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Abstract

When a language evolves, meta-models and associated gram-
mars need to be co-evolved to stay mutually consistent. Pre-
vious work has supported the automated migration of a
grammar after changes of the meta-model to retain manual
optimizations of the grammar, related to syntax aspects such
as keywords, brackets, and component order. Yet, doing so
required the manual speci�cation of optimization rule con-
�gurations, which was laborious and error-prone.
In this work, to signi�cantly reduce the manual e�ort dur-
ing meta-model and grammar co-evolution, we present an
automated approach for extracting optimization rule con�g-
urations. The inferred con�gurations can be used to automat-
ically replay optimizations on later versions of the grammar,
thus leading to a fully automated migration process for the
supported types of changes. We evaluated our approach on
six real cases. Full automation was possible for three of them,
with agreement rates between ground truth and inferred
grammar between 88% and 67% for the remaining ones.

CCS Concepts: • Software and its engineering→ Soft-

ware evolution;Model-driven software engineering.
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1 Introduction

Model-driven engineering is an important software engineer-
ing paradigm, in which models are considered as primary
artifacts during software development [46]. Managing the
consistency of artifacts produced during model-driven engi-
neering is a hard problem. When a meta-model is updated,
associated artifacts that still refer to the old version of the
meta-model, such as model instances [23], model transfor-
mations [30], and code generators [37], become outdated and
need to be migrated. The overall class of problems addressed
here is referred to as co-evolution [23] or coupled evolution [3]
and, due to its practical signi�cance, has led to a large body
of work, focusing on automated migration support (see, e.g.,
[6, 9, 19, 23, 27, 28, 39, 44, 44, 45]).
We consider a scenario in which a meta-model is co-

evolved with an associated grammar. Such a scenario is com-
mon in cases where the meta-model de�nes the underlying
abstract syntax for a modeling language, and the grammar
de�nes a concrete textual syntax for that language [34]. In
the technical space of Eclipse, the meta-model and grammar
could be speci�ed using Ecore and Xtext, respectively. In this
scenario, there are two situations that lead to co-evolution:
First, the meta-model evolves over time, rendering previous
versions of the grammar obsolete. Second, in a rapid pro-
totyping context, the meta-model evolves quickly and then
requires the grammar to be updated quickly as well.
The main challenge with this scenario stems from two

core requirements that typically need to be addressed:

• The updated grammar should be consistent with the
new version of the meta-model.

• The updated grammar should incorporate any manual
improvements that were made to previous versions of
the grammar (e.g., adding and modifying keywords,
changing the order of rule components, modifying and
omitting brackets).

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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Figure 1. Overview of meta-model/grammar co-evolution;
dashed lines indicate mutual consistency. Our contribution is
to automate the extraction of 21, previously done manually.

A tempting solution that addresses the �rst requirement is
to automatically re-generate the entire grammar from the
evolved meta-model, which is supported by platforms such
as Xtext (in Fig. 1, arrow between<1 and 61). Yet, the second
requirement renders this solution insu�cient, as it leads to
a laborious process, in which developers need to manually
re-apply their optimizations to the re-generated grammar
in every evolution step. For languages with extensive gram-
mars like EAST-ADL, which encompasses approximately
300 grammar rules [12], this process simply seems infeasible
when done manually.

We are aware of only one previous work that addresses
this problem, a tool called GrammarOptimizer [58]. The key
idea of GrammarOptimizer was to provide a catalog of gram-
mar optimization rules that can be used to specify and then
automatically perform the required changes for moving from
a generated grammar to an optimized one. For example, in
Fig. 1, the developers use these rules to specify a con�gu-
ration 21 that captures the improvements for moving from
61 to 61′. We will introduce this tool further in Sect. 2. Yet,
the tool in its current version has a major drawback: manu-
ally instantiating the grammar optimization rules to specify
migrations can be cumbersome and error-prone. Specifying
the right con�guration for the task at hand involves choos-
ing the right set of rules together with correct values for
parameters. This is a complicated con�guration process.
In this paper, to considerably reduce this manual speci-

�cation e�ort, we present an approach for automating the
con�guration of grammar optimization rules. Our approach
assumes that two versions of the grammar are available: an
automatically generated one and a manually optimized one;
we call the latter the target grammar. In a co-evolution sce-
nario, these grammars come from a previous state in history,
and the manual optimizations evident in the target grammar
should inform the migration of the grammar towards a new

version of the meta-model (in Fig. 1, consider the generated
grammar61, the target grammar61′ and the newmeta-model
version<2). Our approach can then automatically extract an
optimization rule con�guration that encodes the manual im-
provements. Technically, our approach works by establishing
a mapping between the grammar rules from both grammars
and then, per rule, performing a line-by-line comparison to
extract invocations of relevant grammar optimization rules
with their parametrizations. We automated this process by
developing a tool named Con�gGenerator.
The extracted con�guration can be applied to a newly-

generated version of the grammar based on the evolved
meta-model. For changes of the types supported by our ap-
proach, this entirely avoids any manual e�ort for specifying
and re-applying the manual optimizations. In Fig. 1, after
the evolution step that created <2, replaying the changes
between 61 and 61′ on the generated grammar 62 using the
automatically extracted con�guration 21 leads to the target
grammar 62′. Once the target grammar is available, new
and changed meta-model elements may lead to new man-
ual optimizations on top of it. In that case, our approach
can be applied after meta-model changes to capture these
changes in a new version of the con�guration. That way,
our approach provides support for meta-model/grammar co-
evolution throughout the history of an evolving language.

To evaluate our approach, we applied the Con�gGenerator
to six cases of languages whose meta-models and grammars
are available: EAST-ADL, Bibtex, Xenia, Xcore, DOT, and
SML. The results show that our approach is able to extract
complete con�gurations for three of the cases (EAST-ADL,
Bibtex, and Xenia). For these languages, the target grammars
yielded by replaying the optimizations are identical with
an existing ground truth grammar. For the other three lan-
guages, the optimization rates— de�ned as the agreement
between a ground truth grammar and the grammar obtained
by replaying— are between 87.5% and 68%. These �ndings
indicate the potential and e�ectiveness of Con�gGenerator
in extracting optimization rules based on the comparison
between generated grammar and target grammar.

2 Background

2.1 Xtext and DSL Generation

Eclipse Xtext is a framework for developing software lan-
guages, including modeling languages [15]. Xtext o�ers two
approaches for implementing the grammar design of a tex-
tual DSL [42]. One approach involves creating an Ecore meta-
model to represent domain concepts and their relationships,
and then generating an Xtext grammar from the meta-model
(in the remainder of the paper, we call it generated grammar).
The other approach is �rst to create a grammar and then
derive a meta-model from it. The scope addressed in this
paper involves the former approach.
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Listing 1. Example from Xenia: generated grammar rule
SiteWithModal.

1 S i teWithModa l r e t u r n s S i t eWi thModa l :

2 { S i t eWithModa l }

3 ' S i teWithModa l '

4 name= ES t r i n g

5 ' { '

6 ( ' s i t e s ' ' { ' s i t e s += Sup e r S i t e ( " , " s i t e s +=

Sup e r S i t e ) ∗ ' } ' ) ?

7 ' } ' ;

In Xtext, grammars are speci�ed in an EBNF (Extended
Backus-Naur Form) format, augmented with references and
annotations that specify the relationship to the Ecore meta-
model. The meta-model represents the abstract syntax for
language at hand (classeswith their features, including names,
attributes, and references), while the augmented EBNF ex-
pression describes the concrete syntax and its mapping to
speci�c parts of the meta-model. Listing 1 shows an ex-
ample of a grammar rule in Xtext, from the context of Xe-
nia [54, 55], one of our evaluation cases. The depicted rule,
SiteWithModel, contains both traditional EBNF elements
for specifying the syntax, as well as several annotations and
references. In particular, the returns keyword is followed
by a reference to the SiteWithModel class, and several gram-
mar elements are mapped to attributes (name) and references
(sites) from that class, using the ’=’ and ’+=’ operands. By
de�ning grammar rules and associating them with the corre-
sponding meta-model elements, Xtext enables the automatic
generation of a parser and other language tools. The parser
uses the grammar rules to parse the input code and create an
abstract syntax tree (AST) that conforms to the meta-model
elements. This AST can then be further processed or used
for various purposes in language development.

2.2 GrammarOptimizer and Optimization Rules

We now provide additional details for the GrammarOpti-
mizer tool [58] that, in particular, provides the grammar opti-
mization rules we automatically con�gurewith our approach.
Their approach includes 54 optimization rules extracted from
seven sample languages, which are used to optimize the gen-
erated grammar (explained above). These optimization rules
operate on various elements within the grammar, includ-
ing keywords, curly braces, symbols, and optionality. For
example, AddKeywordToAttr is used to add a new keyword
to a speci�c attribute, ChangeBracesToSquare is used to
transform speci�ed curly braces into square brackets, and
RemoveRule is used to remove unnecessary grammar rules.
Their tool is an Eclipse plugin developed in Java.

To use GrammarOptimizer, language engineers need to
manually select and con�gure the optimization rules for per-
forming the intended changes. Given a selected rule, con�g-
uring it involves invoking methods of a Java class represent-
ing the application of that rule, with parameters such as the

Listing 2. Example from Xenia: target grammar rule
SiteWithModal; all attributes and keywords are now on
the same line.

1 S i t eWi thModa l :

2 '@ ' name=ID ' with ' 'modal ' ' ( ' s i t e s +=

Sup e r S i t e ( ' , ' s i t e s += Sup e r S i t e ) ∗ ' ) '

3 ;

name of the relevant grammar rule and involved elements,
such as attribute names and keywords. These parameters
enable GrammarOptimizer to accurately locate the speci�c
targets in the generated grammar that need to be modi�ed.

As an example, consider Listings 1 and 2. Listing 1 shows
the grammar rule SiteWithModal from Xenia’s generated
grammar, while Listing 2 shows the version of that rule in
the target grammar. We focus on the name attribute, which
has di�erent types in the two grammars: EString and ID

in the generated and target grammar, respectively. While
editing the generated grammar manually to change the type
is simple, this change cannot be recovered if the grammar
is re-generated after a meta-model change, unless dedicated
support is provided.
Hence, the language engineer uses GrammarOptimizer.

Doing so involves identifying the relevant optimization rule,
in this case, changeTypeOfAttr. To con�gure the optimiza-
tion rule, the engineer instantiates the GrammarOptimizer
class which acts as a facade and de�nes a public method
for each of the optimization rules. The changeTypeOfAttr
method accepts four parameters: the names of the gram-
mar rule, of the attribute name, of the current type, and
of the new type. In this example, where the instantiated
GrammarOptimizer object is named go, the con�guration of
the optimization rule call to modify the type of name is as fol-
lows: go.changeTypeOfAttr("SiteWithModal", "name",

"EString", "ID").

3 Related Work

Recovery of grammars and meta-models. In legacy sys-
tems, a common situation is that the underlying grammar
or meta-model is absent and has to be recovered from avail-
able instances (programs or models, respectively). Available
solutions are based on using available compiler sources and
language reference manuals [35], evolutionary computing
[4, 25], or iteratively provided user input [38]. With a focus
on supporting grammar recovery scenarios, Lämmel [32]
provides a set of operators for grammar modi�cation, fo-
cusing on refactoring, construction, and destruction. Yet,
recovery approaches such as those discussed are not appli-
cable to the scenario considered in this paper, in which the
grammar instances, after an evolution step, still conform to
the old, known grammar.
Co-evolution in MDE contexts. In model-driven engineer-
ing, it is well-known that evolutionary changes to an artifact
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Figure 2. Schematic diagram of the whole process of the research methodology.

may a�ect other artifacts, which leads to several co-evolution
scenarios. The most prominent one is meta-model/model co-
evolution, in which a meta-model is evolved and correspond-
ing instances have to be updated to stay in sync with the
meta-model. This scenario has inspired a substantial body
of work. Hebig et al. [23] survey 31 relevant approaches,
classifying them according to their support for change col-
lection, change identi�cation, and model resolution. Beyond
meta-model/model co-evolution, co-evolution betweenmeta-
models and other MDE artifacts have received attention
as well, including associated OCL constraints [29], model
transformations [30, 31], code generators [37], and graphical
editor models [10]. Inconsistencies between evolved meta-
models and general MDE artifacts have also been addressed
in the context of technical debt management, with an ap-
proach that assists the modeler with the aid of interactive
visualization tools [8]. However, except for GrammarOp-

timizer [58] (described in Sect. 2), on which we build and
improve with our contribution, we are not aware of previous
work on meta-model/grammar co-evolution.

Model federation [11, 20, 22] deals with challenges of keep-
ing several models synchronized, which is related to our
addressed co-evolution scenario. However, to the best of our
knowledge, there is no previous work that applies model
federation techniques to grammars. Previous work is often
focused on establishing links between the di�erent involved
artifacts, which, in our scenario, is a non-issue. However,
the actual modi�cation for keeping several artifacts synchro-
nized is often simpler if only models are involved, than in our
case that deals with concrete textual syntaxes. For example,
the order of attributes in the grammar does not have to be
consistent with the corresponding meta-model attributes but
can be changed freely according to the developer’s design

intention. In fact, the approach enabled by our contribu-
tion could be used to augment available model federation
frameworks to make them applicable to grammars as well.
Automated rule extraction. A line of work focuses on
automating the extraction of transformation rules in speci�c
contexts. Model transformation by example [51, 53] is an
important paradigm in which entire transformations are
recovered from a set of user-provided examples. While the
seminal work in this area mostly relied on custom heuristics,
recent works have studied applications of AI, in particular,
reinforcement learning [17] and deep learning [2]. Apart
from these approaches for general transformation inference,
there are task-speci�c approaches, including the refactoring
of redundant rules [49, 50] and of mutation operators [47].
These approaches are orthogonal to ours, as we focus on the
automated extraction of con�gurations of rules.
From meta-models to graph grammars. Beyond EBNF-
style grammars as considered in this paper, grammarware in
the broader sense also encompasses graph grammars, which
are a rule-based approach for generating instances for a given
meta-model, e.g., for testing purposes. A seminal approach by
Ehrig et al. [16] supports the generation of a graph grammar
in the double-pushout approach to graph rewriting, using
advanced transformation features such as negative applica-
tion conditions. Fürst et al. present an approach that aims to
avoid the use of such advanced features that make analysis
more complicated, while being su�cient for meta-models
with arbitrary multiplicities and inheritance [18].
Text-based merging. Simple cases of our considered sce-
nario could be covered by standard text merging tools, such
as Git merge [7]. To this end, the user would performmanual
optimizations and re-generation of the grammar in separate
branches, and then merge the branches. However, text-based
merging operates on the abstraction level of text rather than
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grammar structures, which leads to several drawbacks: First,
it easily leads to merge con�icts. For example, when the
same line is manually optimized (e.g., changing a keyword)
and a�ected by a change in the underlying meta-model (e.g.,
removing an attribute), a merge con�ict arises, whereas our
approach supports this example. Second, it does not give an
easily inspectable, semantically meaningful overview of the
changes, as grammar optimization rules do. In that sense,
our approach can be seen as a form of semantic lifting [26]
of grammar di�erences, focused on grammar optimizations.
Grammar convergence. Our contribution bears a connec-
tion to grammar convergence [36]. Grammar convergence
aims to extract a series of transformations to make two con-
sidered grammars syntactically identical, which is similar
to our goal. Yet, the grammars in their approach stem from
heterogeneous sources (e.g., di�erent parsers for the C++
language), instead of being based on the same underlying
source meta-model in several versions, which gives both
approaches di�erent knowledge to rely on. A relevant sce-
nario is metalanguage evolution [56], in which the notation
used to de�ne the considered languages, instead of the lan-
guages themselves, evolves, which necessitates changes in
associated artifacts (e.g., parsers). Another one is style nor-
malization for X-to-O mappings, which aims to bridge het-
erogeneity in di�erent XML di�erent styles when supporting
their mapping to object models [33].

4 Methodology

The research methodology in this study consists of the steps
shown in Figure 2. The �rst two steps were performed to
prepare the inputs for Step 3, in which we developed the
Con�gGenerator, and for Step 4, in which we evaluated our
approach. All steps are described in the following.

4.1 Step 1: Select Sample Languages

In the �rst step, we selected appropriate case languages.
These chosen languages served as the foundation for our
solution and evaluation. Since our goal was to make our
approach applicable to real-world DSLs, we needed to se-
lect a set of real-world DSLs for which both a grammar and
a meta-model were available. In our previous work [58],
we identi�ed 9 such DSLs through an extensive search. We
decided to directly work with a subset of six of their con-
sidered languages–Bibtex, DOT, EAST-ADL (full version),
SML, Xcore, and Xenia–, which has the following bene�ts:
First, the considered languages covered a diverse range of
domains. Second, we knew from their evaluation that Gram-
marOptimizer could be used to optimize grammars for these
languages. Since GrammarOptimizer was a baseline tool for
our approach, working with these languages ensured that
any observed issues stem from our approach for automated
con�guration extraction, and not from our baseline tool. Our
reason for selecting a subset was that four of their considered

languages had complications that led to a lack of full support
(e.g., using OCL as part of the grammar de�nition). We still
included one of the not-fully-supported languages, SML, to
study the e�ect of applying our approach to one case from
that category.

4.2 Step 2: Obtain the Target Grammars and

Meta-models

After selecting the case languages, we obtained their meta-
models and target grammars. The information regarding
the meta-models (source and the number of classes) and
target grammars (source and the number of grammar rules)
is presented in Table 1. We noticed that the meta-models for
Bibtex and SML needed adjustments to be e�ectively used,
which we completed in previous work [58]. Therefore, we
directly adopted our prepared meta-models for Bibtex, SML,
and DOT, and obtained the meta-models for the other three
languages from their respective sources.

Con�gGenerator takes two Xtext grammars as input: the
target grammar and the generated grammar (i.e., the gram-
mar newly generated from the meta-model). We observed
that EAST-ADL and Bibtex did not have original grammars
in Xtext, so we directly adopted the optimized grammars
from [58] as the target grammars for these two languages.
As for the other four languages, their Xtext grammars were
already provided in their respective sources, and we simply
copied these Xtext grammars as the target grammars.

4.3 Step 3: Develop Tool

In the 3rd step we developed the Con�gGenerator. We devel-
oped the initial version of Con�gGenerator based on EAST-
ADL. The development of Con�gGenerator involved the
implementation of comparisons for di�erent grammar ele-
ments. Each time we implemented a comparison method for
a speci�c grammar element (e.g., comparing line orders), we
applied it to compare two EAST-ADL grammars and check
the selected optimization rules. If the selected optimization
rules di�ered from our expectations, we used the debug
mode to identify the reasons behind the di�erences and �xed
them. Once we had the initial version of Con�gGenerator,
we applied it to Xenia to re�ne its implementation. In this
context, we considered that target grammars might contain
manual modi�cations that could a�ect line-by-line match-
ing. For example, in Xenia’s target grammar, some di�erent
attributes are placed on the same line. This situation impacts
our line recognition and then matching. Consequently, when
applying Con�gGenerator to Xenia, we developed handling
methods for this situation.

4.4 Step 4: Evaluation

To validate our approach, we applied it to all six languages
identi�ed in Step 1. Our goal was to explore whether and
to what extent the Con�gGenerator built based on EAST-
ADL and Xenia, could also be applied to other DSLs. In our
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Table 1. DSLs used in this paper, the sources of the meta-model and the grammar used, as well as the size of the meta-model
and grammar.

Meta-model Target grammar Generated grammar Used in2

DSL Source Classes1 Source Rules lines rules calls Dev. Eva.

EAST-ADL EATOP Repository [12] 291 [58] 297 2839 297 3062 YES YES
BibTex [58] 48 [58] 43 293 43 188 NO YES
Xenia Github Repository [54] 15 Github Repository [55] 13 84 15 36 YES YES
DOT [58] 19 Dot [40] 21 125 23 51 NO YES
Xcore Eclipse [13] 22 Eclipse [14] 26 243 33 149 NO YES
SML3 [58] 48 SML repository [21] 45 658 96 377 NO YES

1 The metrics are assessed after adaptations and contain both classes and enumerations.
2 These two metrics indicate whether the language is used in the step “Development (Dev.)” or “Evaluation (Eva.)”.
3 The metrics of SML are based on excluding the embedded SML expressions.

previous work [58], we had already shown that an optimiza-
tion rule con�guration created to optimize one version of a
language could be reused, with a few changes, for another
language version. Thus, we aimed at evaluating whether
Con�gGenerator could create a correct optimization rule
con�guration for a language version given the generated
and target grammar. To do so, we performed the following
steps.

4.4.1 Step 4.1: GenerateGrammars FromMeta-models.

When the meta-model was ready, we created an empty EMF
project for the language in Eclipse and imported its meta-
model. Then, utilizing Xtext, we automatically generated
the Xtext grammar from the meta-model. We performed this
process for each language.

4.4.2 Step 4.2: Application of Con�gGenerator. Next,
we applied the Con�gGenerator to all of these languages by
comparing the target grammar with the generated grammar
and extracting the optimization rule con�gurations. These
extracted optimization rule con�gurations can be used by
GrammarOptimizer. We then used the created optimization
rule con�gurations with the GrammarOptimizer on the gen-
erated grammars of these languages to automatically create
an optimized grammar.

4.4.3 Step 4.3: Assessment. We conducted a comprehen-
sive comparison between the optimized grammar and the
target grammar of each language, based on a one-to-one
comparison of corresponding grammar rules.
To assess the similarity between the optimized grammar

and the target grammar, in our �nal step we decided to as-
sess the following metrics which will be listed in Table 2: To
provide an impression of the amount of manual adaptation
that needed to happen to change the generated grammar
to the target grammar, the 4th to 6th columns indicate the
number of grammar rules that were modi�ed, removed, and
added from the generated grammar to the target grammar.
Further, we show how big optimization rule con�gurations

for these languages are. The 2nd column shows the number
of lines of optimization rule con�gurations used in our previ-
ous work [58], which are capable of optimizing the generated
grammar to achieve an identical state as the target grammar.
We referred to the optimization rule con�gurations used
in our previous work [58] as “manual” con�guration, since
these con�gurations had to be written by hand. The 3rd col-
umn represents the number of lines of the optimization rule
con�gurations extracted by Con�gGenerator. We also listed
in columns 7 to 9 the number of grammar rules that were
modi�ed, removed, and added from the generated grammar
to the optimized grammar. Finally, we aimed to assess how
complete the generated optimization rule con�gurations are.
Thus, the last three columns provide statistics on the com-
parison of the optimized and target grammar, i.e., whether
all grammar rules for these languages are the same between
the optimized grammar and the target grammar. Speci�cally,
“Same” represents the number of grammar rules that are iden-
tical in both grammars, “Di�” represents grammar rules that
are not identical, and "Percent” indicates the percentage of
grammar rules that are identical between the two grammars.

5 Solution

In this section we present the Con�gGenerator, which cre-
ates an optimization rule con�guration based on a generated
grammar and a target grammar, to enable a re-application
of manually de�ned grammar changes after a meta-model
changed and a new grammar was generated. We �rst in-
troduce and reason about the assumptions we made when
building our solution. Afterward, we explain how grammars
are compared (rule-to-rule and line-to-line) and how the
comparison result is used for generating the con�guration.

5.1 Assumptions

Based on the technical reality and practice of Xtext, we made
the following assumptions about our solution:
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• A grammar rule name is unique across the grammar.
Otherwise, Eclipse will prompt “A rule’s name has to
be unique.” error.

• An attribute name is unique within a grammar rule,
because the attributes in the generated grammar are
unique.

• Attribute names are not modi�ed by users when they
manually create a target grammar out of a generated
grammar. Otherwise, this may cause the grammar and
the meta-model to become incompatible.

5.2 Grammar Comparison Work�ow and Grammar

Rule Matching

Con�gGenerator selects and parameterizes optimization rules
by comparing two input grammars. The selected optimiza-
tion rules form a con�guration that can then be utilized by
GrammarOptimizer.
Figure 3 illustrates the internal work�ow of Con�gGen-

erator for selecting the required optimization rules by com-
paring two grammars. It parses the generated grammar and
creates a list Rules64= containing instances of a data structure
for each grammar rule. Each instance contains all lines of
text that make up that grammar rule. Con�gGenerator does
the same for the target grammar to create a list RulesC6C .

Con�gGenerator traverses Rules64= , taking one grammar
rule at a time and searching for the grammar rule with the
same name in RulesC6C . If no match is found, it indicates that
the grammar rule has been deleted in the target grammar,
thereby requiring the selection and parameterization of an
optimization rule for deleting that grammar rule. If a match
is found, a line-by-line comparison is performed between the
grammar rules to identify the required optimization rules.
Once the entire traversal of Rules64= is completed, Con-

�gGenerator performs a reverse traversal. In this reverse
traversal, Con�gGenerator retrieves one grammar rule at a
time from RulesC6C and searches for the corresponding rule
in Rules64= . If a match is found, Con�gGenerator takes no
action (as the comparison has already been done in the pre-
vious traversal). If no match is found, it signi�es that the
grammar rule is newly added in the target grammar. In this
case, an optimization rule for adding the grammar rule is
selected and parameterized.

After both traversals are completed, Con�gGenerator yields
an optimization rule con�guration with the selected and pa-
rameterized optimization rules and writes it into a text �le.

5.3 Normalization of RulesC6C

Before performing line-by-line mapping, we need to per-
form normalization checks and operations on the rules of
the target grammar. Because the target grammar may have
traces of manual modi�cation that are not conducive to our
line-by-line matching. For example, in the generated gram-
mar of Xenia, each of the di�erent attributes and also the

{SiteWithModal} action, the opening brace, and the clos-
ing brace each has its exclusive line, as shown in Listing 1.
However, in the target grammar of Xenia, all attributes and
keywords of the grammar rule SiteWithModal are placed
on the same line as shown in Listing 2. This situation hinders
row-to-row matching and thus needs to be normalized.
In particular, we begin by examining whether the fol-

lowing situations exist within a grammar rule: 1) di�erent
attributes are placed on the same line, 2) an Action with
the same name as the grammar rule is combined with any
other non-empty string on the same line, and 3) symbols
are placed on separate and exclusive lines. If any of these
situations are present, normalization is performed. During
the normalization process, we gather all lines except the one
containing the grammar rule name into a single string, which
is then split. Using regular expressions, we separate di�erent
attributes into distinct lines, ensuring that each attribute has
its own line. Similarly, if there is an Action with the same
name as the grammar rule, an opening brace, and a closing
brace, we allocate separate lines exclusively for each of them.
Additionally, all symbols are placed in adjacent attribute
lines rather than being treated as separate lines themselves,
e.g., place the symbol ‘:’ after the attribute name.

5.4 Line Matching

As described in Section 5.2, Con�gGenerator matches gram-
mar rules by traversing two lists. After completing thematch-
ing of Rules64= and RulesC6C , we need to match the lines
between them, forming the foundation for line-to-line com-
parison. With the exception of attribute lines, all other lines
have only one occurrence within the same grammar rule.
Therefore, Con�gGenerator only needs to �nd the corre-
sponding unique line to complete the line matching. For ex-
ample, to compare the main keyword of the same grammar
rule, we search for the main keyword in both the Rules64=
and RulesC6C . We call the keyword with the same name as the
grammar rule in the generated grammar “main keyword”. If
both sides �nd a line containing the main keyword, then the
two lines from both sides match each other.

For the matching of attribute lines, we need to recall the as-
sumption set earlier, which states that each attribute within
the same grammar rule has a unique name, and language
engineers do not modify the names of attributes when modi-
fying the grammar. Therefore, we can use the attribute name
as a unique identi�er for lines to perform line matching.
Speci�cally, when matching a line, we �rst take an attribute
line from a grammar rule in the generated grammar, and
then search for the line with the same attribute name within
the corresponding grammar rule in the target grammar, thus
completing the line-matching process.
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Figure 3. The work�ow of extracting optimization rule con�gurations based on a comparison between the generated grammar
and the target grammar.

5.5 Di�erence Identi�cation, Rule Selection and

Parametrization

Once we completed the line-by-line matching as mentioned
in the previous section, the next step is to perform the line-
by-line comparison. As previously stated, except for attribute
lines, the other types of lines are unique within a grammar
rule. We only need to compare if they have been removed or
renamed. For example, if the Con�gGenerator �nds container
braces (the outermost braces within a grammar rule) in the
grammar rule Model in the generated grammar but not in the
same grammar rule in the target grammar, it will select and
parameterize an optimization rule for removing the braces.
Comparing attribute lines is more complex because they

typically consist of multiple elements. Firstly, an attribute
line always contains an attribute string which is usually in
the form of e.g., attributeName=typeName. Additionally, it
may include keywords, asterisks indicating multiplicity fol-
lowing parentheses, commas, and curly braces enclosed in
single quotation marks, among other elements. The use of
regular expressions enables us to identify and distinguish
di�erent elements, allowing for their comparison across dif-
ferent grammars. For example, when examining the attribute
ownedComment in the same grammar rule on both sides, we

may observe that in the generated grammar, this attribute is
preceded by the keyword ’ownedComment’, whereas in the
target grammar, there is no keyword preceding it. In such a
case, an optimization rule named removeKeyword would be
selected and parameterized.

6 Evaluation

6.1 Results

Table 2 summarizes the results of applying Con�gGenerator
to extract optimization rule con�gurations for di�erent lan-
guages (see Table 1 for information about the sources and
initially generated grammars of these languages).
The 2nd and 3rd columns show the size of the optimiza-

tion rules con�gurations. For comparison, we �rst show the
number of con�guration lines in the manually created opti-
mization rule con�gurations from our previous work [58].
Next to it are the number of con�guration lines in the op-
timization rule con�gurations that were extracted by Con-
�gGenerator. For several languages, e.g. BibTex, the auto-
matically extracted con�guration had much more lines than
the manually written counterpart (with the extreme case of
EAST-ADL, where the extracted con�guration is up to 100
times as long as the manually written one). This di�erence
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Table 2. Results of applying Con�gGenerator to extract optimization rule con�gurations for di�erent languages.

Language Con�guration lines Target grammar2 Optimized grammar Grammar Comparison

Manual Extracted Change Remove Add Changed Removed Added Same Di� Percent

EAST-ADL 31 3378 233 1 12 233 1 12 297 0 100%
BibTex 47 254 43 0 0 43 0 0 43 0 100%
Xenia 74 114 13 2 0 13 2 0 15 0 100%
DOT 79 134 24 3 1 16 3 1 21 3 87.5%
Xcore 307 351 20 14 7 17 14 7 28 12 70.0%
SML 421 369 40 56 8 38 56 8 51 24 68.0%

1 The numbers in column 2, 4, 5 and 6 were obtained from the supplemental materials of our previous work. [58].
2 Number of grammar rules that would need to be changed/be removed/be added to create the target grammar out of the
generated grammar.

can be explained by the fact that the manually written op-
timization rule con�gurations make use of generalizations.
I.e., instead of introducing for each grammar rule a new con-
�guration removing curly braces, manually created con�gu-
rations might just introduce one con�guration that applies
to all grammar rules. This generalization could in theory
be imitated automatically, too. However, it would require
additional analysis of the side e�ects of the generalized rule
to make sure that no unintended changes happen. Therefore
we, kept this to future work.

The columns for target grammar show the di�erence be-
tween the generated and the target grammar in the form of
the number of grammar rules that require a change, require
to be removed, and require to be added. These numbers are
reported by our previous work. [58]. It can be seen that in
all languages the majority of the grammar rules would need
to change. This illustrates how di�erent Xtext-generated
grammars really are from grammars used in real languages
and further illustrates the need to capture and preserve the
manual e�ort made to create grammars.
Table 2 displays the number of changed, removed, and

added grammar rules in the optimized grammar compared
to the generated grammar in columns 7 to 9. The rightmost
three columns compare the di�erences in grammar rules
between the optimized grammar and the target grammar.
For EAST-ADL, BibTex, and Xenia, we see the same amount
of changed, removed, and added grammar rules as we would
have expected judging from the target grammar. However,
for DOT, Xcore, and SML the number of changed grammar
rules is lower. This is already an indication that the generated
optimization rule con�guration did not perform the complete
adaptation targeted for these three languages.
Finally, the last columns in Table 2 summarize how the

optimized grammar compares to the target grammar. The
results con�rm that the grammar rules in the generated gram-
mars of EAST-ADL, Bibtex, and Xenia have been optimized
to be identical to the target grammar using the extracted
optimization rule con�gurations. In the case of DOT, 87.5%
of the grammar rules in the optimized grammar are identical

to the target grammar. For Xcore and SML, the correspond-
ing �gures are 70.0% and 68.0%, respectively. Below we will
discuss more in detail, when the Con�gGenerator performed
well and when not.

6.2 Capabilities of Con�gGenerator

Although Con�gGenerator cannot optimize all grammar
rules in the generated grammars of DOT, Xcore, and SML
to achieve an identical state as their target grammars, it still
provides the optimization rule con�gurations which perform
the majority of necessary changes. Speci�cally, con�gura-
tion rules for the following grammar changes were correctly
generated in all cases:

• Removing or renaming individual keywords, including
changing the value of literals in enumerations.

• Removing grammar rules or attributes.
• Modifying the multiplicities of attributes, including
changing optional attributes to mandatory ones.

• Removing braces, including removing braces in at-
tribute lines and container braces.

• Modifying the order of lines in a grammar rule, as long
as lines can be identi�ed by attribute names.

• Adding symbols to individual attribute lines.
• Adding rules, including adding terminal rules and pri-
mary type rules, as well as completing primary type
rules which are to be implemented.

• Removing calls to other rules in grammar rules.
• Changing a speci�c type in the cross-reference of an
attribute.

6.3 Missing Capabilities of Con�gGenerator

For the languages DOT, Xcore, and SML, there are a total of
42 grammar rules with di�erences between the optimized
grammar and the target grammar. These di�erences can be
found in the supplemental materials of this paper [41]. Here,
we provide a list of typical cases of these di�erences.

• Di�erence in line order in some speci�c cases. In cases
where one of the lines moved contains only a main key-
word that has been changed by another con�guration
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Listing 3. Two attributes in the grammar rule XOperation
in the generated grammar of Xcore

1 . . .

2 ( unordered ?= ' unordered ' ) ?

3 ( unique ?= ' unique ' ) ?

4 . . .

Listing 4. Two attributes in the grammar rule XOperation
in the original grammar of Xcore

1 . . .

2 unordered ?= ' unordered ' unique ?= ' unique ' ? |

3 unique ?= ' unique ' unordered ?= ' unordered ' ?

4 . . .

rule, the reordering of the lines might not work. For
example, in Xcore, the order of lines in the XPackage
grammar rule is di�erent between the optimized gram-
mar and the target grammar. In the optimized grammar,
the attribute annotations appears after the attribute
name, while in the target grammar, it appears before
the attribute name.

• Inconsistent attribute grouping. Listing 3 shows two
attributes of the XOperation grammar rule in Xcore.
In the generated grammar, they are listed one after
the other, indicating an order of their appearance. In
the target grammar, they are combined together and
are in "and" and "or" relationships (as shown in List-
ing 4), indicating that their order is not prede�ned.
The Con�gGenerator is not able yet, to create a con-
�guration that replicates the occurrence of attributes
in the grammar like that.

• Braces not changed to square brackets. In DOT, e.g.,
the container of the grammar rule AttrList in the
generated grammar uses square brackets (i.e., ‘[’ and
‘]’), while in the optimized grammar, it uses braces
(‘{’ and ‘}’).

• Di�erence in the position of optionality. In DOT, e.g.,
there is an attribute attributes in a grammar rule
where optionality (i.e., ()?) is handled di�erently. In
the target grammar, the added comma and semicolon
are surrounded by ()?, i.e., (‘,’ | ‘;’)?. However,
in the optimized grammar, the attribute string is sur-
rounded by ()?.

The cause of these limitations is that Con�gGenerator
uses a line-based text comparison to identify which lines
correspond to each other in the generated and in the target
grammar and derives optimization rule con�gurations from
this comparison. This limitation can be remedied by relying
on a comparison that is based on an abstract syntax tree
(AST) instead: the tool could parse both the generated and the
target grammar and compare the ASTs, potentially making
it more robust to changes in the order of lines and for groups
that span multiple lines as these syntactical issues would
not be present in the AST. Such an approach would also
reduce the reliance on regular expressions which can be a
limiting factor as well (see the fourth point in the list above).
However, such an implementation is left for future work.

Finally, GrammarOptimizer, adopted without feature-level
modi�cation from our previous work [58] has limitations,

e.g., rules to transform braces into brackets as needed for
the third point mentioned above. While it would be possible
to emulate this by �rst applying a rule that removes the
braces and then adds brackets back, we have decided not to
use this more complex strategy at this stage and leave the
combination of di�erent optimization rules as future work.

6.4 Usefulness of Con�gGenerator

The results in Section 6.1 indicate that the current version of
Con�gGenerator can produce an optimization rule con�gu-
ration that allows to modify a generated grammar fully into
the target grammar for some of the languages we tested. In
our initial work on GrammarOptimizer [58], we have shown
that it is possible to �nd an optimization rule con�guration
manually to transform all of the languages we included in
our evaluation to the target grammar.

We argue that Con�gGenerator is still a useful tool, even
if it cannot fully derive a complete optimization rule con-
�guration for all languages yet. SML, for instance, requires
a total of 421 parameterized optimization rule invocations
to be fully transformed. Creating all of them manually is a
signi�cant e�ort. Con�gGenerator automatically extracts
369 rules and therefore provides an excellent starting point
for a language engineer to complete the optimization rule
con�guration.
Con�gGenerator is intended for use in scenarios where

languages evolve and where they are rapidly prototyped.
In such situations, speed is critical and Con�gGenerator in-
creases the speed with which a language engineer can create
an optimization rule con�guration, even if it requires man-
ual adaptations. We follow the line of argument from our
previous work, that making manual changes to a reusable
artifact such as an optimization rule con�guration is less ef-
fort and faster than manually transforming a large grammar
repeatedly.

6.5 Threats to Validity

There are several threats to the internal validity of our evalu-
ation. The �rst stems from the fact that we worked with the
slightly adjusted meta-models as well as Xtext versions of
target grammars, which were partially not originally written
in Xtext, from our previous work [58]. It is possible that these
preparation steps introduce di�erences to the languages and,
thus, might have simpli�ed the task of changing the gram-
mar and with that also the con�gurations that needed to be
generated.
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A further threat to internal validity concerns correctness:
To which extent can we produce grammars that not only syn-
tactically, but also semantically agree withmanually changed
counterparts? In our evaluation, most generated grammar
rules were syntactically identical to their manually written
counterparts, which indicates semantic equivalence and thus,
correctness in these cases. This applies to three considered
languages completely, and to three partially (68-87%). All
observed di�erences were analyzed manually, as reported
with details in Sections 6.2 and 6.3. The main practical impli-
cation of these cases is that existing grammar instances can
no longer be parsed, which makes these inaccuracies easy
to spot for the user.

However, analysing semantics and providing correctness
guarantees during evolution are intrinsically hard problems.
That is because a formalized semantics might not be available
(as in our evaluation cases), and, where it is, the semantics
might change over time. For example, UML 2 introduced a
new Petri-net semantics for sequence diagrams. Supporting
such evolution steps in semantics-sensitive way requires
specialized approaches for the involved semantic represen-
tations (if available). Still, from our experience as language
developers [1, 24, 43, 48, 52, 57], changes to semantics of
existing language elements are exceedingly rare, and then re-
quire careful navigation on part of the developer. Specialized
approaches could help, but are outside our scope. The vast
majority of changes either add or remove language elements
or change the syntax, which is exactly our scope.

Another threat that might make us overestimate the ability
of the Con�gGenerator is that we could not build it without
consulting real language examples. In consequence, the tool
is very likely to work very well for the two used languages
EAST-ADL and Xenia. To mitigate these two threats, we
made sure to evaluate the tool on four additional languages,
to also reduce the impact that changes to meta-models and
target grammars of single languages might have had.

Finally, there is a threat to the external validity of general-
izability. Of course, using more languages would have given
us more insights into how well the Con�gGenerator already
works. However, the languages we worked with are fairly
di�erent in character, which allows us to cover at least some
level of language variety.

7 Conclusion

We presented an approach for supporting the co-evolution
of meta-models and associated grammars. Our technical con-
tribution is a technique for automatically extracting gram-

mar optimization rules, which capture manual improvements
from a previous evolution step, and allow these improve-
ments to be replayed on future versions of the grammar.
Our evaluation indicates a perfect coverage for three out of

six considered cases – including a large one, namely, EAST-
ADL – while showing good coverage with clearly identi�ed
limitations in the remaining ones.
We foresee several directions for future work. First, we

aim to further improve the coverage of our approach. One
idea is to move the grammar comparison to the level of
ASTs, rather than lines, which would help to improve sup-
port for multiple-line changes. Second, a complementary
co-evolution scenario to the one addressed in this paper,
which requires support as well, involves migrations of the
meta-model after changes to the grammar. Third, we intend
to provide support for all-quanti�ed rules (e.g., removing
curly braces from all grammar rules) via automated gen-
eralization. This would allow to extract considerably more
compact and easy-to-read rule con�gurations. Fourth, a com-
prehensive evaluation of our technique in concert with the
baseline technique from [58] on a full-�edged co-evolution
scenario would yield further insight into the practical appli-
cability of our approach. The next step of the work [58] can
be to apply GrammarOptimizer to build a language work-
bench that supports blended modeling [5]. If the automatic
extraction capability of this paper can be integrated, it will
certainly assist the textual grammar optimization ability of
this workbench.
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