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Abstract—Integrated sensing and communications (ISAC) is
envisioned as one of the key enablers of next-generation wire-
less systems, offering improved hardware, spectral, and energy
efficiencies. In this paper, we consider an ISAC transceiver with
an impaired uniform linear array that performs single-target
detection and position estimation, and multiple-input single-
output communications. A differentiable model-based learning
approach is considered, which optimizes both the transmitter and
the sensing receiver in an end-to-end manner. An unsupervised
loss function that enables impairment compensation without
the need for labeled data is proposed. Semi-supervised learning
strategies are also proposed, which use a combination of small
amounts of labeled data and unlabeled data. Our results show
that semi-supervised learning can achieve similar performance
to supervised learning with 98.8% less required labeled data.

Index Terms—Hardware impairments, integrated sensing and
communication, joint radar and communication, model-based
learning, semi-supervised learning.

I. INTRODUCTION

Integrated sensing and communication (ISAC) refers to
the combination of sensing and communication resources to
improve the efficiency or performance of a system, or to endow
a system with new functionalities. In ISAC systems, commu-
nication and sensing tasks share the same spectrum, hardware,
or signal processing algorithms, which enhances hardware,
spectral or energy efficiency [1]. Emerging technologies such
as digital twins, activity recognition, and extended reality are
largely driven by ISAC [2]–[4], placing it as one of the key
enablers of next-generation wireless systems.

ISAC designs have largely relied on model-based signal
processing algorithms, which offer performance guarantees,
explainability, and predictable computational complexity [5]–
[10]. However, under unexpected hardware impairments such
as antenna distortions, sampling jitter, or miscalibration er-
rors [11]–[13], model-based algorithms can severely degrade
in performance. With the advent of deep neural networks
(DNNs), hardware impairments and mismatched models have
been recently tackled by deep learning (DL), which in the
context of ISAC can be categorized in: (i) single-component
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Fig. 1: Considered ISAC scenario. An impaired ISAC transceiver senses a
single target in the environment while communicating with a device in another
location. The transceiver is assumed to have some prior knowledge about the
approximate location of the target and the communication receiver.

DL, where a DNN is optimized to perform transmit or re-
ceive operations individually [14]–[16], and (ii) end-to-end
DL, where both tasks are implemented as DNNs, forming
an autoencoder (AE) architecture [17], and jointly optimized
[18], [19]. DNNs are essentially black boxes, limiting the
interpretability of the learned function. Moreover, they usually
require large amounts of labeled training data.

A way to overcome the limited interpretability of DNNs
is to follow the model-based machine learning (MB-ML)
paradigm [20], whereby existing models from signal process-
ing are used to initialize, structure, and train learning methods.
Furthermore, since MB-ML relies on problem-specific archi-
tectures, it generally requires less labeled data than model-
agnostic DNNs. Recently, MB-ML has been applied in several
communication [21]–[23], sensing [24], [25], and ISAC [26]
scenarios. Nevertheless, previous MB-ML approaches [21]–
[26] rely on labeled data to train the MB-ML models, which
can be hard or time-consuming to acquire in sensing envi-
ronments, especially for automotive sensing. Further reducing
the need of labeled data is possible through semi-supervised
learning (SSL) or unsupervised learning (UL). UL performs
learning just based on the observed (unlabeled) data, while
SSL combines a limited amount of labeled data with unlabeled
data [27]. Merging both MB-ML and UL approaches has been
applied in the context of channel estimation for communica-
tions [28], [29]. However, the use of unlabeled data in MB-ML
for ISAC remains unexplored. This topic deserves particular
attention, since labeled data in sensing environments involves



acquiring the ground-truth position of all targets in the scene
through external sensors (e.g., cameras or global navigation
satellite system), which might become a challenging task.

In this paper, we propose a novel approach that enables
UL and SSL in an ISAC scenario. We consider a monos-
tatic multiple-input multiple-output (MIMO) radar to perform
single-target estimation and a multiple-input single-output
(MISO) communication link, as shown in Fig. 1. This is a
special case of the multi-target estimation scenario recently
studied in [26]. Compared to [26] and other end-to-end learn-
ing works on ISAC [18], [19], the main novelty of this work is
the use of unlabeled data to reduce the acquisition of labeled
data, while maintaining performance similar to the fully-
supervised case. We propose a corresponding unsupervised
loss function and perform a comprehensive study comparing:
(i) a model-aware baseline that involves no learning, (ii)
supervised learning (SL), (iii) UL, and (iv) SSL with different
degrees of labeled data.

II. SYSTEM MODEL

This section provides the mathematical description of the
ISAC transmitted signal, the received signals at the sensing
and communication ends, and the hardware impairments. A
block diagram of the system model is depicted in Fig. 2.

A. Single-Target Sensing Model

We consider an ISAC transceiver, equipped with a uniform
linear array (ULA) of K antenna elements, which sends
orthogonal frequency-division multiplexing (OFDM) signals
with S subcarriers and a subcarrier spacing of ∆f Hz. The
ISAC transceiver senses a single target in the environment,
with an appearance probability distributed as p(t = 0) = p(t =
1) = 1/2. The backscattered signal at the sensing receiver
Yr ∈ CK×S can be expressed in the spatial-frequency domain
[30]–[32] as

Yr =

{
1/
√
Sψarx(θ)a

⊤
tx(θ)f [x(m)⊙ ρ(τ)]⊤ +W , t = 1

W , t = 0
,

(1)

which represents a binary hypothesis testing problem. In (1),
ψ ∼ CN (0, σ2

r) denotes the complex normal channel gain
according to the Swerling-1 target model, with σ2

r representing
path attenuation and radar cross section effects. The steering
vectors of the receive and transmit ULA are represented
by arx,atx ∈ CK , respectively. In the absence of hard-
ware impairments, [arx(θ)]k = [atx(θ)]k = exp(−ȷ2π(k −
(K − 1)/2)d sin(θ)/λ), k = 0, ...,K − 1, with d = λ/2,
λ = c/fc, where c is the speed of light in vacuum and fc
is the carrier frequency. The energy of the transmit ULA
is steered by the precoder f ∈ CK . The communication
messages m ∈ MS are conveyed in x(m) ∈ CS , where
each message is uniformly drawn from the set M. The range
of the target induces a phase shift in the received OFDM
signal across subcarriers, which is expressed in ρ(τ) ∈ CS ,
such that [ρ(τ)]s = exp(−j2πs∆fτ), s = 0, ..., S − 1, and
where τ = 2R/c represents the round-trip time of a target

R meters away from the transmitter. The target angle and
range are uniformly distributed as θ ∼ U [θmin, θmax], and
R ∼ U [Rmin, Rmax], respectively. The receiver noise is repre-
sented by W , with vec(W ) ∼ N (0, N0IKS). The integrated
sensing signal-to-noise ratio (SNR) across K antenna elements
is SNRr = Kσ2

r/N0.
The transmitter and the co-located receiver are assumed

to have a coarse estimate of the target position, i.e.,
{θmin, θmax, Rmin, Rmax} are known to the ISAC transceiver.
The goals of the receiver are: (i) minimize the probability of
misdetection and false alarm of the target Pmd = p(t̂ = 0|t =
1), Pfa = p(t̂ = 1|t = 0), respectively, where t̂ is the estimate
of the target presence, and (ii) minimize the position root mean
squared error (RMSE),

√
∥p− p̂∥2, where the target position

is computed from its angle and range as

p =
[
R cos (θ) R sin (θ)

]⊤
, (2)

and p̂ is the estimated position.

B. MISO Communication Model
A single-antenna-element user equipment (UE) is assumed

to always receive the communication signal emitted by the
ISAC transceiver. The received signal yc ∈ CS by the UE is
formulated in the frequency domain as [33]

yc = [x(m)⊙ β]f⊤atx(φ) + n, (3)

with β = F [β0, ..., βL−1, 0, ..., 0], where F ∈ CS×S is the
unitary discrete Fourier transform (DFT) matrix, and L is
the number of channel taps. Each channel tap is distributed
according to βl ∼ CN (0, σ2

l ). The angle of the UE is dis-
tributed as φ ∼ U [φmin, φmax]. The communication receiver
noise follows n ∼ CN (0, N0IS). The average communication
SNR across subcarriers is SNRc =

∑L
l=1 σ

2
l /(SN0). The

ISAC transceiver is also considered to know {φmin, φmax}.
The goal of the UE is to minimize the symbol error rate (SER),
p([m̂]s ̸= [m]s), with [m̂]s the estimated symbol of the s-th
subcarrier. To this end, the UE is fed with the channel state
information (CSI) κ = βf⊤atx(φ).

C. ISAC Transmitter
To study the achievable ISAC trade-offs of the considered

system, we design a flexible sensing-communication beam-
former f ∈ CK , based on a sensing precoder fr ∈ CK , and a
communication precoder fc ∈ CK , following the multi-beam
approach of [34] as

f(η, ϕ) =

√
ηfr +

√
1− ηeȷϕfc

∥√ηfr +
√
1− ηeȷϕfc∥

, (4)

where η ∈ [0, 1] is the ISAC trade-off parameter, and ϕ ∈
[0, 2π) is a phase ensuring coherency between multiple beams.
By varying η and ϕ, the ISAC trade-offs are explored. The
sensing precoder fr points to the angular sector of the target,
[θmin, θmax], whereas the communication precoder fc points
to the angular sector of the UE, [φmin, φmax]. Secs. III-A and
IV-A detail how the baseline and MB-ML design the precoder
for an angular sector, respectively. This operation is identically
applied to obtain fr and fc, as depicted in Fig. 2.
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Fig. 2: Block diagram of the ISAC system model. The colored blocks can be implemented following the baseline of Sec. III, or model-based learning of
Sec. IV. The precoding block applies the same mapping function for sensing and communication. Note that the sensing estimator is co-located with the ISAC
transmitter.

D. Hardware Impairments
As represented in Fig. 1, we consider antenna impairments

in the ULA of the ISAC transceiver, which affect the steering
vector models in (1) and (3). Impairments in the antenna
array include mutual coupling, array gain errors, or antenna
displacement errors, among others [35]. Following the impair-
ment models of [36], our steering vector model is conditioned
on an unknown perturbation vector d, where the meaning and
dimensionality of d depend on the type of impairment. We
thus write the perturbed steering vector model as apert(θ;d).

III. BASELINE

This section describes the baseline algorithms to obtain the
transmit ISAC precoder, and to process the received sensing
and communication signals. The baseline is rooted in model-
based benchmarks, which assume perfect knowledge of the
system model of Sec. II. The description of the baseline is
included since MB-ML in Sec. IV uses a variation of the
algorithms described here. The baseline is later compared with
MB-ML in Sec. V.

A. Beamformer
We first design a precoder that points towards a given

angular sector, which yields the individual sensing (fr) and
communication (fc) precoders to be later combined in (4). We
resort to the beampattern synthesis approach in [37], [38], as
follows: define a uniform angular grid covering [−π/2, π/2]
with Nθ grid locations {ϑi}Nθ

i=1. Given an angular interval
ϑinterval = [ϑmin, ϑmax], we denote by b ∈ CNθ the desired
beampattern over the defined angular grid, which follows

[b]i =

{
K, if ϑi ∈ ϑinterval

0, otherwise.
(5)

The beampattern synthesis problem can then be formulated as
min
fbs

∥b − A⊤
txfbs∥22, where Atx = [atx(ϑ1) . . . atx(ϑNθ

)] ∈

CK×Nθ denotes the transmit steering matrix evaluated at the
grid locations. This least squares (LS) problem has a simple
closed-form solution

fbs = (A∗
txA

⊤
tx)

−1A∗
txb. (6)

Depending on the input angular interval, we obtain fr or fc

as the result of (6), as depicted in Fig. 2.

B. Sensing Receiver

In the considered monostatic sensing setup, the receiver has
access to communication data x(m), which enables removing
its impact on the received signal (1) via reciprocal filtering
[39], [40]

Ỹr = Yr ⊘ 1x⊤(m) =

{
αarx(θ)ρ

⊤(τ) +N , t = 1

N , t = 0,

(7)

where α = a⊤
tx(θ)fψ/

√
S and N = W ⊘ 1x⊤(m).

The radar detection problem in (7) involves random param-
eters α, θ and τ . Hence, we resort to the maximum a-posteriori
(MAP) ratio test (MAPRT) detector [41] as our detector bench-
mark, which takes into account the prior information on α, θ
and τ . Let H0 and H1 denote the absence and the presence of
a target, respectively, in (7). Then, the corresponding MAPRT
is given by [41]

Λ(Ỹr) =
maxα,θ,τ p(α, θ, τ,H1 | Ỹr)

p(H0 | Ỹr)

H1

≷
H0

η . (8)

We assume that p(H0) = p(H1) = 1/2 and x(m)
are PSK symbols1, keeping noise statistics the same, i.e.,
vec(N) ∼ N (0, N0IKS). Following similar steps to those
in [18, App. A], (8) becomes∣∣aH

rx(θ̂)Ỹrρ
∗(τ̂)

∣∣ H1

≷
H0

η , (9)

where η is the detection threshold that can be determined based
on a preset false alarm probability [42, Ch. 7] and

(θ̂, τ̂) = arg max
θ∈[θmin,θmax]
τ∈[τmin,τmax]

∣∣aH
rx(θ)Ỹrρ

∗(τ)
∣∣ . (10)

Here, τmin = 2Rmin/c and τmax = 2Rmax/c.

C. Communication Receiver

Assuming that the UE receives the CSI κ = βf⊤atx(φ) as
shown in Fig. 2, we perform maximum likelihood estimation
of the communication symbols as in [26], [43].

1It can be readily shown that the same detector in (9) is obtained also for
arbitrary constellations by following [18, App. A].



IV. MODEL-BASED LEARNING

The goal of MB-ML is to perform successful target de-
tection and position estimation (according to the performance
metrics defined in Sec. II), while simultaneously learning the
perturbation vector d of the steering vector apert(θ;d). This
section describes the details of the beamforming and sensing
estimation algorithms tailored to MB-ML, which are largely
rooted in the baseline operations introduced in Sec. III. We
perform end-to-end learning of both transmitter and receiver,
as shown in Fig. 2. The MB-ML method considered in this
paper is a special case of the multi-target approach proposed
in [26, Sec. IV], applied to a single sensing target. We also
describe the supervised and unsupervised loss functions to
perform SL, UL, and SSL of the MB-ML model.

A. Beamformer

MB-ML beamforming performs the same operations as (5)
and (6). However, the transmit steering matrix Atx involves
perfect knowledge of the steering vector model and hence the
perturbation vector d. To compensate for unknown antenna
impairments, MB-ML instead constructs a new steering matrix
Apert(d) = [apert(θ1;d) . . . apert(θNθ

;d)], which is used
in (6) to obtain a sensing precoder fr, or a communication
precoder fc.

B. Sensing Receiver

As a first step, MB-ML removes the effect of the com-
munication symbols in the received signal following (7).
However, MB-ML cannot directly apply the same operations
(9)-(10) as the baseline sensing receiver of Sec. III-B. The
nondifferentiability of the argmax operation in (10) impedes
gradient flow during backpropagation. Algorithm 1 describes
the operations performed in the MB-ML sensing estimator,
where [A]n:m,l:p denotes the submatrix of A covering from
the n-th to the m-th row and from the l-th to the p-th column
of A. The main differences with the receiver baseline are:

1) Select a window of elements around the maximum
of the angle-delay map: We leverage on the angle
and range resolution of the sensing system to select the
elements of the angle-delay map that correspond to the
target. The angle and range resolutions in our case are

∆θ[rad] ≈ 2

K
, ∆R[m] ≈ c

2S∆f
. (11)

The number of elements to select in the angle-delay map
is then given by

δθ =

⌊
∆θNθ

θmax − θmin

⌋
, δR =

⌊
∆RNτ

Rmax −Rmin

⌋
. (12)

Invalid elements in the selected window, e.g., negative
rows or columns, are discarded. This approach is es-
pecially useful in a multi-target scenario, which was
implemented in [26]. Moreover, this approach is similar
to hard thresholding techniques, in which selecting a
subset of elements from the data makes learning faster
[28].

Algorithm 1 Model-based learning sensing estimation.

1: Input: Observation Ỹr in (7), grid vectors {θi}Nθ
i=1 and

{τi}Nτ
i=1, discrete angle and range resolutions δθ, δR in

(12), perturbed impairment vector d, detection threshold
η.

2: Output: Estimate of the target presence t̂ and its position,
p̂, if applicable.

3: Construct the dictionaries

Φpert = [apert(θ1;d) . . . apert(θNθ
;d)], (13)

Φd = [ρ(τ1) . . . ρ(τNτ
)]. (14)

4: Compute the angle-delay map

L(Ỹr) =
∣∣ΦH

pertỸrΦ
∗
d

∣∣. (15)

5: if maxi,j [L(Ỹr)]i,j > η

6: Matrix element that maximizes the angle-delay map:

(̂i, ĵ) = argmax
i,j

[L(Ỹr)]i,j . (16)

7: Select δθ rows and δR columns around (̂i, ĵ):

L = [L(Ỹr)]̂i−δθ :̂i+δθ,ĵ−δR:ĵ+δR
. (17)

8: Apply softmax: Lsoft = Softmax(L).
9: Angle-delay estimation by weighted average:

θ̂ =

2δθ+1∑
n=1

θn+î−δθ−1

2δR+1∑
m=1

[Lsoft]n,m , (18)

R̂ =

2δR+1∑
m=1

Rm+ĵ−δR−1

2δθ+1∑
n=1

[Lsoft]n,m . (19)

10: p̂← [R̂ cos(θ̂) R̂ sin(θ̂)]⊤.
11: t̂← 1.
12: else
13: t̂← 0. ▷ No position is estimated.

2) Softmax operation: We apply the softmax operator
to the selected elements in the angle-delay map. This
differentiable operation allows to obtain an estimate of
the probability that each element in the angle-delay map
corresponds to the target. From this probability matrix,
we can estimate the position of the target by a weighted
average of considered angles and ranges, as described in
Algorithm 1.

Note that although we perform a nondifferentiable operation
in (16), the result is only used to slice the angle-delay map
L(Ỹr), performing differentiable operations from that point
on.

C. Loss Functions

One of the goals introduced in Sec. I is to perform a
comparison between SL, UL, and SSL. Here we introduce
the corresponding supervised and unsupervised loss functions,
which leverage labeled and unlabeled data, respectively.



1) Supervised Loss Function: For SL, the labeled data con-
tains the true position of a present target in the environment.
The MB-ML model is then trained based on the mean squared
error (MSE) loss between the true and estimated positions, as

JSL = E
[
∥p− p̂∥2

]
. (20)

2) Unsupervised Loss Function: Inspired by the baseline
sensing receiver, the operation in (10) accounts for the fact
that at the true target position, the steering vector model
is matched to the received signal, maximizing the angle-
delay map. Nevertheless, under a mismatched steering vector
model, the angle-delay map is no longer maximized. Hence,
we propose to use as unsupervised training loss the negative
maximum of the angle-delay map of the received signal, i.e.,

JUL = −max
i,j

[L(Ỹr)]i,j . (21)

Minimizing (21) ensures convergence of the perturbation vec-
tor d to its true value by seeking optimal phase alignment with
the ULA steering vector in (15).

3) Semi-supervised Learning: We perform SSL in a se-
quential manner, i.e., we first perform SL or UL, and then
switch to the other. The order of SSL is investigated in Sec. V,
where we also explore how the performance of SSL evolves
as a function of the amount of labeled data.

V. RESULTS

This section describes the simulation parameters and the
results2, comparing (i) the baseline of Sec. III, (ii) SL relying
on labeled data, (iii) UL, where no labeled data is utilized,
and (iv) SSL, which uses a mix of labeled and unlabeled data.

A. Simulation Parameters

We consider a ULA composed of K = 64 antenna el-
ements. The OFDM signal includes S = 256 subcarriers,
with a subcarrier spacing of ∆f = 120 kHz, and a carrier
frequency of fc = 60 GHz. The cardinality of the set of
messages is |M| = 4, and the communication encoder is
set as a quadrature phase shift keying (QPSK) modulator.
The number of channel taps in the communication channel
is set to L = 5 taps, with an exponential power delay
profile, i.e., σ2

l = exp (−l), l = 0, ..., L − 1. The channel
taps are normalized to give a certain communication SNR.
The sensing and communication SNRs are SNRr = 15 dB
and SNRc = 20 dB, respectively. We adopt the impair-
ment model of [18], i.e., we consider inter-antenna spacing
impairments, such that d ∼ CN ((λ/2)1, σ2

λIK), and the
perturbed steering vector model becomes [apert(θ;d)]k =
exp(−ȷ2π(k−(K−1)/2)[d]k sin(θ)/λ). We select a standard
deviation of σλ = λ/25 = 0.2 mm. The initial perturbation
vector for MB-ML is d = (λ/2)1.

We train MB-ML for a wide variety of target angular
sectors, i.e., we randomly draw {θmin, θmax} in each trans-
mission as in [26]. We consider θmean ∼ U [−60◦, 60◦] and

2Source code to reproduce all numerical results in this paper is available
at github.com/josemateosramos/SSLISAC.

θspan ∼ U [10◦, 20◦], from which we compute {θmin, θmax} =
{θmean − θspan/2, θmean + θspan/2}. Conversely, the target
range sector is fixed for all transmissions as [Rmin, Rmax] =
[0, 200] m. The communication angular sector is set to
[φmin, φmax] = [30◦, 50◦]. To construct the angle and range
dictionaries Φpert and Φd for MB-ML, we consider a grid
of angles {θi}Nθ

i=1 covering [−π/2, π/2] and a grid of delays
{τi}Nτ

i=1 covering the range interval [0, 200] m, which are also
used to compute the discrete angle and range resolutions in
(12). The grid size for angle and range are Nθ = 720 and
Nτ = 200, respectively. We use the Adam optimizer [44]. To
tune the hyperparameters of SL and UL, we tested learning
rates ranging from 10−8 to 10−7 with an increment of 10−8,
batch sizes of 3000 and 4500 samples, and we reduced the
learning rate when the loss function plateaued3. The best
performance was obtained with a learning rate of 4 · 10−7

for SL and 5 · 10−7 for UL, along with a batch size of
3000 samples. Additionally, we observed that for SL, reducing
the learning rate to 4 · 10−8 after 50,000 iterations yielded
better results. To test the sensing performance, we fixed the
angular sector to [θmin, θmax] = [−40◦,−20◦], although the
conclusions of the upcoming sections also apply to other
testing angular sectors. The ISAC precoder of (4) is computed
by varying ρ and ϕ in the intervals [0, 1] and [0, 14π/8],
respectively, with 8 grid points each.

B. Sensing Results

In the following, we use misdetection probability to assess
sensing performance, although it was verified that the same
conclusions hold when applying position RMSE as a perfor-
mance metric. Fig. 3 shows the misdetection probability Pmd

as a function of the number of training iterations for a fixed
false alarm probability of Pfa = 10−2, where the threshold
η in (9) to yield a fixed Pfa was found empirically. We
maintain a consistent batch size across all learning approaches
to ensure a fair comparison. The performance of the baseline
(which does not require any training) is shown as a reference.
Fig. 3 (top) shows that UL initially converges faster than SL,
but SL outperforms UL after around 20,000 iterations and
achieves better final performance due to the use of ground-
truth information. Fig. 3 (bottom) compares SL with two SSL
approaches: (i) starting with SL and switching to UL (SL+UL),
and (ii) starting with UL and switching to SL (UL+SL).
In both cases, the same total number of iterations as SL is
used. The results indicate that starting with SL achieves better
performance than starting with UL. Hence, from now on, we
assume that SSL first applies SL followed by UL.

Fig. 3 suggests that SSL with 1,000 SL iterations attains
a comparable performance to fully SL, which is further
investigated in the following. Fig. 4 shows Pmd as a function
of the labeled data ratio, defined as the proportion of labeled
data to the total amount of data. SL, by definition, only uses
labeled data and therefore has a ratio of 1 (a dashed line is

3Higher learning rates induce divergence of the loss function since the true
inter-antenna spacing d is in the order of λ/2.
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Fig. 3: Misdetection probability as a function of the number of training
iterations, under hardware impairments. The false alarm probability was fixed
to Pfa = 10−2. In the baseline case, there is no training procedure. SSL:
semi-supervised learning.
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Fig. 4: Misdetection probability as a function of the labeled data ratio. The
false alarm probability was fixed to Pfa = 10−2 and the total number of
iterations to 85,000.

included at the same performance level as SL for reference).
Fig. 4 shows how SSL approaches the performance of SL
with increasing amounts of labeled data, where SSL attains
similar performance to SL with 1.2% of the labeled data. This
illustrates the potential of SSL to reduce the required labeled
data and still obtain similar performance to SL.4 However,
below a certain cut-off amount of labeled data (approximately
1% in Fig. 4), SSL yields considerably worse performance
than SL. This suggests that UL provides similar results to
SL only with an initial point relatively close to the optimal
solution. The cut-off value to obtain relevant SSL performance
may depend on the sensing SNR. In low-SNR regimes for
instance, the proposed unsupervised loss in (21) may select
spurious peaks due to noise, which would hinder UL and
increase the cut-off value.

4We note that, SSL slightly outperforms SL in Fig. 3 at higher labeled
data ratios close to 1. However, we conjecture that this is an artifact of the
fixed hyperparameter choices for SL described in Sec. V-A. As the size of
the training data set tends to infinity, we expect SL to always perform at least
as good as SSL assuming properly tuned hyperparameters.
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Fig. 5: ISAC performance under hardware impairments. Only Pareto optimal
points are shown. SL: supervised learning. SSL: semi-supervised learning.

C. ISAC Results

Fig. 5 shows the ISAC results when communication trans-
mission is added, and the joint precoder is computed according
to (4). Only the values of ρ and ϕ in (4) that provide Pareto
optimal points are shown. Results in Fig. 5 indicate that SL
with 85,000 iterations performs similarly to the baseline with
perfectly known impairments. In practical scenarios where the
amount of labeled data is constrained, Fig. 5 shows that SL
with 1,000 iterations suffers in performance. On the other
hand, using SSL initialized from the limited-data SL yields
similar performance to fully SL with 85,000 iterations, without
any additional labeled data.

VI. CONCLUSIONS

In this work, we studied unsupervised and semi-supervised
learning in the context of ISAC, under inter-antenna spacing
impairments. We proposed an unsupervised loss function that
accounted for the impairments. The results showed that rely-
ing solely on UL with the proposed loss function does not
achieve similar performance as SL. When fewer labeled data
samples are available, limited-data SL degraded in terms of
misdetection probability and symbol error rate. However, SSL,
using the limited-data SL as starting point, showed to perform
similarly to perfect impairment knowledge and unlimited-data
SL. The current work is limited to single-target sensing, and
future work considers UL tailored to multiple targets.
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