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 Introduction  

Research on the long-term behavioural effects of automated vehicle (AV) use is very important 

for a correct assessment of AV’s benefits and risks. Thus to ensure the safe and efficient 

implementation of automated driving technology, researchers need to understand the concept 

of long-term behavioural adaptation. A combination of research methods is called for to meet 

this goal, such as human factors research related to AVs—especially their long-term effects. 

Human factors research brings many challenges in terms of effort and methodological 

requirements. The SHAPE-IT project considered an approach (see Fig. 1) that brings this goal 

closer to reality. This deliverable has two aims. One is to assess the development of drivers’ 

situational awareness (SA) during automated driving over time. In particular, when drivers 

receive a Hand-Over Notice (HON), their Take-Over Time (TOT) is influenced by factors 

known to play a role in their decision-making process, which is a part of their SA. Thus, 

changes in TOT may indicate a change in SA. Long-term behaviour changes can include safe 

behaviours as well as risky behaviours—such as performing Non-Driving Related Tasks 

(NDRT) and misusing the system (whether intended or unintended). The second aim is to 

assess the development of pedestrians’ SA of AVs over time. Each aim is addressed by a 

project. In one example, pedestrians’ decisions whether to yield to an AV or cross the street 

first, and the factors influencing their decision-making process, are examined. The drivers’ and 

pedestrians’ behavioural adaptation is the focus of our research, with behavioural adaptation 

described as a learning process (Forster et al., 2019) over time.  

This deliverable aims to provide the reader with a meticulous discussion assessing and 

explaining the behavioural adaptations and changes due to long-term human-automated 

vehicle interactions (HAVI) or repeated AV exposure. The insights from the project have an 

impact on human factors and ergonomic engineering, research, and development in the 

context of automated driving. Both projects (driver-AV interactions and pedestrian-AV 

interactions, over repeated exposure) are discussed in the following sections. 
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 AV repeated exposure and human behaviour 

The experiences of drivers who use AVs and pedestrians who interact with them must be 

thoroughly considered in order to accurately evaluate AV safety. These experiences include 
learnability (the ‘learning to use’ process), trustability (trust in the automation process) and 

acceptability (the adoption of automation process). Based on these experiences, Figure 1 

illustrates factors that contribute to an understanding of behavioural adaptation research, with 

a consideration of interactions between (a) a driver and an AV and (b) a pedestrian and an AV 

with eHMI. Figure 1 aims to help us structure the framework with a coherent level of 

understanding. 

 

 

 

Interaction between a driver and AV (Fig. 1a) Interaction between a pedestrian and AV with eHMI at 
a zebra crossing (Fig. 1b)

Learnability
• The ability to learn to use AV system.

Trustability
• The ability to trust an AV system.

Acceptability
• The ability to adopt an AV system.

Short-Term Exposure (STE)

Initial exposure only lasting for a 
short period of time.

Mid-Term Exposure (MTE)

Repeated exposure lasting for an 
extended period of time, however 

not considered long-term.

Long-Term Exposure (LTE)

Longitudinal exposure lasting for an 
long-term period of time.
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Figure 1. Contributing factors to behavioural adaptation research, considering interactions between (a) a driver 

and an AV and (b) a pedestrian and an AV with eHMI 

Michelsen et al. (1980) defined learnability as a system’s easiness for user to learn. The term 

“easy to learn” is also defined by Nielsen (1994) as “allowing users to reach a reasonable level 

of usage proficiency within a short time”. Grossman et al. (2009) and Mbelekani and Bengler 

(2023) both described the concept using initial (the initial learning experiences or initial 

performance of a user interacting with a system) and extended learning (the changes of 

performances over the sequence of time, and after several interactions with the system) 

experiences. Therefore, in this deliverable, we focus on Grossman et al. (2009) and Mbelekani 

and Bengler’s (2023) account of the concept. Due to the fact that the concept is heavily used 

in HCI, however, neglected in automated driving, Mbelekani and Bengler (2023) introduced 

the concept learnability in automated driving (LiAD), encompassing the following spectrums: 

• Short-term or initial learnability in automated driving (initial LiAD: [i]LiAD)   

• Long-term or extended learnability in automated driving (extended LiAD: [e]LiAD).  

Furthermore, Mbelekani and Bengler (2023) expanded on the description of “easy to learn” to 

include “easiness to misuse”. Mbelekani and Bengler (2023) argued that, “what is usually 

neglected is the ‘easy-to-learn-to-misuse’ (intentionally or unintentionally)—resulting in risk-

taking behaviours.” The authors emphasised that “the neglected link between ease-of-learning 

and misuse, as well as its association with risk-taking behaviour, is vital” (Mbelekani & Bengler, 

2023). As a result, it is imperative to investigate ‘efficient learning’ (i.e., the system is easy to 

learn to use) and ‘inefficient learning’ (i.e., the system is easy to learn to misuse) in order to 

fully understand learning effects encountered over time, particularly when the concept ‘easy’ 

is the context or standard (Mbelekani & Bengler, 2023). 

“EFFECTS”

“BEHAVIOUR”

“LONG-TERM” Based on repeated exposure

Desired and responsible 
(positive +) safety-based 

behaviours

Correct 
learning

Calibrated 
trust

Acceptance
/BI to use

Undesired and irresponsible 
(negative -) risk-based 

behaviours

Incorrect 
learning

Distrust/
mistrust

Rejection/ 
BI to 

disuse
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As the learning experience is not static, extended learning is what really matters when 

assessing a system that people will be exposed to over long periods of time (see Bevan & 

Macleod, 1994; Dix et al., 2004; Grossman et al., 2009; Mbelekani & Bengler, 2023, etc.). 

Similar considerations were highlighted by other scholars (see Schneiderman, 1997; 

Holzinger, 2005; Grossman et al., 2009; Mbelekani & Bengler, 2023, etc.). Different scholars 

have suggested several metrics and research approaches to quantify the learning process 

over time; see Table 1 for examples.  
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Table 1. Learnability research approaches and metrics (adapted from Mbelekani & Bengler, 2023). 

Methods/Parameters Code Factors References 

Research Methods 

Empirical approach: 
Strategies based on 
data collection 

E1 In a lab experiment, survey method: Perform tasks (with a system), and after answering the questionnaire, 
formative/summative evaluation, and record completion time. [9,13,46] 

E2 In a lab experiment, think-aloud method: Novice users interact with the system and vocalise their thoughts. The tutor sits 
next to them for questions during system use.  [47,48,49] 

E3 Naturalistic study, diary method: Interact with the system in their natural habitat and fill diary entries to keep all records of all 
the learning activities.  

E4 Interviews: Cover subjective data and also fill in for missing or incomplete study entries.  

E5 In a lab experiment and observations: Performance is observed during training and testing. Summative evaluation on 
performing a task. [50] 

E7 Online survey: Online questionnaire evaluation with questions related to learnability characteristics, task match, and 
interface understandability.  [51] 

Assessment Metrics (adapted from [21])  

Task Metrics: Metrics 
based on task 
performance 

T1 Percentage of users who complete a task optimally. [52] 

T2 Percentage of users who complete a task without any help.  [52] 

T3 Ability to complete tasks optimally after a certain timeframe.  [9] 

T4 Decrease in task errors made over certain time intervals.  [22] 

T5 Time until the user completes a certain task successfully. [18] 

T6 Time until the user completes a set of tasks within a timeframe. [18] 

T7 Quality of work performed during a task, as scored by judges. [50] 

C1 Success rate of commands after being trained.  [20] 
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Methods/Parameters Code Factors References 

Command Metrics: 
Metrics based on 
command usage 

C2 Increase in commands used over certain time intervals.  [18] 

C3 Increase in complexity of commands over a time interval.  [18] 

C4 Percent of commands known. [53] 

C5 Percent of commands used. [53] 

Mental Metrics: 
Metrics based on 
cognitive processes 

M1 Decrease in average thinking times over certain time intervals.  [18] 

M2 Alpha vs. beta waves in EEG patterns during usage.  [14] 

M3 Change in chunk size over time.  [27] 

M4 Mental Model questionnaire pre-test and post-test results. [54] 

Subjective Metrics: 
Metrics based on user 
feedback 

S1 Number of learnability-related user comments.  [18] 

S2 Learnability questionnaire responses.  [42,46] 

S3 Twenty-six Likert statements. [6] 

Documentation 
Metrics: Metrics based 
on documentation 
usage 

D1 Decrease in help commands used over certain time intervals.  [18] 

D2 Time taken to review documentation before starting a task.  [18] 

D3 Time to complete a task after reviewing documentation. [18] 

Usability Metrics: 
Metrics based on 
change in usability 

U1 Comparing “quality of use” over time.  [21] 

U2 Comparing “usability” for novice and expert users. [21] 

Rule Metrics: Metrics 
based on specific rules R1 Number of rules required to describe the system. [16,55] 
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In this project, we determined that learnability, trustability, and acceptability are useful 

concepts for assessing a user’s experience (UX) from initial to extended exposure. 

Furthermore, this experience can be thought of as a learning curve, from initial/short-term 

experience to long-term experience.  

 The learning curve 

Early studies in the field of advanced driver assistance systems (ADAS) often focused on the 

adaptive cruise control system (ACC), which helps the driver by automatically adjusting the 

speed and distance to the car ahead. In a month-long study, Weinberger et al. (2001) 

investigated how drivers learned about and got used to the ACC system in a naturalistic driving 

study. They asked drivers about their experiences and used Time to Collision (TTC) as a 

metric to measure safety. The study found that most drivers reported becoming comfortable 

using ACC after about two weeks or 2800km of driving. The TTC data supported this, 

suggesting drivers could use ACC safely after this learning phase. Another study by Beggiato 

et al. (2015) observed how drivers understood, trusted, and accepted the ACC system after 

using it ten times over two months. The findings highlighted that by the fifth usage, drivers had 

a consistent understanding of and trust in the system. This trend aligns with the "power law of 

practice" (Newell & Rosenbloom, 1981), a principle that describes how our proficiency at a 

task improves with repeated practice until it plateaus after a certain point.  

Moving to a higher level of automated driving systems (ADSs), Forster et al. (2019) studied 

how repeated use of ADSs affected driver behaviour, looking at factors like experimenter 

rating, reaction times, error rate, and the preference-performance relationship for automated 

driving with human-machine interfaces (HMI) in five blocks. Their results showed the pattern 

portrayed by the power law of practice: behaviour stabilized after the second round of use. In 

a follow-up study, Forster et al. (2020) used surveys to dive deeper into how drivers' 

understanding of ADSs evolved over time. They found that a driver's understanding grew 

predictably. By the fifth time using the system, most drivers had a stable grasp of how things 

worked. Using LiAD as an example, Mbelekani & Bengler (2023) constructed a framework of 

methodological benchmarks that focused on long-term effects based on the “power law of 
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learning” (similar description to the "power law of practice", however, substitute repeated 

practice with learning) over the sequence of time (exemplified on Fig. 2). 

 

Figure 2.  Methodology benchmarks: Quantifying LiAD research (adapted from Mbelekani & Bengler, 2023) 

These investigations provide a comprehensive understanding of how users adapt to and 

engage with new automotive technologies. They collectively suggest the same pattern: As 

users' exposure to and experience with these systems increases, their understanding, trust, 

and proficiency increase, often levelling off after multiple uses. The consistent pattern of 

learning and trust highlighted in the studies also provides a preliminary way to measure human 

adaptation to automation technological advances in interactions for external users. However, 

when the research focus shifts to the dynamics between AVs and pedestrians, it is expected 

that the specific timelines and learning processes may vary. Therefore, it is imperative that we 

theorise the power law of learning and power law of practice from a systematic (automated 

LiAD
benchmarks / 
taxonomies

1. Benchmark I: 
Initial learning 

curve (first-
use/initial 
exposure)

How easy is it to 
(efficiently/inefficiently) 

use the automation 
system the first time 

you see it?

This aspect of LiAD considers the 
initial learning curve of users who 
use the automation system over a 

short sequence of time. Also 
considering initial learning effects.

2. Benchmark II: 
Transitional 

learning curve 
(steepness of the 
learning curve)

How quickly do users 
get 

(efficiently/inefficiently) 
better with repeated 

use of the automation 
system? 

This facet of LiAD particularly 
considers the learning curve of 
users who use the automation 

system multiple/few times, 
although not excessively to be 
considered long-term users.

3. Benchmark III: 
Long-term learning 
curve (the ultimate 

plateau)

How easy is it to 
(efficiently/inefficiently) 

use the automation 
system, once they 

have experienced it 
long-term? 

This aspect of LiAD considers the 
long-term learning curve of users 
who have used the system over a 
long-term sequence of time. Also 

considering long-term learning 
effects.
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driving) point of view. The emphasis should be on understanding how long-term research 

strategies can guide automated systems design towards optimal behaviour adaptation and/or 

change by drivers and pedestrians as they interact with the systems over the long term.  

When “to learn” is defined as to use, trust and accept, the learning process can be described 

by a learning curve, which indicates a steep initial increase followed by stabilization of 

performance due to increase of experience, trials, learning, and practice (Newell & 

Rosenbloom, 1981; Mbelekani & Bengler, 2023). Moreover, “it can be assumed that for 

systems having good learnability, the gradient is bigger from the beginning, which means that 

ability develops quickly over time” (Mbelekani & Bengler, 2023). Newell and Rosenbloom 

(1981) reported the same pattern in the skill acquisition of mathematical problem solving; they 

also referred to the power law of practice and power law of learning. The authors noted a 

function with the following form. The predicted performance (P) is a function of the number of 

trials (N), given the three parameters a, b, and c which represent the asymptote of P with N 

increasing indefinitely, the amplitude of learning between the initial performance and 

asymptotical performance, the learning rate, respectively. 

P(N|a, b, c) = a + b ∗ 𝑁𝑁−𝑐𝑐 

In addition, the power law of practice can also describe the learning process of skill acquisition 

in operating in-vehicle information systems (IVIS) (Jahn et al., 2009) and the use of 

regenerative braking in electric vehicles (Cocron et al., 2013), to name two examples. The 

application in automated driving has been mainly focused on the driver’s learning process—

that is, the development of a mental model along with trust in and acceptance of ACC (see 

Weinberger, Winner, & Bubb, 2001; Beggiato et al., 2015) and behavioural changes in AV 

(Forster et al., 2019). Concerning vulnerable road users (VRUs). The introduction of 

automation on roads and in traffic might preserve the interactions between pedestrians and 

conventional vehicles if an AV behaves like a traditional vehicle (Rothenbucher et al., 2016). 

However, the interactions can be improved (or worsened) since AV functions may influence 

pedestrians’ learning process (Ditta et al., 2020; Lundgren et al., 2017). The following section 

will introduce behaviour modification (e.g., behaviour adaptability/changeability [BAC]) and 

long-term studies in the AV context concerning learning effects.  
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 Defining how long is long enough  

In a forthcoming paper, Mbelekani and Bengler (n.d) outline an in-depth, long-term research 

taxonomy that focuses on describing how long is long enough. Their operational definition of 

“How long is long enough?” is intended to be comprehensible and applicable regardless of 

research domain, field of study, setting, user types, level of automation (LOA), context of use, 

and context of exposure (to name a few parameters). The aim is to deliver a research 

approach that helps assess long-term effects using Long-Term Research Conditions (LTRCs) 

(Mbelekani & Bengler, n.d).  

 

Figure 4. Knowledge discovery on Long-term Exposure of Automation Research (KLEAR) (Mbelekani & Bengler, 

2023a). 
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The hope is to create a foundation for which a Long-Term Research Conditions Questionnaire 

(LTRCQ) can be formulated, to best exploit the experiences of a diverse sample of automation 

users in automated driving and using ADSs (Mbelekani & Bengler, n.d). Mbelekani and 

Bengler (2023a) systematically discussed long-term research as a way of assessing long-term 

effects and behaviour modification; see Fig. 4. 

Although much as this work is directed towards drivers, we believe this can be a useful tool 

for understanding the behaviour modification of other road users, such as vulnerable road 

users (VRUs: pedestrians, motorcyclists, cyclists) and others. The discovery of refined 

knowledge is based on an expert-based culture of evidence about the modification of 

behaviour towards automation over the course of time. By answering the question: How long 

is long enough? We are able to deduce changes in behaviour based on long-term automation 

exposure in different situational contexts. 

We drew on various concepts, approaches, and models across multiple literature sources to 

operationalise long-term assessment by involving different user types. Our KLEAR taxonomy 

has been constructed after considering definitions given by different scholars, as well as 

additional human factor concerns (e.g., long-term effects, automation use/interaction, mental 

models, BAC, etc.), automation system design, and environmental factors. These elements 

were combined into a coherent description appropriate for our research objective. Moreover, 

our definition frames knowledge from short-term (initial) to long-term (extended) perspectives, 

since the objective of the assessment is to implement a behaviour-based model over time. It 

is important to identify the effect of varying the properties of induced effects on BAC. In a 

sense, to define how long is long enough is to understand the different factors of influence, 

such as the user types, UX, the system design type, the environment of operation, and the 

situational context of use. Thus, the question: How long is long enough? remains an open 

enquiry that needs further validation and verification with user-centred studies. 

 Behaviour modification: adaptability/changeability 

To translate theories about long-term effects into practice, Mbelekani and Bengler (2023) 

considered the correlation between learning effects and behaviour modification (e.g., BAC) 

through the power law of learning. Behaviour modification is influenced by many factors, 
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including bounded knowledge acquisition, an architecture of choices, rationality/irrationality, 

and cognitive biases and mentality (Mbelekani & Bengler, n.d[a]). User behaviour (both 

individuals and groups), in the context of automated driving, is the expressed capacity of the 

user (mentally, physically, and socially) to respond to internal and external environmental 

stimuli in road traffic (Mbelekani & Bengler, n.d[a]; n.d[b]). In a sense, user behaviour is driven 

by internal (psychological, cognitive, etc.) and external (social, environmental) factors, as well 

as automation system design (usability, transparency, etc.).  

Group (1990) defined BA as “the collection of behaviours which may occur following the 

introduction of changes to the road-vehicle-user system and which were not intended by the 

initiators of the change”. Moreover, Martens and Jenssen (2012) described five phases of BA 

applicable to ADAS: first encounter/ day (1-6 hours), learning (3-4 weeks), trust (1-6 months), 

adjustment (6-12 months), and readjustment (1-2 years). Furthermore, risk homeostasis is 

one of the theories used to explain the occurrence of BA, assuming that drivers have a 

preferred range of perceived risks and will adapt their behaviour to eliminate any discrepancies 

between the preferred level of risk and perceived risk (Wilde, 1982). The continuous or 

intermittent adjustments lead to BA. Mbelekani and Bengler (n.d[a]; n.d[b]) described 

behaviour adaptability in the automated driving context as follows: 

• BA: Adaptability is a person’s ability to adjust to changes due to automation. It is to be 

understood as the ability of users to adjust their behaviour (efficient/inefficient and 

fast/slow) as driving circumstances change. 

Studies of BA mainly emphasise the drivers’ behavioural changes (BC) in various driving tasks 

(Draskóczy, 1994). For example, as drivers gain more experience interacting with ACC, they 

spend more time in the left lane (Nilsson, 1996), shorten time headways, and increase speed, 

acceleration, and brake force (Hoedemaeker & Brookhuis, 1998). De Winter et al. (2014) 

reported that, regarding BC generally, increased experience with ACC and AV could positively 

affect SA and decrease the mental workload. Nonetheless, according to Endsley (1995), BC 

could also negatively impact SA, due to over-reliance on the system and reduced vigilance. 

Behaviour changeability can be viewed as a sub-characteristic of adaptability, as “to adapt is 

to change and to change is to adapt” (Mbelekani & Bengler, n.d[a]). Mbelekani and Bengler 

(n.d[a]; n.d[b]) described behaviour changeability as follows:  
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• BC: Changeability is the quality of being changeable, thus a user’s potential to change 

when confronted by a situation, as a user ability beyond the intended interaction 

corridors, with an emphasis on structural and mental processes.  

In explaining behaviour modification, Mbelekani and Bengler (n.d[a]; n.d[b]) emphasised that 

adaptability and changeability can be regarded as two side of the same coin. They are closely 

related but different; in many instances they can be mutually exclusive. For a clear description 

of adapt and change, the following example is given. Adaptation is “adjusting” one’s behaviour 

to something different from what was the norm (for example, manual driving to automated 

driving, etc.), and change is a “transition” from one state of behaviour outcome to another (for 

example, one decides to trust an ADS, and then after some time exposure to the ADS, one 

decides to distrust the ADS, etc.). For example, a user needs to adapt in order to change, and 

to change in order to adapt (Mbelekani & Bengler, n.d[a]; n.d[b]). 

The effects of BA and BC can be positive or negative (Mbelekani & Bengler, n.d[a]; n.d[b]), 

depending on the different automation systems and functions (Dragutinovic et al., 2005). As a 

result, behaviour modification (BAC) encompasses two spectra (Mbelekani & Bengler, n.d[a]; 

n.d[b]): 

• Desired, responsible adaptation and/or change: safety-based behaviour, good quality 

performance, responsible adaptation and/or change, intended system use, high SA, 

calibrated trust, etc.; and  

• Undesired, irresponsible adaptation and/or change: risk-based behaviour, poor quality 

performance, irresponsible adaptation and/or change, unintended system use, 

misuse, negligence, reduced SA, distrust, overtrust, etc.  

User behaviour can be unpredictable; the various factors that influence it are uncontainable 

and sometimes not accounted for by developers. These challenges mean it is all the more 

important that BAC, particularly over time and in interactions with AVs, be well understood. 

Further, this understanding must be practically incorporated into behaviour (and 

misbehaviour) models in order to reflect changes over time—which can include mental 

models, trust, and intention to use (Mbelekani & Bengler, n.d[a]). Pedestrians’ BAC, in the 

context of the introduction of AV over time, is still a largely unexplored and neglected topic. 

Some researchers, however, have reported over-reliance behaviour with increased exposure 

to eHMIs (Holländer et al., 2019; Kaleefathullah et al., 2020b). Roughly 35% of pedestrians 
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exhibited overtrust behaviour by walking onto the road when the eHMI was displayed, even 

when the AV was not decelerating (Kaleefathullah et al., 2020a). Rudin-Brown and Noy (2002) 

suggested that an individual’s psychological factors could influence their BA. Specifically, 

individuals’ trust in automation as well as their locus of control, sensation-seeking tendency, 

and mental model can all potentially affect their BAC. An increased trust level could induce 

risky behaviours (Rudin-Brown & Parker, 2004). It is thus important to assess individuals’ 

decision-making processes, and the actions that they choose, by quantifying a range of 

influencing factors: cognitive, psychological, emotional, cultural, social, environmental, and 

system design. 

2.3.1 Behaviour adaptation and mental models  

The concept of a mental model is important to consider when aiming to understand behaviour 

adaptation and/or change towards automation over time. A mental model is the representation 

of users’ understandings of external objects, the system, and the world—as well as 

interconnections involving actions and environmental factors (Carroll & Olson, 1987; Durso & 

Gronlund, 1999). Mental models guide people’s expectations (Wickens, n.d.). In cognitive 

psychology, a mental model is a dynamic part of working memory (Wilson & Rutherford, 1989). 

It is also formulated in the long-term memory storage structure (Endsley, 1995; Endsley, 

2000). Gentner and Stevens (1983) noted the influence of a mental model on individuals’ 

visualisation of an automated system’s physical behaviours (Gentner & Stevens, 1983). 

Furthermore, a mental model also allows individuals to infer and predict and decide on actions 

(Johnson-Laird, 1983). Craik (1943) proposed a small-scale model of the external process 

and its actions, translated from external events (interactions) into internal models. Clark (2013) 

proposed a predictive processing framework as a hierarchical generative model, illustrating 

how mental models generate predictions such that repeated exposure and learning facilitate 

better predictions (Engström et al., 2018). Mental models and acquired knowledge are 

important aspects of repeated practice (Endsley, 2000; Nersessian, 2009).  

Cognitivism assumes two types of knowledge: declarative, acquired through education and 

procedural, acquired through practice (Shiffrin & Schneider, 1977). In essence, the general 

mental model corresponds to declarative knowledge prior to the interaction, and the applied 

mental model corresponds to procedural knowledge, which is dynamic and constantly 
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evolving. Situation models combine them, connecting the bottom-up situational inputs per the 

applied model with top-down knowledge structures per the general model (Durso et al., 2008; 

Seppelt & Victor, 2020). Concerning the evolution of applied mental models, it’s important to 

consider “a correspondence between the parameters and states of the model and the 

operation of the target system” (Norman, 1983). The designer’s expectation is dominated by 

the conceptual model representing how the ADS should behave (Norman, 1983).   

When people learn new technology, they reconstruct existing mental models (Kahneman, 

2011; Zhang & Xu, 2011). If the model is insufficient or incompatible, the result could be 

rejection of the automated system as well as user confusion (how-to-use or other errors). 

However, if the automated system satisfies the users’ expectations by being compatible with 

an existing mental model, the corresponding trust and user experience may be calibrated 

(Gefen et al., 2003). Lee and See (2004) indicate that a mismatch between an existing mental 

model and user experience leads to declining trust and acceptance. Clearly, inadequate 

mental models may interfere with the positive development of trust and acceptance (Gefen et 

al., 2003). Essentially, attitudes such as trust, acceptance, and adoption can be influenced by 

the evolution of the mental model over repeated AV exposure. Thus, it is imperative to keep 

in mind the long-term impact of the evolving model on functionality, transparency, safety, 

comfortability, learnability, usability, trustability, and acceptability. Human factors experts may 

also need to keep in mind the needs of different internal users while balancing them with the 

needs of external VRUs. Currently, there is a lack of research on how a pedestrian’s mental 

model and decision-making process changes in AV interactions. As a pedestrian’s applied 

mental model evolves with repeated AV exposure, it is not always accurate or complete 

(Norman, 1983). In fact, its accuracy, efficiency, and predictive performance regarding AV 

interactions—and how these tendencies develop—are unknown (Staggers & Norcio, 1993). 

Mental models emulate the pedestrian’s beliefs and attitudes about AV; there should be a 

direct alliance between this model, as conceived by the AV designer and realized by the 

engineer, and the evolution of mental models as they gain an understanding of the AV system. 
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Figure 3. From mental model to mental models on use and exposure (adapted from Mbelekani & Bengler, 2022) 

Investigating the accuracy of the applied mental model is important as a way of proposing 

efficient, intuitive automated driving and eHMIs. Attitudes and decisions are influenced by 

learnt information as well as by desires, goals and expectations. Studies have also highlighted 

the connection between mental models and emotional factors (e.g. Kahneman, 2011; 

Stanovich, 1999). The human affect system reflects a general judgement system and the 

independent cognitive system interprets knowledge (Norman, 2004). The two systems work 

together to convert external information into accurate representations of the world and make 

judgements determining how to behave (Norman, 2004). Affect is linked to emotions, which 

can be either discrete or independent or interrelated (Russell, 1980). In one theory, emotions 

and self-report affects are arranged in a circumplex model with arousal and valence 

dimensions (Russell, 1980). Positive emotions can increase efficiency in decision-making 

(Norman, 2004) and decrease the perceived risk; however, negative emotions lead to 

increased perceived risk and pessimistic predictions (Resnick, 2012). This model contributes 

to the comprehension and visualization of individuals’ emotional data collected through 

standard questionnaires such as Self-Assessment Manikin (SAM) (Bradley & Lang, 1994). 

Emotions and a mental model can both determine attention allocation, in the SA model (Dolcos 

et al., 2020; Endsley, 2000). Research that has focused on individuals’ affects during AV 
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interactions has considered the following contributing factors: likability (Bazilinskyy et al., 

2021), comfort (Bellem et al., 2018; Hartwich et al., 2018), enjoyment (Hartwich et al., 2018), 

naturalness (Dettmann et al., 2021), perceived risks/safety (Lagström & Lundgren, 2015; 

Rodríguez, 2017; Rossner & Bullinger, 2019), and stress (Lagström & Lundgren, 2015). 

Research on affect has mainly focused on perceived safety. However, there is a need for more 

exploration into the decision-making process and how it changes over time. 

 Theorising about long-term effects 

Notably, just as the duration of exposure to automation has an effect on BAC, the level of 

experience in different situational contexts also has an effect. In order to fully understand long-

term effects as a result of repeated exposure to vehicle automation systems or automated 

driving, we must, as a general rule of thumb, categorically consider destructive and 

constructive learning effects (Mbelekani & Bengler, 2023). Accordingly, Mbelekani and 

Bengler (2023) categorised effects as either first-order or second-order. In essence, first-order 

effects have a residual component; they induce other layers/forms of effects, which are 

second-order or side effects, or even secondary effects (e.g., high insurance due to crash 

accidents, physical disabilities, etc.). In a situation where automation is learned by a user 

(correctly or incorrectly), this situation may result in different interconnected effects (Fig. 5). 

Moreover, first-order effects have the potential to either transform, conform, or deform the 

user’s (mis)behaviour in specific ways which might not have been anticipated (Mbelekani & 

Bengler, 2023).   
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Figure 5. Locus of effects: first-order effects (circled 1) and second-order effects (dotted line, circled 2). (Mbelekani 
& Bengler, 2023) 

 

 Long-term behavioural adaptation research approaches  

The following discussion points pertain to an understanding of long-term behavioural 

adaptation studies, from the perspective of drivers’ and pedestrians’ experiences in AV 

interactions.  
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 Long-term effects investigations in user-AV interactions 

Most researchers find a “diary approach” to be an effective and efficient research strategy for 

knowledge discovery about users’ behaviour and experiences. To explore BAC towards 

automation over time, the researchers may use a precise, sequenced approach of methods 

(qualitative and quantitative) in order to collect data. The diary approach allows participants to 

experience the automation systems on their own initiative and report their experiences, often 

in real-world scenarios or usage situations. This advantage has been studied in uncontrolled 

and controlled settings using anthropological dogmas, with special attention to real-world 

scenarios of learned automated systems. However, there has been little investigation into its 

occurrence in automated driving for natural on-road and in-traffic situations—or in support of 

human factors engineering research into long-term effects and BAC. To address this lack, a 

real-world field study on user behaviour towards automation in everyday automated driving 

situations was performed by Mbelekani and Bengler in 2023, using diaries and structured 

interviews (pre- and post-diary entries) that focused on long-term effects and BAC. The study 

was conducted on a timeframe of three months. This long-term study was one of the first to 

investigate automated driving with a method that mixed quantitative and qualitative metrics. 

The study aim was to construct and employ a long-term research approach to assess an array 

of effects, and to add to knowledge discovery on BAC. The participants provided frequent 

digital diary logs, encompassing qualitative and quantitative assessments, which are well 

suited for gaining high-quality, rich data sets.  

We found cross-sectional validation diary strategies to be an important tool for understanding 

behaviour modification while requiring little time. Thus, the participant sample, recruited 

through different platforms, included different automated driving user types with different UXs 

(low, mid, or high). The study assessed short-term effects (STUxCs), mid-term effects 

(MTUxCs) to long-term effects (LTUxCs) over a period of time. The validity of the Long-Term 

Research Conditions (LTRC) construct was tested with reference to learnability, trustability, 

and acceptability. Special emphasis was placed on safety- and risk-based behaviours, based 

on LTRC’s three-dimensional knowledge components: micro-perspective, meso-perspective, 

and macro-perspective. This project also provides evidence for the reliability and validity of 

the scientific research approach, which has potential for both in-lab and real-world settings. 

The approach meets a need for long-term research measurements that go beyond time and 
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physical function, complementing existing measures (surveys, experience sampling, etc.) to 

capture long-term effects, BAC, and what automated driving means for different user types.  

The study aims to illustrate the usefulness of a long-term research approach towards user 

behaviour (BAC) as a generally acknowledged method for knowledge discovery. The result 

obtained from this cohort study will influence interaction design strategies that shape safety 

and risk-mitigating behaviour towards automation. As the researchers are in the process of 

analysing the data, the results from this study will be published in the coming months.   

 Long-term effects investigations into pedestrian-AV interactions 

Research on drivers’ automated driving behaviour effects (e.g., on habituation, trust building, 

and proficiency development) requires time to ensure drivers are fully familiar with the system 

(and even its subtlest features). In contrast, long-term studies of pedestrian interactions with 

AV tend to take less time. Unlike drivers, pedestrians don’t have to understand the 

complexities of AV operation. Instead, their main concern is the predictability and safety of the 

AV’s behaviour. That is, pedestrians focus on the AV's ability to communicate intentions and 

avoid hazards rather than the nuances of system operation. As a result, pedestrian adaptation 

and trust-building processes are arguably faster, occurring within a few encounters. 

As novel communication mechanisms in the AV domain, external Human-Machine Interfaces 

(eHMIs) are expected to resolve ambiguities in the AV-pedestrian interaction which stem from 

the absence of drivers’ explicit communication. Therefore, a special focus on the learning 

curve of pedestrians through continuous interaction is proposed in the current research area 

to evaluate the efficiency and usefulness of eHMIs. In previous related research, Faas et al. 

(2020) conducted a longitudinal video study (consisting of three sessions with seven to nine 

days between them) to evaluate the effectiveness of eHMIs at communicating the AVs’ 

automated status and intent to pedestrians. The study tested three interfaces, providing 

increasing information to pedestrians: (i) no eHMI (baseline), (ii) status eHMI, and (iii) 

status+intent eHMI. The aim was to observe changes in pedestrian responses and understand 

their changing perceptions of AVs. They collected pedestrian crossing onset time and 

perceived safety, trust, acceptance, and user experience (including learnability). The two 

eHMIs examined (status and status+intent) were found to improve pedestrians’ understanding 
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of what was going on around them. As exposure increased, pedestrians showed higher trust 

and reliance on the combined interface. The eHMIs improved learnability, and pedestrians 

came to rely more on them. These results suggest that preliminary training may be beneficial 

for pedestrians to understand eHMI signals better (de Clercq et al., 2019). These findings also 

highlight the need to design interfaces that are capable of skilfully communicating the goals 

and operations of AVs to pedestrians. 

In a study conducted by Lee et al. (2022), the importance of intuitively designed eHMIs was 

also noted.  The authors’ aim was to compare how quickly pedestrians obtained the 

information conveyed by the novel eHMI design versus a more traditional method (flashing 

headlights) in a CAVE-based pedestrian simulator. A mixed design approach was used, with 

four within-participant variables: three approaching speeds, four time-gaps, deceleration/no 

deceleration by the AV, and three repeated blocks. Additionally, they compared two different 

eHMI designs as the between-participant variable: the Slow-Pulsing Light Band (SPLB) and 

the Flashing Headlight (FH). The findings indicated that while the Flashing Headlight's 

message was quickly understood in the initial block of trials, the Slow-Pulsing Light Band 

required a block of 12 trials to achieve the same level of comprehension. This underscores 

the idea that introducing new eHMI designs may necessitate a learning phase for road users, 

challenging manufacturers to ensure their designs are both innovative and easily 

comprehensible. Thus, making sure that the learning phase is as short as possible. 

As noted, investigations into pedestrians’ learning process towards eHMI have significant 

implications for design approaches. For instance, Hochman et al. (2020) used desktop-based 

video simulations to measure pedestrian awareness of AV yielding intentions by looking at 

variables influencing their crossing decisions. The variables included the eHMI background 

color (red/green), message type (status/advice), and presentation modality (text/symbol).  

Results indicated a learning effect over time in all conditions, reflected by a shortening of 

response times and the reduction in the number of gaze fixations over time—regardless of the 

eHMI features. It is worth noting that while this study did not consider different learning 

patterns between different eHMI designs, another study, by de Clercq et al. (2019), did. Using 

a head-mounted display, participants’ simulated crossing a road using hand-held buttons that 

signalled what they thought was safe. The percentage of "feeling safe" signals was then 

evaluated across several eHMI types (1. baseline without eHMI, 2. front brake lights, 3. 
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Knightrider animation, 4. smiley, and 5. text [WALK]). Their findings demonstrated a learning 

curve consistent with a power law of practice. Of the five types, text-based interfaces were 

found to be the least ambiguous; they showed a high feel-safe percentage initially, and little 

learning after exposures. 

The recent research on the learning effects of interactions between AVs and pedestrians 

reveals a clear gap: past studies often used simplified interaction scenarios and did not 

thoroughly investigate the effects of more complex vehicle behaviours. To address this issue, 

ESR 4 of the SHAPE-IT project specifically explored pedestrians’ learning processes at urban 

intersections, taking into account the presence of varied road infrastructure and ambiguous 

autonomous driving behaviours (Yang et al., 2023). 

 

Figure 6. Interaction between the pedestrian and the AV with the eHMI on, at a zebra crossing, in the pedestrian 

simulator lab. The yellow cross indicates the pedestrian’s starting position at the curb (adapted from Yang et al., 

2023). 

In this CAVE-based pedestrian simulator study (as shown in Fig. 6), pedestrians crossed the 

road in response to an AV from the right, simulating British road conditions. Half of the 
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scenarios involved zebra crossings, and half of the time, the AVs’ yielded to pedestrians. 

Additionally, half of the AVs that yielded used eHMIs to signal their intent. The study tracked 

pedestrians' head movements as an indicator of their crossing intent and SA (Kooij et al., 

2019; Rasouli et al., 2018). The results show that the frequency of head-turning increased in 

the presence of yielding AVs. Interestingly, the number of head turns was lowest when the AV 

was equipped with an eHMI and zebra crossings were present. As participants became more 

exposed to the scenario, their head turns were less frequent without the eHMI (as illustrated 

in Fig. 7). Contrary to previous studies, no consistent learning patterns were detected with 

eHMI regarding pedestrians’ head movements. This difference may stem from the unique 

yielding behaviour design; the AV edged slightly forward at the intersection, providing a 

challenging scenario for participants to understand and adapt to. 

 

Figure 7. Pedestrians' head-turning frequency before crossing initiation time (CIT) in response to repeated 

exposures with or without an eHMI (adapted from Yang et al., 2023). 

These results highlight the critical role of AV’s motion patterns in influencing pedestrian 

decision-making and information collection (Lee et al., 2020). Therefore, it is imperative to 

design future AVs with intuitive, human-like driving behaviour and to understand how 

pedestrians adapt to the driving behaviour of AVs, not just how they learn with exposure to 

eHMIs. 



  
This project has received funding from the European Community's 

Horizon 2020 Framework Programme under grant agreement 860410 

Deliverable 1.3 Long-term behavioural adaptation 

 

PUBLIC  29/42 

 Future outlook 

Without a doubt, long-term research in the field of automated driving has been neglected. The 

reasons have been highly emphasised by many researchers. However, just because this type 

of research is challenging, tedious, expensive, and time consuming does not mean it’s not a 

valuable asset for quality interaction design strategies. Unfortunately, due to the competing 

demands in the economic world of industry, many are not keen to invest time and effort in 

such research. They would rather take the short-term route to knowledge discovery. It should 

be noted that this is not to say that short-term studies are not important; however, the value 

that long-term research offers to understanding the design, the user or VRU (e.g., 

pedestrians), and understanding the interaction itself is of importance for long-term safety, 

satisfaction, and efficiency, among other priorities. 

As already argued, it is essential to understand long-term effects from the perspectives of both 

drivers and VRUs (e.g., pedestrians) if the aim is to optimise AV design in terms of behaviour-

based safety, mitigating risky behaviour, and constructing desired BAC. There is no existing 

long-term research (based on the correct definition of ‘long-term’, which consist of years of 

exposure), but there are a few repeated usage/exposure studies that have focussed on HAI, 

from the perspectives of driver-automation scenarios and pedestrian-AV scenarios. In these 

studies, the main focus has been on assessing the learning effects and behaviour adaptation 

from using the ACC. And as with any technological system, there are various factors that 

influence the interpretation of the assessment. Further, the likely occurrence of conditions 

when an automation system reaches the limits of its Operational Design Domain (ODD) must 

be considered. Furthermore, it’s important to consider possible causative factors, the 

environment factors (road type, infrastructure, traffic signs, etc.), user type factors (user states, 

personality, knowledge and experience, etc.), ecological factors (weather conditions, such as 

fog, rain, snow, etc.), the automation system design factors (e.g. its capabilities and limitations, 

brand type, HMI design factors such as its transparency, comfort elements, etc.), and the 

interaction design factors (e.g. usability, learnability, adaptability, complexity, etc.). Most if not 

all of these factors have not undergone long-term investigation to understand their long-term 

effects. Moreover, in existing research on repeated exposure investigations between AV and 

pedestrian interactions, the main focus has been on pedestrians’ adaptation and interpretation 
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of eHMIs. However, there are numerous contextual factors that influence pedestrian behaviour 

that have not yet been fully explored for their long-term effects.  

A large body of research illustrates the profound impact of sociodemographic factors such as 

cultural background and age on pedestrians’ crossing behaviours (Yagil, 2000). These factors 

may also determine pedestrians’ learning and interpretation of eHMIs, as well as their long-

term adaptation to AVs in general.  

To conclude, it must be acknowledged that while the development and evaluation of eHMIs 

remain important, they represent only one communication mechanism in AV and pedestrian 

interactions. An equally important aspect that deserves academic attention is the long-term 

effect of the kinematic behaviour of AVs and related pedestrian interactions. Ensuring that 

AVs are both intuitive and reminiscent of the driving behaviour of a human-driven vehicle can 

enhance predictability and mutual understanding in shared spaces. 

While current research focusses on the initial learning and behavioural changes, we have 

demonstrated that it is also important to investigate changes over extended periods 

(Grossman, Fitzmaurice & Attar, 2009; Mbelekani & Bengler, 2023). In fact, it is worth noting 

that a considerable number of existing studies have a short duration and employ simplified 

environmental settings. Real-world urban environments are characterised by multifaceted 

interactions involving multiple VRUs, such as pedestrians and cyclists, and a range of 

vehicular traffic; yet these scenarios are underrepresented in academic research. Complex 

scenarios, especially when manual and autonomous vehicles coexist, pose unique challenges 

to both drivers and pedestrians.  

Therefore, there is an urgent need to extend investigations into these more complex real-world 

settings. Mbelekani and Bengler (2022) emphasise the importance of research in long-term 

Multi-Agent Social Interactions (MASI). The diagram (Fig. 8) illustrates the interactive faculties 

of shared experiences and multi-agent co-experience with AV: the positioned 

driver/user/passenger experiences as well as VRU experiences. It is also important to 

consider deliberation on what people do in shared spaces compared to what they do when 

they use things alone (Mbelekani & Bengler, 2022). Neglecting the social aspect of group 

behaviours and experiences with HAV would be overlooking an important facet of being 
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human, and what humans do when sharing space, as well as when no one is looking 

(Mbelekani & Bengler, 2022).  

 
 
 
 
 
 
 

 
 

Figure 8. In-group and out-group road users – on the road and in traffic (adapted from Mbelekani & Bengler, 2022). 

This space sharing may encompass different interactive factors, as humans and AVs negotiate 

their on-road and in-traffic interactions. Applying this thought process to MASI space sharing, 

each human road user within the interaction space builds up a mental model. The model is 

continuously changing based on various factors, e.g. emotions on a particular moment, 

personality, and their psychology at a particular moment, as well as environment factors 

(Mbelekani & Bengler, 2022).  

 Mixed reality simulation for MASI design and study 

Mixed reality is becoming a trendy strategy for studying HAI, especially in cases where it is 

challenging to study systems that are not yet available for people to use. This approach allows 

the merging of different kinds of elements to simulate highly realistic, real-world, on-road and 

in-traffic scenarios and conditions, from the point of view of in-groups and out-groups. For 

instance, researchers could assess repeated exposure to automation, in order to understand 

different experience perspectives, including: the in-groups (e.g., driver/users), out-groups 

• The primary user (driver) internally interact with automation: Set to (im)partially takeover when system error.
Also includes passengers, subdivided into clients/co-workers, family and friends. There is neglect in research
covering all those inside the AV, such as passengers. Family settings for commutes set demands on social
interactions and the co-experience of technology use inside the vehicle.

In-group – existing agents within the HAV

• Those who come into contact or exposure with automation as they commute on-road and space sharing. For
example, VRUs such as pedestrians, cyclists, motorbikes, vehicles, etc.

Out-group – existing agents outside the HAV
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(e.g., VRUs), the simulated environment (e.g., on-road traffic), the HAV (e.g., driven by the 

driver while also connected to the virtual environment of the out-groups), the eHMI, the iHMI, 

and the HAV movement route (e.g., a zebra crossing scenario in which virtual vehicles and 

VRUs are continuously generated at regular intervals). Repeated exposure including the same 

participants could be conducted for a period of four weeks, in order to track changes in 

behaviour for both groups. This experimental design could also reveal at what point the 

participants’ learning curves reach the ultimate plateau and whether this occurs at the same 

time for both groups. 

 
Figure 9. The virtual mixed reality environment  

The aim of a study with these components can be used to understand the social cues exhibited 

by in-groups towards the HAVs’ kinematics/behaviour on the road and in traffic situations. The 

reactions of out-groups towards the HAVs’ different kinds of behaviours in a road crossing 

situation are also relevant. Social cues in this context comprise the information helping MASI 

realise current and future HAV behaviour.  
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