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a b s t r a c t 

Ships can be operated more efficiently by utilizing intelligent decision support integrated with onboard 

data collection systems. In this study, a Bayesian optimization-based decision support system, which uti- 

lizes ship performance models built by machine learning methods, is proposed to help determine the 

operational set-points of two engines for double-ended ferries. By optimizing the ferries’ power alloca- 

tion between the stern and bow engines, the Decision Support System (DSS) will simultaneously attempt 

to keep the ETA of the ferry fixed under a set of operational constraints using the Bayesian optimization. 

Its objective is to minimize fuel consumption along individual trips. Based on simulation environment, 

the DSS can reduce at maximum 40 % fuel consumption with no significant change of the ETA. Final full- 

scale experiments of a double-ended ferry demonstrated an average of 15 %, where at least half of this 

saving was achieved by the optimized power allocation between bow and stern engines. 

© 2023 Shanghai Jiaotong University. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

The shipping industry is keen to reduce fuel consumption 

nd air emissions [1] . Some operation related energy efficiency 

easures can be straightforwardly implemented to increase ship- 

ing sustainability [2] , such as voyage optimization [ 3,4 ], speed 

anagement [ 5 ]and performance monitoring [ 6–12 ]. For short-sea 

hipping and with critical requirements on ETA (expected time of 

rrival), there are only marginal spaces for the speed and voy- 

ge optimization. Especially in the cases of doubleended ferries of- 

en used as commuter vessels between islands for their good ma- 

oeuvrability [ 13 ], their actual operational performance is not well 

nown to the operators, because of their two sets of propulsion 

ystems, one at the stern and one at the bow. Even though basic 

hip principles tell that a configuration with all the power allo- 

ated in the stern propeller can result in the maximum efficiency 

 14 ], they also indicate very small difference of total fuel consump- 

ion due to different power allocation between the two propellers. 

herefore, it was observed in [ 15 ] that ship operators arbitrarily set 

ower allocations to operate their ferries. As the development of 

hipping digitalization, collected data onboard ships clearly show 

hat there are large fuel saving potentials by setting better config- 
∗ Corresponding author. 
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ration of power allocations for those double ended ferries [ 15 ]. 

ut optimal configurations require knowledge beyond the master 

ariners’ capabilities, therefore some Decision Support System will 

e greatly beneficial for ship operators to navigate their ships more 

nvironmentally friendly. 

Some decision support systems were developed for those 

ouble-ended ferries but mainly for the Manoeuvring study 

nd autonomous navigation [ 16 , 17 ]. While design support 

ools/algorithms were also well researched for reducing emis- 

ions from shipping based on ship performance simulations 

 18,19 ]. For double ended ferries, their actual ship performance 

s rarely researched and current semi-empirical ship performance 

odels [ 20–22 ] may not accurately describe those ferries’ energy 

erformance for developing DSS. In recent maritime research, the 

doption of machine learning techniques has been recognized 

or its potential to optimize ship operations for energy efficiency. 

achine learning models have been developed that accurately 

apture a ship’s performance in the actual sailing. Through these 

odels, ship speed can be meticulously predicted [ 23–26 ], and 

nsights into fuel consumption can be provided [ 7,27–30 ]. Based 

n these models, ship speed can be strategically managed, and 

nhanced operational efficiency can be realized [ 31–34 ]. 

In this study, a machine learning algorithm is utilized to 

uild such a performance model for the double-ended ferry. The 

stablished data-driven model will be integrated into the Bayesian 

ptimization algorithm. They can simulate the ferry’s performance 
access article under the CC BY-NC-ND license 

ne learning based Bayesian decision support system for efficient 

cience, https://doi.org/10.1016/j.joes.2023.11.002 

https://doi.org/10.1016/j.joes.2023.11.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/joes
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:wengang.mao@chalmers.se
https://doi.org/10.1016/j.joes.2023.11.002
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.joes.2023.11.002


V. Daniel, A. Martin, L. Xiao et al. Journal of Ocean Engineering and Science xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: JOES [m5G; November 16, 2023;23:58 ] 

t

v

b

m

t

t

a

a

s

f

2

b

i

a

T

o

t

t

c

i

g

g

a

t

r

w

Fig. 1. General arrangement of a double-ended ferry. 

Fig. 2. Routes collected for one year’s sailing of this case study double-ended ferry 

used in this study. 
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Nomenclature 

DSS Decision Support System 

ETA [min] Estimated Time of Arrival 

T s [min] Sailing Time 

V g [kts] Speed Overground 

F CR Fuel Consumption Rate 

m 

[l/s] FCR Engine 

L [%] Engine’s Load 

P [kW] Engine’s Power 

n [rpm] Engine’s speed 

V wr [kts] Relative Wind Speed 

φwr [deg] Relative Wind Angle 

V sc [m/s] Sea Current Speed 

φsc [deg] Sea Current Angle 

R p Power Ratio 

X s Associated to ship’s stern 

X b Associated to ship’s bow 

f (−) Generic function 

X ∗ Optimum 

X̄ Mean value of X 

m [l] Fuel Consumption 

J(−) Objective Function 

q [%] Relative tolerance 

ξ Control inputs 

K(ξ ) Kernel Function of ξ
k (ξ ) Augmentation row for K 

�V g Relative Tolerance of Speed 

�R p Relative Tolerance of Rp 

GP Gaussian Process 

α(−) GP Acquisition Function 

μ(−) GP Mean Function 

σ (−) GP Standard Deviation Function 

a Z-score for a given confidence. 

o formulate an onboard decision support system, which can pro- 

ide real-time optimal configuration of engine settings for both 

ow and stern propellers. The objective of the DSS is setup for 

inimum fuel consumption along each trip also keep its ETA. For 

he completeness of this paper, Section 2 presents brief informa- 

ion regarding the challenges of double-ended ferry optimal oper- 

tions, using a case study ferry. The methods for the proposed DSS 

re presented in Section 3 . And Section 4 presents results of fuel 

avings by the proposed DSS for both simulation environments and 

ull-scale test environments. 

. Challenge of double-ended ferry operations 

In modern ships, captains can issue a command from the ship 

ridge directly into the engine through the throttle control, which 

s a lever or handle with different positions that regulates the 

mount of fuel injection into the compression-ignition cylinders. 

he fuel intake controls the engine’s speed and load and power 

utputs. The double-ended ferry command bridge has two throt- 

le levers, one for each engine. Therefore, finding the optimal con- 

rol strategy of engines to reduce ship total fuel consumption be- 

omes more difficult. A basic sketch of such a double-ended vessel 

s illustrated in Fig.1 . The main engine notations (Engine 1 and En- 

ine 2) will switch their functionalities between stern and bow en- 

ines for different trip directions. For the sake of convenience, bow 

nd stern engines are used for the description. Table 1 enumerates 

he critical operational parameters pertinent to double-ended fer- 

ies. These parameters were judiciously selected, grounded in the 

ell-established foundational principles of ship propulsion. It is ac- 
2 
nowledged that the rate of fuel consumption (represented as m 

) 

s correlated to both the vessel’s speed ( V g ) and the engine’s ro- 

ational speed ( n ). Environmental factors, including wind, waves, 

nd currents, further compound the influence on fuel consumption 

 35 ]. 

For optimal navigation of such double-ended ferries, one of the 

ig challenges is to understand the ferry’s performance in terms 

f different engine settings. Reliable models are rarely available, 

nd there are not mature enough guidelines to assist actual nav- 

gation of those ferries. As the increase of shipping digitalization, 

ome data collection systems can be easily installed onboard those 

erries to assist development of the DSS for energy efficient opera- 

ions. In the following, a case study double-ended ferry with data 

ollections onboard is used to demonstrate the challenges and val- 

date the proposed DSS. 

.1. Case study double-ended ferry 

The case study is a RoRo passenger ship named Uraniborg with 

 ship length 46 m, service speed 11.5 knots, and two identical in- 

ernal combustion engines Caterpillar C32 ACERT V12 with maxi- 

um rating 709 kW of 1600 rpm. The ferry transits the Øresund, 

pecifically the route Ven-Landskrona in southern Sweden, a route 

hat is approximately 4 nautical miles as shown in Fig. 2 . It is a

ommuter ferry that goes 18 trips a day in about 30 min inter- 

al (without too little variations) between both islands. An onboard 

ata collection system records all the parameters listed in Table 1 . 

he time series of Vg along a typical trip is shown in Fig. 3 , where

 one-minute moving average smooth is used to reduce measure- 

ent noises. Normally, a trip is composed three sailing stages: 

- Acceleration, i.e., roughly the first 5 min at the start of a trip. 

- Steady/Cruising, i.e., the ferry reaches service speed. The deriva- 

tive of speed, i.e., acceleration, is used to identify the steady 

states along the trip. For example, the sailing history located 

between the two dashed lines are considered to be stead state 

sailing. 
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Table 1 

Main operational parameters of double-ended ferries. ∗FCR: Fuel Consumption Rate. 

Symbol Feature Units Symbol Feature Units 

V g Speed Over Ground knots n s Rotation Speed of Stern Engine rpm 

ϕ ship Ship Heading deg n b Rotation Speed of Bow Engine rpm 

L s Load of Stern Engine % V W R Relative Wind Speed m/s 

L b Load of Bow Engine % ϕ W R Relative Wind Angle deg 

m s FCR ∗ of Stern Engine l/h V sc Sea Current Speed m/s 

m b FCR ∗ of Bow Engine l/h ϕ sc Sea Current Angle (North) deg 

Fig. 3. Three different sailing stages in terms of speeds (upper plot), and identifi- 

caion of steady states by introducing speed acceleration (dashed lines) at the bot- 

tom plot. 
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- Decceleration, i.e., when the ferry is close to destination and 

reduces its speed. 

In this study, only the steady sailing time are considered for the 

nalysis. 

.2. Data analytics of ferry collection data 

Even though ship principles indicate that ship propellers work 

ith highest efficiency when located at the ship stern [ 35 ], how 

o allocate power distribution between different engines/propellers 

s still not clear to the operators for those double-ended ferries. 

n the following, let the power ratio ( Rp ) be used to describe the
Fig. 4. Histogram of the distribution of mean engi

3

ower allocation between bow and stern engines as, 

 P = 

P stern 

P bow 

+ P stern 
(1) 

The average power allocation Rp for each trip is estimated and 

ts distributions are presented in Fig. 4 . The power allocation is 

lmost equal distributed from 0.5 to 0.9, without significant con- 

entration of putting most of power at the stern engine. In ad- 

ition, Fig. 5 presents how the Rp affects total fuel consumption 

long each trip with fixed ETA. These results show good agree- 

ent with the simulations from [ 14 ], which showed that the low- 

st total power was observed to occur at a 100 % stern power al- 

ocation. However, the challenge for the double-ended ferry is that 

he information of use as much as the stern engine does not guide 

perators with proper settings for each engine to achieve a given 

he desired target speed (ETA). Fig. 5 also indicates that although 

he mean total fuel consumption decreases with the increments of 

p , there is no guarantee that optimal Rp always occurs at 100 % 

tern allocation due to other influence parameters. Therefore, this 

tudy aims at developing onboard DSS to determine the optimal 

et-points of both bow and stern engines by combining machine 

earning techniques and optimization algorithms for minimum fuel 

onsumption. 

.3. Data-driven ship and engine performance models 

Some physical or semi-empirical models are available for prac- 

ical ship operations, but the physical components and correspond- 

ng coefficients inside those models were mainly established from 

onventional ships. They are often associated with large uncer- 

ainties even for those conventional ships, and therefore are ca- 

able of modelling the operation performance of double ended 

erries. Given the availability of large volumes of data, machine 

earning methods become attractive to model a ship’s performance 

ore accurately. In this study, the fuel consumption of two engines 

nd the corresponding ferry speeds are modelled by the XGBoost 
ne power allocation ratio for different trips. 
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Fig. 5. Total fuel consumption in terms of mean R p for each trip of the double-ended ferry. 

Fig. 6. Kernel distribution plot for the prediction error of the XGBoost data-driven modes: a) Fuel consumption of stern engine, b) Fuel consumption of bow engine, c) Ship 

speed overground. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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ethod as, 

˙ 
 s = f s 

(
n s , L s , n b , L b , W 

)
˙ 
 b = f b 

(
n s , L s , n b , L b , W 

)
 g = f v 

(
n s , L s , n b , L b , ϕ ship , V sc , ϕ sc , V wr , ϕ wr 

)
(2) 

here W denotes all ocean weather related parameters, and the 

ther parameters are described in Table 1 , and they are chosen as 

he features of those models because they are acting as either the 

ontrol variables or constraints of the decision-making system. Be- 

ore such data-driven ship performance models integrated into the 

roposed DSS here, the model accuracy was assessed by the co- 

fficient of determination R 2 . The two models developed for fuel 

onsumption demonstrated high accuracy with an R 2 coefficient of 

.9999, i.e., almost deterministic results. The ship speed resulted in 

n R 2 coefficient of 0.945, also indicating very accurate predictions. 

he reason R 2 of speed is lower than fuel is the fact it is impossi-

le to consider/collect all speed related features in the data-driven 

odels. To further evaluate the accuracy of the models a kernel 

ensity estimate (KDE) was fitted to model the distribution of the 

rediction error ε, which is presented in Fig. 6 . The KDE shows 

hat both ms and mb models have very high accuracy, with ap- 

roximately 99 % of the errors falling within the range of ±1 %. 

hile more than 90 % of the errors fall in the range of 5 % for the

peed prediction. 

Furthermore, the prediction of a typical trip (collected July 

022) with sailing speed Vg of 10.42 knots and a recorded fuel 

onsumption of f fuel = 32 l is also used to show the model accu-

acy. The input features of measurements from this trip are pre- 
4 
ented in Fig. 7 (left), where the stern engine has constant speed 

t 1258 rpm and the bow engine presents two setpoints during the 

teady operation. As shown in Fig. 7 (right), the data-driven speed 

odel can perfectly predict well the measured speed, while the 

uel consumption models of both stern and bow engines give per- 

ect prediction results in comparison with the measurements. The 

rediction accuracy quantified by the mean errors of prediction in 

ercentages along the entire trip, for the speed is of 0.78 % discrep- 

ncy, and 0.16 % and 0.28 % for fuel consumption rates of stern and 

ow engines. Therefore, those data-driven models could be reliably 

sed in the Bayesian optimization method for the proposed DSS in 

his study. 

. Methods in the decision support system 

The flowchart and methods for the proposed DSS of double- 

nded ferries are presented in Fig. 8 to determine optimal op- 

rational set-point parameters/inputs of a specific trip, i.e., an 

nput layer of all necessary information about the trip, data- 

riven models required to describe the ship and engine perfor- 

ance, and Bayesian optimization algorithm with prior belief from 

roper/historical trip settings[ 36 ]. The accuracy of the proposed 

GBoost machine learning method to establish data-driven ship 

erformance models is briefly presented in Section 2.3 . For the DSS 

orking onboard, the optimization algorithm integrated should be 

omputational efficient. Therefore, the Bayesian algorithm that can 

tilize prior sailing experiences/data is proposed to fulfil such re- 

uirements. 
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Fig. 7. Input features to the data-driven models for a typical trip of July 2022 (left), performance of the data-driven models on the trip (right). 

Fig. 8. The flowchart and method components of the proposed Decision Support 

System (DSS). 
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First, the input Layer of the DSS includes both prior, current, 

nd forecast information related to the specific trip for its DSS. 

hey serve as the interface and fed into the decision-making model 

s in Fig. 7 . 

• Reference route. It provides historical sailing waypoints (longi- 

tudes, latitudes, heading angles, etc.) similar to this trip, as well 

as speed Vg and fuel consumption. 
• MetOcean data. It is extracted from the weather forecasting 

database. Once the route coordinates are set, and the trip 

schedule is known the data is interpolated to match the po- 

sition and times. 
• An initial guess or prior of “pre-assumed” optimal opera- 

tion parameters. This optimization initialization guides the op- 

timizer into a search space that is most likely to contain sta- 

tionary points that allow for the reduction of fuel consumption. 

.1. Optimization framework in DSS 

The task of the proposed DSS is to find optimal control pa- 

ameters for a double-ended ferry’s operation, i.e., the engine 

oad and rotation speed of both stern and bow engines ξ = 

 Ls, Lb, ns, nb ] , respectively. These control parameters can be eas- 

ly set on the ferry’s bridge platform. For a specific trip, its actual 

peration is normally divided into several sailing legs. A ship’s op- 

rational control parameters are fixed along each sailing leg. Since 
5 
ouble-ended ferries are normally sailing as commuters of short 

istance/time, it is enough to treat an entire trip as a sailing leg. 

herefore, the proposed DSS for the double-ended ferry is to find 

ptimal values of those control parameters for the entire trip that 

an fulfil the following objective, i.e., to minimize fuel consump- 

ion, 

 

[
L ∗s , L 

∗
b , n 

∗
s , n 

∗
b 

]
= 

arg min 
L s ,L b ,n s ,n b 

(
f f uel 

)
for a fixed sailing time T s (3) 

here f fuel is the cost function of total fuel consumption along the 

iven trip. It can be computed by integration of the instantaneous 

uel consumption m s , m b from the above data-driven models as, 

f f uel = 

∫ T s 

0 

(
˙ m s + 

˙ m b 

)
dt = 

n ∑ 

i =1 

(
f s ( n s , n b , L s , L b , W i ) 

+ f b ( n s , n b , L s , L b , W i ) 
)
�T i (4) 

here �T i is the time interval of data collection, e.g., 1 min in this 

tudy. For the entire trip, the total sailing time of searching can- 

idate routes may differ from the initial prior/reference route even 

ssuming the same trajectory, while another optimization objective 

s to minimize the difference, 

 time = arg min 

L s ,L b ,n s ,n b 

(T opt 
s − T s ) , with T opt 

s = T s ·
V̄ 

re f 
g 

V̄ 

opt 
g 

= 

n ∑ 

i =1 

�T i . (5) 

To make the optimization process converge fast, the time objec- 

ive is treated as constraints allowing a relative tolerance range of 

q% . Together with the engine operation constraints, the full set 

f constraints for the optimization problem are defined as follows, 

 

 

 

 

 

0 ≤ L s,b ≤ L max 

0 ≤ n s,b ≤ n 

max ∣∣∣1 − T s 
T search 

s 

∣∣∣ = 

∣∣∣1 − V̄ search 
g 

V̄ re f 
g 

∣∣∣ ≤ q % 

(6) 

here the average speed from searching candidate routes V̄ search 
g 

an be estimated by the data-driven models in Eq. (2) . For the 

SS in this study, the tolerance of actual ETA is chosen as 5 %. 

o solve the above objective functions of three black-box models, 

radient-free optimization algorithms are needed. For example, the 

rid Search, a brute force algorithm (Feurer and Hutter, 2019), di- 

ides the searching domain into grids, then evaluates the objective 

unction and the constraints on each grid. This can be extremely 

low and computationally expensive. In this study, the Bayesian 
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Fig. 9. Samples of engine control settings (left), the scaled upper and lower boundaries to define proper L − n search space (right). 

Table 2 

Algorithm 1 - Determination of “prior” parameters for the BP model in Bayesian method . 

Algorithm 1 – Determination of “pre-assumed” optimal operation parameters 

1: Load the historical data. 

2: Specify the intended trip’s Direction and V g 
3: Split R p in k evenly distributed intervals between 0.4 and 1.0. 

4: Specify a tolerance value for �V g and �R p (e.g. 5 %) 

5: Filter the data by Direction and by V g ± �V g 
6: For each of the k-1 splits of R p apply an additional filter of R p ± �R p 
7: Compute the mode of f ( n b , L b , n s , L s ) and recor d the values of n b , L b , n s , L s 
8: Repeat 6 and 7 until all values are recorded. 

9: Remove any duplicate values for the quads n b , L b , n s , L s if existing. 
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ptimization is used to accelerate the optimization process. It is 

n iterative algorithm, and every iteration keeps track of the infor- 

ation from the previous evaluation to explore the search space 

 ( L, n ) allowing to convergence in a relatively low number of iter- 

tions (Nogueira, 2014). 

.2. Refinement of search space ξ

The searching space of the engine setpoints ζ (L,n) in the op- 

imization process is constraint to the area presented in Fig. 9 

ccording to their practical operations. First, the L - n band corre- 

ponding to the range 775 to 795 rpm Fig. 9 (left) was removed 

rom the dataset because of very little data and measurement 

oises. The reserved setpoints are scaled in the range [ 0 1 ] to de- 

ne the constraints in the nondimensional space. It shows that the 

ngine’s load could be modelled in terms of the engine speed. Sim- 

le piecewise polynomials are used to define the constraints, i.e., 

inima and maxima of L , as 

L max 
i ( n i ) = a 0 + a 1 · n i + a 2 · n 

2 
i 

+ a 3 · n 

3 
i 

L min 
i ( n i ) = b 0 + b 1 · n i + b 2 · n 

2 
i 

+ b 3 · n 

3 
i 

(7) 

here the coefficients a j , b j are estimated by using ordinary least 

quares. 

Furthermore, Fig. 5 indicates that there is a trend towards 

igher use of the stern engine on the operation probably mainly 

or ETA purposes. To account for this effect the search space is fur- 

her refined. This serves to further guide the optimization process 

nto a space of control inputs for fast convergence and allowing 

or real-time planning. The optimal operation setpoints are also ex- 
6 
ected to locate in the reduced search space given by, 

 stern = [ 0 . 45 , 1 ] L stern = [ 0 . 45 , 1 ] 

 bow 

= [ 0 , 0 . 55 ] L bow 

= [ 0 . 45 , 1 ] (8) 

.3. Bayesian optimization ingredients 

The above cost function is not particularly difficult to eval- 

ate but determining its minimum/optimal objective value can 

e tricky. In the Bayesian optimization algorithm of the DSS, 

he Gaussian Process (GP) model is chosen to describe the prior 

robability model, also called surrogate model to approximate 

he objective function. And the prior samples are selected from 

he ferry’s previous navigations by the Algorithm 1 presented in 

able 2 , based on the target trip’s pre-defined sailing characteris- 

ics from the input layer. Let the selected k trips denote by D k =
 ξ1 , f fuel 1 ) , . . . , ( ξk , f fuelk ) . In this study, the Matern kernel is used

o describe the covariance function �k ×k of the GP model, 

i, j = Cov 
(
ξi , ξ j 

)
= σ 2 2 

1 −v 


( v ) 

(√ 

2 v 
ξi − ξ j 

ρ

)v 

K v 

(√ 

2 v 
ξi − ξ j 

ρ

)
, 

(9) 

here 
(−) is a gamma function, K v (−) is a Bessel function, 

 = 2 . 5 in this study, and other parameters can be regressed from

he data samples D k . For any new input control parameter ξk +1 , 

he GP surrogate model can give us the predictive distribution of 

f f uel ( ξk +1 ) , i.e., normal distribution as, 

f fuel 

(
ξk +1 

) | D k ∼ N 

(
μ

(
ξk +1 

)
, σ 2 

(
ξk +1 

))
, (10) 
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Table 3 

verification of DSS for historical trips based on performance simulations. 

Direction Trip case no. Measurements Optimization Change 

M f uel (l) R p M 

∗
f uel 

(l) R ∗p V g (%) 

Westbound W1 2021–10–14 19:30 45.12 0.472 25.45 0.898 + 1.44 % 

W2 2021–07–05 08:10 40.08 0.549 25.21 0.947 + 0.40 % 

W3 2021–10–23 19:45 39.78 0.480 35.62 0.523 + 0.07 % 

Eastbound E1 2021–05–26 08:45 33.48 0.565 28.47 0.684 + 1.39 % 

E2 2021–09–06 14:50 31.93 0.649 23.11 0.958 + 1.8 % 

E3 2021–08–06 10:45 29.11 0.535 18.73 0.624 + 0.44 % 
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ith the following mean and variance, 

μ
(
ξk +1 

)
= �

(
ξk +1 , ξ1 , ... ,k 

)
�−1 

k ×k 
f f uel 

(
ξk +1 

)
2 
(
ξk +1 

)
= 1 − �

(
ξk +1 , ξ1 , ... ,k 

)
�−1 

k ×k 
�

(
ξk +1 , ξ1 , ... ,k 

)T 
(11) 

here �( ξk +1 , ξ1 , ... ,k ) = [ Cov ( ξk +1 , ξ1 ) , Cov ( ξk +1 , ξ2 ) , . . . , Cov ( ξk +1 ,

k ) ] . To find the next iteration operational set-points ξ ∗
k +1 

in the 

earch space D , an acquisition function is needed in the optimiza- 

ion. In this study, the Negative Lower Confidence Bound (NLCB) 

ased on the famous upper confidence bound bandit strategy is 

dopted as, 

∗
k +1 = argma x ξk +1 

u 

(
ξk +1 

)
= argma x ξk +1 

(
μ

(
ξk +1 

)
− β · σ

(
ξk +1 

))
, 

(12) 

here the hyperparameter is defined as β = 2 . 576 corresponding 

o 99 % Type equation here . confidence interval, which is used to 

alance the trade-off between exploration and exploitation. 

After finding the next iteration set-points ξ ∗
k +1 

, the data-driven 

odels Eq. (2) estimate the objective function. The new sample 

 ξ ∗
k +1 

, f fuel ( ξ
∗
k +1 

) ) together with previous samples to form the new 

rior sample space as D k +1 . Finally, the entire process will repeat 

ntil it converges to the optimal solutions. 

. Results of DSS for the double-ended ferry 

Both ship performance simulation-based verification and full- 

cale test results are carried out to evaluate the effectiveness of 

he DSS for the case study double-ended ferry. In the simulation- 

ased verification, 3 westbound and 3 eastbound trips are cho- 

en randomly, and they are expected to represent overall operation 

ases observed in the dataset. In addition, full-scale tests were per- 

ormed onboard this ferry for about 3 days, where some trips were 

uided by the DSS and some were not by intention. 

.1. Verification of DSS for historical trips on ship performance 

imulations 

When applied the DSS for the 6 chosen representative trips, 

heir sailing route (trajectory, average speed and ETA) are assumed 

o be the same as the measurements. In addition to the trip related 

nputs fixed as the measurement, the surrounding ocean environ- 

ent along the trip may differ slightly depending on the speed 

rofile along the trip from the optimization process. Finally, the 

ecision-making optimizer finds the most proper control inputs 

f ns, nb, Ls, Lb, which are recognized as the optimal operation 

or this trip based on the DSS ensuring the same ETA. Since the 

ayesian optimization in the DSS will require huge amounts of it- 

rations to get “exact” ETA as measured, 2 % tolerance of average 

peed differ is set to assume the same ETA. 

The overall results and their improvement of fuel saving by im- 

lementing this DSS are presented in Table 3 . It can be observed 

hat significant fuel savings can be achieved by the DSS with lit- 

le discrepancy of ETA (average speed) for all the simulated trips. 

he main reasons of the fuel saving can be contributed by trying 
7 
o push the propulsion power to the stern engine as much as pos- 

ible. The smallest fuel saving is for the westbound W3 trip. It is 

ecause it is not enough to ensure ETA by only using the stern 

ngine, a lot of propulsive power must also be required from the 

ow engine. More equally distributed allocation of bow and stern 

ngine, i.e., Rp, can be also observed frequently in eastbound trips, 

ecause they were normally running fast to catch up road trans- 

ort for people onboard. The optimizer in the DSS tried to put 

ower on both engines. But due to wind and ocean currents of- 

en blow from the west to the east, their total fuel consumption 

s normally lower than westbound trips. To give some details of 

he Bayesian optimization in the DSS, one westbound trip W1 and 

ne eastbound trip E2 are chosen to be presented regarding their 

peration along the trip. 

.1.1. A westbound trip 

First, to show the performance simulation using the data-driven 

odels can reflect the actual characteristics of the ferry’s perfor- 

ance, the speed profile, fuel consumption at bow and stern en- 

ines along the trip are estimated by the established data-driven 

odels. Their results are presented in Fig. 10 (left), which shows 

hat the data-driven models can properly model the ferry perfor- 

ance for this trip. Then, those data-driven models can be used in 

SS for control inputs setting. Relevant results of speed and engine 

uel consumptions after the optimization in DSS are presented in 

he right plot. The optimized trip has less than 2 % change in their 

arget average speed respect to the original ETA. Higher tolerance 

ay be beneficial to have even better ETA but take long time to 

each convergence. This parameter can be manually set. The DSS 

an lead to 43 % fuel reduction compared to the original trip. 

The optimal set-points of nb, Lb, ns, Ls , are presented in Fig.11 .

he optimal condition shows that the power demand is increased 

n the stern engine and greatly reduced on the bow engine. Under 

hese new setpoints the ship that originally sailed at an average 

peed of 9.43 knots now sails 9.57 knots or a 1.43 % increase in 

peed and a similar reduction in ETA. The optimum set point real- 

ocates the load and speed between engines to increase the overall 

rip’s efficiency. 

.1.2. An eastbound trip 

Similar results can be observed on the eastbound trip E2 as 

n Fig. 12 , which presents only the optimized performance (left) 

nd engine settings (right), because the data-driven models have 

een validated enough by previous sections. The trip again shows 

 drastic reduction in nb, Lb with a consequent increase in ns, Ls 

he trip has an increase in speed of 1.8 % going from an original 

peed of 9.82 knots to 10.0 knots in average. 

It should be noted that these results might be a bit overopti- 

istic from the simulation. For example, a ferry may be difficult 

o always keep constant engine settings along the entire trip, even 

hough this constant power settings have been reported by many 

esearchers of highest energy efficiency. In the following, the DSS 

ptimized engine settings will be given to ferry operators, who will 
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Fig. 10. Prediction of the operation performance by the XGBoost data-driven models using the original trip set-points (left), the corresponding results after the trip opti- 

mization in DSS (right) for the trip W1. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 11. Optimal setpoints for the trip W1 estimated by the proposed DSS. 
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ry to follow the guided setting as close as possible for their full- 

cale experiments/operations. 

.2. Full-scale test results for actual ferry operations 

The full-scale tests were conducted between August 19 and 

ugust 22 of 2022 onboard the ferry to infer the effects of sim- 

le power allocation on fuel consumption. The experiment was 

esigned so that the ferry was operated by either the captain or 

he 1st Mate every other round trip. The captain was instructed 

efore the experiment to operate the ferry by allocating most of 

he power at all times on the stern thruster. The 1st Mate was 
8 
naware of the experiment and was expected to operate with 

 normal power allocation. Round trips were initiated at 1–2 h 

ntervals to ensure that the captain and the 1st Mate encountered 

onditions as consistently as possible during the experiments, 

articularly concerning weather and traffic scenarios. Fig. 13 

llustrates the fuel consumption throughout the entire voyage as 

 function of R p , and Fig. 14 presents the accuracy of data-driven 

odels to predict the ferry’s operational performance, i.e., speed, 

uel consumption at both engines. The observed trend aligns 

ith that from previous data analysis. To have a fair comparison, 

ome trips were filtered out if their mean speed (ETA) differs 

ignificantly from normal operations. Fig. 13 (right) indicates the 
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Fig. 12. Optimized speed and two engine performance (left), and optimal setpoints (right) for the chosen eastbound trip EW1 estimated by the proposed DSS. 

Fig. 13. Total fuel consumption vs power allocation R p for different trips, all test trips without filtering (left), filtering of trips based on speed/ETA difference (right). 

Fig. 14. Forecasting of the XGBoost data-driven models on the full-scale test data. 

9
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Table 4 

Summary of the full-scale test results. 

Operator Period Number of 

valid trips 

V g (knots) R p M f uel 

1st Mate Reference 10 9.3 0.7 57 

Captain Reference 10 9.3 0.8 53 

1st Mate Experiment 10 9.4 0.7 55 

Captain Experiment 10 9.5 1.0 45 
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[

umber of trips filtered out due to their either too high or too 

ow speeds. After filtering 10 trips for each operation modes (i.e., 

aptain vs 1st Mate) are considered for the analysis. 

A reference period, preceding the experimental phase, was 

igorously analysed to discern any disparities in the operational 

xperiences of the captain and the 1st Mate prior to the experi- 

ent. During this reference period, the captain and the 1st Mate 

lternated in operating the ship every subsequent round trip, 

dhering to an identical schedule as that of the experimental 

hase. Table 4 encapsulates the comparative analysis of round 

rips managed by the captain and the 1st Mate across both the 

eference and experimental periods. Remarkably, the captain 

xhibited a consistently reduced fuel consumption relative to 

he 1st Mate across both intervals. Notwithstanding the captain’s 

arginally elevated aft thruster utilization before the experiment 

0.8 in contrast to 0.7), alternative factors might contribute to the 

aptain’s diminished consumption, including superior expertise 

nd adeptness in ship operation. Intriguingly, the disparity in 

onsumption was considerably accentuated during the experiment 

18 %) as opposed to the reference period (8 %). Prior to the 

xperimental phase, the captain’s aft thruster utilization was 

easured at R p = 0.8, which escalated to an exclusive use ( R p = 1.0)

uring the experiment. This suggests that a minimum of 10 % 

rom the total 18 % reduction can be attributed to the augmented 

ft thruster utilization. The residual variance in fuel consumption 

etween the captain and mate during the experiment (8 %) might 

manate from other operational optimization avenues, warranting 

omprehensive investigations beyond the purview of this study. 

. Conclusion 

This study provides with a Decision Support System that allows 

or a better operation of double-ended ferries. It provides with a 

ethod to optimize the control inputs of a double ended ferry 

o minimize fuel consumption. The operation was simplified to a 

onstant engine’s speed and load. The DSS combines data-driven 

odels, which are established to predict the ship’s speed and fuel 

onsumption at both bow and stern engines, and the Bayesian op- 

imization algorithm. In the Bayesian optimization method, similar 

rips to the planning trip are chosen to get the prior model. Fur- 

hermore, some practical operational constraints are also derived 

rom data analysis to refine the searching space of the Bayesian 

ptimizer. Both example trips from both the original dataset and 

ctual full-scale tests are performed to verify the optimal engine 

etting obtained by the proposed DSS. 

For the historical example trips, the data-driven models are 

sed to simulate a ship’s performance, such as speed and fuel con- 

umptions. First, the data-driven models give perfect prediction of 

uel consumption at both engines. The prediction of ship speed is 

lso good enough for the application of DSS. The optimized solu- 

ions show that a reduction of fuel consumption of up to 40 % in

omparison with the historical/original operations in the dataset, 

s well as less than 2 % error in the ETA. For the full-scale tests,

he DSS guided stern power allocation contributes to about 18 % 

verage fuel savings. Finally, it is concluded that allocating more 

ower in the stern engine can help to reduce fuel consumption 
10 
f double-ended ferries. The precise optimal power allocation be- 

ween bow and stern engine also depends on the target ETA and 

ngine capacity. It can be obtained by the proposed Decision Sup- 

ort System, which also relies on good performance input models 

or a general double-ended ferry. 
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