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Executive Summary 

One key enabler for the development of automated vehicles that can coexist and negotiate 

with human road users in a safe, transparent, and human-acceptable manner is the 

development of mathematical models of human behaviour in the relevant interactive 

scenarios. Such models are needed as components both in real-time AV algorithms and in 

simulation tools for virtual AV testing. However, many important questions about how to model 

human road user interactions remain unanswered, and five of the Early Stage Researchers 

(ESRs) in the SHAPE-IT project have targeted such research questions. This report provides 

an overall introduction to the area of human-AV interaction modelling and summarises the 

ESRs’ research and findings in this area, including links to the ESRs’ peer-reviewed papers 

and preprints (providing full details). The SHAPE-IT modelling research by these ESRs has 

spanned a broad spectrum of modelling approaches and modelling use cases and has 

generated results such as: More computationally effective and transferable algorithms for real-

time prediction of pedestrian movement; novel insights about human driver communication 

and behaviour during lane changes; a general model of human AV passengers’ subjective 

perception of traffic risk; a demonstration that models of vehicle-pedestrian interactions based 

on behavioural game theory outperform conventional game theory models; and novel insights 

about how cyclists’ head, eye, and pedalling behaviour predict cyclist-vehicle interactions. The 

research by these five ESRs has increased our understanding of, and capability to predict and 

simulate, how humans interact in traffic, with direct relevance for development of safe and 

human-acceptable AVs. 
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1 Introduction 

Development of automated vehicles (AVs) is very much an engineering challenge, relying 

heavily on the creation and testing of a wide range of quantitative methods, models, and 

algorithms (Badue et al., 2021; Gordon & Lidberg, 2015). However, since AVs are meant to 

coexist with humans, who will ride along in the AVs or share the road with them, there are also 

very clear human factors challenges to be addressed (Kyriakidis et al., 2019). In order to 

create AVs which are safe and acceptable to humans, AV engineers therefore need 

quantitative ways of accounting for the relevant human factors aspects or, to put it differently, 

they need quantitative models of human-AV interactions (Behbahani et al., 2019; Camara et 

al., 2020; Markkula & Dogar, 2022). It remains unknown, however, exactly what types of such 

models are needed, and how best to go about creating them. These questions have been 

addressed in various ways by several of the Early Stage Researchers (ESRs) in the European 

Marie Skłodowska-Curie Innovative Training Network SHAPE-IT, and this report provides an 

overview of their research and findings.  

The first section below provides a brief background, outlining the main goals, use cases, and 

approaches in quantitative modelling in the context of human-AV interaction. Thereafter 

follows a section where the SHAPE-IT contributions to this research area are presented, with 

pointers to peer-reviewed papers and preprint manuscripts published by the ESRs, where the 

interested reader can find further details. Finally, overall conclusions are provided, considering 

all of the ESR contributions together. 

2 Background 

2.1 Goals of quantitative human-AV interaction modelling 

For what purposes is it useful to develop quantitative models of human-AV interaction? 

Arguably, the main end goals are the same three as for all types of human factors engineering: 

human safety, efficiency, and satisfaction (Lee et al., 2017). Figure 1 provides a schematic 

illustration of the idea (Markkula & Dogar, 2022) that achieving human-AV interactions which 
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meet these three goals is effectively the same as constraining the human-AV interaction to 

those world states and human behaviours which are preferred by the involved humans. If the 

interaction strays from these states and behaviours, dissatisfaction and inefficiencies may 

arise, and if the interaction requires human behaviours outside of those which are feasible for 

the human, the interaction becomes unsafe. With this perspective in mind, one can suggest 

that, on a high level, the applied purpose of quantitative human-AV interaction modelling is to 

describe what states and behaviours are preferred by and feasible for humans.  

 

Figure 1 – Schematic illustration of the relationship between the feasible and preferred behaviour and 

states of a human during interaction with an AV, and the resulting degree of success of the human-AV 

interaction. © 2022 IEEE. Reprinted, with permission, from IEEE Robotics and Automation Magazine 

(Markkula & Dogar, 2022). 

More specifically, how can mathematical models describing these preferred or feasible human 

states and behaviours be used to support the development of AVs? A few recurring themes 

can be discerned in the literature: Models can be used as components in real-time AV 

algorithms to predict likely future behaviour of surrounding human road users (Camara et al., 

2020; Mozaffari et al., 2022), as agent models in simulations for AV testing (Camara et al., 

2020; Feng et al., 2023; Igl et al., 2022), or as a means to better understand human behaviour 

to shape and guide the design of AVs more generally (Markkula et al., 2018; Millard-Ball, 2018; 
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Zgonnikov et al., 2023). The SHAPE-IT research described in this report spans all three of 

these types of use cases for human-AV interaction models.  

2.2 Approaches to modelling human-AV interactions 

Mathematically modelling the behaviour of even a single human in isolation is highly non-

trivial, and the complexity of the task increases further when the behaviour in question involves 

interactions with other agents. Human interactive behaviour in road traffic involves not only 

basic perceptual-motor control and collision avoidance, but also reciprocal coordination with 

other road users, often including different forms of negotiation and communication (Markkula 

et al., 2020). These behaviours presumably rely on a wide range of underlying cognitive 

mechanisms, so it is not surprising that there is a large diversity of mechanistic models of road 

user interaction which draw their assumptions about underlying mechanisms from a range of 

fields including perceptual psychology (Bonneaud & Warren, 2012; Domeyer et al., 2022) and 

cognitive neuroscience (Pekkanen et al., 2022; Zgonnikov et al., 2022), as well as optimal 

control and game theory (Hoogendoorn & Bovy, 2003; Schwarting et al., 2019; Wu et al., 

2019). The mechanistic modelling approach, if successful, has the benefit of providing an 

understanding of the modelled behaviour, but it is typically limited by an inability to scale well 

to real-world scenarios of arbitrary complexity. An alternative approach is to develop data-

driven models, typically leveraging deep neural networks and large naturalistic datasets to 

describe behaviour also at complex real-world locations (Igl et al., 2022; Mozaffari et al., 2022). 

The main limitations of these models are their black box nature and the lack of guarantee that 

they will capture those aspects of interactions which matter to humans (Siebinga et al., 2022; 

Srinivasan et al., 2023). In other words, there are currently very clear trade-offs between 

mechanistic and data-driven models, requiring modellers and model users to choose between 

interpretability and explainability on the one hand, and generalisability and fidelity on the other. 

The SHAPE-IT research described in this report spans the entire spectrum between 

mechanistic and data-driven models, and also provides some contributions aiming to bridge 

the gap between the two approaches, in order to reduce the mentioned trade-offs. 
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2.3 SHAPE-IT objectives in quantitative modelling 

On a high level, the objectives of the modelling-oriented ESRs in SHAPE-IT can be 

summarised as follows (note that for some ESRs these are sub-goals of their individual 

projects): 

• ESR3, Chi Zhang: To develop data-driven models for real-time prediction of pedestrian 

trajectories, with improved consideration of interactions with other road users. 

• ESR11, Sarang Jokhio: To develop data-driven, statistical models to identify patterns 

in turn signal usage in lane changes and lane change initiation, as a prototypical 

scenario where humans need to cooperate in traffic. 

• ESR12, Xiaolin He: To develop computational models of occupants’ subjective feeling 

of risk inside automated vehicles. 

• ESR13, Amir Hossein Kalantari: To develop and compare both conventional and 

behavioural game-theoretic models to understand vehicle-pedestrian interactions at 

unsignalised crossing locations. 

• ESR14, Ali Mohammadi: To develop quantitative models predicting cyclists' behaviour 

through their kinematics and appearance, to improve automated vehicle interactions 

with cyclists at intersections. 

It should be noted that a general challenge for current human-AV interaction modelling is that 

AVs are only very recently beginning to be available, leading to a scarcity of data on actual 

human-AV interactions (see deliverable D2.3 for details about this challenge). Therefore, while 

all ESRs have developed their models with human-AV interactions in mind, much of the 

modelling research in SHAPE-IT has in practice focused on human-human interactions, based 

on the assumption that human-AV interactions will need to leverage much of the same 

underlying principles.  
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2.4 Covid-19 impact 

Three of the involved ESRs reported that experimental work supporting their research was 

substantially delayed due to the Covid-19 pandemic; two of them reported that one or more of 

their planned secondments were delayed. 

3 The research 

In this chapter, each section describes an ESR’s modelling research. 

3.1 Modelling Pedestrian Behaviour in Urban Traffic Scenarios Using AI 
Methods (ESR3) 

3.1.1 Related previous work and research gaps 

Compared to other road users, pedestrians are more vulnerable, so the need to create safer 

vehicles to prevent conflicts and collisions with them is great (C. Zhang, 2022). To meet the 

requirements for reducing fatalities and serious injuries caused by traffic crashes, researchers 

are developing automated driving (AD) technologies. Predicting pedestrian behaviour is 

crucial for AD systems (Camara et al., 2020). Incorporating Artificial Intelligence (AI) 

technologies reduces the operational load of human drivers, lowering the number of deaths 

brought on by human error while also potentially increasing human productivity and 

satisfaction. 

Existing knowledge-based techniques, such as rule-based and statistics-based models, are 

not able to forecast pedestrian behaviour accurately or reliably because of the complexity and 

intricacy of human behaviour (C. Zhang et al., 2021). The rule-based models find it difficult to 

understand the non-linear behaviour of pedestrians which results from interactions (C. Zhang 

& Berger, 2023). 

Therefore, machine learning and deep learning methods that are more capable of handling 

complex scenarios should be developed for predicting pedestrians’ behaviour, especially 

when they interact with vehicles/automated vehicles. 
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3.1.2 Objectives 

Our research goal was to model the behaviour of pedestrians interacting with 

vehicles/automated vehicles using AI methods. It comprises the following objectives: 

• Modelling pedestrian trajectories by considering interactions with other road users, 

including other pedestrians, vehicles, and automated vehicles. 

• Modelling pedestrian crossing intentions as interaction outcomes between pedestrians 

and vehicles. 

3.1.3 Methods 

The interactions between pedestrians and other road users (e.g., other pedestrians, vehicles, 

and automated vehicles) are complex. The following factors could impact how people interact 

in traffic (Rasouli & Tsotsos, 2020; C. Zhang & Berger, 2023).  

a) pedestrians' characteristics, such as their posture, direction of travel, age, gender, and even 

personality traits; 

b) vehicle status, such as speed, acceleration, direction, size, etc; 

c) environment factors, including the size and number of lanes on the road and traffic signals 

and signage. 

In the field of AI, two other terms are also frequently mentioned: machine learning (ML) and 

Deep Learning (DL). As described by Sarker (2021), AI is defined as the process of computer 

systems simulating human intelligence, including learning, reasoning, and self-correction. The 

subset of AI known as ML enables systems to learn and improve from experience without 

explicit programming. ML involves using algorithms to analyse data, learn from the data, and 

make predictions based on the data. In our research (C. Zhang, Kalantari, et al., 2023), we 

used common ML models including logistic regression, linear regression, support-vector 

machine (SVM), random forest (RF), and neural networks. 

Deep learning (DL) is a subset of ML that utilizes deep neural networks to learn complex 

patterns from large amounts of data; it is inspired by the structure and function of the brain, 
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and referred to as artificial neural networks (ANN). The activation functions in DL help the 

model learn the non-linearity that is hard for other knowledge-based models to learn. In our 

research (C. Zhang et al., 2021; C. Zhang, Ni, et al., 2023; C. Zhang & Berger, 2022a, 2022b), 

we used multi-layer perceptron (MLP); recurrent neural networks (RNNs), including their 

variant long short-term memory (LSTM) networks; generative adversarial networks (GANs); 

convolutional neural networks (CNNs); and transformer (TF) networks.  

High-quality datasets are important for ML and DL modelling (C. Zhang & Berger, 2023). We 

used both naturalistic data and simulator data, such as the Waymo Open Dataset (Sun et al., 

2020), released by Google Waymo for trajectory prediction (C. Zhang et al., 2021; C. Zhang, 

Ni, et al., 2023; C. Zhang & Berger, 2022a, 2022b), and the distributed simulator study data 

proposed by Kalantari, Yang, et al. (2022) for pedestrian-vehicle interaction modelling (C. 

Zhang, Kalantari, et al., 2023). 

To evaluate the model performance, we used standard metrics from the ML literature. For 

trajectory prediction, we used the following two measures to report prediction error and 

evaluate model performance: 

• The Average Displacement Error (ADE): the average distance gap between ground 

truth and predicted trajectories over all predicted time-steps. 

 

• The Final Displacement Error (FDE): the average distance gap between ground truth 

and predicted trajectories for the last predicted time-step. 

 

To evaluate pedestrian crossing decision prediction during the interaction, the prediction 

accuracy and F1 score were used: 
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where P is the number of positives, N is the number of negatives, TP denotes true positives, 

TN denotes true negatives, FP denotes false positives, and FN denotes false negatives. 

3.1.4 Results 

We divided the research into several research topics. We first reviewed a large selection of 

existing papers on pedestrian behaviour modelling to obtain a comprehensive understanding 

of deep learning-based approaches for pedestrian behaviour prediction. Then, we built deep 

learning models to predict pedestrian trajectories, considering both interactions between 

pedestrians and interactions between pedestrians and vehicles/automated vehicles. Since we 

want a model trained on one dataset to be transferable to other scenarios, we also investigated 

the model’s transferability and proposed a transferable model. In addition to trajectories, we 

also investigated the interaction outcomes between pedestrians and vehicles at unsignalised 

crossings. Below are the results for each topic. 

3.1.4.1 Topic 1: Literature Review 

We reviewed existing methods for pedestrian behavior prediction that used deep learning (C. 

Zhang & Berger, 2023). In this study, we analysed, compared, and discussed their 

performance. We also provided a detailed overview of existing datasets and the evaluation 

metrics. Finally, we identified research gaps and outlined potential future research directions. 

3.1.4.2 Topic 2: Social Interactions Between Pedestrians 

We predicted pedestrian trajectories by modelling the social interactions between pedestrians 

(C. Zhang et al., 2021). We proposed a novel structure, the Social Interaction Extractor, to 

better and faster capture interactions between pedestrians.  

The model structure is shown in Figure 2 and the Social Interaction Extraction in Figure 3. 
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Figure 2. Overall framework of Social-IWSTCNN. Given observed frame sequences, we used the 

positions in each frame as input to learn the social interaction weights and extract spatial and social 

interaction features using the Social Interaction Extractor. Following this, we applied TCNs to create 

spatio-temporal features for each pedestrian. Then we applied Time-Extrapolator CNNs to predict 

future trajectory distributions. Finally, we sampled to get the predicted trajectories. © 2021 IEEE. 

Reprinted, with permission, from 2021 IEEE Intelligent Vehicles Symposium (IV) (C. Zhang et al., 

2021)  

 

Figure 3. Pedestrian Social Interaction Extractor. The inputs were the positions relative to the last 

frame and pedestrian positions of each time-step. We used MLP to learn the social interaction 

weights, and an aggregate function to extract the spatial and social interaction features. © 2021 IEEE. 

Reprinted, with permission, from 2021 IEEE Intelligent Vehicles Symposium (IV) (C. Zhang et al., 

2021) 

The total inference speed of our proposed network is 4.7 times faster than the previous SOTA 

model, Social-STGCNN, while the prediction results are competitive. The models were 

evaluated on urban traffic scenarios using the Waymo Open Dataset, which contains more 
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urban traffic scenarios and more sequences of pedestrians than the previously commonly 

used ETH and UCY datasets,  to reveal the model performance on real-world traffic tasks.  

3.1.4.3 Topic 3: Interactions Between Pedestrians and Vehicles 

We predicted pedestrian trajectories by modeling the interactions between pedestrians and 

vehicles (C. Zhang & Berger, 2022a). In this study, we generalised the pedestrian interaction 

extractor architecture from a previous work (C. Zhang et al., 2021) to create a pedestrian-

vehicle interaction (PVI) extractor to predict pedestrian trajectories.  

The proposed PVI extractor performs well on both sequential (LSTM-based) and non-

sequential (Conv-based) models, improving ADE and FDE by 1-7% over SOTA benchmarks. 

Examples of prediction results are shown in Figure 4. 

 

Figure 4. Comparison of trajectories predicted by LSTM, Social-LSTM, and SI-PVI-LSTM in various 

scenarios. (a) Pedestrian A is turning right, avoiding the moving vehicles B, C, and D. (b) Pedestrian 

A has turned right and keeps walking straight, avoiding moving vehicle B and parked vehicle C. (c) 

Pedestrian A is crossing the road, interacting with vehicle B, which is slowing down and waiting. The 

legends: obs denotes observed paths of pedestrians, gt refers to the ground truth of predicted 

trajectories of pedestrians, veh obs refers to the observed vehicle trajectories, veh future stands for 

the future trajectories of vehicles during the prediction time, lstm refers to the LSTM model, s-lstm 

refers to Social-LSTM, and si-pvi-lstm denotes our proposed Social Interaction and Pedestrian-

Vehicle Interaction LSTM model. © 2022 IEEE. Reprinted, with permission, from 2022 8th 

International Conference on Control, Automation and Robotics (ICCAR) (C. Zhang & Berger, 2022a) 
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3.1.4.4 Topic 4: Interactions Between Pedestrians and Automated Vehicles 

We analysed the interactions between pedestrians and automated vehicles using deep 

learning methods (C. Zhang & Berger, 2022b). In this study, our results and main contributions 

are as follows: for the factors that influence the pedestrian behavior, we have investigated 

interaction factors on both sequential and non-sequential deep learning methods. All these 

interaction factors can influence the prediction accuracy of pedestrians’ future trajectories. 

Based on the backbone we compared, the prediction accuracy of Conv-based models 

outperforms the LSTM-based models.  

3.1.4.5 Topic 5: Interaction Outcomes 

We modelled pedestrian crossing intentions as interaction outcomes between pedestrians and 

vehicles (C. Zhang, Kalantari, et al., 2023). In this study, we proposed predictive models for 

the interaction outcome (i.e., whether the pedestrian or the vehicle passes the crossing 

location first), as well as for the timing of the pedestrian’s crossing initiation and the crossing 

duration, using machine learning-based methods. We obtained substantial improvements over 

the baseline linear regression models (Kalantari, Yang, et al., 2022). The presence of a zebra 

crossing, the TTA, and the pedestrian waiting time were found to be important for all models. 

The prediction accuracy and F1 score versus TTA for the interaction outcome predictions are 

shown in Figure 5. 
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(a) (b) 
Figure 5. The (a) prediction accuracy and (b) F1 score versus time to arrival of the vehicle at 

interaction onset, for logistic regression (LR), support-vector machine (SVM), random forest (RF), and 

multilayer perceptron (MLP) models. © 2023 IEEE. Reprinted, with permission, from 2023 IEEE 

Intelligent Vehicles Symposium (IV) (C. Zhang, Kalantari, et al., 2023) 

3.1.4.6 Topic 6: Model Transferability 

We investigated the transferability of pedestrian prediction models (C. Zhang, Ni, et al., 2023). 

In this study, we proposed a transferable model, namely the spatial-temporal-spectral (STS) 

LSTM model, which performs well when transferred to target datasets without any prior 

knowledge, and has a faster inference speed than the state-of-the-art models. 
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(2023). Cross or Wait? Predicting Pedestrian Interaction Outcomes at Unsignalized 
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3.1.6 Conclusions and future work 

We have proposed deep learning models for predicting the trajectories of pedestrians 

interacting with other pedestrians and vehicles. We have analysed the influence of pedestrian-

automated vehicle interaction on pedestrian trajectory prediction and proposed novel models 

with predictive accuracy equal to or better than state-of-the-art (SOTA) benchmarks. The new 

models also reduce computational costs and, importantly, demonstrate improved 

transferability to new situations. Furthermore, we have also directly modelled the interaction 

outcomes (i.e., whether the pedestrian will cross or wait when encountering a vehicle), 

something which has not been previously attempted using ML modelling. One interesting 

direction for future work is to develop models which can predict both pedestrians’ trajectories 

and their intentions simultaneously. 

https://doi.org/10.1109/iccar55106.2022.9782673
https://doi.org/10.1109/tits.2023.3281393
https://doi.org/10.1109/IV55152.2023.10186616
https://doi.org/10.1109/tiv.2023.3285804
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3.1.7 Highlights  

The overall objective of the modelling work by ESR3 was to develop data-driven models for 

real-time prediction of pedestrian trajectories, with improved consideration of interactions 

with other road users. Key results include: 

• A review of the existing research in the area of pedestrian behaviour prediction was 

performed, including a proposed framework of the area and an overview of research 

gaps . 

• Pedestrian trajectory prediction methods were proposed which consider social 

interactions and display improved prediction accuracy, faster prediction speed, and 

better transferability between datasets. 

• Interaction of pedestrians and (automated and non-automated) vehicles was 

analysed using deep learning models. 

• Vehicle-pedestrian interaction outcomes at unsignalised crossings were modelled. 

 

3.2 Cooperative interaction strategies between AVs and mixed motorized 
traffic (ESR11) 

3.2.1 Related previous work and research gaps 

Road traffic is a complex social system in which each road user has different goals (Färber, 

2016; Wilde, 1976). These goals often extend beyond simply reaching a destination and may 

encompass timing, safety, and comfort considerations. Conflicts may arise when the individual 

goals of different road users interact with each other. These conflicts, if not resolved, could 

result in collisions. Lane changing, when a driver moves laterally to an adjacent lane which 

may already be occupied, is one of the common manoeuvres in everyday driving which could 

result in a conflict.  

Autonomous vehicles (AVs) have the potential to reduce some of the complexity of road traffic 

by replacing human drivers. However, the full potential of this technology can only be achieved 

when a significant number of vehicles on the road are AVs. There will be a long period of 
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mixed traffic in which the AVs share the road space with human-driven vehicles. Throughout 

this period, certain negative consequences of AVs could be observed, such as adversely 

affected traffic flow (Al-Turki et al., 2021; Calvert et al., 2017) and traffic safety (Garg & 

Bouroche, 2023; M. M. Morando et al., 2018; Ye & Yamamoto, 2019). 

To evaluate the AVs' influence on the existing traffic system and vice versa, researchers often 

use traffic simulations in the absence of real-world interaction data (Beza et al., 2022; Garg & 

Bouroche, 2023). By adjusting the parameters and conditions within these simulations, we can 

anticipate potential challenges AVs might encounter and formulate effective strategies for 

integrating them into the existing traffic ecosystem. However, traffic simulation relies heavily 

on driver-behaviour models to represent different traffic participants, such as when studying 

lane changing behaviour (Zheng, 2014). While lane-changing models have improved, they are 

far from replicating human behavior.  

One of the ways to improve the existing models is to improve our understanding of the overall 

lane change process. So far, most research has primarily focused on understanding gap 

acceptance behaviour and the duration of lane changes (Y. Li et al., 2021; Yang et al., 2019). 

We currently lack a full understanding of how drivers communicate their intention (e.g., use 

their turn signal) during lane change. Studies, mainly from the United States and China, have 

shown that drivers often do not use turn signals, which are a direct form of communication 

(Dang, Ruina et al., 2013; Lin & Bao, 2019; Ponziani, 2012; Wang et al., 2019). Additionally, 

we also lack an understanding of drivers' pre-lane change behaviour, in particular how long 

they wait after signalling before changing lanes. Integrating actions that a driver performs prior 

to changing lanes into the lane-changing models will make them more realistic. 

3.2.2 Objectives 

This work aims to gain better insight into the lane-changing process by analysing and 

modelling real-world driving data using various statistical models. The overarching goal is to 

support the development of realistic lane change behavioural models, as well as develop 

guidelines for autonomous vehicles' interactions in mixed traffic. The objective of the first study 

is to identify turn signal usage patterns during lane changing and the factors impacting it. The 
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objective of the second study is to get deeper insights into pre-lane change behaviour by 

analysing how long drivers typically wait between using the turn indicator and starting a lane 

change.  

3.2.3 Methods 

The data used here were part of a larger real-world data collection effort during the L3Pilot 

European project (Hiller, 2019). The specific dataset used in this study was collected by Volvo 

Car Corporation in Gothenburg, Sweden (Penttinen et al., 2019). The data include both lane-

changing vehicles’ information (e.g., turn signal usage, longitudinal and lateral position and 

velocity) and surrounding vehicles’ information (e.g., speed and position).  

A rule-based algorithm based on lateral velocity and lateral position was developed to 

determine the initiation and end of a lane change. In total 1791 lane-change cases were 

extracted (Jokhio et al., 2023).  Subsequently, turn signal usage was calculated by comparing 

the time of the turn signal activation to the time of the lane change initiation. To gain a better 

understanding, we divided turn signal usage into three categories: used before initiating a lane 

change, used after initiating a lane change, and not used at all.  

Real-world driving data are frequently extensive, noisy, sparsely populated, and imbalanced 

(A. Morando et al., 2019). Moreover, they often exhibit a hierarchical or multilevel structure, 

with observations grouped under individual participants. As a result, we implemented 

statistical models best suited to handle this type of data. The subsequent sections provide a 

more detailed discussion of each of these approaches. 

3.2.3.1 Bayesian hierarchical model to explore turn signal usage 

The first study used real-world data to examine patterns in turn signal usage among human 

drivers, to identify potential influencing factors (Jokhio et al., 2023). As previously mentioned, 

real-world data are often imbalanced and structured hierarchically, since they originate from a 

variety of participants. These challenges can be tackled by using a Bayesian approach, which 

allows a more intuitive interpretation of results by using probabilities, rather than relying on p-



  
This project has received funding from the European Community's 

Horizon 2020 Framework Programme under grant agreement 860410 

 

Deliverable 2.2 Behavioural models for transparent negotiations between AVs and human road users  

 

PUBLIC  22/70 

values (as in traditional methods). The Bayesian methodology can manage more complex, 

non-linear relationships and data that are not normally distributed (Kruschke & Liddell, 2018). 

The Bayesian approach employs Bayes' theorem to revise previous beliefs or knowledge by 

incorporating observed data and drawing conclusions about unknown parameters (Van De 

Schoot et al., 2021). It is used extensively in many fields, including transportation, social and 

behaviour sciences and artificial intelligence (Daziano et al., 2013; Russo, 2020; Van De 

Schoot et al., 2021).  

As mentioned earlier, the outcome variable has three possibilities: turn signal use before 

initiating a lane change (‘before’), turn signal use after initiating a lane change (‘after’), and no 

turn signal use (‘no’). The probability of observing each level of the outcome variable is given 

by the following equations: 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 �
𝑃𝑃(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎)
𝑃𝑃(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏)

� = 𝛼𝛼𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 +  𝛽𝛽𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ∗ 𝑋𝑋 + 𝑏𝑏𝑜𝑜𝑜𝑜,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 �
𝑃𝑃(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑛𝑛𝑛𝑛)

𝑃𝑃(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏)
� = 𝛼𝛼𝑛𝑛𝑛𝑛 +  𝛽𝛽𝑛𝑛𝑛𝑛 ∗ 𝑋𝑋 + 𝑏𝑏𝑜𝑜𝑜𝑜,𝑛𝑛𝑛𝑛 

 

Here, X represents the vector of predictor variables and αafter and αno are the intercepts for the 

"after" and "no" categories, respectively. βafter and βno represent the fixed effect coefficients for 

the "after" and "no" categories, respectively, corresponding to the vector X of predictor 

variables (fixed effects). The fixed effects are speed, direction, rear veh, rear gap, lag veh, lag 

gap, traffic density, and driver type. b0j ,after and b0j ,no represent the random intercepts for each 

driver ID. 

In our study, we used non-informative priors with normal distribution 𝑁𝑁(0, 1 ×  104 ) for the 

fixed effects and half-normal 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 − 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(0, 1 ×  104 ) distribution for the random effects 

(Gelman, 2006). 
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3.2.3.2 Survival analysis of time-to-lane-change-initiation 

The purpose of a turn signal extends beyond merely communicating a driver's intention to 

change lanes; it also serves to alert surrounding drivers, enabling them to adjust their 

behaviour accordingly. The existing research has shown that lag vehicle drivers (i.e., drivers 

in the target lane, behind the lane-changing vehicle) appreciate an early warning from the 

lane-changing driver (Kauffmann et al., 2018). Furthermore, three seconds of delay between 

turn indicator use and lane change increased the lag vehicle driver’s perception of 

cooperativeness (Kauffmann et al., 2018). However, whether or not drivers actually wait after 

using the turn signal before initiating a lane change is currently unknown. We refer to this 

duration as time-to-lane-change-initiation (TTLCI). This study is aimed at understanding 

TTLCI and the factors that might have an impact on it. In this study we only considered the 

1073 lane-change cases in which a turn signal was used before initiating a lane change.  

We analysed the impact of different factors on TTLCI using survival analysis, which is a 

collection of statistical techniques suitable for outcome variables having a time-to-event 

nature. These techniques are widely used in medical science where the outcome variable is 

often time to death after exposure to a disease (Clark et al., 2003).  

To get an overview of the typical TTLCI found in the real-world driving scenarios, we employed 

the Kaplan-Meier (K-M) method, a widely used technique for calculating the likelihood of a 

specific event occurring across a time span. The survival function in the K-M method is given 

by 

𝑆𝑆𝑡𝑡 =  𝑆𝑆𝑡𝑡−1  ∗  
𝑁𝑁𝑡𝑡 − 𝐸𝐸𝑡𝑡
𝑁𝑁𝑡𝑡

 

In the context of our study, Nt  represents the total number of lane changes at specific time t, 

while Et is the number of instances (in this case, lane-change initiations) that occur at that 

exact time t. 

To determine which factors impact the TTLCI, we used a popular regression technique with 

survival analysis known as the Cox proportional hazard (CPH) model (Cox, 1972). To account 

for the variability (due to different drivers), we used a mixed effects CPH model (Wienke, 
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2010). The mixed-effect extension of the CPH model incorporates both fixed effects and 

random effects. The model is given by  

ℎ𝑖𝑖(𝑡𝑡)  =  ℎ0(𝑡𝑡)  ∗  𝑒𝑒𝑒𝑒𝑒𝑒(𝛴𝛴(𝛽𝛽𝑛𝑛𝑋𝑋𝑛𝑛𝑖𝑖)  +  𝑢𝑢𝑖𝑖) 

In this context, hi(t) denotes the hazard function for the i-th subject at time t, while ℎo(t) 

represents the baseline hazard function. The βn corresponds to the coefficients associated 

with the fixed effects (covariates) Xni, and ui represents the random effects for the i-th subject.  

3.2.4 Results 

3.2.4.1 Study 1: Turn signal usage 

The descriptive analysis showed that in almost 60% of cases, a turn signal was used before 

initiating a lane change (identified using the rule-based method mentioned in Section 3.2.3). 

It was used after initiating a lane change in almost 33% of instances; in about 7% of cases, 

no turn signal was used at all. 

Table 1 shows estimates for the fixed effects in the “after” and “no” response levels compared 

to the “before” level for the response (turn signal usage) variable. The “l-95%” HDI and “u-95% 

HDI” columns show lower and upper bounds of the highest posterior density interval (HDI), 

respectively. It is the range within which we can be 95% confident that the true parameter 

value lies: thus a broader HDI suggests increased uncertainty (Kruschke & Liddell, 2018). 

When the HDI encompasses zero, it implies that, based on the data and model, the actual 

parameter value might be indistinguishable from zero (Kruschke & Liddell, 2018). 

Table 1. BHM fixed effect results. 

Predictors  Estimate  Est. Error  l-95% HDI  u-95% HDI 

Level: After 

Intercept -1.67 0.51 -2.68 -0.7 

Speed 0.02 0.01 0.01 0.04 

Direction (right) -0.81 0.11 -1.03 -0.59 

Rear vehicle (yes) -0.37 0.18 -0.74 -0.02 
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Rear gap 0.19 0.09 0.02 0.37 

Lag vehicle (yes) -0.23 0.18 -0.59 0.13 

Lag gap 0.07 0.09 -0.12 0.24 

Traffic density -0.02 0.01 -0.04 0 

Driver type (pro) 0.3 0.18 -0.04 0.65 

Level: No 

Intercept -5.92 1.34 -8.6 -3.41 

Speed 0.01 0.01 -0.01 0.03 

Direction (right) 0.02 0.22 -0.4 0.47 

Rear vehicle (yes) -0.44 0.38 -1.16 0.32 

Rear gap 0.26 0.18 -0.1 0.6 

Lag vehicle (yes) -1.1 0.35 -1.83 -0.46 

Lag gap 0.48 0.14 0.2 0.75 

Traffic density -0.07 0.03 -0.12 -0.02 

Driver type (pro) 2.87 1.19 0.69 5.34 

 

Table 2. BHM random effects 

Estimates  Est.Error  l-95% HDI  u-95% HDI  Rhat 

Standard deviation (Level: After) 

0.36 0.11 0.13 0.57 1 

Standard deviation (Level: No) 

2.69 0.55 1.58 4.19 1 

 

Overall, the results show that different variables impact turn signal usage with varying levels 

of uncertainty. For example, speed is positively associated with an entirely positive HDI range. 

This result indicates that as speed increases, drivers are less likely to use the turn signal 

before starting a lane change.  
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The standard deviation of the random intercept in Table 2 for both levels indicates variation in 

the logits among various drivers. This finding means that, when accounting for the average 

influence of all other aspects, the probability that a driver will use the turn signal after initiating 

a lane change or not use it at all differs from one driver to another.  

3.2.4.2 Study 2: Time-to-lane-change-initiation 

The results of the K-M method are shown in Figure 6. The step-like line represents the survival 

function and the shaded area around it represents the confidence interval. The graph 

illustrates a sharp decrease in the survival function in the initial two seconds, indicating that 

the majority of lane changes (about 90%) were initiated within two seconds of the activation 

of the turn signal.  

 

  Figure 6. K-M survival curve of TTLCI. 

The results of the mixed effect CPH analysis are provided in Tables 3 and  4. The fixed effects 

represent the average effects of each predictor on the response variable across all the 

subjects (drivers). The direction and magnitude of the effect of each predictor is represented 

by the sign of ‘Coeff’ and the magnitude of ‘Exp(Coeff)’. The ‘Exp(Coeff)’ is the hazard ratio, 
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which, for a categorical predictor, gives the relative probability of an event happening for a 

specific category compared to another category. For continuous predictors, it shows the 

multiplicative change in the probability of the event occurring for every one-unit increment in 

that predictor. In other words, a hazard ratio higher than one implies an increased probability 

of the event occurring, while a hazard ratio lower than one implies a decreased probability of 

the event occurring. The significance of each predictor is represented by the p-value. Overall, 

these results show that TTCLI is impacted by various factors, such as the direction of lane 

change and the presence of surrounding vehicles. 

Table 3. Mixed effect CPH model results (fixed effects) 

Predictor Coeff Exp(Coeff) Std. Error p-value 

Speed 0.025 1.025 0.004 <0.001 

LC Direction 

(right) 
-0.15 0.86 0.072 0.039 

LC Type (SLC) 0.388 1.474 0.136 0.005 

Rear Vehicle (yes) 0.148 1.16 0.117 0.21 

Rear Gap -0.063 0.939 0.0591 0.28 

Lag Veh (yes) -0.298 0.742 0.106 0.005 

Lag Gap 0.139 1.15 0.045 0.002 

Traffic Density 0.001 1.001 0.007 0.87 

Lead Vehicle 

(Yes) 
-0.199 0.819 0.067 0.003 

Driver Type (Pro) -0.16 0.852 0.146 0.27 

 

The random effects are grouped by Driver ID, reflecting individual differences in driving 

behaviour that are not captured by the fixed effects in the model. The variable considered for 

the random effect is the Intercept, representing the baseline hazard function. The standard 

deviation of 0.374 translates to a relative increase in the likelihood of the event taking place, 

as indicated by exp(0.374) = 1.45. For a driver who is one standard deviation above the mean, 
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the probability of the event (in this case, initiating a lane change) happening is increased by 

nearly 45% in comparison to the mean probability for all drivers. 

Table 4. Mixed effect CPH model results (random effects) 

Group Variable Standard deviation 

Driver ID Intercept 0.374 
 

3.2.5 Conclusion and future work 

The studies outlined above focus primarily on the driver’s behaviour before initiating a lane 

change. Synthesising the knowledge from current research demonstrates that the use of turn 

signals not only influences surrounding traffic but is also affected by it. For example, the 

probability of using a turn signal decreases with an increase in the gap between the vehicle 

changing lanes and the lag vehicle. Additionally, the findings suggest that drivers might use 

turn signals more to comply with legal requirements than to alert other drivers. The second 

study reveals that when a turn signal is activated, a lane change is initiated within two seconds 

90% of the time. This particular aspect of lane-changing is something that existing models 

have overlooked. While further exploration is needed to enhance our comprehension of driver 

behaviour prior to a lane change, the data supplied by these two investigations serve to 

improve the existing lane-changing models. Understanding how human drivers initiate lane 

changes, including the timing and the factors influencing this decision, is also essential for 

developing AV algorithms that can interact safely and efficiently with human-driven vehicles 

on the road. 

3.2.6 Publications 

• Jokhio, S., Olleja, P., Bärgman, J., Yan, F., & Baumann, M. (2023). Exploring Turn 

Signal Usage Patterns in Lane Changes: A Bayesian Hierarchical Modelling Analysis 

of Realistic Driving Data. arXiv preprint arXiv:2305.16401. 

https://doi.org/10.48550/arXiv.2305.16401  

https://doi.org/10.48550/arXiv.2305.16401
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• Jokhio, S., Olleja, P., Bärgman, J., Yan, F., & Baumann, M. (in press). Analysis of 
Time-to-Lane-Change-Initiation Using Realistic Driving Data. IEEE Transactions on 
Intelligent Transportation Systems. https://doi.org/10.1109/TITS.2023.3329690 

3.2.7 Highlights 

The overall objective of ESR11’s modelling work was to develop data-driven, statistical models 
to identify patterns in turn signal usage in lane changes and lane change initiation, as a 
prototypical scenario where humans need to cooperate in traffic. Key results include: 

• There are clear differences in real-world turn signal usage between drivers and this 
behaviour is also affected by factors such as direction of lane change, speed of lane 
changing vehicle, and the presence and position of surrounding vehicles. 

• Drivers typically take less than two seconds after turn signal activation to change lanes, 
but again this delay is also context-dependent. 

• The results of these studies are crucial for improving existing lane-changing models, 
for example by including considerations of waiting time duration. 

• The results can also help improve current AV algorithms by allowing them to better 
understand human drivers, for example by predicting time-to-lane-change-initiation. 

3.3 Computational perceived risk modelling for automated vehicles 
based on potential collision avoidance difficulty (ESR12) 

3.3.1 Previous related work and research gaps 

Perceived (or subjective) risk, which is different from actual risk, plays a pivotal role in 

influencing drivers' behaviour and their acceptance of automated driving systems. When 

perceived risk is low, drivers tend to feel safe and relaxed, but when it is high, they exhibit 

cautious behaviour. Misinterpretations of risk during automated driving at levels of automation 

requiring human monitoring can lead to either unnecessary interventions or failure to intervene 

when required (Xu et al., 2018). The failure of vehicles at higher levels of automation to 

properly consider the risk perceived by human passengers (or surrounding road users) can 

lead to low automation acceptance. Therefore, understanding and quantifying drivers’ 

perceived risk is essential for designing driving automation that is not only technically safe but 

also perceived as safe. However, an accurate computational model to quantify drivers’ 

perceived risk is still lacking. 

https://doi.org/10.1109/TITS.2023.3329690
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Several previous attempts have been made to develop computational perceived risk models. 

These models fall into two categories: empirical models based on data, and mechanistic 

models based on first principles. Empirical models, such as those developed by Kolekar et al. 

(2020a), Ping et al (2018) and He et al. (2022) use drivers' subjective risk ratings, steering 

responses, surrounding information, and the corresponding kinetic data to model perceived 

risk in various driving scenarios.  

Mechanistic models, on the other hand, typically use surrogate measures of safety (SMoS) 

like time to collision (TTC) and time headway (THW). Models using TTC and THW capture 

one-dimensional interactions and are mainly validated for car-following situations (Kiefer et 

al., 2005). Some models, like the probabilistic driving risk field model (PDRF), consider motion 

probability distributions of other road users and the collision severity to estimate the collision 

risk (Mullakkal-Babu et al., 2020).  

However, both types of models have limitations. Empirical models often lack extensive 

validation and interpretability; mechanistic models struggle to accurately map actual collision 

risk to perceived risk and lack empirically supported thresholds for SMoS (Kondoh et al., 2008, 

2014). Therefore, there is a need for a computational model of perceived risk that is 

explainable, validated across diverse scenarios, and effectively bridges the gap between 

actual and perceived risk. This model would contribute significantly to the design of safer 

automated driving systems that can effectively interpret and respond to real-world driving 

situations.  

3.3.2 Objectives 

This study has two main objectives:  

Objective 1 is to formulate an explainable computational perceived risk model grounded in 

the human drivers' risk perception mechanism and applicable to general 2D movements. The 

objective can be divided into several sub-objectives: 

1. to understand the underlying principles of human drivers' risk perception. 

2. to apply these principles in formulating the computational perceived risk model. 
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Objective 2 is to analyse our new model both theoretically and empirically. Our sub-objectives 

are: 

1. to perform a theoretical examination of the new model. 

2. to empirically evaluate the model using real-world data, specifically those involving 2D 

movements, including drivers' reported perceived risk during specific events. 

The new model in this study, validated using event-based self-reported perceived risk, 

describes perceived risk per event in the continuous time domain. The model is developed for 

the general driver population instead of being personalised, but we can capture individual 

differences by tuning model parameters. 

3.3.3 Methods 

Firstly, we did a simulator experiment to investigate how perceived risk works in common 

driving scenarios when the AV reacts to merging and hard-braking events. Eighteen merging 

events with different merging distances and braking intensities on a two-lane highway were 

simulated. The participants were asked to monitor the scenario as fall-back-ready drivers for 

an SAE Level 2 AV. After each event, the participants were asked to give a verbal perceived 

risk rating from 0-10 regarding the previous event. The corresponding kinematic data (e.g., 

position, speed, and acceleration of the subject vehicle and neighbouring vehicles) were 

collected in the meantime. 

An event-based perceived risk model was developed using regression which can predict 

human drivers’ perceived risk ratings ranging from 0-10 regarding merging events based on 

the kinetic data, as shown in Equation x: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 2.699 + 8.484 ∙ 1/𝑇𝑇𝑇𝑇𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 − 0.161 ⋅ 𝐵𝐵𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚 

where perceived risk is the event-based perceived risk (from 0-10), 𝑇𝑇𝑇𝑇𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 is the minimum 

time to collision to the leading vehicle during an event, and 𝐵𝐵𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚  denotes the maximum 

braking intensity of the leading vehicle. 
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This regression model of perceived risk demonstrates that smaller gap, smaller minimum TTC, 

and stronger brake lead to higher perceived risk. Also, the inverse TTC represents the relative 

visual expansion of the obstacle, commonly referred to as looming, which means perceived 

risk is highly correlated with the looming rate of other road users. 

The regression model can predict perceived risk in the longitudinal direction (1D). To quantify 

perceived risk in both longitudinal and lateral directions (2D), we developed the "potential 

collision avoidance difficulty model” (PCAD), grounded in looming theory (Tian et al., 2022; 

Ward et al., 2015; Xue et al., 2018) and risk allostasis theory (Fuller, 2011). The model is 

based on the concept of potential collision avoidance difficulty, which quantifies the velocity 

gap to the safe velocity region. This region accounts for vehicles' kinematics, including 

uncertainty, as well as collision severity. The model describes perceived risk per event in 

continuous time. Figure 7 shows the safe velocity region and the velocity gap, which is the 

defined perceived risk in this study. The model considers all motion information, including 

position, velocity, and acceleration, highlighting the importance of these factors in risk 

perception. The model also considers the uncertainties in the motion of the subject vehicle 

and other road users, which can contribute to perceived risk. Specifically, at each moment, 

the model calculates a safe velocity region (the light blue area in the velocity space in Figure 

7) for the subject vehicle based on its current position, velocity, and acceleration as well as on 

the uncertainties of both the subject and neighbouring vehicles. The minimum distance from 

the subject velocity (the yellow arrow 𝑣𝑣𝑠𝑠′ in Figure 7) to the safe velocity region (the light blue 

area in Figure 7) is the perceived risk (the red arrow 𝑣𝑣𝑔𝑔 in Figure 7) for the current moment. 

The 2-D model describes the perceived risk per event in continuous time and was validated 

using event-based reported perceived risk. 
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Figure 7. The safe velocity regions V and V’ (with and without uncertainties) and the velocity gap vg, 

which is the defined perceived risk in this study. This figure is from a preprint on arXiv (He et al., 

2023).    

3.3.4 Results 

The PCAD considers factors such as distance, relative motion, acceleration, and subject 

speed. The model shows that perceived risk increases as a vehicle approaches an object 

faster, and that subject velocity significantly influences perceived risk. Compared to other 

models, PCAD can output different perceived risk values for different driving conditions (See 

Figure 8).  
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(a) Effect of relative speed, deceleration, and own vehicle speed. 

Figure 8. (a) An illustration of the PCAD model, in two example situations where another vehicle is in 

a region of high perceived risk (left) versus low perceived risk (right). (b) The effects of relative speed, 

deceleration, and own vehicle speed on the perceived risk function.  
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The model calibration and evaluation process used two datasets: "Dataset Merging" from a 

simulator experiment with automated vehicles reacting to merging and hard-braking events 

(He et al., 2022), and "Dataset Obstacle Avoidance" involving drivers facing sudden obstacles 

(Kolekar et al., 2020b). Both datasets contain event-based perceived risk ratings from 

participants and the corresponding kinematic data. The goal of model calibration was to 

minimise the prediction error, measured by Root Mean Squared Error (RMSE). Figure 9 shows 

the prediction results for the two datasets. The performance indicators detection rate and 

computation cost were used to evaluate the model. The model performed well, achieving a 

high detection rate and acceptable computation cost, indicating its potential for real-time risk 

assessment in automated vehicles (see Figure 10). 

        

(a) Dataset Merging. Adjusted R2 =0.90     (b) Dataset Obstacle Avoidance. Adjusted R2 =0.90 

Figure 9. Predicted and measured event-based perceived risk for Dataset Merging and Dataset 

Obstacle Avoidance. ‘○’ indicates raw event-based perceived risk and ‘●’ indicates the averaged 

event-based perceived risk across the same event type.  
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(a) Dataset Merging             (b) Dataset Obstacle Avoidance 

Figure 10. Radar charts of performance indicators comparing the PCAD model with three existing 

models for two datasets: the farther from the centre, the better the performance.  

The results of the model evaluation show that PCAD demonstrates strong performance in 

terms of overall error, R-square, and detection rate. The model had a small RMSE, meaning 

that it can describe the tendency of human drivers’ risk perception well in both datasets. 

Additionally, the model achieved a perfect detection rate (100% in both datasets), indicating 

that it could recognize all events that were marked as dangerous by human drivers in the 

experiment. Overall, across all metrics, none of the other models performed as consistently 

highly as the PCAD model.  The primary drawback of PCAD is its high computation cost, which 
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results from its complexity. However, this cost is within acceptable limits, in the sense that the 

computation of perceived risk could be completed in real time in an automated vehicle. 

In summary, PCAD demonstrated a strong performance in the evaluation, showing its potential 

for effective use in automated vehicles to assess perceived risk based on the difficulty of 

avoiding potential collisions. 

3.3.5 Conclusions and future work 

We have formulated, calibrated, and evaluated a novel computational perceived risk model 

and compared its performance with three well-established models across two different 

datasets. This model not only contributes to addressing the challenge of perceived risk 

computation for SAE Level 2 driving automation, but also illustrates the mechanisms 

underlying human drivers' risk perception.  

The demonstrated superior performance of our PCAD model unveils new insights into 

perceived risk. Firstly, PCAD considers all motion information, highlighting the importance of 

position, velocity, and acceleration for risk perception. Secondly, the model can capture lateral 

risk, leading to a higher detection rate, which indicates that perceived risk is 2-D: human 

drivers perceive the risk from all directions in a 2-D plane when driving. Thirdly, motion 

uncertainties of the subject vehicle and other road users cause extra perceived risk, an insight 

which is supported by Kolekar et al (2020b). Lastly, perceived risk in driving scenarios is a 

dynamic concept which varies with changing traffic conditions. This observation motivates the 

need for models which, like the proposed PCAD model, can adjust to varying driving scenarios 

even without recalibration. 

To further advance perceived risk modelling, we recommend collecting more perceived risk 

data in various scenarios through video-based online surveys, simulator experiments and on-

road observation. In the meantime, the model’s potential for estimating perceived risk while 

driving along a curve and during multi-object interactions at different driving automation levels 

will be studied. Moreover, internal HMIs reduce human drivers' perceived risk; thus perceived 

risk modelling will be further improved if we consider internal HMI conditions (Kim et al., 2023). 

Most importantly, our PCAD model can be used as a cost function, a constraint, or a reference 
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of perceived risk in driving automation path planning, decision-making, or controller design (L. 

Li et al., 2020), enhancing trust (Hu & Wang, 2021) and acceptance of automated vehicles. 

3.3.6 Publications 

Lu, C., He, X., van Lint, H., Tu, H., Happee, R., & Wang, M. (2021). Performance evaluation 

of surrogate measures of safety with naturalistic driving data. Accident Analysis & Prevention, 

162, 106403. https://doi.org/10.1016/j.aap.2021.106403  

He, X., Stapel, J., Wang, M., & Happee, R. (2022). Modelling perceived risk and trust in driving 

automation reacting to merging and braking vehicles. Transportation Research Part F: Traffic 

Psychology and Behaviour, 86, 178-195. https://doi.org/10.1016/j.trf.2022.02.016  

He, X., Happee, R., & Wang, M. (2023). A new computational perceived risk model for 

automated vehicles based on potential collision avoidance difficulty (PCAD). arXiv preprint 

arXiv:2306.08458. https://doi.org/10.48550/arXiv.2306.08458  

3.3.7 Highlights  

The overall objective of ESR12’s modelling work was to develop computational models of 

occupants’ subjective feeling of risk inside automated vehicles. Key results include:  

• A comprehensive understanding of Autonomous Vehicle (AV) occupants' perception 

of safety in relation to AV behaviours was developed, contributing to the broader field 

of human-machine interaction in automated driving. 

• A new computational model was created, the potential collision avoidance difficulty 

(PCAD) model, which outperforms existing models in accurately capturing human 

drivers' perceived risk. The PCAD model can adapt to various traffic conditions with 

minimal recalibration, demonstrating its robustness and practical applicability. 

• The project's findings have significant implications for the design of user interfaces and 

safety measures in AVs, potentially enhancing user trust and perceived safety. 

https://doi.org/10.1016/j.aap.2021.106403
https://doi.org/10.1016/j.trf.2022.02.016
https://doi.org/10.48550/arXiv.2306.08458
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3.4 Computational models of vehicle-pedestrian interaction (ESR13) 

3.4.1 Related previous work and research gaps 

Vehicle-pedestrian interactions at unsignalised locations are an important yet understudied 

phenomenon. On one hand, pedestrians constitute a great proportion of road users, and their 

interaction with others at locations without clear regulations has a great impact on traffic safety 

and efficiency; on the other hand, recent developments such as highly automated vehicles 

(Koopman & Wagner, 2018) require understanding human-AV interactions via different tools 

including mathematical models (for simulation testing of AVs for example).  

Previous studies of road user interactions have employed computational models such as logit 

models (Zhao et al., 2019), agent-based models (ABMs) (Rad et al., 2020), evidence 

accumulation models (EAMs) (Pekkanen et al., 2022), and game theory (GT). Each has its 

strengths and weaknesses. Among these, GT has been found to be successful in explaining 

road user interactions (Kalantari, Markkula, et al., 2022; Y. Zhang et al., 2022) by considering 

interdependencies, unlike logit models and ABMs (Bonabeau, 2002), and multi-agent 

decision-making, unlike EAMs (Evans & Wagenmakers, 2020). However, empirical findings 

from behavioural economics suggest that people do not play the Nash equilibrium, which is 

the core idea in conventional GT (CGT; Wright & Leyton-Brown, 2017). Is this also the case 

in road traffic interactions? Some studies have employed behavioural game theory (BGT) 

models in the road traffic context, such as the logit quantal response equilibrium in vehicle-

pedestrian interactions (Y. Zhang & Fricker, 2021) and both Level-k reasoning (Albaba & 

Yildiz, 2021; Oyler et al., 2016; S. Zhang et al., 2020) and cognitive hierarchy reasoning (S. Li 

et al., 2019) in vehicle-vehicle (including AVs) interactions, showing that the models can 

capture road user behaviour well. However, none of these (or similar) studies discussed the 

distinction between CGT and BGT, so that it is not clear whether the BGT approach is really 

warranted. In other words, there is a lack of comparison between CGT and BGT in vehicle-

pedestrian interactions; it is currently unclear whether CGT models are sufficient for vehicle-

pedestrian interactions, or whether the higher complexity provided by BGT is needed. There 
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is also a lack of comparison between game-theoretic models and logit models in general, 

which this PhD project seeks to address.  

Another important research gap relates to the data used to develop and validate GT models. 

The abovementioned GT studies have all used naturalistic data, which has its strengths—but 

also clear weaknesses, in terms of not permitting distinctions between correlation and 

causation and not permitting repeated observations of individual road users. Controlled 

studies, e.g., virtual reality simulations, do not have these weaknesses, but it has not been 

explored whether controlled studies can be meaningfully used for GT models of road user 

interactions. 

3.4.2 Objectives 

The main objective of this project is to employ and compare both conventional and behavioural 

(GT) models to see how pedestrians interact with vehicles in different crossing scenarios. To 

achieve this objective, the following sub-objectives were defined:  

• Identifying the proper modelling candidates for a computational model.  

• Planning, designing, and conducting controlled studies using human-in-the-loop 

simulated environments to provide validation tools for GT models. 

• Planning and conducting naturalistic studies. 

• Comparing the computational model(s) performance using both controlled and 

naturalistic data. 

 

3.4.3 Methods 

3.1.3.1. Experimental study  

A novel distributed simulator study (DSS) was designed, developed, and conducted to address 

the second objective. This work was made possible by connecting the University of Leeds 

Driving Simulator (UoLDS) to the HIKER (Highly Immersive Kinematic Experimental 

Research) pedestrian lab, so that both participants could see virtual representations of each 

https://uolds.leeds.ac.uk/facility/driving-simulator/
https://uolds.leeds.ac.uk/facility/hiker-lab/
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other and interact dynamically; see Figure 11. In this study, 64 participants (32 drivers [Age: 

M = 31.53, R = 21−50, SD = 1.72] and 32 pedestrians [Age: M = 25.09, R = 19−34, SD = 

0.87]) were placed in interacting driver-pedestrian pairs. They experienced different traffic 

scenarios based on different crossing types (zebra and non-zebra crossings) and five different 

vehicle time-to-arrival conditions (TTA, i.e., the temporal distance of the vehicle to the centre 

of the crossing, 3−7 s), resulting in ten conditions that were repeated twice in each 

experimental block. There were two blocks, resulting in 40 randomised trials per participant 

pair. The pedestrian was instructed to stand at a point on the HIKER’s floor and step to a 

second point (the kerb of the virtual road) after hearing an auditory tone. At that point the driver 

could see the pedestrian and the interaction started. For full details, see the work by Kalantari, 

Yang, Pedro, et al. (2023). 
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Figure 11. (a) The high-fidelity driving simulator. (b) The motion trackers. (c) The driver’s view of the 

pedestrian: the driver is stationary on the road, and the pedestrian is the pink bubbles. (d)The 

pedestrian’s view of the vehicle in the CAVE-based pedestrian lab: the pedestrian is crossing the road 

and the vehicle is to the right. (Figure and caption text from Kalantari, Yang, Pedro, et al., 2023, under 

a CC-BY license.) 

3.1.3.2. Naturalistic study  

Real-time traffic data were collected by surveying two marked crossings in the city of Leeds, 

England. The selection of these crossings was based on safety concerns and the high 

frequency of one-to-one interactions between vehicles and pedestrians, as observed during 

roadside assessments and consultations with Leeds City Council regarding crash history. The 
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chosen locations were a staggered crossing on Belle Isle Road (53°46′07″N, 001°31′48″W) 

and a zebra crossing on Queensway Road (53°44′45″N, 001°36′16″W). Data collection was 

conducted over 14 days, with each location monitored for seven days. Two Viscando camera 

sensors, known as OTUS3D, were employed for data collection. These sensors can 

distinguish among various road users, such as light vehicles, heavy vehicles, cyclists, and 

pedestrians, and track their trajectory and speed at discrete time intervals. Figure 12 shows 

the trajectory maps of road users for both locations.  

 

Figure 12. Trajectory map of (top) Queensway Road and (bottom) Belle Isle Road; the orange and 

violet dots show pedestrians and cars, respectively. The insets show the potential conflict zones (from 

kerb to kerb plus one meter from each side) for each location.   

https://viscando.com/
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3.1.3.3. Modelling  

Five computational models were considered:  

a) A logit (aka Logit) model with different intercepts for each crossing type (zebra/non-zebra 

crossing), defined as a linear function of TTA and waiting time of the pedestrians.  

 

b) An original CGT (aka OCGT) model from the literature (Wu et al., 2019), with the payoff  

formulation shown in Table 5. 

Table 5. Wu et al. payoff matrix (the vehicle is the row player and the pedestrian is the column player) 

 Pedestrian pass Pedestrian wait 

Vehicle 

pass 
  −k  –  actv,   − k –  actp   𝑘𝑘 +  atv,   k –  atp         

Vehicle wait k –  atv,   k +  atp    k −  atv,   k –  atp 

 

Payoffs in the model are calculated as sums of utilities relating to (I) the feeling of being on a 

collision course with another road user (modelled as k = 1/TTA), and (II) the loss of time as a 

result of yielding to another agent (equal to the time taken by that agent to pass the crossing, 

defined by ti). Both of these utility values are assumed to exist in all outcomes, with a negative 

sign when they have a negative influence on a road user, and a positive sign otherwise. In 

addition, a multiplier (c) was incorporated to account for the extra waiting time required when 

both agents try to cross simultaneously and thus need to avoid collisions, e.g., by braking 

suddenly (Wu et al., 2019). The model was solved by a mixed-strategy Nash equilibrium.  

c) The payoff formulation of the OCGT model was revised to adjust some of the model’s 

assumptions that were believed to hinder the model from fully capturing road user 

behaviour (see Kalantari, Yang, Merat, et al., 2023 for a complete explanation).  

The revised payoff formulation of the model is shown in Table 6.  

Table 6. Alternative payoff formulation 
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 Pedestrian pass Pedestrian wait 

Vehicle 

pass 
  −k(nR𝑝𝑝 + R𝑣𝑣)  –  actv, −k (nR𝑣𝑣 + R𝑝𝑝)–  actp   𝑘𝑘(𝑛𝑛𝑅𝑅𝑝𝑝 − 2𝑛𝑛𝑅𝑅𝑝𝑝 + 𝑅𝑅𝑣𝑣) + 𝑎𝑎𝑡𝑡𝑣𝑣 ,−𝑎𝑎(𝑡𝑡𝑣𝑣 + 𝑡𝑡𝑝𝑝)         

Vehicle 

wait 
−a(𝑡𝑡𝑣𝑣 + 𝑡𝑡𝑝𝑝), k(nR𝑣𝑣 − 2nR𝑣𝑣 + R𝑝𝑝) +  atv    −𝑎𝑎𝑎𝑎𝑡𝑡𝑑𝑑, −𝑎𝑎𝑎𝑎𝑡𝑡𝑝𝑝 

 

The revised model, named the alternative conventional game-theoretic (ACGT) model, 

was solved by a mixed-strategy Nash equilibrium. 

d) Models b and c were solved using the dual accumulator (DA) model (Golman et al., 2020) 

from the BGT domain, resulting in two new model variants: OBGT (original solved by 

behavioural game theory) and ABGT (alternative solved by behavioural game theory) 

models.  

All models were fitted to the DSS (Kalantari, Yang, Merat, et al., 2023) and naturalistic dataset 

using maximum likelihood estimation. 

3.4.4 Results 

Figure 13 shows the average of all 32 crossing probabilities, corresponding to the 32 

participant pairs in the DSS, over time gaps for both crossing types. The dashed lines show 

the empirical data, indicating a clear effect of both initial time gap and crossing type on the   

interaction outcome. The figure also shows the fits for all models. Table 3 shows the model 

comparison, including the information loss criteria (AIC, BIC) and error indices (MAE, RMSE). 

From both the figure and table, it is evident that the ABGT model exhibited a strong overall 

performance, and the combination of the Wu et al. model and the DA model (OBGT) 

outperformed the original model (OCGT) for both types of crossings. Overall, moving from the 

OCGT model towards the ABGT model in the table, the improvements in all criteria, including 

negative log-likelihood, are observable—which confirms the observations of Figure 3 to a 

greater extent.  
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An added benefit of the DA model is that it also provides an account of the decision-making 

process over time for each agent. Therefore, a possible association between the ABGT 

model’s estimated decision time (the time to convergence of the DA solution) and crossing 

initiation time of the pedestrian (the time when the pedestrian started crossing the road) in the 

DSS was examined using Spearman’s’ correlation. The results showed there was a significant 

positive correlation between these two measures: r(821) =.213, p =.000.  

 

Figure 13. Average probability that the pedestrian crosses first graphed against the time gap for the 

DSS empirical data for each model.  
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Table 7. Model comparisons for the controlled experiment data (DSS). 

Model ABGTZ ABGTNZ ACGTZ ACGTNZ LogitZ LogitNZ OBGTZ OBGTNZ OCGTZ OCGTNZ 

MAE1 0.058 0.087 0.2121 0.4996 0.1226 0.1635 0.172 0.230 0.231 0.297 

RMSE2 0.088 0.139 0.2372 0.5676 0.1497 0.195 0.209 0.290 0.262 0.339 

AIC3 705.949 1984.913 884.607 1156.695 1283.619 

BIC4 1540.870 2809.527 1544.298 1666.925 1778.387 

NLL5 190.974 832.456 314.303 479.347 545.809 

NO 

params6 

162 160 128 99 96 

1 Mean absolute error     2 Root mean squared error   3 Akaike information criterion 

4 Bayesian information criterion       5 Negative log-likelihood   6 Number of free parameters 

 

Figure 14 shows the results for the naturalistic dataset, with the probability that the pedestrian 

will cross first graphed against the time gaps at the normal zebra crossing (left), the staggered 

zebra crossing (middle), and the total dataset (right) for all computational models. Table 8 

presents the information loss criteria (AIC, BIC) and error indices (MAE, RMSE) for all models 

and datasets. denoted by "S" for staggered, "N" for normal zebra, and "T" for total data. Both 

the figure and the table indicate that, except for ACGT, all the models performed about equally 

well. However, the behavioural game-theoretic models stood out as the best performers for 

the normal zebra crossing, with OBGT performing best. The situation is more complex for the 

staggered crossing: the Logit and OCGT models excelled in terms of model parsimony, but 

once again, the behavioural game-theoretic models outperformed them for prediction 

accuracy. Finally, for the total dataset, the ABGT model performed best, reaffirming our earlier 

findings from the DSS, albeit by a smaller margin. Overall, it is noteworthy that while there 

were significant performance differences among the models when they used the DSS data, 

this was not the case when they used the naturalistic data. 
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Figure 14. Probability that the pedestrian passes first graphed against the time gap fitted to the 

naturalistic data for each model. 
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Table 8. Model comparisons for the naturalistic data. 

Model ABGT ACGT Logit OBGT OCGT 

Crossing type N S T N S T N S T N S T N S T 

MAE Case by 

case 

0.130 0.227 0.188 0.197 0.296 0.279 0.137 0.247 0.219 0.115 0.231 0.151 0.179 0.238 0.212 

Average 0.036 0.028 0.019 0.132 0.103 0.125 0.041 0.062 0.048 0.019 0.040 0.025 0.077 0.042 0.040 

RMSE Case by 

case 

0.252 0.339 0.305 0.320 0.379 0.356 0.250 0.335 0.314 0.252 0.337 0.300 0.270 0. 335 0.310 

Average 0.056 0.039 0.025 0.235 0.163 0.178 0.053 0.086 0.082 0.023 0.044 0.040 0.104 0.048 0.049 

AIC 116.178 273.544 366.74 159.7 289.088 459.13 119.822 242.92 376.934 111.622 271.838 371.3 129.576 247.34 375.442 

BIC 126.657 284.839 379.734 170.179 300.383 472.124 133.794 257.980 394.260 118.608 280.501 379.963 136.562 254.870 384.105 

NLL 55.089 130.772 180.370 76.850 141.544 226.565 55.911 117.460 184.467 53.811 130.919 183.65 62.788 121.670 185.721 

NO params 3 3 4 2 2 
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3.4.5 Publications 

• Kalantari, A. H., Markkula, G., Uzondu, C., Lyu, W., Garcia de Pedro, J., Madigan, 

R., ... & Merat, N. (2022). Vehicle-Pedestrian Interactions at Uncontrolled Locations: 

Leveraging Distributed Simulation to Support Game-Theoretic Modeling. In 

Proceedings of the TRB Annual Meeting, Paper No. TRBAM-22-0187. 

https://eprints.whiterose.ac.uk/188434/  
• Kalantari, A. H., Yang, Y., Pedro, J. G. de, Lee, Y. M., Horrobin, A., Solernou, A., 

Holmes, C., Merat, N., & Markkula, G. (2023). Who goes first? A distributed simulator 

study of vehicle–pedestrian interaction. Accident Analysis & Prevention, 186, 

107050. https://doi.org/10.1016/j.aap.2023.107050  
• Kalantari, A. H., Yang, Y., Merat, N., Lee, Y.M., & Markkula, G. (2023). Driver-

Pedestrian Interactions at Unsignalized Crossings Are Not in Line With the Nash 

Equilibrium. IEEE Access, 11, 110707-110723 

https://doi.org/10.1109/ACCESS.2023.3322959   

•  Kalantari, A. H., Lin, Y. S., Mohammadi, A., Merat, N., & Markkula, G. (2023, in 

review). Investigating vehicle-pedestrian interactions at marked crossings: A 

comparison of two methodologies. PsyArXiv preprint. 

https://doi.org/10.31234/osf.io/gk9af  

3.4.6 Conclusions and future work 

The DSS provides an experimental paradigm that generates traffic scenarios where traffic 

agents dynamically interact with each other, showing behavioural patterns similar to those 

observed in naturalistic studies of vehicle-pedestrian interactions. Hence, distributed 

simulation can be considered as a promising tool for studying repeated road-user interactions 

in a controlled manner, and provides a strong validation tool for computational models of road 

user interaction.  

The results of the modelling, especially regarding the DSS dataset, suggest that, besides the 

inevitable role of the payoff formulation in GT modelling, the way that the game is solved is 

also a determinant factor in the extent to which the model can predict the interaction outcomes. 

https://eprints.whiterose.ac.uk/188434/
https://doi.org/10.1016/j.aap.2023.107050
https://doi.org/10.1109/ACCESS.2023.3322959
https://doi.org/10.31234/osf.io/gk9af
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This finding confirms the hypothesis that people do not always make optimal choices or act 

purely rationally (as is assumed in CGT); rather they may choose suboptimal options under 

some circumstances. In these cases the ‘bounded rationality’ is a better model than the Nash 

equilibrium (Camerer & Fehr, 2006; Wright & Leyton-Brown, 2017), an observation which has 

recently been made for pedestrian-cyclist interactions as well (Alsaleh & Sayed, 2022). 

However, the differences in performance among the models were much smaller in the real 

traffic data compared to the simulation data, perhaps because the models were fitted to the 

average population for the naturalistic study, whereas in the DSS each model was fitted to the 

repeated observations per participant pair. This finding suggests that inter-individual 

differences may be quite important and should be considered in the virtual testing of AVs to 

avoid underestimating human behaviour complexity.    

Another key finding of the proposed ABGT model was the correlation between the model’s 

predicted time of decision (accumulation convergence) and the observed pedestrian crossing 

initiation times in the DSS, which suggests that the model is reasonably emulating the 

deliberation and negotiation process of the two road users. Our current model’s account of 

this process is, however, relatively limited; a more complete account should also include a 

consideration of how the road users might adjust their behaviour multiple times during an 

interaction.  

Furthermore, it is essential to develop a methodology that examines situations where multiple 

pedestrians interact with multiple vehicles. This consideration is especially important, as there 

is more to BGT than bounded rationality; some of its features, such as those related to 

collective behaviour, have not been investigated within the context of traffic. Doing so could 

provide valuable insights into road user interactions.  

3.4.7 Highlights  

The overall objective of ESR13’s modelling work was to develop and compare both 

conventional and behavioural game-theoretic models to understand vehicle-pedestrian 

interactions at unsignalised crossing locations. Key results include: 
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• An experimental paradigm was introduced in which two or more road users can interact 

with each other in a safe and controlled environment.  

• Five computational models were introduced and tested against both naturalistic and 

lab data.  

• The BGT models showed an overall better performance for both datasets in almost all 

cases.  

• Besides predicting interaction outcomes, the proposed BGT models can predict which 

interaction will take the longest time to resolve, something that traditional models such 

as logit and CGT cannot do. 

3.5 Computational interaction models between automated vehicles and 
cyclists (ESR14) 

3.5.1 Related previous work and research gaps 

Most cyclists’ crashes with vehicles occur at intersections where the two road users share the 

right of way and must agree on who should cross the intersection first (Isaksson-Hellman & 

Werneke, 2017, Bjorklund, 2005). At the same time, with the advancement in automated 

vehicles, there is a crucial need to define a safe and comfortable way of interacting with 

vulnerable road users in such conflict scenarios.  

So far, very few studies have tried to model and analyse cyclist-vehicle interactions in crossing 

scenarios. In one such study, Silvano et al. (2016) constructed a logistic model aimed at 

predicting cyclists' yielding behaviour utilising kinematic data, such as speed and distance. 

Their study revealed that the time it took for a cyclist to reach the intersection and the speed 

of the approaching vehicle significantly influenced the cyclist's decision whether to yield. It is 

worth noting that their investigation centred on a roundabout rather than an unsignalised 

intersection, and their dataset did not have complete trajectory information. Instead, they relied 

on discrete data points indicating the presence of bicycles and cars at various locations within 

the intersection. 
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In a separate study, Bella and Silvestri (2018) employed a driving simulator to examine how 

different infrastructure designs impact drivers' responses. They evaluated the effectiveness of 

various safety measures, such as pavement colour and raised islands, in reducing drivers' 

speed when interacting with cyclists at intersections. 

Nuñez and colleagues (2021) also investigated cyclist-vehicle interactions. In their 

experiment, they presented cyclist participants with videos through virtual reality (VR) 

headsets. These videos depicted cyclists approaching unsignalised intersections, requiring 

them to make decisions on whether to proceed or yield. The researchers observed the factors 

influencing cyclists' decisions in this context; the distance to the car and the cyclist's right-of-

way status were the primary determinants of their choices at the intersection.  

In the course of our research, the objective was to address the shortcomings found in prior 

studies of cyclist-vehicle interactions at uncontrolled intersections by gathering real-world data 

and exploring the influence of supplementary visual information. An in-depth understanding of 

the interaction process will help develop robust behavioural models to predict cyclist behaviour 

at intersections. In the context of this scholarly research endeavour, our primary aim is to 

formulate quantitative models with the purpose of predicting cyclists’ behaviour. These models 

are intended to leverage kinematic data alongside discernible behavioural cues exhibited by 

cyclists. 

3.5.2 Objectives 

This research project addresses the following research questions: 1. How do cyclists 

communicate their intent while interacting with vehicles? and 2. What visual cues do cyclists 

use to communicate their intent? In addressing these research questions, we pursued the 

following research objectives. First, to develop quantitative models to predict cyclists’ 

behaviour through their kinematic and visual information. Secondly, to propose behavioural 

models for use by automated vehicles to enable them to interact safely and comfortably with 

cyclists at intersections. 
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3.5.3 Methods 

3.5.3.1 Experimental study 

A cycling simulator experiment was conducted to evaluate cyclists’ response process as they 

interacted with an approaching vehicle at an unsignalised intersection. Cycling simulators 

have gained popularity for observing cyclists’ behaviour in recent years due to their 

controllability and safety (Farah et al., 2019, Calvi et al., 2022). A real intersection was 

simulated in which the participants encountered an automated vehicle. Twenty-seven 

participants were tested in the experiment. Two independent parameters were varied across 

trials: the difference in time to arrival between vehicle and cyclist at the intersection and 

visibility distance (field of view; FOV). Subjective and objective data were analysed to answer 

the research questions.  

 

Figure 15. Cycling simulator. 

3.5.3.2 Naturalistic field data 

A field dataset was collected from an unsignalised intersection in Gothenburg, Sweden. A 

camera-based sensor categorised the road users as vehicles, heavy vehicles, cyclists, or 
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pedestrians and recorded their trajectories. The collected dataset consists of fourteen days of 

data. Interaction events between vehicles and cyclists were extracted from the dataset. 

Further information about the cyclists’ actions, like pedalling and head movement, was added 

to the extracted dataset by manual annotation of the recorded video (Mohammadi et al., 2023). 

 

Figure 16. Camera based sensor's view over the intersection. 

3.5.3.3 Modelling framework 

In this research, we mainly used generalised linear regression models to describe the 

datasets. A logistic model was developed to predict the cyclists’ crossing decision based on 

the naturalistic dataset. The significant variables affecting the cyclists’ yielding decision consist 

of the difference in time to arrival at the intersection (DTA), cyclist’s speed, vehicle’s speed, 

head turn, and pedalling. A leave-one-out cross-validation method was used to evaluate the 

accuracy of the model.  

A linear mixed effect model was developed to investigate the significant parameters affecting 

the cyclists’ yielding decisions based on the simulator experiment. The random effect in this 

model accounts for the repeated measurements of each participant. In addition, an arctan 
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equation with four coefficients was used to model the cyclists’ speed profiles as they 

approached the intersection, in order to compare the cyclists’ speed profiles in each trial 

(Mohammadi et al., 2023). 

3.5.4 Results 

Table 9 shows the output of the logistic regression predicting the cyclist’s crossing decision: 

specifically, the statistically significant variables affecting the cyclists’ crossing decision and 

their trends.  

Table 9. Summary of model estimation results. 

 
Variables Coefficients std 

err 
Z 
score 

P-value lower 
bound 
(0.025) 

Upper 
bound 
(0.975) 

Intercept -4.3523 1.474 -2.953 0.003 -7.241 -1.464 

Bike speed -4.7794 2.041 -2.342 0.019 -8.779 -0.780 

Vehicle 
speed 

9.4198 1.910 4.932 2*10−4  5.676 13.163 

DTA 5.5818 1.194 4.675 4*10−5  3.242 7.922 

Pedaling or 
not 

1.1403 0.551 2.068 0.039 0.060 2.221 

Looking or 
not 

-1.4132 0.689 -2.050 0.040 -2.765 -0.062 

 

Results from the mixed effect model showed that of the independent variables defined in the 

simulator experiment, only DTA affected the cyclists’ yielding decision. This result is consistent 

with the previous modelling output. Visibility distance affected the cyclists’ speed profiles; as 
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cyclists’ visibility at the intersection increased, we recorded smoother interactions with the 

vehicle. The figures below compare average speed profiles in different trials.  
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A. Comparing average speeds across FOV B. Comparing average speeds across DTA 

    
Figure 17. Average speed profiles and confidence intervals: (A) a comparison between trials that have 

the same DTA and different FOV values and (B) a comparison between trials that have the same 

FOV and different DTA values. 

3.5.5 Conclusions and future work 

Our naturalistic study showed that both kinematics (speed and position) and cyclists’ actions 

(head turn and pedalling) are significant predictors for the cyclists’ crossing decision. Thus 

cyclists’ behavioural cues can be useful in predicting their decision. Our simulator experiment 

showed that DTA significantly affected the cyclists’ yielding decision. Increasing FOVs 

resulted in smoother interactions with the vehicle (lower deceleration rates).  

Future work within this project compares professional drivers (truck and taxi drivers) and 

passenger car drivers in terms of their interactions with cyclists. In addition, we aim to compare 

different modelling approaches to achieve better prediction accuracy.  

3.5.6 Publications 

Mohammadi, A., Piccinini, G. B., & Dozza, M. (2023). How do cyclists interact with motorized 

vehicles at unsignalized intersections? Modeling cyclists’ yielding behavior using naturalistic 

data. Accident Analysis & Prevention, 190, 107156. 

https://doi.org/10.1016/j.aap.2023.107156  

https://doi.org/10.1016/j.aap.2023.107156
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3.5.7 Highlights  

The overall objective of ESR14’s modelling work was to develop quantitative models predicting 

cyclists' behaviour through their kinematics and appearance, to improve automated vehicle 

interactions with cyclists at intersections. Key results include: 

• Communication and eye contact between cyclists and drivers play an important role in 

decision making. 

• Not only kinematics but also cyclists’ head movements and pedalling action are 

important parameters for predicting cyclists’ behaviour. 

• Providing more visibility at intersections will result in having less severe encounters 

between cyclists and vehicles. 

4 Conclusions 

Looking across the five ESR research projects presented in this report, we can note that they 

span the spectrum of modelling approaches mentioned in Section 2, and also include some 

efforts toward increased cross-fertilisation between approaches. ESR3 had a clear data-driven 

ML focus in their pedestrian prediction models, but with some mechanistic elements in terms 

of their more detailed representation of interactions and various features affecting them. ESRs 

12 and 13 had a clearly mechanistic focus in their modelling of perceived safety and game-

theoretic interactions. ESRs 11 and 14 took an intermediate approach based on statistical 

data-driven modelling with handcrafted features based on assumptions about mechanisms, in 

their modelling of drivers’ lane changing and cyclist-car interactions, respectively. The ESRs 

also provided good coverage of the mentioned different use cases for modelling: ESRs 3, 12 

and 14 emphasised the use of models in real-time AV algorithms, whereas ESRs 13 and 11 

emphasised simulated testing of AVs and the use of models to guide AV design, respectively. 

A common denominator across all ESR projects described here is that they have provided 

substantial contributions to our scientific understanding of how humans interact in traffic, and 

consequently also to our understanding of how to design safe, transparent, and human-

acceptable vehicle automation. This increased understanding concerns both aspects of 
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fundamental collision avoidance and risk minimisation (especially ESRs 3, 12, and 13) as well 

as aspects of reciprocal coordination and communication (especially ESRs 11, 13, and 14). 

At the same time, it is clear from the ESRs’ future work statements that the problem of road 

user interaction modelling will need continued efforts, to cover a more complete range of 

modelling use cases (ESR3), modelled scenarios (ESRs 12, 13), human behaviours (ESR11), 

and types of road users (ESR14). 
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