurately represent the prevalence of crash causation mechanisms 

in real traffic, which is needed to make realistic safety benefit assessments of safety solutions 

that take exposure into account. Accurate exposure data must instead come from studies on 

the prevalence of crash causation mechanisms in the real world, which use several different 

methods (e.g., DREAM studies). These data are particularly rare for crashes involving 

vulnerable road users (e.g., cyclists and pedestrians).  

In summary, in SHAPE-IT the initial plan was to develop and integrate the models needed for 

the virtual safety assessments of safety solutions for VRUs. However, it was soon clear that 

the difficulties in acquiring data on crash causation and critical events in naturalistic settings 

for car-to-crashes made it difficult to create such models. The PhD students instead developed 

everyday traffic-interaction models for car-to-VRU scenarios, which can be used in both 

ADAS/AD and as components in traffic simulation-based virtual safety assessments (Kalantari 

et al., 2022, Mohammadi, 2023, Yang, 2023, Zhang et al., 2023).    

3.2 Computational load and simulation optimisation 

Although using computer simulations to assess safety is far more efficient than running field-

operational tests (Isaksson-Hellman & Lindman,2015, Wimmer et al. 2023), the time and 

resources needed to perform safety benefit assessments can still be substantial. One 

challenge is model complexity. When safety solutions are assessed and the 

developers/researchers merge complex computational models, they must carefully manage 

the computational loads so that the virtual simulation can still be be completed in a reasonable 

time. In both traffic and counterfactual simulations, multiple parameters are typically varied 

and sampled (often stochastically) to create a large set of potential conflict (or crash) 

situations. When using complex behaviour models, and/or multiple models for different road-

users and different scenarios, the number of parameters may be huge. As the number of 

parameters increases and the number of distinct values to be simulated per parameter also 

increases, the number of permutations increases exponentially (Imberg et al., 2022, Feng et 



  
This project has received funding from the European Community's 

Horizon 2020 Framework Programme under grant agreement 860410 
 

Deliverable 2.3 Data collection methodologies for AV/VRU interaction and virtual simulation testing of AV 
 

PUBLIC  40/49 

al., 2020). It is not unusual to discover that, if all combinations of parameters and parameter 

values are to be simulated, the simulation’s completion time can be counted in years. 

Research is still needed on how to design sampling strategies that are as efficient as possible 

(i.e., running as few simulations as possible), while making sure that the safety benefit 

estimates are as accurate and precise as possible (Imberg et al., 2022). 

3.3 Software interoperability 

Software interoperability is another challenge for computational model integration. Although it 

is more related to the practical integration of behaviour models in virtual safety assessments 

“in production” than to model integration for research purposes, its importance should not be 

underestimated. Virtual simulations may involve different programming languages and 

simulation platforms (i.e., simulation toolchains) even within a single organisation; differences 

across organisations are inevitable. Integrating computational behaviour models across 

different toolchains can be difficult due to compatibility issues, including differing data formats, 

interfaces, programming languages, units, and variable availability in the simulation 

environments. Standardisation work is needed to facilitate better model interoperability. 

Projects such as (V4SAFETY_consortium, 2023) are taking steps to address these 

interoperability issues.  

Another aspect of software interoperability relates to the ways that different virtual assessment 

toolchains implement interaction models. How interaction details between road users are 

captured in the simulations can differ substantially. In virtual assessments, computational 

driver models interact with other simulated entities like pedestrians, other vehicles, and traffic 

infrastructure. Ensuring seamless interactions while eliciting realistic (and safe) behaviours 

adds complexity and limits the ease with which models can be shared and integrated.  

Similarly, integrating behaviour models into virtual safety assessments requires seamless data 

exchange between the behaviour models and the simulation environment. Ensuring that data 

remain consistent and synchronised throughout the simulation is crucial for accurate results. 

As different toolchains require different formats and synchronisation, care must be taken when 

transferring a model (or set of models) from one toolchain to another.   
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4 Conclusions 

The SHAPE-IT project gathered and/or obtained access to a wide range of road user data 

using car driving simulators, rider (bicycle) simulators and pedestrian simulators, as well as 

data from on-road (naturalistic) observations, such as road-side cameras and in-vehicle 

measurements.  

Simulator data measured both behavioural and subjective aspects, such as feeling safe and 

accepting AVs. Simulator data is by nature limited in duration, and thereby less suitable for 

identifying (rare) crash causes. However, human behaviour, visual attention, physiology, and 

subjective aspects can be evaluated in simulators. Genuine road-user behaviour from 

naturalistic data included some critical events but no crash-related human state such as 

distraction or drowsiness was observed. This relates to the limited experiment duration, the 

instructions, and the rather eventful conditions. 

The only on-road data in SHAPE-IT were limited to behaviour, although subjective evaluations 

can be conducted through in-vehicle studies. The on-road data included far more events than 

the simulator data, but still included few conflicts and no crashes. Moreover, human states 

such as intoxication, drowsiness, or distraction were not measured in the naturalistic data. 

The ESRs who collected and analysed these data gathered valuable insights into human 

behaviour and acceptance of automated driving. Driver, rider and pedestrian models were 

developed with a focus on behaviour, and some models captured perceived risk and trust in 

AVs. 

The behaviour models can be used to investigate and predict crash risk. However, as of today 

their integration in virtual simulations is not obvious because the models are not validated with 

respect to the crash causation mechanisms.  

We must also reflect on the state of the art in highway traffic simulations. Simulations are often 

applied to address crash risk, but predictions are limited to trends, rather than absolute risk 

prediction. Surrogate safety metrics such as time to collision are used to identify critical 

interactions in relation to infrastructure design and vehicle automation. Where absolute crash 
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risk prediction remains an important target, trend prediction as studied in SHAPE-IT will 

already be of great value for AV-VRU interactions. 
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