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1 Summary 

The design of automated vehicles (AVs) today is being enabled by the rise of new 

technologies, actually in particular recent advances in Artificial Intelligence (AI). Navigating 

the challenges and potential of this technology is crucial for the organizations that develop 

AVs, as well as for societies that rely on smart transportation.  

In this report, we consider two perspectives on these technologies in AV research and design, 

with a particular focus on human factors (HF): (A) Human-Factors Requirements in AV 

Development, and (B) The Use of AI in Research about Vehicle-Human-Interaction. We 

describe each part separately; they are different enough to stand on their own, while both 

descriptions together make up this report. 

We start with the first perspective – investigating how AI can facilitate HF research and 

practical use of AI to predict human behaviour for use by HF designers.  

To support HF researchers and automation designers with tools for classifying and predicting 

interaction behaviours between AVs/vehicles and pedestrians in urban environments, we 

developed AI-based models (eg., Zhang et al., 2023) to predict the outcomes of pedestrian-

vehicle interactions at unsignalised crossings. The models include random forest models, 

support vector machine models, and neural network models. The input consists of multiple 

features such as time to arrival (TTA), pedestrian waiting time, presence of a zebra crossing, 

and properties and personality traits of both pedestrians and drivers. The output consists of 

interaction outcomes such as crossing behaviour, crossing duration, and crossing initiation 

time. The predicted outcomes can contribute to a better understanding of the interactions. In 

addition, we analysed the interaction factors in order to support HF researchers and 

automation designers in their efforts to design safer interaction interface. 

 

We reviewed a large selection of papers that used AI to predict pedestrian behaviour and 

interactions (Zhang and Berger, 2023). We proposed a framework of AI-based tools for 

predicting pedestrian behaviours and summarized some guidelines for using AI—especially 

deep learning methods for pedestrian behaviour and interaction prediction. Furthermore, our 

own body of work (Zhang et al., 2021, Zhang and Berger, 2022a, Zhang and Berger, 2022b, 

Zhang et al., 2023) provides detailed steps for developing an example of an AI model. 
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A key contribution of our research is metrics that allow the evaluation and assessment of AI’s 

success at classifying and predicting pedestrian-vehicle interactions. In our study, we 

compared AI models with traditional linear models (Zhang et al., 2023). Further, we 

compared the performance of AI models and traditional methods with fewer input factors; 

traditional methods perform well when there are fewer, while AI-based methods perform 

better when dealing with more input factors. This finding provides information for optimal 

model selection in different scenarios. To summarize, our findings suggest that AI can help 

us understand the intentions of human actors and predict their next steps when they interact 

with AVs.  

The second perspective investigates how HF research can facilitate AV development 

activities. We had anticipated that the reliance of AV on AI technology might play a major 

role in how developers need to think about HF (hence, this aspect is also reflected in the title 

of this report). Our reasoning was that AI-based AV provide a larger surface of interaction 

between humans and AVs, not only through the traditional human machine interface. 

However, early in the project we identified that there was a need to address not only the AI-

based aspects of HF requirements in AV development, but also to address HF requirements 

overall in AV development – not the least within agile ways of working. We therefore 

decided to include AI-based AV development considerations as part of the larger scope of 

studying HF requirements in the context of AV development, with focus on agile processes.  

The agile angle was chosen as AV development increasingly incorporates agile and 

continuous development approaches. We find that it is conceptually unclear how to 

systematically incorporate HF in such a fast-paced environment. Further, the automotive 

industry used as our subject of study is lacking guidelines (as well as best practices) for 

incorporating HF into these ways of working. We propose the development and application 

of a HF requirements strategy to manage key implications, for which our research suggests 

useful templates and guidelines. 
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2 The use of AI in Human-Factors Research  

2.1 Background and Motivation for Vehicle Human-Factors Research 

Since the number of motor vehicles expanded significantly from 0.85 billion to 2.1 billion 

between 2000 and 2016, driving safety is becoming an important issue that attracts attention 

from industry and academia. Great efforts need to be put into reducing the number of people 

fatally injured in traffic. According to the World Health Organization, approximately 1.3 

million people are killed each year in road traffic accidents, of which 310,000 are pedestrians, 

accounting for approximately 23% of all deaths worldwide (WHO, 2018). This is an 

unacceptably high figure that must be lowered. 

 

Most pedestrian-vehicle incidents happen when people are crossing the street (Do et al. 

2014). Pedestrians commonly interact with moving vehicles in this situation (Zhang and 

Berger, 2023). By comprehending the interactions between vehicles and humans (i.e., 

pedestrians), we can forecast pedestrian behaviour more accurately and lower the risk of 

collisions. Investigating vehicle-human interactions can also provide additional information 

about human behaviour that can be useful for developing AVs. 

The vehicular automation industry has made numerous efforts to improve driving safety by 

utilizing technology. However, human error remains a significant risk factor, one of which is 

human error (Rumar, 1999). As technological advancements pave the way for ever-higher 

levels of automation on roads, the systematic study of HF (especially in the context of AV) is 

becoming increasingly important. Sensors in combination with prediction systems can 

provide information about vulnerable road users (VRUs) earlier, reducing the driver's 

cognitive load and providing the driving system with more time to react than if only sensors 

without a prediction component were used. It is crucial to comprehend and forecast how 

(automated) vehicles interact with pedestrians. Therefore, AV development must incorporate 

considerations about HF during the AV development lifecycle. By using this information, we 

can predict pedestrian behaviour more accurately, providing safer self-driving technologies 

and designing safer AVs.  
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2.2 AI Methods for Vehicle Human-Factors Research 

The interactions between automated cars and pedestrians are very intricate, especially when 

we need to consider HF. There are several variables that can affect the interaction in real-

world traffic. The following are a few examples of such variables:  

• the actions and characteristics of pedestrians, including posture, direction of travel, 

age, gender, and even personality traits;  

• the vehicle status, including speed, acceleration, direction, and size. If the car is 

manually driven, the interaction may also be impacted by the behaviour of the car;  

• the surroundings, including the road's dimensions and topology, as well as traffic lights 

and signage. 

The interactions between AVs and pedestrians have been analysed and predicted by 

researchers using a variety of techniques. In one example, Rasouli et al. (Rasouli et al., 2019) 

divided the interaction into two parts: understanding how vehicles and pedestrians 

communicate and understanding the intentions of pedestrians. Our research largely 

concentrated on the second part, understanding, and forecasting the intentions of pedestrians, 

taking the interaction as input features (Zhang et al., 2021, Zhang and Berger, 2022, Zhang et 

al., 2023). 

 

Given that the variables mentioned above affect pedestrian behaviour and interactions, it is 

difficult for traditional analysis methods to predict pedestrian behaviour with any degree of 

consistency or accuracy. Artificial intelligence (AI) methods have the potential to be useful 

during the development of prediction systems (e.g., the training an AI-enabled system) or 

during the data analysis of pedestrian interaction.  

Sarker (2021) describes AI as the simulation of human intelligence processes by computer 

systems (Sarker, 2021). These processes include learning (the acquisition of information and 

rules for using the information), reasoning (using the rules to reach approximate or definite 

conclusions), and self-correction. Machine Learning (ML) is a subset of AI that provides 

systems with the ability to automatically improve with experience without being explicitly 

programmed (Zhang, 2022). It involves using algorithms to parse data, learn from the data, 

and then make a prediction about something in the world. The ML models used in our 
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research include logistic regression and linear regression, Support-Vector Machine (SVM), 

Random Forest (RF). A subset of ML, Deep Learning (DL), utilises artificial neural networks 

(ANN), which are inspired by the structure and function of the brain. DL uses neural 

networks with many layers, called deep neural networks, to extract latent information and 

learn complex patterns in large amounts of data. It has been applied to a variety of tasks, such 

as computer vision and natural language processing. The non-linearity of the model can be 

detected using the deep learning network's activation functions. The DL models used in our 

research include Recurrent Neural Networks (RNNs), including the variant Long Short-Term 

Memory (LSTM) networks; Generative Adversarial Networks (GANs); Convolutional Neural 

Networks (CNNs); and Transformer (TF) networks. 

To help us understand and predict patterns of pedestrian behaviour, we use DL and other ML 

algorithms to recognize the interactions between pedestrians and vehicles. 

 

2.3 Evaluation Metrics for AI-based Models 

We use AI-based models to predict pedestrian-vehicle interactions, including the trajectories 

and crossing actions of pedestrians. The models consider the current pedestrian-vehicle and 

pedestrian-AV interactions in order to predict the pedestrians’ future trajectories during the 

interaction. We can use the displacement error that measures the deviation between 

prediction and ground truth, defined as below following broadly accepted metrics in the 

community (C. Zhang, C. Berger, and M. Dozza, 2021), to report the prediction error and 

evaluate the model’s performance: 

 

The Average Displacement Error (ADE): the average distance gap between ground truth and 

prediction trajectories over all predicted time-steps. 

 
 

The final displacement error (FDE): the average distance gap between ground truth and 

prediction trajectories for the last predicted time-step. 
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To evaluate the accuracy of the prediction regarding the pedestrian’s decision whether to 

cross during the interaction, we use the following metrics: 

P is the number of positives 

N is the number of negatives 

TP denotes true positives 

TN denotes true negatives 

FP denotes false positives 

FN denotes false negatives.  

With these fundamental elements, we define accuracy (ACC) as how many predictions were 

correct out of all the predictions and precision measures how many of the positive predictions 

were correct, i.e., TP over the sum of TP and FP. 

We define recall as the ratio between TP and the sum of TP and FN to describe the sensitivity 

of a predictor. 

We define the F1 score as a balance between precision and recall as it considers both false 

positives and false negatives. The prediction accuracy and F1 score are used for evaluation as 

shown below:  

 

 

 
 

We conducted research into pedestrian trajectory prediction and improved the state-of-the-art 

after evaluating the results of the interaction between the pedestrian and a vehicle. Our 

proposed neural network model improves the prediction accuracy and F1 score by 4.46% and 

3.23%, respectively, and reduces the root mean squared error (RMSE) for crossing initiation 

time and crossing duration by 21.56% and 30.14%, respectively. 
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2.4 Overview of Research Outcomes 

A method for predicting pedestrian trajectories which considers the social interactions 

between pedestrians as part of the model:  

C. Zhang, C. Berger, and M. Dozza “Social-IWSTCNN: A Social Interaction-Weighted 

Spatio-Temporal Convolutional Neural Network for Pedestrian Trajectory Prediction in 

Urban Traffic Scenarios” In proceedings of the 2021 IEEE Intelligent Vehicles Symposium 

(IV). IEEE, 2021. https://doi.org/10.1109/IV48863.2021.9575958   

 

A method for predicting pedestrian trajectories which considers the interactions between 

pedestrians and vehicles as part of the model:  

C. Zhang and C. Berger “Learning the Pedestrian-Vehicle Interaction for Pedestrian 

Trajectory Prediction” In 2022 the 8th International Conference on Control, Automation and 

Robotics (ICCAR). IEEE, 2022. https://doi.org/10.1109/ICCAR55106.2022.9782673   

 

Analysing the interactions between pedestrians and automated vehicles using deep learning 

methods:  

C. Zhang and C. Berger “Analyzing Factors Influencing Pedestrian Behavior in Urban Traffic 

Scenarios Using Deep Learning” In Transport Research Arena (TRA), 2022. Elsevier. 

Analysing and predicting the interactions between pedestrians and vehicles at unsignalized 

crossings, considering the human personality traits, using machine learning methods:  

C. Zhang, A. H. Kalantari, Y. Yang, Z. Ni, G. Markkula, N. Merat, and C. Berger “Cross or 

Wait? Predicting Pedestrian Interaction Outcomes at Unsignalized Crossings”, In proceedings 

of the 2023 IEEE Intelligent Vehicles Symposium (IV). IEEE, 2023. 

https://doi.org/10.1109/IV55152.2023.10186616   

 

3 Human-Factors Requirements in AV Development 

For more than a decade, automotive industries are competing to bring AVs to the market. 

With increasing levels of vehicle automation, AVs are becoming more popular and capable. 

AVs rely on improvements in various AI methods and strategies to understand their 

https://doi.org/10.1109/IV48863.2021.9575958
https://doi.org/10.1109/ICCAR55106.2022.9782673
https://doi.org/10.1109/IV55152.2023.10186616
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circumstances better and make better driving decisions. In this context, AI is a technology 

that helps the AV imitate the way a human driver would operate a car. 

Significantly, however, AVs promise many benefits, for example: fewer accidents, injuries, 

and deaths resulting from human-driver-caused crashes; increasing mobility of the young, 

adults, and elderly; and enabling drivers to engage in other activities while in the car (Fagnant 

& Kockelman 2015).  

However, AVs also pose various challenges for humans, such as extra pressure and workload, 

driver engagement and re-engagement, AI decision-making capability, and testing & 

evaluation methodology (Billings, 2018; Merat et al., 2014).   

The challenges are not limited to drivers; they also impact other individuals on the road who 

interact with AVs. The technology that permits a vehicle to sense, perceive, and ”understand” 

its surroundings is steadily improving. However, an AV also needs to communicate its 

intentions and decisions unambiguously and transparently to its users and surroundings. HF 

research is highly relevant in this aspect and can significantly support this integral part of the 

engineering and assessment processes.  HF researchers strongly advocate the integration of 

HF knowledge into the design of AVs to unlock the full potential of automation (Hancock, 

2014, Hancock, 2017, Hancock, 2019, Lee, 2008, Navarro, 2019).  

HF is a field of study that involves the investigation of human capabilities, limitations, and 

other human attributes, with the aim of applying these findings to enhance the performance, 

safety, and comfort of systems (HFES, 2023). 

In fact, researchers advocate including HF knowledge in the early stages of development, 

specifically while developing automation systems (Chua & Feigh 2011; Håkansson & 

Bjarnason, 2020). Although there are guidelines on implementation considerations of HF 

aspects in vehicle development (Novakazi, 2023, Cao et al., 2021), they are focusing on HF 

and its importance. In contrast, the work presented here focuses on how to integrate HF 

related work in the overall design and development lifecycle. 

Traditionally, this knowledge has been incorporated in the Requirements Engineering (RE) 

phase, which is the process of gathering, examining, recording, and validating requirements 

(Kotonya & Sommerville, 1998). 
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However, the increasing use of agile development approaches in the automobile sector 

considerably alters the function of RE. Agile development methods are a group of principles 

and practices based on incremental and iterative development, whereby self-organizing and 

cross-functional teams collaborate to create requirements and functionality (Moniruzzaman & 

Hossain, 2013). Agile approaches aim to deliver products to market faster. Due to 

competition, developers seek to deliver faster; as a result, they are at risk of focusing on 

technical aspects and overlooking others, such as those offered by HF. Moreover, because 

agile methodologies do not focus on the traditional processes, RE processes are not well 

integrated with agile methodologies and face different challenges (Meyer, 2014).  

Without a clear role for RE in agile development, it may be challenging to include knowledge 

of human aspects as requirements. The lack of empirical research on how to include HF 

knowledge in agile development increases the difficulty; practitioners struggle due to a lack 

of specific guidance. Therefore, the research reported on in this deliverable (D2.4) 

investigates how we can efficiently provide AV developers with requirements based on HF 

expertise in large-scale, agile AV development.  

 

3.1 Research Approach  

The research approach used in this work mainly follows the empirical paradigm and focuses 

on investigating challenges and finding solutions in the real world. Empirical studies that 

focus on a real-world problem make it much easier to explore newly emerging topics of 

interest to the industry (Easterbrook et al., 2008). These studies can broaden our 

understanding of the problem and steer us toward promising solutions for managing 

requirements and HF in large-scale, agile AV development. While empirical investigations 

may employ qualitative or quantitative approaches (Creswell & Creswell, 2017), we 

primarily used qualitative research techniques for our exploratory investigation. 

 

3.2 The Need for Developers to Understand Human Factors 

When building complex, AI-intensive systems and products, it is important to focus on the 

technical aspects of the system along with HF (e.g., human capabilities and limitations, as 

well as different aspects of user experiences) (Heyn et al., 2021). Automated systems impose 
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new types of challenges on humans, such as activating and deactivating automated features. 

Several studies have shown that when an AV is driving without human input (when both 

lateral and longitudinal control is handled by the vehicle), the humans (drivers) relax and lose 

focus on the roadway and driving—even when they have been informed that the system is not 

perfect. Humans are just not suited for monitoring tasks. However, if/when the system fails to 

perform the driving task and the drivers are notified that they should take over control, the 

situation can quickly become critical, possibly leading to a crash, if the human cannot focus 

and react in time. At the same time, if the system works as intended, disabling it may increase 

the risk of crashing, because its conflict and crash avoidance performance is substantially 

better than that of the human driver. This issue is well known, but still there are many aspects 

of vehicle automation design in which the human’s role is unknown. A human-centric design 

philosophy, with knowledge of HF, can help identify these aspects and mitigate any negative 

consequences earlier, thus guiding development according to human capabilities and 

limitations. The ultimate result will be a safe, acceptable, and reliable system by design. 

Therefore, it is important to understand and incorporate HF knowledge during development, 

in order to successfully deploy AVs that reduce the number of accidents and improve 

mobility. For this concern, HF must be considered earlier in the development phases, right 

when the concepts are developed, i.e., in the RE phase. However, with agile development’s 

tendency to neglect upfront analysis and heavy processes, it is challenging to include HF 

knowledge in the development of complex AI-intense systems such as AVs.  

The research of ESR8 clearly establishes the need to develop a catalogue of good practices 

for managing HF knowledge in agile AV development. 

 
3.3 Implications for Agile Ways of Working with Human Factors and 

Requirements Engineering 

As a first step to overcoming the challenges of integrating HF into agile AV development, we 

have investigated the implications for agile ways of working, HF, and RE, when relying on 

all three in AV development (Muhammad, et al., 2023). 

Implications for the agile way of working to incorporate HF. We found that agile AV 

development teams must have access to HF knowledge when making their local design 

decisions. This is implied by the need for agile teams to take responsibility for parts of the 
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product, to incorporate all knowledge needed to develop those parts, and to be autonomous in 

their decisions within the scope of the parts’ development.  

Agile development strives to be responsive to changing goals and requirements. 

Consequently, the specific knowledge needs related to HF might not be anticipated up front. 

Thus, agile AV development teams must be able to acquire HF knowledge when needed, 

which makes it desirable to include HF experiments within the iterative work of agile teams. 

The implication that agile teams must be able to acquire HF knowledge raises questions about 

how to manage these experiments’ design and evolution in agile work. 

Given the lack of HF expertise in agile AV development teams, it is important that we 

formulate a strategy for agile AV development that takes HF into account. As the automotive 

industry shifts towards agile methodologies as well as continuous integration and delivery, 

novel collaborative approaches with suppliers are emerging. These approaches involve the 

close integration of suppliers into incremental work in order to meet distinct objectives. 

Consequently, our final implication for an agile approach is to methodically determine 

whether, and how, to incorporate suppliers into the scaled-agile development of AVs. 

Implications for Working with Human Factors. Our findings indicate that HF experts 

(who have accumulated knowledge) should be in close contact with agile teams in order to 

raise awareness, enable relevant questions to be asked (regarding human behaviour and 

capabilities), and guide teams in the right direction. HF experts should also provide basic HF 

knowledge, in the form of checklists and design principles, to development teams. 

Implications for Requirements Engineering. RE can support managing HF in large-scale, 

agile AV development, by effectively managing the knowledge acquired from experiments 

and by expressing design decisions in relation to HF requirements in the backlog. The other 

implication for RE is to increase the ability to prototype for requirement elicitation and 

validation based on the identified needs and HF checklists within agile teams. The last 

implication is to express the relationship between design decisions and HF knowledge, 

typically via trace links. In the context of the other implications, describing these 

relationships requires that system requirements be created together with the system/software, 

not before. It follows that the requirements, in the form of stories, would need to be provided 

during development rather than at the beginning of development. 
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3.4 Towards defining a Requirements Engineering Strategy that 

Incorporates Human Factors in Agile  

Our implications discussed above indicate a need to evolve the agile way of working, the 

management of HF knowledge, as well as RE. To do so, practitioners are lacking concrete 

guidelines and best practices on how to incorporate HF knowledge in agile AV development. 

To address this challenge, we designed a template, shown in Table 1, that helps organizations 

develop a concrete requirements strategy (Muhammad et al., 2022) to integrate RE into agile 

development. This template comes with guidelines for creating a solution approach to 

outlining RE tasks within the context of an agile development process. It encompasses three 

complementary perspectives as building blocks: a structural view, an organizational view, 

and a view centred around work and feature flow. 

The objective of establishing a requirements strategy is to foster a shared understanding of 

requirements (Cannon‐Bowers & Salas, 2001) among these views, with a particular emphasis 

on creating a shared vocabulary and promoting the flow of information. 

We recommend starting with the structural view, by defining the structure of requirements to 

establish a common terminology. Next, the responsibilities for managing requirements 

knowledge within the organization should be defined. The final building block is mapping 

both the structure and organizational roles to the agile workflow.  

To design a requirements strategy aimed at addressing the challenges of RE in agile 

development from a structural perspective, it is imperative to understand the types of 

requirements, their levels of abstraction, and whether templates exist for these requirements. 

For instance: Are there high-level requirements? Can these requirements be broken down into 

more detailed specifications? Additionally, consider the need for traceability in this context. 
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     Table 1: Template with Key Building Blocks of a Requirements Strategy 

 
      

The organizational view focuses on roles and responsibilities (which must somehow be 

combined with the items in the structural perspective). We need to address questions such as 

who owns which requirements, which roles exist in the company and what their 

responsibilities are, and how these roles relate to the requirements. In this view, it is essential 

to prevent any gaps in responsibility; otherwise, there is a risk that individuals may assume 

others are handling specific tasks, which may than not be dealt with at all or only painfully 

late. 

The third perspective involves aligning the RE strategy with the agile workflow and feature 

development process. In this perspective, it is crucial to align the structural and 

organizational aspects into clear guidelines on how they fit into the work and feature flow. 

This alignment can be partially achieved by establishing a definition of done criteria, for 

example. Moreover, it is also crucial to link the work and feature flows with the roles, 

responsibilities, and ownership of requirements. A stakeholder map can be a valuable tool, as 

it defines artifact ownership, communication recipients, and review stakeholders. Defining 

clear requirements review strategy can be highly beneficial, enhancing the quality of 

requirements and keeping reviewers updated on recent changes. 

A requirements strategy should be created and systematically documented to ensure all 

objectives are properly addressed and understood by all stakeholders. This strategy should 
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include methodologies, tools, and templates aimed at strategically addressing the challenges 

in RE within an organization. It should evolve over time to adapt to changing organizational 

needs, methods, and products. Additionally, the requirements strategy should serve to 

harmonize diverse stakeholders in terms of terminology, requirement categories, 

requirements abstraction levels, roles and duties, traceability, resource allocation, etc. (Zhang 

et al., 2013). 

These guidelines aim to help organizations integrate RE effectively into agile development, 

bridging the gap between traditional upfront requirement phases and agile methodologies. 

The goal is to manage requirements effectively without contradicting the organization's agile 

objectives. This approach is adaptable and customizable for specific domains, making it 

valuable for any agile organization. Ultimately, a requirements strategy provides a framework 

for aligning RE activities with agile system development and can inform further research and 

best practices in the industry. 

 

4. Overview of Research Outcomes 

Identified properties for agile and human factors for AV development and provided some 

implications for human factors, agile way of working, and requirements engineering. (Note 

that this paper is included as an Appendix; under Creative Commons license CC BY 4.0 

DEED, published by Elsevier): 

Muhammad, A.P., Knauss, E. and Bärgman, J. (2023) “Human factors in 
developing automated vehicles: A requirements engineering perspective,” 
Journal of Systems and Software, vol. 205, p. 111810. 
https://doi.org/https://doi.org/10.1016/j.jss.2023.111810   
 

Identified the current challenges and practices in large-scale agile AV development: 

Muhammad, A.P., Knauss, E., Bärgman, J. and Knauss, A. (2023) “Managing Human 
Factors in Automated Vehicle Development: Towards Challenges and Practices,” in 
31st International Requirements Engineering Conference (RE).  IEEE. 

 

  

https://creativecommons.org/licenses/by/4.0/
https://doi.org/https:/doi.org/10.1016/j.jss.2023.111810
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Defined requirements strategy to address challenges related to requirements engineering agile 

development: 

Muhammad, A. P., Knauss, E., Batsaikhan, O., Haskouri, N. E., Lin, Y.-C. and 
Knauss, A. (2022) “Defining requirements strategies in agile: a design science 
research study,” in International Conference on Product-Focused Software Process 
Improvement. Springer, pp. 73–89  

 

Problem description: 

Muhammad, A.P. (2021) “Methods and guidelines for incorporating human factors 
requirements in automated vehicles development.” in REFSQ Workshops  

 

General exploration of problem areas related to requirements engineering in developing AI-

intense systems.  

Heyn, H.-M., Knauss, E., Muhammad, A. P., Eriksson, O., Linder, J., Subbiah, P., 
Pradhan, S. K. and Tungal, S. (2021) “Requirement engineering challenges for ai-
intense systems development,” in 2021 IEEE/ACM 1st Workshop on AI Engineering-
Software Engineering for AI (WAIN). IEEE, pp. 89–96. 
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Pedestrian Behavior Prediction Using Deep Learning
Methods for Urban Scenarios: A Review

Chi Zhang ID and Christian Berger

Abstract—The prediction of pedestrian behavior is essential for
automated driving in urban traffic and has attracted increasing
attention in the vehicle industry. This task is challenging because
pedestrian behavior is driven by various factors, including their
individual properties, the interactions with other road users, and
the interactions with the environment. Deep learning approaches
have become increasingly popular because of their superior
performance in complex scenarios compared to traditional
approaches such as the social force or constant velocity models. In
this paper, we provide a comprehensive review of deep learning-
based approaches for pedestrian behavior prediction. We review
and categorize a large selection of scientific contributions covering
both trajectory and intention prediction from the last five years.
We categorize existing works by prediction tasks, input data,
model features, and network structures. Besides, we provide an
overview of existing datasets and the evaluation metrics. We
analyze, compare, and discuss the performance of existing work.
Finally, we point out the research gaps and outline possible
directions for future research.

Index Terms—Pedestrian behavior prediction, trajectory, inten-
tion, deep learning, neural networks, automated vehicles, survey.

I. INTRODUCTION

ACCORDING to World Health Organization (WHO)’s
report on road safety [1], about 1.35 million people are

fatally injured by road crashes every year. Pedestrians constitute
23% of all road traffic deaths globally, which is unacceptably
high. As the most vulnerable road users, pedestrians are
important participants and need protection. Given that human
errors are one of the main factors in most road traffic crashes [2],
automated vehicles (AVs) may have the potential to reduce these
figures and improve road safety. Hence, it is essential to predict
the behavior of pedestrians for AVs to better understand the
AV’s surroundings for making better and safer driving decisions
and preventing potential hazardous situations. In recent years,
the interest in AVs has attracted increasing attention to research
related to pedestrian behavior prediction.

Predicting pedestrians’ behavior is a great challenge. In
contrast to the vehicles, whose behavior prediction has been
well studied and reviewed by Lefèvre et al. [3] and Mozaffari et
al. [4] for instance, pedestrians are more agile and can change
their speed and direction unexpectedly [5] with unknown or
hardly predictable moving patterns [6]. Pedestrian behavior is
driven by complicated influencing factors. These factors include
not only the properties of the pedestrians themselves such as

Chi Zhang and Christian Berger are with the Department of Computer Sci-
ence and Engineering, University of Gothenburg, 41756 Gothenburg, Sweden.
(e-mail:chi.zhang@gu.se, christian.berger@gu.se) This is an open-access article
under the CC BY 4.0 license (https://creativecommons.org/licenses/by/4.0/)

the motion states, destination, age, and gender [7], but also the
interactions with other pedestrians [8] and vehicles [9]–[11].
Furthermore, the environment can also influence the intention
of pedestrians both explicitly and implicitly. The non-linearity
arising from pedestrian interactions and the complexity of
multiple influencing factors hinder accurate prediction using
conventional knowledge-based models such as social force [12]
and constant velocity model [13]. Deep learning is a subset
of machine learning based on artificial neural networks with
multiple layers. Inspired by the biological neuron, artificial
neural networks are composed of nodes with linear weights
and bias, and non-linear activation functions. Deep learning
methods are powerful tools that can be used to extract high-level
features from data, and can deal with the non-linearity of the
data. Therefore, researchers are exploring the potential of deep
learning models to represent and extract pedestrians’ behavior
patterns in a data-driven manner. In this paper, we analyze and
categorize existing research and discuss how current challenges
have been addressed so far.

As deep learning methods are data-driven, datasets are
important for developing models. The report on pedestrian
safety by WHO [14] has shown that about 70% of pedestrian
fatalities occur in urban areas in the European Union, and in
the United States, this number is about 76%. Pedestrian-vehicle
collisions occur more in urban areas than rural areas in these
countries, and hence, most of the publicly available datasets
for developing pedestrian behavior prediction models used by
researchers are collected in urban areas. Therefore, we review
prediction methods and datasets in urban scenarios.

The scope of this paper covers studies that predicted
pedestrian behavior, including the future trajectory and crossing
intention. We focus on deep learning-based models. When
it comes to datasets and model inputs, we focus on urban
scenarios, and cover various inputs such as camera images,
light detection and ranging (LiDAR) point clouds, or the speed
of the ego vehicle to name a few. Various factors that influence
pedestrian behavior are covered, such as pedestrians’ own past
motion states, interactions with other pedestrians and vehicles,
and influences of the environment.

There are several published papers that reviewed existing
works on pedestrian behavior prediction. Hirakawa et al. [15]
surveyed vision-based methods for pedestrian path prediction,
where deep learning-based methods were only covered by a
small extent. Rudenko et al. [16] reviewed the work related to
human motion trajectory prediction and categorized existing
methods by the modeling approach and contextual cues.
Korbmacher and Tordeux [17] reviewed pedestrian trajectory
prediction methods, compared deep learning methods and

https://orcid.org/0000-0001-6152-9387
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knowledge-based methods. These papers only covered the
trajectory prediction and omitted the important prediction of
intention that can be used for pedestrian-vehicle collision avoid-
ance. Shirazi and Morris [9] focused on pedestrian intention at
intersections and analyzed how crossing behavior is influencing
intersection participants. Ohn-Bar et al. [10] provided a survey
on interactions between humans and autonomous vehicles.
Rasouli and Tsotsos [11] reviewed pedestrian behavior studies
of both classical pedestrian–driver interactions and more recent
autonomous vehicles and pedestrian interactions, but mainly
focused on analyzing human factors and interactions instead
of deep learning-based behavior prediction. Ridel et al. [18]
reviewed and classified existing pedestrian behavior prediction
models, but they classified previous works from only a single
criterion, and many recently suggested deep learning methods
were not covered. Most of the previous review papers focused
on a single task, either the analysis of trajectories [15]–
[17] or intention [9], or interactions between pedestrians and
vehicles [10], [11], which did not cover the aspects in this
paper’s scope. Moreover, most of these papers classified the
existing literature by a single criterion [17], [18], and only
include methods with some particular input data [15].

To overcome the drawbacks listed above, we review, cat-
egorize, and analyze the existing research on pedestrian
behavior including both the trajectory and intention prediction
in this paper. We propose four criteria for classification to
consider existing works from different dimensions. The main
contributions of this paper are:

• We present a detailed analysis of the existing literature
on pedestrian behavior prediction, including trajectory
prediction, intention prediction, and the joint prediction of
both. We categorize existing approaches from four criteria
including a) prediction tasks b) input data, c) the features
that are considered in existing models, and d) network
structures, and emphasize the advantages and drawbacks
of existing approaches.

• We include the most recently proposed existing publicly
available datasets and commonly used evaluation metrics.
We compare the trajectory and intention prediction tasks
on the most commonly used open datasets and present
state-of-the-art algorithms.

• We point out research gaps and outline the potential
directions for future works.

II. METHODOLOGY AND TAXONOMY

A. Methodology

Our methodology to find and collect existing papers is
based on direct search and snowballing. We used IEEE Xplore
digital library and Google Scholar for direct search to include
both scientific databases and open-access pre-prints. We used
“pedestrian behavior prediction” OR “pedestrian trajectory
prediction” OR “pedestrian intention prediction” filtered by:
“deep learning” OR “network” as initial search strings. We
did not set the time range explicitly, but after searching, the
results originated mainly from 2016 to 2021. Then we went
through the results to select relevant papers meaning that the
research targets are pedestrians instead of drivers or robots,

Fig. 1. The number of papers over the years and the distribution of the
papers. The rising trend of the papers indicates the growing interest in deep
learning-based pedestrian behavior prediction. *Note that in 2021 only the
papers published in the first half of the year are included.

the research goal is behavior prediction instead of detection,
tracking, or vehicle/robot path planning, and the methods are
deep learning. We selected 50 papers from direct searching.
Then we did backward and forward snowballing (as proposed
in [19]) with their citations and references to include relevant
publications, and got 42 papers from snowballing. We review
92 papers in total, including 44 on trajectory prediction, 17 on
intention prediction, 6 on joint prediction, 18 on datasets and
benchmarks, and 7 on literature review. The number of papers
over the years1 and the distribution of the papers is shown in
Fig. 1. The rising trend of the papers indicates the growing
interest in this field.

B. Taxonomy and Overview

We address our expansion of the taxonomy proposed by
Hirakawa et al. [15] and Rudenko et al. [16], and categorize
existing studies by the following four criteria. With the help
of this taxonomy, one can easily get started with a model’s
desired input and output, decide the features that they want to
consider in the model, and find a reasonable network structure.

1) Prediction tasks: The prediction tasks define the problem
that a model is addressing, and a model’s expected
output. We classify previous models by three kinds of
prediction tasks, including a) trajectory prediction, b)
intention prediction, and c) joint prediction that predict
both trajectory and intention.

2) Input data: The input data show the information provided
by sensors or annotations that are used as model inputs.
We classify previous models by three kinds of input data
that provide different types of information, including:
a) the past trajectories of pedestrians from annotations,
b) the information provided by sensors, and c) other
supplementary information such as the map information,
the information of the ego vehicle, etc.

1Note that in 2021 only the papers published in the first half of the year
are included.
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3) Model features: There are many factors that influence
the future behavior of pedestrians. It is hard to consider
all factors, so previous studies tried to cover those
factors that influence pedestrians most as model features.
Model features are the observations and factors that were
considered by previous studies in models as stimuli to
the future behavior of pedestrians. We classify previous
models by three types of model features, including a)
the observed information of target pedestrians, b) the
information of other agents that interact with target
pedestrians, and c) the information of the environment.

4) Network structures: The network structures show how
previous studies learned the moving pattern from observed
information. There are several typical structures used
in existing prediction models that can be classified into
sequential networks and non-sequential networks.

We summarize the pedestrian behavior prediction framework
in Fig.2 and show how these four criteria are related. We review
and classify the existing works in detail from the proposed
categories: prediction tasks as in Sec. III, input data as in
Sec. IV, model features as in Sec. V, and network structures
as in Sec. VI. Then, we outline the evaluation metrics and the
datasets used in existing research in Sec. VII, and compare
the performances on publicly available datasets to point out
the research gaps and outlines potential research directions in
Sec. VIII. Finally, we present our conclusions in Sec. IX.

III. PREDICTION TASKS

In this section, we classify previous studies based on
prediction tasks, including trajectory prediction, intention
prediction, and joint prediction that predicts both. We cover
different output representations and training strategies for each
type of task. Table I summarizes different types of prediction
tasks, model features, and input data of existing studies.

A. Trajectory Prediction

a) Task definition: The trajectory prediction methods
provide low-level information of pedestrian behavior with
detailed spatial and temporal information. This information can
be used for collision avoidance or helping autonomous vehicles
to plan their future path. We define the trajectory of a pedestrian
as a sequence of x-y coordinate positions including their
temporal order. A person’s position in a scene is represented
by the x-y-coordinate X = (x, y). Given a set of n pedestrians
with their observed positions over time steps t, Xi

t = (xi
t, y

i
t)

where i ∈ {1, . . . , n}, 1 ≤ t ≤ Tobs, and other information
I such as the information of the surrounding environment
and objects, we aim to predict the likely trajectories of the
target pedestrians Ŷ i

t = (x̂i
t, ŷ

i
t) in the future time steps

Tobs + 1 ≤ t ≤ Tpred.
b) Output representation: There are different kinds of out-

put representations for trajectory prediction. Many researchers
treated trajectory prediction as a regression problem. The
output can be represented as: a) positions of (x, y) coordinates,
b) uni-modal distributions, and c) multi-modal distributions.
Representing output as positions is used by many studies,
such as [21]–[24], [49]. Such models are simple compared to

those models predicting distributions, and can get deterministic
results, but they cannot include the randomness nature of the
pedestrian movement. Uni-modal distributions are very popular
for trajectory prediction and are used by studies such as [27],
[28], [39], [41], [45], [52], [59], [62]. Compared to multi-
modal distribution models, the uni-modal prediction requires
less computational cost, but the model may learn an “average
behavior” that is not plausible. Multi-modal distributions can
overcome the drawback of converging to average behaviors by
outputting several plausible behaviors, and are used by studies
such as [31], [33], [35], [38], [40], [44], [47], [50], [51], [58].
But this representation requires higher computational resources
with more complicated frameworks such as GANs, and are
hard to converge.

Instead of treating the trajectory and positions as a continuous
variable and directly regressing values, the trajectory prediction
can also be represented as a discrete variable. The output can
be represented as: a) discretizing the frame scene into grids,
and b) discretizing the pedestrian velocity into bins. Grid-based
representations are used by studies such as [48], [56]. Using a
grid-based representation to encode the location information
enables a parameter-free approximation of distributions, but
the discretization over the whole scene may require high
dimensionality. Therefore, grids are more often used for
representing local occupation information for interaction with
neighbors or the environment as in [27], [49]. The trajectory
prediction can also be treated as a classification task by
quantizing the input data into classes and represented by one-
hot encoding. Giuliari et al. [24] used 1000 bins to represent
the velocity of pedestrians and predicted the future velocity by
classification. But the authors claimed that the classification
generally gets worse results than regression models because
of quantization errors. In addition to predicting only future
trajectories, some work outputs both destination and trajectory
prediction [86], or outputs the pedestrians’ walking behavioral
response in each footstep [57].

c) Training strategies: For trajectory prediction, mean
square error (MSE), also called L2 loss, is commonly used,
especially for position representations, as in studies [21]–[24],
[32], [35], [49], [56]. For uni-modal distribution representations,
the negative log-likelihood loss is used, as in studies [27], [28],
[39], [41], [52], [59], [62]. For the multi-modal distributions
representations such as GAN-based models, the adversarial loss
is used, together with L2 loss to measure the distance between
generated samples and the ground-truth, as in studies [31], [40],
[44], [50], [51]. Amirian et al. [33] also used information loss
in addition to discrimination loss and adversarial loss. Eiffert et
al. [58] used adversarial loss with the negative log-likelihood
loss for the generator.

B. Intention Prediction

a) Task definition: The intention prediction methods
provide high-level information on pedestrian behavior. The
intention or action can be predicted in different time horizons.
Understanding and predicting the pedestrian intention, espe-
cially the crossing intention, is crucial for higher “Society
of Automotive Engineers” (SAE) Levels aiming at automated
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Fig. 2. Four criteria of the pedestrian behavior prediction system for categorizing existing studies. Input data are fed into the model. Model features are the
stimuli of network structures. Different network structures are utilized to extract spatial and temporal information, and output different types of prediction tasks.

driving. With the precise prediction of pedestrian intention in
advance, automated vehicles can make better decisions and
reduce the risk for potentially hazardous situations. Given
the observed information of a pedestrian such as trajectories
and postures, we aim to predict the intention of a pedestrian.
The intention can be defined as discrete behavior types in
the future. Many studies use “intention” interchangeably with
“actual actions in the future”, because labeling the “intention”
of a pedestrian is usually a hard problem. Rasouli et al. [84]
addressed and labeled intention by asking multiple annotation
participants to observe the video of pedestrians and label the
crossing intention, and then took the average. In this paper, we
do not distinguish the intention and actual action.

b) Output representation: The intention prediction is a
classification problem. Many studies treated the problem as
a binary classification with crossing or non-crossing (C/NC)
action, such as in [7], [64], [70], [75], [76]. Some other studies
predicted multi-classification with several different action types.
For instance, Fang et al. [69] predicted four types of behaviors
including crossing, stopping, bending, and starting, using
several binary classifications for multi-classification. Rasouli
et al. et al. [73] included four types of behaviors including
walking, standing, looking towards the traffic, and not looking.
Goldhammer et al. [81] classified pedestrians’ motion states into
waiting, starting, moving, and stopping. The multi-classification
usually includes the whole process of crossing with a certain
order, and contains more information.

c) Training strategies: Rasouli et al. [73] used sigmoid
cross entropy loss for classification. Besides, many studies
used deep learning networks to extract features, and then use
other machine learning classification methods. For example,
the studies [69], [87] used SVM with hinge loss, and the
studies [69], [70] used random forest (RF) for classification.

C. Joint Prediction

Pedestrian intention can be predicted jointly with trajectory
prediction. There are mainly two kinds of joint prediction
frameworks. One kind is that the trajectory and intention
prediction tasks share the same feature extracting module. The
extracted features are fed into two separate streams for different
prediction tasks. For instance, Liang et al. [83] predicted both,
the future positions (xy-coordinates) as well as estimating
the possibilities of future activity labels simultaneously in
one network. The trajectory generator and activity prediction
modules share the features extracted from the images. In this
framework, the trajectory and intention prediction share the
same network, which can save computational resources.

Another kind is that the trajectory and intention are separately
predicted, but the information is used to refine each other as
suggested by Huang [80]. In works [81], [82], [84], [85],
the researchers extracted features for the two tasks separately,
and combined the two tasks based on the intention prediction
results information to improve the trajectory prediction results.
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TABLE I
MODEL FEATURES AND INPUT DATA OF PEDESTRIAN BEHAVIOR PREDICTION

Model Features Input Data Papers
Prediction

Tasks
Target

Pedestrians Other Agents Envir-
onment

Traj-
ectory Sensor Data Supplementary

information

Trajectory
(44 papers)

Trajectory - - Yes - - [20]–[26]
Trajectory Social interaction - Yes - - [27]–[45]
Trajectory,

skeleton cue Social interaction - Yes Camera images - [46]

Trajectory - Implicit Yes Camera images - [47], [48]
Trajectory Social interaction Implicit Yes Camera images - [49]–[54]
Trajectory Person-ORU interaction Implicit Yes Camera images - [55]

Trajectory Social interaction;
Person-ORU interaction Implicit Yes - Scene image map [40]

Trajectory,
motion states,

destination
Social interaction Implicit Yes - Grid-based map,

destination [56]

Trajectory,
motion states,

destination
Social interaction Explicit Yes Camera images Destination [57]

Trajectory,
category

Social interaction;
Person-ORU interaction - Yes - Agent Category [58]–[60]

Trajectory,
category,
direction

Person-ORU interaction - Yes - Agent Category [61]

Trajectory,
velocity,

agent shape
Person-ORU interaction - Yes Camera images Agents’ states,

traffic concentration [62]

Trajectory,
appearance cue,
VR information

Person-ORU interaction Implicit Yes Camera images
Pedestrian

VR information,
vehicle’s states

[63]

Intention
(17 papers)

Motion states Vehicle factors Explicit - Lidar images Static map [64], [65]
Trajectory - - Yes Lidar images - [66]

Appearance cue Vehicle factors Explicit - Camera images Vehicles’ states [67]
Skeleton cue,
motion states,

individual information
Vehicle factors Explicit - Camera images - [68]

Skeleton and/or
appearance cue - - - Camera images - [69]–[72]

Appearance cue - Implicit - Camera images - [73]–[77]
Appearance cue Person-ORU interaction Implicit - Camera images - [78]

Speed, age,
gender Vehicle factors Explicit - Lidar images,

Camera images

Age, gender,
environmental

parameters
[7]

Trajectory,
skeleton and

appearance cue
Vehicle states Implicit Yes Camera images

Bounding boxes,
the speed of
ego-vehicle

[79]

Joint
(6 papers)

Trajectory - - Yes - - [80]
Trajectory,

motion states - - Yes - - [81]

Trajectory,
skeleton cue,

velocity
- Explicit Yes Camera images - [82]

Skeleton and
appearance cue

Social interaction;
Person-ORU interaction Implicit - Camera images - [83]

Trajectory,
appearance cue Vehicle factors Implicit Yes Camera images Bounding-boxes [84], [85]

The combination of the two streams can then utilize more
information to get better performance.

D. Summary of Prediction Tasks
The existing works for different prediction tasks are listed

in Table I. We notice that there are more papers on trajectory
prediction than the other two tasks. The application of different
tasks is one of the reasons for this imbalance. The trajectory
prediction can be used for many scenarios, not only for
the automated vehicles in urban scenarios, but also for the
development of social-aware robots in indoor scenarios, while

the crossing intention prediction is mainly used for traffic
scenarios. Therefore, there were more researchers from different
research fields focused on trajectory prediction compared with
intention prediction. There are other reasons related to the
prediction methods and datasets that are used by these tasks.
We discuss them in Sec. VI-C and Sec. VII-C.

IV. INPUT DATA

Previous models used various types of input data. The pre-
processed data such as trajectories and raw sensor data such
as camera images can be used for training. Besides, other
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information such as the map and road parameters can be used
to provide environment information. In this section, we classify
previous studies based on the type of input data that provide
different kinds of information.

Existing methods use one or multiple data sources as input
to predict pedestrian trajectories:

1) Past trajectories, which can provide information of a
pedestrian’s motion state. It is used by most trajectory
prediction methods.

2) Sensor data, such as the sequences of scene images
recorded by the camera, and the point clouds recorded by
LiDAR. The sensor data can provide more information
of the pedestrian’s posture and appearance, as well as
provide the environmental context information.

3) Other supplementary information, including the pedestrian
information (e.g., age and gender), the vehicle state
(e.g., the speed and heading angle), and environment
information (e.g., the road information and maps).

The input data of previous studies is shown in Table I,
showing that different prediction tasks require different input
data. The trajectory prediction requires trajectories as input.
The trajectory can be labeled from either camera-recorded
videos or LiDAR point cloud videos, or even generated from
the simulation. In the studies that only require trajectories,
raw sensor data is not required. For those trajectory prediction
methods that require sensor data, the camera images and LiDAR
point clouds can be used to provide visual behavior information.
The intention prediction usually requires raw sensor data, that
can provide visual or posture behavior cues for a pedestrian’s
intention. For joint prediction, both trajectory and raw sensor
data can be utilized because this type of task requires both
trajectory and visual behavior information. When the model
needs the environment or other information, the supplementary
information such as maps of the environment, the types of
the object, and even virtual reality (VR) information can be
required. With different types of input data, different features
can be considered for modeling. More details about the model
features are presented in Sec. V. As most of the existing studies
used publicly available datasets for training and evaluation,
we introduce more details about the sensors in Sec. VII-B for
models that used raw sensor data.

V. MODEL FEATURES

In this section, we categorize previous studies based on what
features of pedestrian behavior have been considered in the
model. Many factors can influence pedestrian behavior. Rasouli
and Tsotsos [88] divided the factors that influence pedestrian
behavior into pedestrian factors and environmental factors.
Kotseruba et al. [85] analyzed the implicit and explicit factors
that influence the pedestrians’ crossing behavior, including the
environment, communication with others, and their own states.
Researchers consider one or several of these influencing factors
as model features. In this paper, based on the internal and
external stimuli of pedestrian behavior defined by Rudenko et
al. [16] and the influencing factors mentioned in [85], [88], we
divide existing works by three types of model features. Fig. 3
shows the classification of model features, and the number of

Fig. 3. The classification of the model features. The number of papers that use
the corresponding features and the year that firstly used the factors/methods
are listed. Please note that a paper can use multiple model features.

papers that used the corresponding features. Existing works
use one or several combinations of these features:

1) The features related to target pedestrians, including
trajectories and motion states, behavioral cues such as
posture and appearance, as well as individual information
such as the age and gender, etc.;

2) The features related to other agents, including homoge-
neous interaction, i.e., the social interactions between
pedestrians; and heterogeneous interaction, i.e., the inter-
action between pedestrians and other road users (ORUs).
Note that in this paper, we mean other types of road users
except pedestrians when we say “ORUs”;

3) The features related to the environment, including explicit
factors and implicit interactions with context scenes.
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TABLE II
INFORMATION OF TARGET PEDESTRIANS USED IN PREDICTION. PLEASE NOTE THAT A PAPER CAN USE MULTIPLE MODEL FEATURES.

Target Pedestrian Information Papers Summary

Trajectories
and

Motion
States

(55 papers)

Trajectories
(51 papers)

Trajectories only:
Trajectory prediction: [20]–[24], [34]
Intention prediction: [66]
Joint prediction: [80]

Advantages: Contain the historical temporal information. The
predicting models are usually simple and require less computing
resources.
Drawbacks: These models have not considered the interaction
with other road agents and environment.

Together with other factors:
Trajectory prediction: [25]–[33], [35]–[63]
Intention prediction: [79]
Joint prediction: [81], [82], [84], [85]

Advantages: The models consider other features can get more
accurate results.
Drawbacks: The predicting models are complicated and require
more computing resources.

Motion States
(9 papers)

Trajectory prediction: [56], [57], [61], [62]
Intention prediction: [7], [64], [65], [68]
Joint prediction [81]

Advantages: Provide simple but strong information. They are
easy to get, and do not require complicated feature extraction and
labelling.
Drawbacks: These properties do not include other implicit
information, and only related to current states. They are usually
used together with other inputs.

Behavior
features

(19 papers)

Appearance-based
(13 papers)

Trajectory prediction: [63]
Intention prediction: [67], [72]–[79]
Joint prediction: [83]–[85]

Advantages: The images can provide more information than just
trajectories, the posture and appearance can reveal the future action.

Skeleton-based
(8 papers)

Trajectory prediction: [46]
Intention prediction: [68]–[71], [79]
Joint prediction: [82], [83]

Drawbacks: These models require more powerful computing
resources.

Individual
information
(8 papers)

Category and type Trajectory prediction: [58], [59], [61] Advantages: These factors influence the pedestrian behavior and
using them as features enables researchers to get accurate results.

Others Trajectory prediction: [63]
Intention prediction: [7], [57], [62], [68]

Drawbacks: Can be hard to get. If based on assumptions, it may
not be precise.

A. Target Pedestrians

The states of target pedestrians are essential model features
for predicting their future behaviors. A summary is listed in
Table II.

1) Trajectories and motion states:
a) Trajectories: Most of the trajectory prediction mod-

els include the history of pedestrian trajectories, sometimes
together with other model features. Trajectory prediction
studies [20]–[24] considered only pedestrians’ past trajectories
for predicting their future trajectories. They extracted the
features through embedding layers, and fed the features into
deep learning structures for prediction. In addition to only
trajectories, studies [25], [26], [44] encoded intermediate
destinations from the trajectories and predict future trajectories
conditioned on the destinations. For intention prediction, Zhao
et al. [66] used trajectories extracted from roadside LiDAR
sensors to predict the crossing intention. For joint prediction,
Huang et al. [80] used trajectory to predict future intention and
trajectory simultaneously, with the predicted results refining
each other.

Although the context-based data are good indicators to
include, the prediction can be faster by using only the trajectory
as input. With recurrent networks, the temporal information
of target pedestrians can be extracted from the trajectories,
which usually provide rich historical information. There are
several advantages of using only trajectories for prediction: It
requires less annotation effort than annotating more semantic
information on images, and the predicting framework is usually
simple and requires less computing resources than those
methods which consider the interaction with other road agents
and with the environment. The drawbacks are that these
methods have not considered the interaction with other road
agents and the environment that could also affect the future

behavior of pedestrians. The trajectories considered together
with other model features usually take the trajectory as part
of the input. These models extract the trajectory feature in an
individual branch and utilize other compensation information
resulting in higher accuracy.

b) Motion states: The motion states such as the velocity
and position are also important features for human behavior
prediction. For trajectory prediction, Ma et al. [57] focused
on a microscopic level instead of estimating the positions at
each time-step, and predicted the future trajectories by learning
pedestrian’s walking behavior at each footstep, considering the
velocity and the step length as important inputs. Song et al. [56]
also considered velocity as one of the features. Carrasco et
al. [61] used orientation to build a graph representation for
feature extraction. Chandra et al. [62] used position, velocity,
and other factors as model features to define the state space
of each road agent. For intention prediction methods, many
studies [7], [64], [65], [68] included velocity to decide whether
a pedestrian wants to cross the road or not. For the joint
prediction, Goldhammer et al. [81] considered pedestrians’
trajectory and velocity, as well as their ego-coordinate for
prediction.

The motion states can provide simple but strong information
about the moving behavior of pedestrians. The velocity and
position information is easy to get, and does not require
complicated feature extraction and labeling. However, these
properties do not include other implicit information, and are
only related to states at the current time step. Therefore, the
motion states are usually used together with several other inputs
as complements.

2) Behavior features: As proposed by Schmidt and
Färber [89], using only trajectory information for intention
prediction is insufficient. The behavioral features, especially
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the appearance and posture, usually indicate a pedestrian’s
intention, and are used by many intention prediction and joint
prediction works. The CNNs are usually used to extract visual
cue information and/or get the key-point features of pedestrians.
The behavioral information from the images can provide more
behavior information of pedestrians than just trajectories, but
requires more powerful computing resources.

a) Appearance-based: For intention prediction, the ap-
pearance behavioral feature can be extracted implicitly from
images, usually using CNNs [72], [73], [78]. Three-dimensional
CNNs (3D-CNNs) have been utilized to extract spatio-temporal
features and recognize pedestrians’ crossing intentions in [67],
[75], [76]. For the joint prediction, Rasouli et al. [84] and
Kotseruba et al. [85] used separate streams for intention
estimation, which extracts posture features from the local
context and appearance with CNNs.

b) Skeleton-based: The postures of pedestrians are strong
behavioral cues that can indicate their intentions. The postures
can be represented and estimated by skeleton keypoints using
pre-trained CNN-based networks, as in For intention prediction
studies [46], [68]–[71], [79] and joint prediction studies [82],
[83]. The hourglass network [90] and OpenPose [91] are
utilized to extract pose features.

3) Individual information: Category, destination, and agent
shape/size, age, gender, and the theory of mind information are
considered in many existing papers. The trajectory prediction
models that involve multi-agents [58], [59], [61] required the
category of the target pedestrians in prediction. Ma et al. [59]
and Carrasco et al. [61] used the category and coordinates
of the agent as vertex information. Both methods build graph
representations of the instances, and consider all types of agents
in traffic, that can also be used as pedestrian predictors. In
work [58] denotes the vehicle and pedestrian type, and used
the information for vehicle-human interaction, which can be
explained in detail in the following sections.

Individual information such as age and gender can provide
supplementary information for pedestrian behavior prediction,
and they are significant factors that influence pedestrian
behavior [92], [93]. For intention prediction, age and gender
are included as important model features in work [7] to provide
necessary human factors-related information. Ma et al. [57]
assumed the destination is a vertical line of the crossroad, and
used the distance from the destination to the target pedestrian
as input features. Chandra et al. [62] also considered the
road agent’s shape and size as implicit constraints in the
trajectory prediction. Kim et al. [63] proposed the multiple
stakeholder perspective structure (MSPM) that considered the
information not only from the driver’s view using sensors
mounted on a vehicle, but also included the information from
the pedestrian’s view using VR devices. These individual factors
can influence pedestrian behavior and enable the researchers
to get more accurate results using them as model features.
However, compared to the trajectories and images, many factors
are much harder to get. The destination, age, and gender usually
require questionnaires or additional annotation. Otherwise, they
can be based on assumptions or output from previous perception
modules but may not be precise enough.

B. Other Agents
In this section, we discuss the influence of the other agents

on pedestrians’ behaviors. The information and interaction with
other agents are included by 65% of existing papers that we
reviewed. A summary is presented in Table III.

1) Homogeneous - social interaction between pedestrians:
According to Moussaid et al. [8], pedestrians’ future behavior
is not only dependent on their past states, but also driven
by social interactions with other pedestrians nearby. Social
interaction is an important factor for modeling pedestrians’
future trajectories.

a) Hand-crafted features: For trajectory prediction, Ma et
al. [57] used hand-crafted features to model the social relation-
ship between pedestrians. They utilized relative positions and
relative velocities between the pedestrian and the seven nearest
neighbors in front of the target pedestrian as input features.
While these hand-crafted features succeeded in this task, they
are often hard to generalize to new scenarios. Therefore, deep
learning methods are developed to be more powerful structures
for extracting social interactions.

b) Social pooling and its variants: Social-LSTM [27]
modeled social interactions in a learning-based approach
for trajectory prediction. Instead of using knowledge-based
methods as in social force [12], the authors proposed a
social pooling layer over the hidden states of LSTMs to
model the interactions between pedestrians. Several works
including [29], [30], [32], [44], [46], [49], [52] followed the
social pooling trend and improved the interaction mechanism by
attention pooling using various attention mechanisms. Fernando
et al. [29] improved the social pooling module with a soft
and hard-wired attention mechanism. Xu et al. [30] utilized
a weighted spatial affinity function with calculated weights
to determine the social interactions over the spatial features.
Zhang et al. [32] proposed a state refinement module for future
predictions. Sophie [51] assumed that people pay more attention
to closer objects and sorted the attention by distance.

Later works [31], [33], [45] improved the interaction module
with a more complicated pooling structure. Social-GAN [31]
pointed out that local interaction information is not always
sufficient, and hence, they use a multi-layer perceptron (MLP)
followed by a max-pooling structure to capture the global
social interaction information. Amirian et al. [33] improved the
interaction module by using an attention pooling that relies on
hand-crafted interaction features inspired by neuroscience and
biomechanics. Zhang et al. [45] proposed the Social Interaction
Extractor to learn interaction weights with a sub-network
structure. Kothari et al. [39] categorized the existing interaction
module into grid-based methods and non-grid-based methods,
and proposed a grid-based directional pooling method and the
DirectConcat method that achieved improvement. Bhujel et
al. [53] calculated the social attention from the hidden state
with designed physical and social attention functions. Col-
GAN [36] proposed an attention module that used MLPs to
learn the interaction and used a weighted sum to calculate the
interaction feature.

The social pooling module enables the existing work to
consider social interaction. The structure is simpler than the
graph-based models with fewer parameters to learn.
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TABLE III
INFORMATION OF OTHER ROAD USERS (ORUS) USED IN PEDESTRIAN BEHAVIOR PREDICTION

Other Agent Information Papers Summary

Homogeneous -
Social

Interaction
Between

Pedestrians
(33 papers)

Hand-crafted
features

(1 paper)
Trajectory prediction: [57] Advantages: Explainable.

Disadvantages: Hard to generalize to new scenarios.

Social pooling
and its variant

(16 papers)

Trajectory prediction: [27], [29]–[33], [36], [39],
[44]–[46], [49], [51]–[53], [56]

Advantages: The social pooling module considers social
interaction in the model. It is relatively simple compare with
graph based models.
Disadvantages: They mainly deal with symmetric interactions.

Graph-based
representation

(10 papers)

Trajectory prediction:
[28], [34], [35], [37], [41]
[40], [50], [54], [58], [59]

Advantages: They can extract non-symmetric interactions.
Disadvantages: The construction of the graph is
computational- and time-consuming.

Other methods
(6 papers)

Trajectory prediction: [38], [42], [43], [56], [60]
Joint prediction: [83]

Comments: The social norm is considered using sampling
methods. Agent-aware attention and LSTMs are used to model
social and time dimensions simultaneously. CNNs are applied
on grid-based map.

Heterogeneous -
Interaction

with
Other Road

Users
(18 papers)

Hand-crafted
features

(9 papers)

With single vehicle: Trajectory prediction: [63]
Intention prediction: [7], [64], [65], [67], [79]
Joint prediction: [84], [85]
Vehicle volume: Intention prediction: [68]

Advantages: Explainable.
Disadvantages: Can be hard to generalize to new scenarios.

Graph-based
representation

(5 papers)
Trajectory prediction: [40], [58], [59], [61], [78]

Comments: The graph based module can extract non-
symmetric interactions between pedestrians and other road
users.

Other methods
(4 papers)

Trajectory prediction: [55], [60], [62]
Joint prediction: [83]

Comments: Grid-based pooling, CNNs, One-hot coding, and
reinforcement learning can be combined into the network.

c) Graph-based representation: The symmetric pooling
(max or average pooling) operation assumes that the interac-
tions between pedestrians are symmetric, which, however, is
not always the case. To extract non-symmetric interactions,
researchers use a graph to represent the relationship between
pedestrians. In such graphs, the vertices represent the states of
the pedestrians and the edges represent the spatial or temporal
relationships between pedestrians.

For trajectory prediction, Vemula et al. [28] represented the
social attention by a spatio-temporal graph representation, using
soft attention with calculated weights over hidden states of
each node. Zhang et al. [34] used the graph representation and
applied the social graph network directly on MLP embedded
features from agents’ locations and velocity status. STGAT [35]
and Social-BiGAT [50] applied the graph attention networks
(GAT) as proposed by Veličković et al. [94] to extract the
social interactions between pedestrians over the hidden states
of LSTMs. STGAT [35] calculates the relationship for each time
step to get the state of pedestrians, while Social-BiGAT [50]
calculates the interaction after extracting the hidden states from
all observed time steps. Hu et al. [40] proposed an interaction
branch with a graph structure, namely neural motion message
passing (NMMP), which calculates k times the interacted actor
embedding with graph neural network on the hidden states of
each agent. Yu et al. [37] exploited a spatio-temporal graph
transformer (STAR) to model the spatio-temporal interaction
between pedestrians. Social-STGCNN [41] and STGT [54]
used graph convolutional networks (GCNs) [95], which are
defined as convolution operations over graphs to extract the
spatio-temporal social interaction feature.

The graph-based module can extract non-symmetric interac-
tions and get better results than the pooling structures, but the
instruction of the graph takes more computational resources,
and hence, can be more time-consuming.

d) Other methods: For the trajectory prediction, Social-
NCE [38] considers unfavorable events like discomfort and
collision situations when learning socially aware motion
representations. The authors proposed a safety-driven sampling
method, called the multi-agent contrastive sampling, to select
negative samples from the neighborhood of other agents
in the future. Yuan et al. [42] proposed AgentFormer that
can simultaneously model the time and social dimensions
using an agent-aware attention mechanism. Tra2Tra [43]
proposed a spatial-temporal attention module, that embedded
the spatial feature from the coordinates of all pedestrians, and
used an LSTM network to extract the temporal dependency
between spatial features. Song et al. [56] considered the target
pedestrian’s neighbors by considering their neighbors’ speed.
The speed is filled in cells of a grid-based map, and CNNs are
used to extract the spatial relationship with the neighbors.

2) Heterogeneous - interaction with other road users (ORUs):
The future behavior of pedestrians is influenced by the
interaction with ORUs such as vehicles according to Shirazi
et al. [9].

a) Hand-crafted features: In Schmidt and Färber’s re-
search [89], parameters such as the distance and velocity of the
vehicles can influence the crossing intention. For the intention
prediction, many researchers used hand-crafted features as
inputs, such as in studies [7], [64], [67], [79], including
vehicle’s velocity or speed, relative velocity and distance
between the pedestrian and vehicle, or time to collision (TTC).
Zhang et al. [68] used vehicle-related information for crossing
intention prediction, including vehicle volume, the green light
time for vehicles, and the number of vehicles. For the joint
prediction, Rasouli et al. [84] and Kotseruba et al. [85] utilized
the ego-vehicle information including the speed and heading
angle as complementary inputs.
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b) Graph-based representation: As the interaction be-
tween different types of traffic agents is usually non-symmetric,
graph-based methods can model heterogeneous interactions.
For the trajectory prediction, Eiffert et al. [58] proposed a
graph vehicle-pedestrian attention network (GVAT) to include
both human-human interactions and human-vehicle interactions.
Ma et al. [59] used a 4-dimensional graph that consists of
the instance layer and the category layer to represent the
traffic sequence and to calculate their interaction. The instance
layer represents the individual interaction, while the category
layer ensures the motion pattern of different categories. Hu
et al.’s framework [40] can jointly predict the trajectory of
pedestrians and vehicles by the proposed NMMP module with
a graph representation. Carrasco et al. [61] built the graph with
coordinates, categories, headings as vertices, and exploited the
graph attention layer to include the interaction. For the intention
prediction, Liu et al. [78] captured the interaction between the
pedestrians and other road users using graph convolution to
include both spatial and temporal context.

c) Other methods: For trajectory prediction, Lee et
al. [55] modeled the interaction for multi-agents with a spatial
grid-based pooling layer, which is similar to the social-pooling
layer. Chandra et al. [62] took sequences of images as input
to predict the trajectories of heterogeneous traffic agents
including pedestrians, using CNNs for extracting the appearance
and behavioral information of different road agents. Li et
al. [60] considered the existence of a vehicle, and combined
reinforcement learning into the prediction. For joint prediction,
Liang et al. [83] modeled the interaction between pedestrians
and other road users in the scene by explicitly modeling the
geometric relation with a knowledge-based function defined
by the authors that considered the geometric distance and the
box size, and modeled the object type using one-hot encoding.

C. Environment

The interaction with the environment also influences pedes-
trians’ behaviors. The environmental information is included
by 36% of the existing papers that we reviewed. To include
the interactions with the environment scene as model features,
studies either took explicitly defined environment features as
inputs, or use sequences of camera images or a navigation
map to learn the pedestrians’ interaction with the surrounding
environment implicitly. In this section, we present how the
researchers address pedestrian-environment interactions. The
summary is shown in Table IV.

1) Explicit features: Explicit features are manually defined
and usually explainable. Many researchers utilize information
about zebra crosswalks and the curbs. For trajectory prediction,
Ma et al. [57] used the distance to the left and right boundaries
of the crossroad as input features for the prediction. For
intention prediction, the distance between the vehicle and
the crosswalk, the distance between the pedestrian and the
crosswalk, and the distance between the pedestrian and the
curb are important factors and were used by Völz et al. [64]
and Zhang et al. [7] as model features. Yang et al. [67]
considered the existence of stop signs, zebra markings, and
traffic lights in local traffic scenes. They used the prior weight

to represent different scenes. In addition to the geometry-related
environment features, Zhang et al. [68] used temperature as
an important factor to predict the crossing intention at red-
light. For joint prediction, Wu et al. [82] used the crossable
information at a crossroad to change the sampling weight when
predicting the trajectory.

2) Implicit features: The implicit features are not explicitly
defined and are usually extracted from images or semantic
maps.

a) CNN-based feature extractor: As CNNs are capable
of extracting image features, pre-trained CNNs can be used
to extract appearance features and implicit human-scene
interaction features from a sequence of images. The trajectory
prediction works [47], [49]–[51], [54], [55] followed this
direction using pre-trained CNNs. Bhujel et al. [53] utilized
CNN features and a physical attention function to learn the
probability that a location is the right place to focus for
predicting the next position. Instead of sensor image data,
Hu et al. [40] used a 2D bird’s-eye-view scene image map as
input to provide prior knowledge about the traffic condition
and rules, and extracted the environment information with
the CNN structure [96] to extract scene embedding. Song
et al. [56] used a grid-based map with occupied cells to
indicate the fixed obstacles in the scenes using CNNs to
extract the environmental features. For intention prediction,
Rasouli et al. [73], Hoy et al. [74], and Kotseruba et al. [79]
used CNNs to extract visual context features implicitly. Liu
et al. [78] segmented the images into pedestrians and objects
with binary masks using a segmentation model [97]. Then, they
captured the context feature by encoding the segmented binary
masks with the ResNet backbone. Works [75], [76] utilized
3D-convolutional networks for image feature extraction in the
observed time period. For joint prediction, Liang et al. [83] used
a pre-trained scene segmentation model [98] for environmental
feature extraction. The integer scene semantic features are
transformed into binary masks, then two convolutional layers
are applied to the mask features to get CNN features. Rasouli
et al. [84] and Kotseruba et al. [85] used CNNs to extract the
local visual context around the pedestrian with a bounding box
implicitly along with the appearance feature.

b) Other methods: For trajectory prediction, Scene-
LSTM [48] takes the scene information into consideration
by using grid cells to represent the input scene image. The
calculated hidden states of each grid cell are used as input to a
scene data filter to pass the scene constraints information to get
better trajectory prediction results. Lisotto et al. [52] utilized a
semantic map and the navigation map, and applied semantic
and navigation pooling to extract the environmental interaction
feature. The semantic map, which contains the scene context, is
generated from the image using semantic segmentation, and the
navigation map which embodies the most frequently crossed
areas is generated from the observed data by counting the
crossing frequency of squared patches.

D. Summary of Model Features

Model features play important roles in pedestrian behavior
prediction. As we summarized in Fig. 3, a method can use



11

TABLE IV
INFORMATION OF ENVIRONMENT USED IN PEDESTRIAN BEHAVIOR PREDICTION

Environment Descriptions Papers Summary

Explicit
(7 papers)

Hand-crafted
features

Trajectory prediction: [57]
Intention prediction: [7], [64], [65], [67], [68]
Joint prediction: [82]

Comments: They are manually defined, simple and usually explainable.

Implicit
(22 papers)

CNN based
feature

extractor
(20 papers)

Trajectory prediction: [40], [47], [49]–[51],
[53]–[56]
Intention prediction: [63], [73]–[79]
Joint prediction: [83]–[85]

Comments: CNNs are capable of extracting image features, and can be
used to extract the interaction between pedestrians and the environment
implicitly.

Others
(2 papers) Trajectory prediction: [48], [52]

Comments: One-hot encoding and pooling can be used to encode the
location information. But when encoding location information with
one-hot vectors, the dimensionality might become very high.

multiple model features. For the target pedestrians, the trend
is also to include more information. In 2016, the trajectories
and motion states are included [27]. In 2017, the behavioral
features are included [69], [73], and in 2019, the individual
information are added [57], [59], [62]. For the interaction
with other agents, the social interactions are included mainly in
trajectory prediction. The social pooling methods was proposed
in 2016 [27], and the graph-based model was proposed in
2018 [28]. In 2019, Ma et al. [57] added knowledge-based
information to model the interaction. The interaction with
other road users such as vehicles is included mainly in the
intention prediction works. In 2016, researchers started to
use hand-crafted features to model the interaction [64]. in
2017, the learning-based feature extractor such as pooling
method [55] and graph-based methods [59] are proposed. For
the environment feature, researchers first model it with hand-
crafted features explicitly in 2016 [64], then used a CNN-
based model to learn it in 2017 [55]. In 2018 and 2019, other
attempts on one-hot encoding [48] and pooling [52] are tried by
researchers. The hand-crafted features used in existing works
are explainable but hard to generalize, while the learning-based
features have achieved more accurate results but are difficult
to explain. Future works can focus on how to combine these
features.

VI. NETWORK STRUCTURES

In this section, we list commonly used network structures,
and classify them into sequential networks and non-sequential
networks. These structures can be combined to form a predic-
tion model. For instance, a model can use CNNs for extracting
visual information, and use LSTMs for temporal prediction.
Fig. 4 shows the classification of the network structures. Table V
presents the summary of the network structures used by existing
research.

A. Sequential Networks

The sequential networks typically deal with time-series
information by assuming the moving state at one time step
is conditionally dependent on previous states. Traditional
models used for predicting the pedestrian’s future action
such as hidden Markov models (HMM) [99], [100], partially
observable Markov decision processes (POMDP) [101], and
Gaussian processes [5], [102], [103] require accurate and
precise segmentation and tracking of pedestrians. However, this

Fig. 4. The classification of the network structures. The number of papers that
used corresponding methods and the year that firstly used the network structures
are listed. Please note that a paper can use multiple network structures. For
example, a model can use CNNs for extracting the visual information, and
use LSTMs for the temporal prediction. The distribution of the papers is
summarized in the boxes on the right side.

is challenging due to the difficulty of extracting reliable image
features as outlined by Völz et al. [64]. With the help of deep
learning, the models are able to extract features from images
with CNNs and to extend the long-term memory with Recurrent
neural networks (RNNs) including long short-term memory
(LSTMs) and gate recurrent units (GRUs), convolutional
LSTMs (Conv-LSTMs), and transformer networks (TFs) to
overcome the limitation of traditional models.

1) Recurrent neural networks (RNNs) and long short-term
memory (LSTMs): RNNs and their improved version, LSTMs
are preferred by many researchers because of their strong ability
to handle the trajectory sequence information. For trajectory
prediction, Vemula et al. [28] used spatio-temporal graph within
the RNN structure. Alahi et al. [27] utilized LSTMs to learn
the motion state of a pedestrian and proposed Social-LSTM
model to predict a pedestrian’s trajectory. Later trajectory
prediction methods such as [20]–[22], [29], [30], [32], [34],
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TABLE V
NETWORK STRUCTURES FOR PEDESTRIAN BEHAVIOR PREDICTION. PLEASE NOTE THAT A PAPER CAN USE MULTIPLE NETWORK STRUCTURES.

Network Structures
(Earliest Used Time) Papers Summary

Sequential
Networks

(54 papers)

RNNs and LSTMs
(Since 2016,

Alahi et al. [27])

Trajectory: RNNs: [28]; LSTMs: [20]–
[22], [27], [29], [30], [32], [34], [35],
[38], [39], [43], [48], [49], [52], [53],
[59], [62], [63], [84]
Intention: LSTMs: [7], [71], [72], [77]
Joint: LSTMs: [80], [82], [83]

Advantages: RNNs (including LSTMs, GRUs) are more capable
to handle long term prediction than the traditional models.

Disadvantages: They cannot be parallelized, and cannot
handle too long sequences.

GRUs
(Since 2017,

Lee et al. [55])

Trajectory: [25], [26], [47], [55]
Intention: [74], [78], [79]
Joint: [85]

Conv-LSTMs
(Since 2019,

Rasouli et al. [84])

Trajectory: [56], [63]
Intention: [75], [76]
Joint: [84]

Advantages: Conv-LSTMs can extract spatial and temporal
features simultaneously.
Disadvantages: The computational cost is higher than for LSTMs.

GANs
(Since 2018,

Gupta et al. [31])

Trajectory: [31], [33], [36], [40], [46],
[50], [51], [58], [60]

Advantages: The GANs as generative models can predict multiple
plausible trajectories.
Disadvantages: Hard to train, and requires techniques for conver-
gence.

Transformers
(Since 2020,

Yu et al. [37])
Trajectory: [24], [37], [42], [54]

Advantages: They can handle long sequences and allow paral-
lelization.
Disadvantages: Implemented with a fixed-length, not flexible
enough.

Non-
sequential
Networks

(46 papers)

Convolutional Networks
(Since 2017,

Rasouli et al. [73])

Trajectory: [23], [40], [41], [45], [47],
[49]–[51], [53]–[56], [61]
Intention: [46], [67]–[73], [75], [76],
[78], [79]
Joint: [83]–[85]

Comments: CNNs can be used for both extracting spatial features
and sequential features. For the sequential prediction, as there is
not dependency of the previous time steps, the prediction error do
not accumulate like the RNNs, and it allows parallel computation.

GNNs (Since 2018,
Vemula et al. [28]

Trajectory: [28], [34], [35], [37], [40],
[41], [50], [54], [58], [59], [61]
Intention: [78]

Comments: GNNs can be used for extracting non-symmetric
interactions and capturing spatio-temporal features.

Other ANNs
(Since 2016,

Völz et al. [64])

Trajectory: [44], [57]
Intention: [64]–[66]
Joint: [81]

Advantages: Structures are simple; can handle the non-linearity.
Disadvantages: For 2D image input, ANNs will lose the spatial
information, and require a huge amount of trainable parameters.
For sequential input, ANNs cannot capture sequential information.

[35], [39], [43], [48], [49], [52], [53], [59], [62] followed this
trend of using LSTM-based methods to cope with time-series
information.

For intention prediction, Zhang et al. [7] used LSTMs with
the attention mechanism for prediction that outperforms the
SVM model. Pop et al. [77] proposed a multi-task network
that combines the CNNs for extracting visual features and the
LSTM network for estimating the time to cross the street. The
FuSSI-Net proposed by Piccoli et al. [71] used a CNN-based
network for detection and skeleton keypoints extraction, and
then used LSTMs to extract temporal information. For joint
prediction, Huang et al. [80] proposed warp LSTM to deal
with neighboring time steps in place of global positions and
to allow for long-term trajectory prediction. They proposed
the mutable intention filter to generate potential intentions,
and then predicted the intention-aware trajectories. Lorenzo
et al. [72] employed CNNs to extract pedestrians’ behavioral
features and applied various RNNs including LSTMs, GRUs,
and the bidirectional variants of LSTMs and GRUs for crossing
probability prediction. Kim et al. [63] proposed the MSPM
model, that includes a driver perspective network and a
pedestrian perspective network. The driver perspective network
used LSTMs to encode the speed and trajectory information of
the driver’s perspective and other structures for image feature
extraction, and used LSTMs to predict a pedestrian’s behavior.

For joint prediction, Liang et al. [83] extracted the feature
with CNNs, and then the extracted features are fed into a

trajectory generator and activity predictor separately. In the
trajectory generator, LSTMs are used for sequence prediction,
while in the activity predictor, two separate convolution layers
are used on a multi-scale Manhattan Grid for classification
and regression to predict the label and location. Wu et al. [82]
first extracted skeleton features with CNN-based methods and
then used LSTMs to predict behavior classes (i.e. standing,
walking, running), and used the dynamic Bayesian network to
identify crossing intention. The predicted intention information
is used for deciding the weights for trajectory sampling to
improve the results. Rasouli et al. [84] used LSTMs in the
pedestrian trajectory and vehicle speed prediction stream, and
used LSTMs together with other structures in the intention
estimation stream.

2) Gate recurrent units (GRUs): GRUs are another improved
version of RNNs that are also popularly used for sequential
prediction. For intention prediction, Hoy et al. [74] explored
a variant of variational recurrent neural networks (VRNNs),
namely the deep variational Bayes filters [104] for extracting
tracking features, using GRU layers in VRNN cells with CNNs’
extracted visual features as inputs. Liu et al. [78] used GRUs
for behavior prediction after using a CNN-based segmentation
model [97] for appearance feature encoding. Kotseruba et
al.’s later work [79] used 3D-CNN for local visual context
extraction and used GRUs for non-visual features encoding
from bounding boxes, poses, and ego-vehicle speed. For joint
prediction, Kotseruba et al. [85] employed GRUs for trajectory
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prediction, connected with the intention feature extracted from
images using CNNs, and fed into a fully connected layer for
future action classification.

GRUs can be combined with generative models for pedestrian
trajectory prediction. These multi-modal models can provide
multiple feasible results by incorporating prior knowledge into
pedestrian behavior learning. Recently, conditional variational
autoencoders (CVAEs) with sequential encoders and decoders
have been adopted to predict multi-modal distributions. The
BiTraP [25], SGNet [26], CGNS [47] and DESIRE [55] used
GRU encoder-decoders based on CVAE method for trajectory
prediction with multi-modal goal estimation. Social-NCE [38]
applied LSTM model based on the noise-contrastive estimation
(NCE) methods [105] by introducing a social contrastive loss,
namely the InfoNCE loss [106].

RNNs and their variants including LSTMs and GRUs use
hidden states to represent the time-varying motion properties.
They are more capable of dealing with long-term prediction
than traditional models because of their capability of learning
the dependencies between temporally correlated data. However,
the sequential computation of RNN-based models inhibits
parallelization. Besides, the networks cannot do well for
long sequences because the “temporal distance” between
two sample positions is linear, and the network tends to
“forget” the information of the previous sample in the sequence.
Furthermore, it is hard to explain the physical meaning of the
hidden states that represent the moving states.

3) Convolutional LSTMs (Conv-LSTMs): Conv-LSTMs as
proposed by Shi et al. [107] have been used to extract spatial
and temporal information. For trajectory prediction, Kim et
al. [63] used CNNs, Conv-LSTMs, and LSTMs for encoding
image information in the driver perspective network. Song et
al. [56] used a grid-based map with social and scene information
filled in the cells, and used deep conv-LSTM to predict the
future trajectories. For intention prediction, Gujjar et al. [76]
and Chaabane et al. [75] used 3D-CNN layers as the encoder
and conv-LSTM layers as the decoder in their encoder-decoder
structure. For joint prediction, Rasouli et al. [84] proposed
the PIE model that used LSTMs, CNNs, and conv-LSTMs for
prediction. In the intention estimation stream, CNNs are used
for appearance behavioral feature extraction with conv-LSTMs
as the encoder, and LSTMs as the decoder.

4) Generative adversarial networks (GANs) based on
LSTMs: The previously mentioned models follow a uni-modal
distribution. As there could be multiple socially acceptable
trajectories, Gupta et al. [31] proposed Social-GAN, which
assumed that the pedestrian trajectories follow a multi-modal
distribution, which means that multiple future trajectories are
potentially plausible. They utilized the GANs with an LSTM-
based generator for trajectory prediction. Social-BiGAT [50]
and studies [33], [40], [46], [51], [58] followed this trend
and used LSTMs as generators of the GANs, with various
structures of extracting the interactions with other objects.
Li et al. [60] utilized Social-GAN and combined it with
reinforcement learning in their prediction. The Col-GAN [36]
used a GAN structure with LSTM encoder-decoder as the
generator. But instead of using an LSTM-based discriminator
like Social-GAN [31] and Sophie [51], they used CNNs as the

discriminator and classify the segments of a trajectory are real
or fake.

The GANs can predict multiple plausible and socially ac-
ceptable trajectories given a partial history instead of predicting
only one “average behavior”. The drawback of the GANs is
that they are usually hard to train and require techniques to
make the model converge.

5) Transformer networks (TFs): The TFs [108] can alleviate
the previously mentioned problems of RNN-based models.
The TFs used the attention mechanism to help memorize the
information in long sequences. The attention mechanism can
create shortcuts between the context vector and the entire
source input instead of only the last hidden state. TFs made
ground-breaking progress recently in the Natural Language
Processing domain and are becoming popular to be adopted
for predicting pedestrian behaviors because of their capability
of long-term prediction. Giuliari et al. [24] adopted both, the
original TF and bidirection transformer (BERT) for trajectory
prediction. The authors considered only the individual trajectory
as model features yet still gained better performance than
previous LSTM- and CNN-based methods. Yu et al. [37] further
considered social interaction using graph-based representation
to achieve more accurate results. The AgentFormer [42]
applied the agent-aware transformer in a multi-agent trajectory
prediction framework based on CVAE and modeled the
future trajectory distribution conditioned on past trajectories
and contextual information. Syed et al. [54] proposed the
STGT model that used a CNN model (PSP-Net [109]) for
segmentation and extracting the image environmental features,
and the transformer is used for sequence prediction.

The TFs avoid recursion and allow parallel computation to
reduce training time. With the attention mechanism, the TFs get
more accurate results than RNNs. However, the transformers
are implemented with a fixed length, and cannot model
dependencies that are longer than the fixed length. Some other
improvement versions of TFs such as the TransformerXL [110]
and the compressive Transformer [111] could be used in the
trajectory prediction or other sequence prediction tasks.

B. Non-sequential Networks
The non-sequential networks are used to extract spatial and

interaction features. Besides, they can also model the temporal
information by directly modeling the final state or distribution
over the entire history of observed states without the assumption
of conditional dependency on previous states.

1) Convolutional networks: CNNs are used in many models
to extract implicit appearance features from images as discussed
in Sec. V. Trajectory prediction studies used pre-trained CNNs
to extract implicit features of the environment as in [40], [47],
[49]–[51], [53]–[56]. Intention prediction studies used CNNs
to extract appearance behavioral features ad in [72], [73], [78],
[79], and skeleton behavioral features as in [46], [68]–[71],
[79]. 3D-CNNs are used to extract spatio-temporal features
as in [67], [75], [76]. For joint prediction, CNNs are used
to extract posture features as in [84], [85] and environment
features as in [83].

In addition to extracting spatial features from images,
CNNs can also be used to extract sequential features for
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pedestrian trajectory prediction. Many methods use hidden
states of LSTMs to represent the pedestrian motion states.
However, Nikhil and Morris [23] pointed out that trajectories
are continuous in nature and do not have a complicated
“state”. The feature extraction of hidden states in previous
models is indirect and the physical meaning of hidden states
is difficult to interpret. Bai et al. [112] noticed that recurrent
architectures have limitations in inefficient parameters and
the training can be inefficient. Therefore, instead of using
LSTMs, Nikhil and Morris [23] proposed an algorithm using
CNNs to predict the trajectories for computational efficiency,
which yields competitive results with a faster speed. Lea et
al. [113], [114] proposed temporal convolutional networks
(TCNs) that dealt with time series and extracted features by
convolutional layers on the temporal dimension. Mohamed et
al. [41] proposed the Social-STGCNN model, which reached
faster speed and better results on trajectory prediction, by using
TCNs to extract spatio-temporal features from the spatial and
social interaction features, and utilized CNNs as an extrapolator
on the time dimension. Zhang et al. [45] proposed the Social-
IWSTCNN, which followed the trend of using CNNs and
TCNs for prediction. The convolutional-based methods enable
parallelization and without the dependencies on the previous
time step, the prediction can be faster and the prediction errors
do not accumulate like with RNNs.

2) Graph neural networks (GNNs): GNNs are neural
networks over graph-represented data. GNNs have achieved
significant success in human action recognition [115]–[117].
GNNs can be used in pedestrian behavior prediction for
extracting spatial and temporal interaction between pedestrians
and other objects and are especially suitable for modeling
non-symmetric interactions and spatio-temporal features as
mentioned in Sec. V.

Graph convolutional networks (GCNs) proposed by Kipf
and Welling [95] define the convolution operations over
graphs. Social-STGCNN [41], STGT [54] use GCNs to
extract the spatio-temporal social interaction features for
trajectory prediction. Liu et al.’s [78] used GCNs captured
the interaction between pedestrians and other road users
using graph convolution to include both spatial and temporal
context. In particular, the graph attention networks (GATs) as
proposed by Veličković et al. [94] improved weighted message
passing between nodes and are applied by STGAT [35], Social-
BiGAT [50] and studies [58], [61]. Yu et al. [37] improved
GAT by applying a transformer boosted attention mechanism
and proposed spatio-temporal graph transformer (STAR) model.
These methods model the interaction not only based on the
current frame but also consider the influence of other time steps.
Besides, commonly used network structures can be applied to
graph representations. For trajectory prediction, Hu et al. [40]
proposed a neural motion message passing (NMMP) structure,
which used MLP embeddings to pass messages between nodes
and edges. Zhang et al. [34] proposed the social graph network
that applied a one-layer MLP on egde and nodes of a graph.
Vemula et al. [28] applied structural RNN [118] on edges and
nodes of spatio-temporal graphs to model the spatio-temporal
interaction between pedestrians. Ma et al. [59] applied LSTM

on the nodes of a 4-dimensional graph to model the interaction
of different instances and categories.

3) Other artificial neural networks (ANNs): For the trajec-
tory prediction, Ma et al. [57] used an ANN with hidden layers
to model the mechanism of decision-making that employed
human experience to make the approach more realistic for the
prediction of microscopic pedestrian walking behavior. For the
intention prediction, Völz et al. [64] designed a dense neural
network using 15 hand-crafted features over five time steps, and
the dense network outperformed the LSTM and SVM methods.
Zhao et al. [66] compared the intention prediction with Naive
Bayes methods using trajectories as input, and claimed the
results of ANN is worse than the Bayes methods. This may
be because they only include the trajectories as inputs, which
is too simple to demonstrate the power of neural networks,
and other networks such as RNNs can be used for sequence
prediction and CNNs can be used for image inputs. CVAEs
can also be combined with ANNs. PCENet [44] considered
the intermediate stochastic destinations of the pedestrians into
prediction by using an endpoint CVAE, where the prediction
is conditioned on the features extracted from the past encoder
using MLPs. For joint prediction, Goldhammer et al. [81]
proposed the PolyMLP model that uses an MLP network to
predict polynomial approximation of time series.

The structures of ANNs are simple and can handle non-
linearity. ANNs can be used for multiple tasks when the number
of input features is small, especially for the intention prediction
with hand-crafted features. However, for a 2D image that is
a common kind of input in pedestrian behavior prediction,
ANNs will lose the spatial information because of squeezing
the image into a 1D vector, and can require a huge amount of
trainable parameters, where CNNs could be the better choice
because they share weights and can keep the spatial information.
Besides, ANNs cannot capture sequential information in the
input data, where RNNs could handle better.

C. Summary of Network Structures

From the distribution of the papers in Fig. 4, we see that
sequential methods are mainly used for trajectory prediction.
This is because trajectory prediction requires time series
information. Trajectory prediction also employed GNNs for
extracting interactions with other road users. The intention
prediction usually used non-sequential networks, because they
usually need the visual behavior features, which are extracted
by CNNs. The joint prediction used both sequential networks
and non-sequential networks, as they needed both spatial and
temporal information.

The prediction methods also influenced the development of
different prediction tasks. For the sequential methods that are
commonly used by the trajectory prediction, research followed
the trend from LSTMs in 2016 [27], GRUs in 2017 [55], to
GANs in 2018 [31] and Conv-LSTMs in 2019 [84], and to
the recently used Transformers in 2020 [37]. Each time the
development of sequential methods stimulated the research on
trajectory prediction. In contrast, for the intention prediction,
most works used non-sequential. These models rely on the
CNNs to process the images, which usually require more
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computing resources. This influences the development of the
intention prediction. In future work, we need to investigate
how much effort we should put into intention prediction. We
need to trade off the additional gain from adding intention
information for the application domain (e.g., for increased
safety in an operational design domain for an autonomously
driving vehicle) and the cost of increased computing resources
and accuracy and reliability for the perception system.

VII. EVALUATION AND DATASETS

In this section, we firstly present the evaluation metrics that
are commonly used for pedestrian behavior prediction. Then,
we provide a review of the most commonly used datasets.
There are some benchmarks for the trajectory prediction [39],
[119] and intention prediction [79] that evaluated parts of the
existing works.

A. Evaluation Metrics

1) Trajectory prediction: The evaluation metrics for trajec-
tory prediction are listed below.

• The average displacement error (ADE) (or the mean
squared error (MSE)): The average distance between
ground-truth and prediction trajectories over all predicted
time steps, as defined below, where the predicted position
for ith pedestrian at time-step t is Ŷ i

t = (x̂i
t, ŷ

i
t), and the

ground-truth is Y i
t , i ∈ {1, ..., n}, Tobs + 1 ≤ t ≤ Tpred.

ADE =

∑
i∈n

∑Tpred

t=Tobs+1 ∥Y i
t − Ŷ i

t ∥2
n× (Tpred − Tobs)

(1)

• The final displacement error (FDE): The average distance
between ground-truth and prediction trajectories for the
final predicted time-step, as defined below:

FDE =

∑
i∈n ∥Xi

t − X̂i
t∥2

n
, t = Tpred (2)

Some other evaluation metrics such as the collision rate
and negative log-likelihood are mentioned in the TrajNet++
benchmark [39]. The average non-linear displacement error is
also used by some papers [27], [29], [30], [48], which is the
MSE at the non-linear regions of a trajectory.

2) Intention prediction: The evaluation metrics for intention
prediction are listed below, with the number of positives P,
negatives N, true positives TP, true negatives TN, false positives
FP, and false negatives FN.

• Accuracy (ACC): ACC = (TP + TN)/(P +N)
• F1 score (F1): F1 = 2TP/(2TP + FP + FN)
• Precision: Precision = TP/(TP + FP )
• Recall (True Positive Rate): Recall = TP/(TP + FN)
• Average precision (AP): AP =

∑n
k=1 (P (k)∆r(k)). AP

is defined as the area under the precision-recall curve,
where k is the rank in the sequence of retrieved documents,
n is the number of retrieved documents, P (k) is the
precision at cut-off k in the list, and ∆r(k) is the change
in recall from items k − 1 to k.

3) Joint prediction: For the joint prediction, the intention
and trajectory results can be evaluated separately.

B. Datasets
High-quality and large-scale datasets are crucial for data-

driven deep learning algorithms. Yin et al. [120] and Kang
et al. [121] explored publicly available datasets to investigate
their properties for developing autonomous driving features. In
this part, we briefly introduce the publicly available datasets
that that are commonly used for pedestrian behavior prediction.
Table VI lists the publicly available datasets that are used by
existing works and the summaries.

1) Trajectory prediction: ETH [122] and UCY [123]
datasets are widely used for evaluating pedestrian trajectories
prediction. These two datasets contain five scenes of bird’s-eye-
view (BEV) videos collected in various scenarios, including
crowded urban scenes. The ETH dataset contains two scenes
with 750 annotated pedestrians, and UCY dataset contains three
components with 786 annotated pedestrians. However, these
two datasets are limited to pedestrians in crowds, and do not
consider other road users.

KITTI [124] dataset contains driving scenarios collected by
multi-sensors from the vehicle’s view. The data is collected
with a 64-layer LiDAR and two high-resolution stereo cameras
(grayscale and color) with a resolution of 1392× 512 pixels
at 10 fps. It contains over 200,000 3D objects annotated in
synchronized and calibrated LiDAR and stereo images. This
dataset enables 3D detection and tracking estimation, and can
also be used for pedestrian trajectory prediction.

Daimler [5] dataset consists of 68 sequences of images
captured from the vehicle’s view, of which 12,485 images
contain pedestrians. The videos are recorded with a stereo
camera with a resolution of 1176× 640 pixels at 16 fps. The
dataset contains four typical types of pedestrian behaviors,
including crossing, stopping, starting, and bending in, and
can be used to evaluate pedestrian trajectory prediction and
intention classification.

New York Grand Central (GC) Dataset [125] contains
more than 12,000 trajectories annotated in a one-hour-long
BEV video. The video is recorded at 25 fps with a resolution
of 1920× 1080 pixels. This dataset includes crowd pedestrian
scenes but is not collected in traffic scenarios.

Stanford Drone Dataset (SDD) [126] contains 20 scenes
of BEV videos collected in a university campus. The videos
are captured with a 4k camera on a quadcopter platform with
a resolution of 1400 × 1904 pixels. It includes over 11,000
unique pedestrians and other road users, such as vehicles and
bikers with their interactions captured.

Waymo Open Dataset [127] contains 1,150 scenes col-
lected by multi-sensors from the vehicle’s view in traffic
scenarios. The sensors include five LiDAR sensors, and five
high-resolution pinhole cameras. Three front cameras have a
resolution of 1920 × 1280 pixels, two side cameras have a
resolution of 1920 × 1040 pixels. The LiDAR on top has a
scan range of 75m, the other four LiDAR have a scan range
of 20m. Each scene is 20 seconds long, containing 2D and
3D objects labeled in LiDAR and camera images sampled
at 10 Hz. The objects include pedestrians, cyclists, vehicles,
and signs. This dataset has become increasingly popular for
detection and tracking evaluation, and can also be used for
evaluating trajectory prediction.
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TABLE VI
EVALUATION METRICS AND DATASETS FOR PEDESTRIAN BEHAVIOR PREDICTION

Dataset (Year) Citation (Total/
Per year/Last year)

Prediction Tasks and Used
in Papers Summary

ETH (2009) [122];
UCY (2007) [123]

1188 / 99 / 364
710 / 51 / 265

Trajectory: [23], [25]–[28],
[30]–[37], [40]–[44], [47]–
[54], [58]

Collected in crowded urban scenes in bird’s-eye-view (BEV). There are five
scenes with more than 1500 people. Drawbacks: Do not include other traffic
agents, and they are not collected in traffic scenarios.

KITTI (2012) [124] 7952 / 884 / 3520 Trajectory: [55]

Collected in traffic scenarios from vehicle’s view. The data is collected with
a 64-layer LiDAR and two high-resolution stereo cameras (grayscale and
color) with a resolution of 1392 × 512 pixels at 10 fps. It contains over
200,000 3D objects annotated in synchronized LiDAR and stereo images.

Daimler (2013) [5] 214 / 27 / 75 Trajectory: [21], [22], [74]

Collected in traffic scenarios from the vehicle’s view. The videos are recorded
with a stereo camera with a resolution of 1176× 640 pixels at 16 fps. It
consists of 68 sequences of stereo images, with four types of pedestrian
behaviors. It can be used to evaluate trajectory and intention prediction.

New York
Grand Central (GC)

(2015) [125]
209 / 35 / 59 Trajectory: [29], [30]

Collected in New York grand central in BEV. The video is recorded at
25 fps with a resolution of 1920× 1080 pixels. It consists of more than
12,000 trajectories in a one-hour video. Drawbacks: Do not include other
traffic agents, and they are not collected in traffic scenarios.

SDD (2016) [126] 485 / 97 / 284 Trajectory: [40], [44], [47],
[51], [55]

Collected in a university campus in BEV. The videos have a resolution
of 1400× 1904 pixels at 30 fps. It contains 20 scenes with over 11,000
pedestrians, and other road users such as vehicles and bikers.

Waymo (2020) [127] 453 / 453 / 449 Trajectory: [45]

Collected in traffic scenarios from vehicle’s view. It consists of 1,150
scenes collected by multi-sensors including five LiDAR sensors and five
high-resolution pinhole cameras. Three front cameras have a resolution of
1920× 1280 pixels, two side cameras have a resolution of 1920× 1040
pixels. The dataset contains 2D and 3D objects (pedestrians, cyclists, vehicles,
and signs) labeled in LiDAR and camera images sampled at 10 Hz. There
are over 23k 3D-tracked pedestrians and 45k 2D-tracked pedestrians labeled.

JAAD (2017) [73] 128 / 32 / 93

Trajectory: [25], [26], [63]
Intention: [67], [70]–[73],
[75]–[79]
Joint: [84]

Collected in traffic scenarios from the vehicle’s view. There are over
300 video clips. The HD videos are recorded with on-board monocular
camera at 30 fps. Most of the videos have a resolution of 1920 × 1080
pixels. The duration is between 5 to 15 seconds. The dataset contains
approximately 82,000 frames and 2,000 unique pedestrian samples. The
number of pedestrians with behavior annotations is 686.

PIE (2019) [84] 86 / 43 / 86
Trajectory: [25], [26], [63]
Intention: [79]
Joint: [84], [85]

Collected in traffic scenarios from the vehicle’s view. There are six sets
consisting of over 6 hours of driving videos. The HD videos with a
resolution of 1920 × 1080 pixels are recorded with on-board monocular
camera at 30 fps. The average duration is 10 min. The dataset contains
approximately 290,000 annotated frames. The number of pedestrians with
behavior annotations is 1842. The annotations include the bounding boxes
with occlusion flags, crossing intention confidence, and text labels for
pedestrians’ actions.

ActEV/VIRAT
(2018) [128] 97 / 32 / 42 Joint: [83]

Collected in traffic scenarios in BEV. Includes 455 videos from 12 traffic
scenes, with more than 12 hours of recordings. Most of the videos have a
high resolution of 1920× 1080 pixels.

To evaluate existing pedestrian trajectory prediction algo-
rithms, Sadeghian et al. [119] built the TrajNet benchmark,
which is based on selected trajectories from the ETH, UCY,
and SDD datasets and uses the ADE and FDE evaluation
metrics, and is expanded to TrajNet++ by Kothari et al. [39]
with larger-scale data and more evaluation metrics.

For the trajectory prediction, there are datasets that only
contains pedestrians, such as the Subway Station dataset [129]
and the CUHK Crowd Dataset [130] used by Xu et al. [30];
and the Town Center Dataset [131] used by Xue et al. [49].
Besides, there are several datasets that contain urban traffic,
such as ApolloScape [132] as used by Ma et al. [59], Interaction
Dataset [133] as used by Li et al. [47], and nuScenes [134] as
used by Yao et al. [25]. But these datasets are mainly designed
for detection or for vehicle behavior prediction instead of
pedestrian behavior prediction.

2) Intention prediction: For the intention prediction, many
previous works are based on data collected by the authors
themselves [7], [64], because they can design what information

to include in the data collection. We outline the publicly
available datasets that are commonly used for pedestrian
intention prediction.

Joint Attention for Autonomous Driving (JAAD) [73]
dataset contains over 300 video scenes, and each scene ranges
from 5 to 15 seconds in duration. The videos are recorded with
three types of onboard cameras at 30 fps. 60 clips are collected
in North America by a camera with a resolution of 1920x1080,
276 clips are collected in Europe by a camera with a resolution
of 1920x1080, and 10 clips are collected in Europe by a camera
with a resolution of 1280× 720 pixels. This dataset contains
approximately 82,000 frames and 2,000 unique pedestrian
samples comprising a total number of 337,000 bounding boxes
with behavioral and contextual tags. The number of pedestrians
with behavior annotations is 686.

Pedestrian Intention Estimation (PIE) [84] dataset contains
over 6 hours of driving footage captured from the vehicle’s
view, and the videos are split into approximately 10 minutes
long pieces and grouped into 6 sets. The HD videos with
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a resolution of 1920 × 1080 pixels are recorded with an
onboard camera at 30 fps. The dataset contains approximately
290,000 annotated frames. The number of pedestrians with
behavior annotations is 1842. The dataset provides pedestrian
behaviors and continuous sequences at the point of crossing.
The pedestrians are annotated with the bounding boxes with
occlusion flags, and crossing intention confidence and text tags
for their actions.

3) Joint prediction: The JAAD and PIE datasets can be
used for evaluating both trajectory and intention prediction, as
well as joint prediction.

The ActEV/VIRAT [128] dataset includes 455 videos at 30
fps from 12 traffic scenes in BEV with more than 12 hours of
recordings, and can be used for the evaluation of both trajectory
and intention prediction. Most of the videos have a resolution
of 1920× 1080 pixels.

Other datasets such as the one proposed by Kooij et al. [135],
which consists of sequences including single pedestrians with
the intention to cross the street, can be used to evaluate the
trajectories at crossing areas and intention prediction.

C. Summary and Discussion of Datasets
Table VI lists the publicly available datasets that are used by

existing works and the summaries. We presented the number of
citations of each dataset in the table to show the popularity of
the dataset, including the number of total citations, the citation
per year after released, and the citation in the last year. The
KITTI dataset and Waymo Open dataset can also be used for
other tasks such as detection and tracking, so there are more
citations. ETH and UCY datasets are the most popular for
trajectory prediction. SDD is also popular as it contains the
annotation of pedestrians and other road users and can be used
to study the interactions. JAAD and PIE datasets are the most
popular for intention prediction. These two datasets can also
be used for joint prediction.

The ETH and UCY datasets, the most commonly used
datasets for trajectory prediction, were proposed in 2007 and
2009. While the JAAD and PIE datasets, the most commonly
used datasets for intention prediction, were proposed in 2017
and 2019, which are ten years later than the datasets for trajec-
tory prediction. This is because the information of pedestrian
intention is more implicit compared to trajectories, and hence,
the labeling of intention is more difficult compared to the
labeling of trajectories. On the other hand, the dataset used for
training and evaluation can influence the development of the
prediction models. The earlier appearance of the commonly
used dataset for trajectory prediction is another reason for more
papers on this topic compared to intention prediction.

We also looked into the places where the data was captured
and found they are mainly collected in North America, Europe,
and Asia, including the USA, Canada, Germany, Switzerland,
Bulgaria, Cyprus, and China. There are few datasets with urban
scenarios captured in South America, Africa, and Oceania.
Future research could focus on developing more datasets for
these places. Furthermore, the comparability of findings across
datasets is another issue that needs to be tackled to enable
the transferability of results as well as applicability for certain
geographic regions.

VIII. COMPARISON AND DISCUSSION

A. Performance of Existing Models

In this section, we compare the performance of some of
the reviewed prediction methods. To align and compare the
results, we select the works that used the most common publicly
available datasets and metrics. The joint prediction is evaluated
separately for trajectory and intention, so we compare them
with the trajectory and intention prediction on corresponding
datasets.

1) Trajectory prediction: For the trajectory prediction, we
compare the ADE and FDE values in meters, with 3.2s
observation time and 4.8s prediction time on the ETH and
UCY datasets. In Table VII, we list the evaluation results,
model features, and summarize the methods used for feature
extraction and modeling. From the first LSTM-based network
for trajectory prediction, Social-LSTM [27], to the most recent
model, AgentFormer [42], the ADE has improved from 0.72m
to 0.18m, and the FDE improved from 1.54m to 0.29m.

The models intended to consider more model features to
improve the accuracy, including the consideration of social
interaction and the interaction within a scene. For the social
interactions, the social pooling method improved to more
complicated attention pooling networks, and afterwards, the
graph-based spatio-temporal attention network took place. Re-
cently, researchers have focused on the interactions with other
road users, i.e., the heterogeneous interaction, to model real
traffic scenarios. The graph-based representation is a powerful
tool to model non-symmetric interactions. The environment
and appearance features encoded by CNNs from the images
help to improve the results. Besides, the instant destination
is increasingly popular to be considered while predicting in
goal-driven networks.

For prediction methods, instead of only using sequential or
non-sequential methods, many models combine the CNNs
and the sequential models to extract both the spatial and
temporal features. The multi-modal GAN and CVAE models
that can provide multiple plausible predictions are becoming
increasingly popular compared to the uni-modal methods that
predict a single distribution. The recurrent LSTM models are
gradually replaced by the TCN models and TF models that
have made a breakthrough in performance and can be paralleled
to reduce training time. The current state-of-the-art algorithm
AngentFormer [42] used the TF-based CVAE model and use
agent-aware attention to model the spatio-temporal interaction
at the same time.

2) Intention prediction: For the intention prediction, we
compare the AP and ACC for the C/NC classification on the
most commonly used JAAD dataset. Table VIII lists the selected
algorithms, their observation and prediction time horizon, the
evaluation results, model features, and the summary. From the
baseline method provided in the JAAD dataset [73] to the most
recent intention prediction work [67], the AP is increased from
0.63 to 0.90.

Early works considered the appearance and skeleton of
pedestrians and the environment context. Recent research
included the vehicle states and the interaction with other
road users to improve the precision. Off-the-shelf CNN-based
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TABLE VII
COMPARISON FOR TRAJECTORY PREDICTION

Paper, Author Year ADE / FDE Model Features Summary of Network Structures
Social-LSTM [27]

(Alahi et al.) 2016 0.72 / 1.54 Trajectory,
social interaction LSTMs for sequence prediction; social pooling to model social interaction.

Social-GAN [31]
(Gupta et al.) 2018 0.58 / 1.18 Trajectory,

social interaction
LSTM-based GAN for multi-modal sequence prediction; social pooling
network to model social interaction.

[23]
(Nikhil et al.) 2018 0.59 / 1.22 Trajectory CNNs instead of LSTMs for sequence prediction, enables parallelization.

SNS [52]
(Lisotto et al.) 2019 0.36 / 1.81

Trajectory,
social interaction,

environment

LSTMs for sequence prediction; social, navigation and semantic pooling
to model social interaction and environmental interaction.

Sophie [51]
(Sadeghian et al.) 2019 0.54 / 1.15

Trajectory,
social interaction,

environment

LSTM-based GAN for multi-modal sequence prediction; CNNs for envi-
ronmental feature extraction; soft-attention to model social interaction.

[34]
(Zhang et al.) 2019 0.48 / 0.99 Trajectory,

social interaction
LSTM encoder-decoder for sequence prediction; social graph network to
model social interaction.

CGNS [47]
(LI et al.) 2019 0.49 / 0.97

Trajectory,
social interaction,

environment

GRU-based CVAE for multi-modal sequence prediction; CNNs for envi-
ronmental feature extraction; soft-attention to model social interaction.

Social-BiGAT [50]
(Kosaraju et al.) 2019 0.48 / 1.00

Trajectory,
social interaction,

environment

LSTM-based GAN for multi-modal sequence prediction; CNNs for envi-
ronmental feature extraction; GAT to model social interaction.

[83]
(Liang et al.)

(Joint Prediction)
2019 0.46 / 1.00

Person behavior,
social interaction,

Person-ORU interaction
environment

LSTM for sequence prediction; CNNs for environmental and appearance
feature extraction; geometric relation function for person-object interaction
modeling.

SR-LSTM [32]
(Zhang et al.) 2019 0.45 / 0.94 Trajectory,

social interaction
LSTMs for sequence prediction; social-aware information selection and
state refinement module to model social interaction.

Social-ways [33]
(Amirian et al.) 2019 0.46 / 0.83 Trajectory,

social interaction
LSTM-based Info-GAN for multi-modal sequence prediction; attention
pooling to model social interaction.

STGAT [35]
(Huang et al.) 2019 0.43 / 0.83 Trajectory,

social interaction
LSTM encoder-decoder for sequence prediction; GAT for social interaction
modeling.

Social-STGCNN [41]
(Mohamed et al.) 2020 0.44 / 0.75 Trajectory,

social interaction
TCNs and CNNs for sequence prediction, enables parallelization; spatio-
temporal GCNs to model social interaction.

NMMP [40]
(Hu et al.) 2020 0.41 / 0.82

Trajectory,
social interaction,

Person-ORU interaction

LSTM-based GAN for multi-modal sequence prediction; graph-based
NMMP module to model the interaction with other road users.

[58]
(Eiffert et al.) 2020 0.34 / 0.77

Trajectory,
social interaction,

Person-ORU interaction

LSTM-based GAN for multi-modal sequence prediction; Mixture Density
Networks (MDN) and GVAT module to model the interaction with other
road users.

Transformer (TF) [24]
(Giuliari et al.) 2020 0.31 / 0.55 Trajectory TF for sequence prediction, enables parallelization for encoder-phase.

STAR [37]
(Yu et al.) 2020 0.26 / 0.53 Trajectory,

social interaction TF for sequence prediction; GCNs to model social interaction.

PECNet [44]
(Mangalam et al.) 2020 0.29 / 0.48

Trajectory,
social interaction,

destinations

CVAE for multi-modal sequence prediction with an endpoint encoder for
destinations; social pooling to model social interaction.

Tra2Tra [43]
(Xu et al.) 2021 0.20 / 0.54 Trajectory,

social interaction
LSTM for sequence prediction; LSTM-based spatio-temporal attention
module to model social interaction.

SGNet [26]
(Wang et al.) 2021 0.18 / 0.35 Trajectory,

destinations
GRU-based CVAE for multi-modal sequence prediction; a stepwise goal
estimator (SGE) for destination estimation.

Bitrap [25]
(Yao et al.) 2021 0.18 / 0.35 Trajectory,

destination
GRU-based CVAE for multi-modal sequence prediction with a GRU-based
encoder and goal estimation, and a bi-directional decoder.

AgentFormer [42]
(Yuan et al.) 2021 0.18 / 0.29 Trajectory,

social interaction
TF-based CVAE for multi-modal sequence prediction; agent-aware TF to
model social interaction on both time and social dimensions.

segmentation and detection models are used for appearance
and environmental feature extraction. 3D-CNNs can be used
to extract both spatial and temporal information. A longer
observation time improves the results [70], [78] showing that
time series-related information contributes to the intention
prediction. Recent work combined the CNN-based model with
sequential models, including LSTMs and conv-LSTMs, to better
extract the temporal information. The current state-of-the-art
model [67] used a 3D-CNN to extract spatial and temporal
behavioral feature, and encode the environmental and vehicle
interaction feature with an additional distance encoding module.

B. Research Gaps and Future Opportunities

Next, we discuss the current research gaps in pedestrian
behavior prediction that could be improved for future research.

1) Trajectory prediction: Most existing trajectory prediction
studies relied on past trajectories, and did not take full use of
the appearance and skeleton behavioral features like intention
prediction studies. Only a few of them (e.g., [46]) consider
the pedestrians’ visual behavioral features. In future works,
the visual behavioral features can be considered even more.
Another problem of existing trajectory prediction is that the
prediction considers the “perfect” detection and tracking (i.e.,
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TABLE VIII
COMPARISON FOR INTENTION PREDICTION

Paper, Author Year
Observation /

Prediction
Time (sec)

AP / ACC Model Features Summary of Network Structures

ATGC [73]
(Rasouli et al.) 2017 0.33-0.5 / 0.03

(Next frame) 0.63 / – Appearance cue,
environment Used CNNs to extract behavioral features for prediction.

[70]
(Fang et al.) 2018 0.46 / 0.03

(Next frame) – / 0.88 Skeleton cue Used CNNs and skeleton fitting to extract skeleton-based
behavior features for prediction.

Res-EnDec [76]
(Gujjar et al.) 2019 0.53 / 0.53 0.81 / – Appearance cue,

environment

Used 3D-CNNs as the encoder and conv-LSTMs as the
decoder for generating future video, and appended a binary
classifier to the generator for intention classification.

[75]
(Chaabane et al.) 2020 0.53 / 0.53 0.87 / – Appearance cue,

environment

Used 3D-CNNs as the encoder and depth-wise separable
conv-LSTMs as the decoder for generating future video, and
appended a binary classifier to the generator for intention
classification.

[72]
(Lorenzo et al.) 2020 – / 1.0 0.83 / – Appearance cue

Used CNNs to extract behavioral features, and applied
LSTMs, GRUs, and the bidirectional variants of LSTMs
and GRUs for crossing probability prediction.

[78]
(Liu et al.) 2020 1.0 / 1.0 – / 0.79

Appearance cue,
Person-ORU interaction,

environment

Used a CNN-based model for image parsing, and encoding
the appearance features. Used graph convolution for spatio-
temporal interaction extraction. GRUs are used for capturing
the temporal features and for behavior prediction.

PCPA [79]
(Kotseruba et al.) 2021 0.53 / 0.03

(Next frame) 0.86 / 0.85

Skeleton and
appearance cue,

vehicle state,
environment

Used 3D-CNNs for local visual context extracting, and
used GRUs for non-visual features encoding. The temporal
attention and modality attention modules are applied to
learn the interaction.

[67]
(Yang et al.) 2021 0.53 / 0.03

(Next frame) 0.90 / –
Appearance cue,

vehicle states,
environment

Used 3D-CNNs to Extract spatial and temporal behavioral
features, and used a distance encoding module to extract
environmental contextual cues and vehicle features.

PIE [84]
(Rasouli et al.)

(Joint Prediction)
2019 0.5 / 0.03

(Next frame) – / 0.79
Appearance cue,

vehicle states,
environment

Used LSTMs, CNNs and conv-LSTMs for joint prediction.
For the trajectory prediction and vehicle speed prediction
stream, the authors used LSTMs with temporal attention
in encoder inputs, and self-attention in decoder inputs. For
the intention estimation, CNNs are used for appearance
behavioral feature extraction, and conv-LSTMs are used as
encoders, and LSTMs are used as decoders.

the ground-truth of past trajectories). However, this is usually
not feasible in practice. Future work should look at how to
predict under conditions of imperfect detection and tracking
and how to develop an end-to-end prediction from raw sensor
data. Besides, existing works have used static graph-based
models to extract spatio-temporal features. As dynamic graph-
based models have shown a potential of better reflecting the
spatio-temproal features compared with the static graph-based
model in traffic flow prediction as used by Peng et al. [136], in
future trajectory prediction works, researchers can also consider
using dynamic graph-based models.

2) Intention prediction: Only a few works (e.g., [7], [57],
[67]) considered the traffic rules and signals while predicting
the crossing behaviors. The existence of crosswalks and traffic
signal lights are easy to get while strongly influencing the
crossing behavior. Hence, such factors can be combined with
other implicit environmental context features for intention
prediction in future works. The interaction with vehicles and
other road users can influence the pedestrian’s decision. Unlike
trajectory prediction, which considered various interactions
between different traffic agents, most intention prediction
studies used hand-crafted features to define the relationship
with a single vehicle as shown in Table III. In future works, the
graph-based or attention-pooling method can also be employed
to extract the interaction relationships in crossing intention
prediction.

As discussed, intention prediction usually requires large
computational resources. More research could focus on in-
vestigating whether adding the intention prediction can bring
noticeable improvements to an application domain.

3) Joint prediction: The predicted results of trajectory and
intention can be used to improve each other. Future works can
focus on joint prediction, which could use past trajectories
and interaction information that is usually used in trajectory
prediction, and appearance behavioral cue that is typically used
in intention prediction. The two prediction branches can share
the extracted features to compensate for each other.

4) Hybrid models: The behavior of pedestrians in urban
traffic usually includes interactions between multiple road users.
As we summarized in Table III, the interactions can either be
learned implicitly by deep learning models that can include
as much information as possible without requiring expert
knowledge but that are hard to explain, or be represented
by using knowledge-based hand-crafted features that are
explainable but requires prior knowledge instead. In future
works, we can develop hybrid models to take advantage of
both approaches. For example, we can use conventional models
with parameters learned from deep learning networks such as
the Deep Social Force proposed by Kreiss [137], or implement
the conventional knowledge-based model as a layer in the deep
learning network.
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5) Benchmark: As we reviewed and summarized in Sec VII,
existing works use various datasets and metrics. The most
popularly used datasets for trajectory prediction, ETH and UCY,
are limited to crowds but not designed for traffic scenarios,
and hence, they are not suitable to represent the performance
for automated driving usage. The recently proposed popular
benchmark, TrajNet, and TrajNet++ are not designed for
automated driving scenarios and do not cover enough traffic
scenes. For intention prediction, many researchers still use
self-collected datasets on a selected intersection, which makes
it difficult for others to replicate and compare the work. For
joint prediction, many existing works evaluate the trajectory
and intention prediction separately with different datasets for
comparison with previous works. Existing benchmarks either
focus on trajectory or intention prediction. In future works,
a benchmark can be defined and explored for the behavior
prediction that includes both tasks and to thoroughly compare
the performance for the joint prediction.

IX. CONCLUSIONS

In this paper, we have presented a thorough review of
pedestrian behavior prediction models that use deep learning
methods extracted from 92 papers. Compared with previous
literature review papers, the original contributions of our review
paper are as follows:

• Both trajectory and intention predictions are considered
and analyzed, instead of only focusing on a single type
of task;

• We have categorized existing works by three different
criteria to provide a perspective from different dimensions,
instead of reviewing the papers from a single criterion;

• We introduced widely used datasets containing urban
scenarios and we have evaluated and compared previous
methods on such publicly available datasets.

• We included the most recent papers from 2016 to 2021.
We have discussed the model features used by existing models,
and how they extracted these features. We have presented, cate-
gorized, and discussed the prediction methods used by existing
works. The advantages and drawbacks of using different model
features, and the properties of different prediction methods
are discussed in detail. We have discussed why there is more
research on trajectory prediction than intention prediction, how
much effort we should put into intention prediction, which
prediction methods we should use for which task, and the
distribution of the datasets in the world. Finally, we outline the
research gaps and possible research directions for improving
the performance of prediction algorithms for urban scenarios.
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a b s t r a c t

Automated Vehicle (AV) technology has evolved significantly both in complexity and impact and is
expected to ultimately change urban transportation. Due to this evolution, the development of AVs
challenges the current state of automotive engineering practice, as automotive companies increasingly
include agile ways of working in their plan-driven systems engineering—or even transition completely
to scaled-agile approaches. However, it is unclear how knowledge about human factors (HF) and
technological knowledge related to the development of AVs can be brought together in a way that
effectively supports today’s rapid release cycles and agile development approaches. Based on semi-
structured interviews with ten experts from industry and two experts from academia, this qualitative,
exploratory case study investigates the relationship between HF and AV development. The study
reveals relevant properties of agile system development and HF, as well as the implications of these
properties for integrating agile work, HF, and requirements engineering. According to the findings,
which were evaluated in a workshop with experts from academia and industry, a culture that values
HF knowledge in engineering is key. These results promise to improve the integration of HF knowledge
into agile development as well as to facilitate HF research impact and time to market.

© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The term automated vehicles (AVs) refers to an emerging
technology that increasingly automates driving tasks and decision-
making in transportation (Erdal, 2018). The society of automo-
tive engineers (SAE) has defined six levels of automation (0–5)
(sae.org, 2021), starting from no automation at Level 0. Many
automation features of Levels 1 and 2 (providing one or more
automated driving assistance systems (ADAS) to the driver of
the car) are already available to consumers. Level 3 features
such as lane changing (Yu et al., 2018), steering control, and car
parking (Wu et al., 2019) are becoming more common. Level 4
is known as high automation, and there are very few compa-
nies that have deployed Level 4 vehicles in real traffic (Waymo
(Schwall et al., 2020) is one example). However, several com-
panies are promising Level 4 deployment (Anderson, 2020), and
prototypes of Level 5 vehicles (full automation that does not
require human intervention and can perform driving under all
circumstances) are under development.

✩ Editor: Heiko Koziolek.
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E-mail addresses: amna-pir.muhammad@cse.gu.se (A.P. Muhammad),
eric.knauss@cse.gu.se (E. Knauss), jonas.bargman@chalmers.se (J. Bärgman).

Thus, the number of vehicles with medium to high levels of
automation are increasing; according to Litman, half of all new
vehicles will be autonomous (which the author defines as au-
tomation Levels 4 and 5) by 2045 (Litman, 2021). As the number
of AVs is increasing, so does the number of reported failures.
Although fatal crashes of Teslas have been well publicized, Banks
et al. (2018), Deaths (2020), Anon (2019), failures of AV technol-
ogy are not limited to a single brand; for example, a pedestrian
was killed by an Uber self-driving car in 2018 (Kohli and Chadha,
2019).

These examples, as well as more recent ones reported in
scientific journals (Morando et al., 2021; Inagaki and Itoh, 2013)
and the media (Anon, 2021a,b), show how human over-trust in
and over-reliance on automated systems can cause fatal failures
of AV. Clearly, even if an engineered, automated solution works
perfectly in theory, human factors (HF) must be accounted for to
ensure perfect functionality on the roads. As a research field, HF
considers humans’ physical, physiological, social, and cognitive
capabilities and limitations while designing a system (Human
Factors and Ergonomics Society, 2021). Expanding on this charac-
terization, several definitions of HF are available, depending upon
the context (Human Factors and Ergonomics Society, 2021). As
part of our study, we extended one of these definitions to enable
us to be more precise about HF in relation to AV (see Section 4.1).
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Several HF researchers have emphasized the need to consider
HF knowledge during AV development (Hancock, 2014, 2017; Lee,
2008; Navarro, 2019). For example, Hancock states that attention
must be paid to the proper design of new vehicle automation
technologies and warns that with the breakneck speed at which
automated and autonomous systems are developing, HF perspec-
tives might be overlooked (Hancock, 2017). According to Lee, HF
aspects must be considered in order to increase the safety, trust,
and acceptance of automated technology, as well as to avoid its
misuse and disuse (Lee, 2008). Currently, companies are trying
out different ways to manage the integration of HF knowledge
into their research and development (R&D).

In addition to the changes urged by HF researchers, agile
development approaches to system engineering are also being
introduced to AV R&D organizations (Kasauli et al., 2020). While
initially agile approaches were focused on small software devel-
opment teams (Beck, 1999; Meyer, 2014; Kahkonen, 2004), their
success has led to their adoption in the development of large-
scale (Dikert et al., 2016; Lagerberg et al., 2013; Salo and Abra-
hamsson, 2008) and mechatronic systems (Gren and Lenberg,
2020), where non-agile, plan-driven, and stage-gate-based pro-
cesses have been the norm (Pernstål et al., 2012). While in
practice, the integration of agile practices into large-scale systems
engineering may look like a hybrid approach (Klünder et al.,
2017), our case companies report themselves that they are transi-
tioning or have transitioned to large scale-agile frameworks, such
as SAFe (Knaster and Leffingwell, 2017a).

The agile ways of working adopted by these companies are
primarily based on the scaled agile framework (SAFe) (Knaster
and Leffingwell, 2017a), which promises to provide ‘‘proven, in-
tegrated principles, practices, and competencies for achieving
business agility using Lean, Agile, and DevOps’’. SAFe suggests dis-
tinguishing a number of abstraction levels, including the lowest
level teams, a middle layer where different solution trains (a group
of teams working on a coherent part of the product) are managed,
and a portfolio level on top. Due to their iterative nature, agile
approaches are suitable for building systems whose requirements
may change; further, experience from early versions of a system
can impact later versions (Beck, 1999; Meyer, 2014; Gren and
Lenberg, 2020). Thus, in theory, agile approaches are well suited
to the introduction of stakeholder concerns (such as those pro-
vided through HF knowledge) in automation development: Agile
often reveals previously unforeseen requirements for a system
under development, such as considerations of HF.

To integrate human factors during system development (in
general, not specific to agile), researchers advocate incorporat-
ing human factors knowledge already into the early stages of
development (Calp and Akcayol, 2019; Chua and Feigh, 2011;
Håkansson and Bjarnason, 2020). Traditionally, such informa-
tion is usually included in system requirements, which are de-
fined up front and serve as the basis for any subsequent de-
velopment work. The process of eliciting, analyzing, describing,
and validating requirements is called requirements engineering
(RE) (Wiegers and Beatty, 2013). To date, it has been particularly
challenging to apply RE to the agile development of systems at
scale (Meyer, 2014; Kasauli et al., 2021). Meyer highlights the
rejection of upfront analysis as particularly problematic (Meyer,
2014), but other challenges exist, particularly with managing and
communicating requirements-related knowledge at scale (Kasauli
et al., 2021).

The literature (Hancock, 2014, 2017; Lee, 2008; Navarro, 2019;
Beauchamp, 1986) leaves no doubt about the importance of con-
sidering HF in AV development. For example, an AV at Level
3 still requires humans to be able to take over control of the
vehicle. Especially when it comes to switching control between
the human and vehicle, human factors such as reaction time,

comfort, fatigue, and understandability must be considered as
requirements (Gold et al., 2017). Yet, particularly in the light of
well-known challenges for RE in scaled agile system develop-
ment, it is unclear how to ensure their consideration. There is
a lack of empirical research on how to integrate HF aspects of
vehicle automation development and communicate such require-
ments to AV engineers1 In this study, we distinguish between
HF experts and AV engineers2 in order to clarify how HF experts
are currently communicating with AV developers and identify any
communication gap, particularly during agile development. This
is a relevant research gap with practical implications: Automotive
companies are moving towards scaled-agile system development.
It is unclear how to introduce HF requirements into agile system
development, which is the traditional way of managing knowl-
edge in the development lifecycle. Thus, it is unclear how to
ensure that HF knowledge should best be integrated into agile
system development, and practitioners struggle with a lack of
clear guidelines.

We investigate this research gap in this exploratory qualitative
study. Within the general research goal of determining how HF
aspects of AV development can be integrated in agile AV develop-
ment, this study specifically aims to investigate how HF knowledge
as requirements can be integrated in the development process and
communicated to AV developers in the context of large-scale agile AV
development. The research goal is operationalized by addressing
the following research questions (RQs):

RQ1: How do HF experts and AV engineers characterize HF in
relation to AV development?

RQ1 is motivated by the broad spectrum of definitions offered
by literature. In order to understand how HF aspects can be
communicated, we first need to establish a working definition of
HF in terms of AV development. We then explore the relevant
properties of HF and agile work in RQ2 to lay the foundation to
reach our research aim.

RQ2: Which properties of HF and agile ways of working impact
AV development?

In RQ3, we are particularly interested in implications for agile
ways of working, HF work, and managing requirements in AV
development:

RQ3: What are important implications when aiming to better
integrate HF into AV development?

This work answers these research questions by qualitatively
analyzing interviews with ten experts (HF experts and AV engi-
neers who work in the automotive industry), complemented by
two additional interviews with academic leaders in the field of
human factors. Our results indicate that an important property
of scaled agile is its way of working, which advocates respon-
siveness to change by shifting responsibility from managers who

1 We recognize that many HF experts can also be considered engineers in
terms of AV development (the domain of HF engineering).
2 Note that in this work, HF experts are individuals in an organization that

typically have formal training in Human Factors (e.g., often with a background
in psychology, behavioral or cognitive sciences) and who have a role in the
organization where he or she on a daily basis works with HF aspects (i.e., works
with HF related topics; for details of what is meant by that, see the definition of
Human Factors in Section 2.1. Further, in this work, an AV engineer is typically
a software, electrical, or mechanical engineer, whose work is to develop the AV
from a technical perspective, and that does not have an HF background. More
precisely, when referring to AV engineers in this paper, we specifically exclude
HF engineers (Wickens et al., 2003), i.e., professionals that have a background
both in HF and engineering, who, for the purpose of this study are categorized
as HF Expert.

2
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plan at the system level to autonomous teams that make lo-
cal decisions. To support such local decisions, it follows that
HF knowledge should be available to the agile teams to raise
awareness, enable asking relevant questions, and guide them in
the right direction. It also follows that agile AV teams should be
able to produce HF knowledge on demand, e.g., by conducting
HF experiments within their team’s iterative work; further, RE
should provide methods for effectively managing the knowledge
gained from the experiments. We validated these findings in a
workshop setting using a survey questionnaire, as well as in dis-
cussions with 28 expert participants from industry and practice.
The evaluation study confirms that our findings are very relevant
to the industry.

The paper is divided into seven sections. This introduction,
Section 1, is followed by Section 2, which provides the back-
ground and reviews related work; Section 3 discusses the re-
search methodology. The main findings are presented in Sec-
tion 4. Section 5 presents the outcome of the survey performed
to evaluate the findings of this study. In Section 6, we discuss our
findings. Finally, Section 7 concludes the paper.

2. Background and related work

The research presented in this paper is interdisciplinary, tar-
geting both systems and software engineers as well as HF experts.
Therefore, this section provides the background on which the
argument of the exploratory qualitative analysis is built. This
background may seem obvious and basic in parts. However, since
the targeted readers belong to many disciplines, some basics
need to be explained for completeness: many HF experts are
not familiar with the agile way of working or RE, and many AV
engineers are not familiar with the domain of HF.

2.1. Human factors in automated vehicle development

Human factors are an integral part of the development of road
transport (Wickens et al., 2003). However, as the definitions of
HF are many and diverse (Licht et al., 1991; Human Factors and
Ergonomics Society, 2021), there may be a problem when people
with different definitions are communicating requirements and
knowledge (Licht et al., 1991). Taking a scientific perspective of
the definition of human factors,

The Journal of the Human Factors and Ergonomics Society de-
scribes the science of human factors as pursuing ‘‘fundamental
knowledge of human capabilities and limitations—and the basic
understanding of cognitive, physical, behavioral, physiological,
social, developmental, affective, and motivational aspects of hu-
man performance’’ as a means ‘‘to yield design principles; en-
hance training, selection, and communication; and ultimately im-
prove human-system interfaces and sociotechnical systems that
lead to safer and more effective outcomes’’.3 Although this defini-
tion may seem clear and concise, individuals may have different
views of what HF entails (Licht et al., 1991), and their views
may impact how they consider HF in their profession. Thus it is
important, when studying how HF is considered in the workplace,
to investigate what their views of HF actually are. This may be
particularly important when the subjects in a study have very
different backgrounds, such as when studying the role of HF
in the development of automated vehicles (as in the current
study); HF experts, as well as a range of different engineers, are
involved (Wickens et al., 2003). As a consequence, developing a
precise definition related to a specific topic (here AV design) is
warranted.

3 https://journals.sagepub.com/aims-scope/HFS

Finally, to help readers that are not HF experts get a better
grasp of HF, some examples in the field of AV development
are listed below. As the HF domain is very broad, also this list
is highly diverse and only represent a small fraction of all HF
aspects considered in AV design. Its aim is only to provide some
insight into AV HF considerations. HF knowledge helps to answer
questions on how to design and develop. . . :

• AVs that are predictable and safe for other road-users
• AVs that users trust (to a reasonable degree)
• AVs that are transparent with their capabilities, avoiding

over-reliance
• AVs that drivers like
• human–machine interfaces (HMI) for AV users (e.g., touch

screens for adjusting settings) that are safe, user-centered
and in-line with the company branding.

• HMIs for other road users (external HMIs) to, for example,
communicate state and intent

• AV motions that the users like (e.g., to make them feel com-
fortable with the AV speed and acceleration, as well as rela-
tive speeds and ranges to other road users and infrastructure
features)

• AVs that ensure intended effects of the AV functions are
reached by considering user’s and surrounding road users
intent and actions

• AVs’ auditory, visual, and haptic information exchange with
their users (e.g. as information and warnings) including
braking, active vehicle steering and acceleration through
actuators

• models of human behavior to use in virtual simulations to
assess AV safety

Human factors for AV development include all considerations
of the human in the AV design. It does not include the devel-
opment of hardware and software in general, but many tasks
that typically are considered ‘‘hard core engineering’’, such as
path planning, has clear HF aspects in them (see list above).
Consequently there may be HF requirements on the sensing or
actuator system and other AV engineering that may have HF
implications (e.g., sensing and actuation needs to provide the path
planners the means to navigate in a way that is acceptable to the
AV users).

2.1.1. Human factors and its role in AV development
In AV development, HF relates to aspects of both software

development and physical AV design. Examples of HF aspects in
AV development are many. Note that a common misconception
by many non-HF experts is that HF is simply a list of factors,
while it is actually a range of aspects that affect humans, or that
humans affect (see, e.g., the definition by the Journal of Human
Factors). Physical aspects range from seating ergonomics (as AVs
are impacting vehicle interiors (Salter et al., 2019)) to the physi-
cal design and placement of human–machine interfaces (HMIs).
Typically, humans are directly affected by software aspects of
HF, including: how and when the (software-based) HMIs display
information (Carsten and Martens, 2019), how external road users
are to be communicated with (Ackermann et al., 2019a; Faas
et al., 2020), how the vehicle stays in the lane (Xu et al., 2017;
Miller and Boyle, 2019), how it keeps its distance from a lead
vehicle (De Winter et al., 2014; Reagan et al., 2017; Morando
et al., 2016), how it overtakes other road users (Abe et al., 2017;
Kovaceva et al., 2019), how humans and AVs communicate (Ack-
ermann et al., 2019b), and how AVs can avoid driver over-reliance
on the AV performance and ensure that the trust in the AV is
properly calibrated (Mirnig et al., 2016; Kraus et al., 2020). These
examples highlight the extent to which successful engineering
depends on HF knowledge. Yet it remains an open question how
engineers gain awareness of HF in their daily work and design
decisions.

3
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2.1.2. What HF issues impact AV development?
Kyriankidis et al. highlight that as AV development in the

industry keeps moving forward at a fast pace, the gap between
research in academia and R&D in the industry continues to
grow (Kyriakidis et al., 2019b). They stress the importance of
more research on the interconnection of AVs with other road
users, human trust in and acceptance of AVs, and how much (and
which) information drivers will get and should be getting from
AVs. The authors also discuss the need for more experiments
to study how humans interact and control transitions between
the driver and the AV. Similarly, Noy et al. (2018) argue that the
benefits of AVs (such as safety) can only be achieved if they are
designed according to standards of human–system integration.
The importance of integrating HF into the design and evaluation
processes of autonomous vehicles to increase their safety and
trust is also highlighted in this position paper (CARTRE, 2018) and
in the book by Wickens et al. (2003).

The work by Saffarian et al. (2012) lists six specific issues re-
garding HF in AV development: overreliance, behavioral adapta-
tion, erratic mental workload, skill degradation, reduced situation
awareness, and inadequate mental models of automation func-
tions. The authors proposed a solution for these issues specific to
CACC (Cooperative Adaptive Cruise Control), as well a proposing a
mechanism of interaction between humans and CACC. However,
the solution simply proposed a few different modes to keep the
driver in the loop and facilitate cooperation between driver and
vehicle.

Chen et al. (2018) describe the importance of transparency
between intelligent systems (e.g., robots or AVs) and humans.
The authors developed a Situation awareness-based Agent Trans-
parency (SAT) model to ensure an appropriate interplay between
AVs and humans. Their study mainly targets human drivers’ need
for transparency of AV functionality in order to promote better
understanding, trust, and interaction.

For each individual HF issue encountered during the AV de-
velopment process, involved engineers may lack the experience
or competence to include the appropriate HF aspects. However,
no one can know everything. Communication about HF among
stakeholders is therefore crucial. The AV development process
must include many stakeholders from different domains, making
it interdisciplinary.

2.2. AV development: Processes, approaches, recent developments

In the automotive sector, the R&D required to create cars and
trucks and offer related services is a complex affair, involving
many disciplines such as mechanics, electrical hardware, and
(increasingly) software. Whereas electronics and software in cars
were originally introduced simply to optimize engine control,
their development now drives 80% to 90% of the innovation in
the automotive industry.4 This subsection provides an overview
of AV development in the context of requirements engineering
(RE).

2.2.1. Requirements engineering
International standardization and certification bodies provide

valuable insights into the fundamental concepts of requirements
engineering. The IEEE defines a requirement as either (i) a condi-
tion or capability needed by a user to solve a problem or achieve
an objective; (ii) a condition or capability that a system or com-
ponent must meet to satisfy a contract, standard, specification,
or other formally imposed documents; or (iii) a documented
representation of a condition or capability as in (i) or (ii) (IEEE,
1990). The International Requirements Engineering Board (IREB)

4 According to industry experts: https://tinyurl.com/y9jnoupd.

describes requirements as representations of the needs and de-
sires of customers and users for new things to be built or old
things to be upgraded (International Requirements Engineering
Board, 2020). Accordingly, requirements can be of three types:
functional (a result or behavior to be provided by a function),
quality (a quality concern not covered by functional require-
ments, such as performance, availability, security, or reliability),
and constraint (a further limitation on valid solutions beyond
what is necessary to fulfill functional and quality requirements).
IREB characterizes Requirements Engineering as specifying and
managing ‘‘requirements for systems such that the systems im-
plemented and deployed satisfy their stakeholders’ desires and
needs’’ (International Requirements Engineering Board, 2020).

Activities of RE typically include elicitation, analysis, specifica-
tion, validation, and management of requirements (Nuseibeh and
Easterbrook, 2000). In addition, requirement prioritization be-
comes a key RE activity in agile development, supporting elicita-
tion and analysis by identifying the requirements with the highest
stakeholder value (Heikkilä et al., 2017). Research emphasizes the
interdisciplinary aspects of requirements engineering (Nuseibeh
and Easterbrook, 2000); however, we are not aware of any works
that explore how HF research can be integrated into requirements
engineering activities for agile system development at scale.

2.2.2. Development practices
Traditionally, the automotive environment has been char-

acterized by long lead times (Berger and Eklund, 2015) and
stable, sequential engineering practices (Pernstål et al., 2012). Ek-
lund et al. (2014) argue that the industry is currently transi-
tioning from plan-driven, stage-gate processes (Pernstål et al.,
2012) to more value-driven, continuous approaches (Knauss et al.,
2016; Fagerholm et al., 2017a) (often referred to as agile meth-
ods (Meyer, 2014) or agile transformation (Paasivaara et al.,
2018)). Gren and Lenberg argue that the main motivation for
such a transformation is to be able to respond to changing
requirements (Gren and Lenberg, 2020).

Agile methods have traditionally been proposed for small
teams (six to eight developers) (Beck, 1999; Schwaber and Bee-
dle, 2001; Meyer, 2014). The core values of agile methods as
described in the agile manifesto Beck et al. (2001) are: Focusing
on individuals and interactions to develop working software in
close collaboration with customers with an emphasis on em-
bracing change while de-emphasizing processes, tools, extensive
documentation, contract negotiation, and following plans. In fact,
agile methods have been presented as the antithesis of previous
plan-driven approaches. In its original form, an agile team would
take notes about customer needs in the form of user stories
on small index cards. Often, these are described as boilerplate
statements: ‘‘As a <role> I want <feature> so that < value
>’’ (Leffingwell, 2010). The much more detailed requirements
of plan-driven approaches are omitted; instead, agile methods
push for a continuous dialogue with customer representatives
or product owners and comprehensive sets of tests, which are
ideally automated (Meyer, 2014). On the other hand, agile meth-
ods have been criticized for limiting requirements engineering to
functional requirements described through (exemplary) scenarios
and discouraging upfront planning (Meyer, 2014).

2.2.3. Development approaches at scale
Automotive R&D work is typically a collaboration between an

OEM (Original Equipment Manufacturer) and suppliers in several
tiers. The OEM owns the vehicle brand and orders mechanical,
electrical, and software components from suppliers. Thus, the
ability to specify requirements for the vehicle and break them
down into component specifications is a core competency for an
OEM.

4
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In order to improve their responsiveness to changing require-
ments, OEMs have started to bring more development in-house
and to identify new collaboration models with suppliers (Hohl
et al., 2016; Van Der Valk et al., 2018). As a result, OEMs strug-
gle to maintain effective ways of structuring, documenting, and
managing requirements for increasingly complex systems (Liebel
et al., 2019; Kasauli et al., 2020). While software teams may have
quickly learned to adopt agile methods, company-wide adoption
is usually slow, mostly due to skepticism (Lindvall et al., 2004).
Thus, new ways of managing requirements must be conceived for
OEMs and their supplier value chains (Kasauli et al., 2021).

Moreover, for complex products such as cars, it is impor-
tant to scale agile methods beyond individual teams, since if
the overall plan for the complete vehicle cannot be changed
there is limited value in an individual team’s ability to respond
to change (Gren and Lenberg, 2020). SAFe is the most com-
monly used framework for scaling agile (Knaster and Leffingwell,
2017b), especially in the automotive domain Kasauli et al. (2021).
SAFe describes a requirements information model that groups
several user stories into epics. Epics can then describe mid-to-
long-term goals for groups of teams. The model also describes
non-functional requirements as a way to present quality re-
quirements as constraints for user stories and epics (Leffingwell,
2010).

Previous works have described inadequacies in the SAFe frame-
work (Kasauli et al., 2021) and its requirements information
model (Wohlrab et al., 2020). Of particular relevance to this
paper is the fact that scaled-agile methods struggle to provide
alignment among many software teams (Kasauli et al., 2021;
Wohlrab et al., 2020); we need to consider the effects of scaling
agility beyond individual software teams since questions about
agile ways of working must be part of our exploration of HF. For
example, for a given automated driving function, several teams
must align on how to address HF. For brevity, hereafter we refer
to scaled agile or large scale agile simply as agile.

2.3. Related work: communicating human factors knowledge and
requirements to AV engineers

Interdisciplinary communication is often difficult. However,
many fields such as aviation, transportation, and medicine, ac-
knowledging the importance of HF knowledge, have worked to
integrate HF design principles and techniques into the design
and development of products and systems. Vincent et al. (2014)
suggested that the communication gap between HF knowledge
experts and other developers is due to a lack of common ground;
they proposed the use of mediating representations of boundary
objects (Star and Griesemer, 1989) for effective communication.
Bruseberg (Bruseberg, 2008) introduced a novel methodology
that feeds HF knowledge into an architectural framework. How-
ever, the author mainly discusses HF from a cognitive perspective.
Alternatively, Chua and Feigh (2011) suggest including HF in
an early design stage. While HF can provide significant input
to improve the communication between HF experts and system
engineers, it is unclear exactly how to include HF knowledge in
these stages of development. Other authors (Bodenhamer, 2012;
Ramos et al., 2012; Orellana and Madni, 2014; Watson et al.,
2017) advocate including HF in system design via SysML, using
activity, block, and sequence diagrams.

van Maanen et al. (2005) have discussed how HF can be
integrated with AI for better human–machine cooperation (HMC).
Whereas current customization is limited to static interfaces,
improved HMC could provide customized support to users. How-
ever, knowledge about both HF and artificial intelligence (AI)

and how to integrate them is lacking. To bridge this knowledge
gap, van Maanen et al. (2005) have proposed a methodology
based on interdisciplinary cognitive engineering (CE+). In CE+, HF
experts provide the relevant information (such as the support
concepts and rules) and strategies for the specification and eval-
uation of HMC. The authors concluded that HF and AI must be
integrated into the early stages of the development process. In
fact, the User Centered Ecological Interface Design (UCEID) (Rev-
ell et al., 2018) method proposes a combination of techniques
(e.g., data collection and task and cognitive task analysis) to
include HF considerations in the early stages of the overall system
design processes. The main finding of UCEID is that it is impor-
tant to meet the dual requirements of demographically diverse
clients and technology delivery. It remains unclear how these
requirements can be integrated into the (agile) development cy-
cle; however, considering the importance of the issues mentioned
above, a way must be found to design AVs with HF in mind (Merat
and Lee, 2012; Kyriakidis et al., 2019a).

Adopting this design practice proves to be challenging, not
the least because of the adoption of agile development (Mehrfard
et al., 2010). Processes have become more iterative, putting more
emphasis on a continuous understanding of requirements. It is
unclear how the above-mentioned methodologies would work for
the communication of HF knowledge in today’s large-scale agile
AV development. For example, Kashfi shows how difficult it is to
align user-centered design and UX in agile development (Kashfi,
2018).

In summary, although communicating HF knowledge to engi-
neering teams is challenging, research provides ample motivation
to explore how this challenge can be overcome in practice. To our
knowledge, no systematic approach exists that make sure that HF
are adequately represented in agile system development.

3. Research method

Our exploration of the role of HF in developing automated
vehicles is widely based on the epistemological stance of critical
realism (Lawani, 2020), a research philosophy that distinguishes
between the ‘real’ world and the ‘observable’ world. With re-
spect to this study, we made this distinction by observing and
analyzing expert opinions about how HF aspects are addressed
in engineering, rather than assuming that we can analyze those
aspects directly. Critical realism relies on a common ontology
or sociological theory, which we provide through our detailed
assumptions about the role of HF, RE, and agile methods based
on related work in Section 2. In our study design, however, we
were also inspired by the school of pragmatism, focusing on
particular causalities of pragmatic relevance (i.e., the implications
that follow from particular properties of agile AV development
and HF). As discussed by Lawani (2020), pragmatism and critical
realism are often associated with each since both advocate the
use of mixed methods and on understanding (causal) relation-
ships that are thought to be not directly observable. In fact, we
added continuously to our knowledge as we learned new items
that did not previously fit into our mental model. Given this mix
of epistemological stances, we decided that an exploratory, qual-
itative inquiry was the most appropriate to address our research
questions (Creswell and Creswell, 2017).

Our case consists of a number of automotive companies,
including manufacturers and suppliers, collaborating not only
within the value chains needed for building automated vehicles
but also beyond, to build and maintain excellence in the field. We
relied on semi-structured interviews with experts to provide the
primary data, since we were specifically interested in applying
the personal views of experts in the field (who collaborate within
and across value chains and concrete products) to chart the
landscape of HF in relation to AV development.

In this section, we describe the collection and analysis of the
data.
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Table 1
Interviewees’ roles and work experience (Experience level: Low = 0–5 years,
Medium = 5–10 years, High = More than 10 years).
ID Role Experience Level

S1 HF Expert (Specialist) High
S2 HF Expert (Strategy,

Specialist & Research)
High

S3 AV Engineer (Strategy &
Architecture)

High

S4 AV Engineer
(Requirements & Research)

Medium

S5 HF Expert (Management &
Research)

High

S6 HF Expert (Specialist) High
S7 HF Expert (Specialist &

Design)
High

S8 AV Engineer (Safety &
Research )

Low

S9 AV Engineer (Strategy &
Specialist)

High

S10 HF/AV Engineer High

*Special Interviews
S11 HF Expert (Specialist) High
S12 HF Expert (Specialist) High

3.1. Data collection

Our strategy for recruiting interviewees for our study (Palinkas
et al., 2015) relied primarily on convenience sampling. That is, we
aimed to identify interviewees who possess the relevant expertise
and were willing to participate. Our results confirm that such
experts are rare among companies, and that it is important to
protect their time. In recruiting interviewees, we relied both
on the personal and professional networks of the authors, built
through years of research with participating companies, and on
recommendations from the interviewees themselves. We aimed
for a mix of similarity and variation in our sampling in order
to cover different perspectives (HF vs. engineering and OEM vs.
supplier) in sufficient depth.

As a result of these efforts, we interviewed ten experts from
five Swedish companies: four from Volvo Cars, two from Volvo
Trucks, two from Zenuity, one from Veoneer, and one from Au-
toliv. In addition, we conducted two more complementary in-
terviews with international academic leaders in the field (S11
and S12), to get additional perspectives on the definition of HF
and emerging themes. All of the industry interviewees have been
working with AV companies for years, often more than ten (see
Table 1). The experience level of the participants is classified as
low if they have less than five years of experience, medium if
they have between five to ten years, and high if they have more
than ten years. Experience level is the sum of all jobs for each
participant, which can span one company or more. However, from
talking to them, we can infer that, even though they changed
companies, their roles and companies were similar in the same
domain, and their experience is well in line with both the needs
for their individual job roles and this interview study.

In Table 1, S11 and S12 are separated from the other par-
ticipants because these interviews were conducted in a slightly
different style, and the preliminary results from the other inter-
viewees were kept in mind.

We relied on semi-structured interviews because they are
especially suitable for exploratory studies (Creswell and Creswell,
2017): depending on the course of the interview, questions can be
adjusted to mitigate the risk of asking the wrong questions, and
follow-up questions can be created to satisfy emergent informa-
tion needs. This approach allowed the participants to articulate
their individual and valuable views, concerns, and expectations.
Consequently, interviews tended to resemble guided discussions
and were engaging both for interviewees and interviewers.

Each interview took between 60 and 80 min. In most inter-
views, all three authors were present; at least two authors were
present in every interview, which allowed us to keep extensive,
often verbatim, notes. The second author took notes, and the first
author conducted the interview. The second and third authors
have extensive experience in the automotive industry, having
been involved in various research projects over the years. The
second author has particular expertise with RE and Agile and
the third author has formal training as an engineer, but has
worked between HF and engineering for many years. Given their
multidisciplinary background, they was there to ask follow-up
questions and provide clarification.

Notes ranged from 700 to 1750 words and contained, on
average, 1325 words. We did not record the interviews. We did,
however, show our notes to the interviewee during the interview.
While we were interested in the perspectives of experts on the
role of HF knowledge in AV development, the discussion could
have touched on examples of perceived or real shortcomings in
processes, which would be very sensitive information. It was thus
deemed better not to record the interviews; after a sensitive
discussion, any such content was eliminated from the meeting
notes or, if necessary, more suitable examples/formulations were
substituted. Rutakumwa et al. argue similarly to us that the con-
text can have a negative impact on the quality of answers when
recording (Rutakumwa et al., 2020). They also indicated that there
is not necessarily a negative impact on the quality of the tran-
script in relation to its role in the thematic analysis (Rutakumwa
et al., 2020).

Before the interviews, we prepared a guide5 to help us cover
the same topics in each interview. Each interview included the
nine open-ended questions and detailed follow-up questions con-
tained in the guide. We designed the interview guide with the
intention of getting an HF perspective on the design and devel-
opment of AV technology. The questions in the interview guide
are based on our literature review and experience. This includes
assumptions of research gaps, as apparent in question three.
Studies such Hancock (2019), Wickens et al. (2003), Navarro
(2019) clearly indicate that problems of HF are not properly ad-
dressed. With respect to our experience, the authors are currently
involved in a project (SHAPE-IT, 2023) with many senior human
factors experts. Discussions with those experts clearly indicate
substantial gaps in the integration of HF in AV development.
Although some of the questions posed during the semi-structured
may have influenced the interviewers, this is a common risk with
this interview format since it involves open-ended conversations.
To mitigate this risk, we tried to include three interviewers to
capture the conversation and minimize any potential biases that
could have arisen during the interviews. Consequently, we be-
lieve that the level of risk posed by these potential biases is
negligible.

The map between the interview guide questions and the re-
search questions is shown in Table 2.

3.2. Data analysis

In order to analyze the data obtained from the interviews,
we relied on the common set of principles (Noble and Smith,
2014) used for qualitative analysis of interview data. Specifically,
these principles include: transcribing the interviews, familiarizing
ourselves with the data to attain a deep understanding of the
phenomena being investigated, coding, generating initial themes,
and finalizing the themes and overarching concepts.

5 We provide the interview guide as well as an overview of our themes
in relation to codes and example quotes as data set at Zenodo, DOI: 10.5281/
zenodo.5562487.
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Table 2
Interview questions, mapped to the research questions.
Interview questions Research

question(s)

1. Background of interviewee
(Demographic Data)

Demograph-
ics

• What is your role?
• What is your experience in that

role?
• What is your experience with

HF/Requirements?
Reminder: We will take notes during
the interview, which we will send later
for confirmation.

2. How would you characterize what HF
is and how it relates to requirements for
AV development (or AI-based systems)?

RQ1

3. In your experience, how does
engineering work with or without HF?
What is missing?

RQ2

4. How does HF knowledge come to
engineers?

RQ3

5. What are the main challenges in
conveying requirements from HF to
engineers that design automated
vehicles (or from engineers to HF
experts)?

RQ2 & RQ3

• Follow-up: what about conveying
knowledge from HF/behavior as
input into the AI-based AV-design
process?

• Think about comfort zones as an
example, safety aspects, software
requirements aspects (e.g., AI
based control of the vehicle)
compared to traditional physical
‘‘user experiences’’ of AV.

6. What scenarios related to AV in
urban environment are the most
difficult (and/or important) to convey
requirements to AV-engineers?

Not used

7. Do you have recommendations on
how to optimize communication
between human factors experts and
engineers of AI-based AVs? Any
guidelines for incorporating human
factors into AI-based AV design
guidelines?

RQ2 & RQ3

8. How should the process (or: way of
working) for system design look like?
Particularly in agile development how
we do that?

RQ3

9. Thanks you for the interview, next
steps.

All

• Whom else should we interview?
• Anything we forgot to ask?

The extensive interview notes were a good starting point for
further analysis. To familiarize ourselves with the data, we read
the interview notes thoroughly while creating memos describing
those ideas that the notes inspired (Birks et al., 2008). Then we
highlighted parts of the text related to our research interest and
assigned them labels (so-called ‘‘codes’’). In parallel, we continued
to create and discuss memos to capture any noteworthy aspects
as they surfaced. For these activities, we relied on both generic
word processors (MS Word) and specialized qualitative analysis
tools (NVivo6). Through these steps, we identified the main ideas
as well as common perspectives.

6 https://www.qsrinternational.com/nvivo-qualitative-data-analysis-
software/home

After formalizing and coding the data, we further classified all
the relevant codes into candidate themes. For example, the fol-
lowing quotes were coded as ‘‘validation test’’ and ‘‘test dilemma’’,
respectively.

‘‘Perhaps put more emphasis on validation tests, that is, not only automated
tests but also test the quality in use.’’ — S4 - AV Engineer

‘‘I have seen people spend three person-years on things they have never tested
with real humans. Then they claim they have never had time to do so.’’ — S2
- HF expert

By analyzing and categorizing these and other relevant quotes,
we came up with a theme called ‘‘Testing’’.

The themes and codes were then re-analyzed to check if there
was any missing or extra theme with respect to our interview
notes or any mismatch in the code classifications. In this way, we
refined the set of themes until all authors agreed that it provided
complete coverage of all aspects of the data, without redundancy,
on a meaningful level of abstraction.

Finally, we renamed our themes to better align with research
questions. Section 4 describes the outcomes of our data analysis

4. Findings

This section presents our findings, with each subsection ad-
dressing one RQ. We start by defining HF in AV development,
based on our interviews and the literature (RQ1). The second
research question focuses on the properties of HF and agile ways
of working (RQ2). These properties raise important questions
(discussed in our interviews) about the interplay of both dis-
ciplines. Then, we present the implications that emerged from
these discussions in three themes related to research question
RQ3: implications for agile ways of working, implications for HF
work, and implications for managing requirements.

For each theme, we start our report of results with a box
that shows in which interviews we have identified related codes.
Table A.3 presents a comprehensive list of all the themes covered
in this paper, along with their corresponding codes. Additionally,
we provide an overview of our themes and codes per interview
as an external resource, here.

4.1. Human factors in relation to AV development (RQ1)

HF Definition based on codes from interviews with: S1-3, S5-6,
S11-12

In order to explore the systematic capturing and managing
of human factors in AV development, it is important to share
a common understanding of the key concepts. Therefore, our
first question aimed to understand each interviewee’s perspective
on human factors and their relation to AV development. Our
interviews show a broad and diverse usage of the term ‘human
factors’, which is also reflected in the literature.

For example, the following quote shows a rather broad defini-
tion of the term, assigning responsibility for considering human
factors to the complete development cycle:

‘‘How to safely develop an AD function (without killing humans in the process)
so that in case of a crash, people will say that the car was behaving reasonably.’’
— S1 - HF Expert

In other examples, interviewees had a more technical, outcome-
oriented view of the term and how it feeds into other engineering
processes:
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‘‘Learning the user preferences, should it be race driving, comfort, safety, or
speed.’’ — S3 - AV Engineer

‘‘ HF was 2WW system ergonomics, then CS brought up HMI. Those have merged
since. You have physical interfaces, but also services, but also how users are
adopting new functions and whether or not they continue using. HF and HMI
are intertwined. Ergonomics is included and overlaps with the cognitive side,
e.g., external communication with other road users. Understanding the warnings
and so on.’’ — S6 - HF Expert

Human factors knowledge, such as preferences about the level
of comfort, safety, and speed, is instrumental for the develop-
ment of AV. The role of HF in providing input to design and
development is also reflected in another interviewee’s quote:

‘‘Understanding the interactions between people and all other elements within
a system, and designing in light of this understanding.’’ — S5 - HF Expert

However, considering HF requires more than one-way com-
munication with engineers. As the following quote reveals, HF
sets limitations on both engineers and users.

‘‘How to communicate the limitations of behavior so that people understand
what they are allowed to do and what they are not allowed to do... [This is
easy to do with] HF related to safety. [With other] HF [e.g., those] related to a
sense of calm or serenity that is a bit more difficult.’’ — S2 - HF Expert

Given the broad use of the term ’human factors’, we aimed
to integrate different interpretations from practitioners’ perspec-
tives into a definition of human factors in AV development.

As part of this process, we relied on the two international
experts to provide more insight. They confirmed that a working
definition is indeed needed and might need to be compiled from
various sources and then matched with comments from our other
interviewees:

‘‘So one definition is from the Journal of human factors, which is about
knowledge of human capabilities and limitations. I think that would be good, but
there is one on this other page... The goal to design safe, comfortable, effective
[systems for] human use is almost describing what you are trying to achieve, so
I am just wondering whether you could start by saying this is what we believe
HF is and then add more with your work.’’ — S12 - HF Expert

In addition, our international experts confirmed that a good
working definition must be related to the engineering cycle

‘‘Understand, create and evaluate cycle. HF plays a role in each component &
understand is about identifying requirements, human capabilities, limits, needs
& describing those in ways that influence the design.’’ — S11 - HF Expert

‘‘AV has physical considerations regarding how you get in a vehicle, make the
seats big enough to accommodate the people, there are certain design issues. But
it also that people trust the AV to be safe, how do they perceive the important
risk, do they feel comfortable with the algorithms, do the algorithms behave
as expected, does it enhance end goals: pleasure, satisfaction, aesthetics? ’’ —
S11 - HF Expert

This is a cross-cutting theme that is also visible in the other
subjects’ quotes above.

In summary, we note that multiple definitions of HF exist,
even on the homepages of key journals of the field (e.g., The
Journal of the Human Factors and Ergonomics Society, 2020), de-
pending on the specific research context. In our research context,
it is crucial to link HF to AV design and development, as well as
the development cycle. As suggested (by S12 above, for exam-
ple), we start from a generic established definition of HF (taken
from The Journal of the Human Factors and Ergonomics Society,
2020), and relate it to the development cycle. Fig. 1 represents
our working definition graphically: added aspects are shown in
green, and the most important aspects from our interviews are
underlined (both in the Figure and in the quotes above).

Fig. 1. A mind-map of aspects that define Human Factors in the context of the
design and development of automated vehicles.

Definition. The field of Human Factors in AV Development aims
to inform AV development by providing fundamental knowledge
about human capabilities and limitations throughout the design
cycle so the product will meet specific quality objectives.

Based on our interviews, we can highlight some critical aspects
of this definition that shape the relationship between human
factors and agile AV development. Firstly, it is important to relate
human factors to AV development and its product quality objec-
tives. These objectives usually include an AV design result that
is pleasurable, satisfactory, user-preferred, comfortable, aesthetic,
effective, and safe for stakeholder interaction (Wickens et al.,
2003).

Another component of the definition, human capabilities and
limitations—which include cognitive, physical, behavioral, psy-
chological, social, affective, and motivational aspects, is the core
concern of human factors experts (The Journal of the Human
Factors and Ergonomics Society, 2020). It is critical to effectively
manage these capabilities and limitations during AV develop-
ment. Therefore, it is a crucial role of HF in AV development
to provide fundamental knowledge about human capabilities and
limitations and their relation to quality objectives for AV de-
sign. Typically, this knowledge is provided in the form of design
principles, training, selection, and communication. In this paper,
we will focus on the implications of knowledge transfer in the
context of agile AV development.

This fundamental knowledge is needed throughout the design
cycle of AVs. While various design cycles have been proposed,
we refer to the phases that Jacobson et al. found to be essential
when building software-intense systems (Jacobson et al., 2012):
understanding the requirements; shaping, implementing, testing,
and evaluating the AV system; and putting the AV system to use.
Note that in modern AV development, these phases are iterative
and incremental. Relating HF to AV development throughout the
design cycle is of paramount importance for discussing the rela-
tionship between HF and AV development. Yet, it is missing from
many established definitions of HF and therefore highlighted in
green in Fig. 1.

Thus, to answer RQ1, we noted that AV development is suf-
fering from the lack of a working definition of HF. From our
interviews with industry HF experts, we extracted the core as-
pects that such a working definition should have and triangulated
it with definitions found in the literature. We further validated
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Fig. 2. Taking a requirements engineering perspective, our qualitative study on Human Factors for Automated Vehicles revealed themes relating to properties of
human factors and agile system development, as well as implications for human factors and agile system development and requirements.

our suggested definition with interviewees S11 and S12. Thus
we have established a common language for addressing RQ2 and
RQ3.

4.2. Properties of human factors and agile (RQ2)

In order to lay the foundation for improving the way that HF
knowledge and development work are integrated into agile AV
development, we first focus on the properties of HF and agile
ways of working. We provide an overview of our findings for RQ2
in the left part of Fig. 2.

4.2.1. Properties of agile.
When we started our investigation, we were aware of the

role of agile in transforming companies and the challenges this
puts on requirements. Initially, we mainly included questions
about agility to investigate its influence. However, all intervie-
wees highlighted certain properties of agile that are important
when considering the interplay of HF and AV development. In
order to mirror the emphasis that our interviewees put on agile
methods, we begin by describing the properties of agile that
influence the management of HF knowledge most. The follow-
ing themes emerged from the data analysis of these properties
(shown as P1–P4 in Fig. 2).

(P1) iterative incremental work.

P1 based on codes from interviews with: S2, S4, S5, S6, S7

Agile promotes iterative incremental work, to help organiza-
tions deliver fast and often as well as increase their responsive-
ness to changing requirements. For example, Subject 4 mentions
that a property of agile work is an incomplete specification early
on, combined with iterative work:

‘‘[. . . ] But we are working in an agile way, so the specification is not complete
in the beginning, but we iterate, and changes might come later. ’’ — S4 - AV
Engineer

Subject 2 suggests that this has completely changed how HF
are communicated to development teams:

‘‘We had requirements, but that has changed with the agile transformation. We
now see it mainly as knowledge transfer, how to move HF knowledge to the
teams. The game has completely changed. It is much more a social kind of
setting.’’ — S2 - AV Expert

Our interviewees mainly expressed this as a positive change,
as expressed by Subject 5:

‘‘At least not in the very old way, where high-level aspects are very much
disconnected. Waterfall will not be the solution. But better integration and
iterative work sound very promising.’’ — S5 - HF Expert

Yet, it is important to complement the perspective of teams
with a full system view and make sure that HF (for example) fit
into the big picture, as Subject 7 mentions:

‘‘Agile teams tend to get small bits of tasks and work with these for a short
period and then leave it because it is not in the backlog anymore. If it was only
for the teams to develop, then nobody would take full system view. What kind
of language do we use, when to use knobs, touch screens,. . . ,if it was only up to
the teams, you would not have that holistic picture. That is our most important
part right now.’’ — S7 - HF Expert

(P2) shifting responsibility to autonomous teams.

P2 based on codes from interviews with: S3, S6, S7

Agile methods aim to achieve fast, incremental delivery and
responsiveness to change by shifting responsibility to autonomous
teams. These teams can then make local decisions quickly. As
a result, agile teams dislike static, detailed requirements, which
limit the team’s autonomy and, therefore, its effectiveness. This
property of agile is mentioned by Subject 3 (for example):
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‘‘[. . . ] they are then responsible for the topic. T-shaped teams.’’ — S3 - AV
Engineer

This property of agile teams has advantages and disadvan-
tages. Subject 6, for example, highlights the transparency that this
approach generates.

‘‘I like the way we work now with agile trains. Things are very visible; you see
all the stories created by the different teams, and you have clear goals. It is in
the method that you promote what each team is doing.’’ — S6 - HF Expert

However, Subject 7 repeats their concern about the poten-
tially missing system level view as a result of increased team
responsibilities.

‘‘Ideas come up internally that developers and hardware designers should know
their requirements by themselves. I feel like that is difficult.’’ — S7 - HF Expert

(P3) teams responsible for discovering knowledge.

P3 based on codes from interviews with: S1, S3, S6, S7, S9

Instead of receiving detailed requirements, agile teams pre-
fer being responsible for discovering knowledge themselves, re-
lying on face-to-face communication rather than on extensive
documentation.

This preference is implied by a number of our interviewees.
Subject 7, for example, explains how the role of HF experts has
changed:

‘‘[. . . ] It is less about handing over requirements, and instead being there for
discussion or to evaluate the concepts.’’ — S7 - HF Expert

The responsibility of agile teams to discover knowledge is also
evident from how S9 describes the need for agile teams to seek
expertise:

‘‘Then, as an engineer, you should have enough awareness to know when to
seek out that expertise. But it is, of course, only one competence area of many.’’
— S9 - AV Engineer

Similarly, Subject 1 shares their view on how to guide agile
teams to discover knowledge about the right concepts, not by
defining requirements but by relating high-level stories that then
can be explored:

‘‘[. . . ] Do the guerilla requirements. Do not write requirements, but tell interest-
ing stories based on empirical data, getting the right concepts into the brains
of engineers (where it then stays because they are so bad at forgetting things).’’
— S1 - HF Expert

(P4) focus on quality in use.

P4 (agile) based on codes from interviews with: S3, S4, S6, S10

One of the differences highlighted by our interviewees be-
tween agile and traditional approaches is the different concept
of quality. The quality of software-based systems is commonly
divided into internal quality (structural properties such as main-
tainability of the software) and external quality (the fulfillment
of user requirements—i.e., providing the desired functionality)
(Freeman and Pryce, 2009). In contrast, agile approaches suggest
that requirements rapidly change and those provided initially
may not describe the users’ needs by the time the product is
finished. Therefore, according to agile approaches, it is not suffi-
cient to fulfill (potentially outdated) requirements to obtain user

satisfaction; it is necessary to address the users’ actual needs
and focus on quality in use. Agile practices with this focus in-
clude, for example, the on-site customer (Beck, 1999) and sprint
demos (Schwaber and Beedle, 2001).

Thus, agile teams take responsibility for regularly demonstrat-
ing a working product, putting it to use in the intended context,
and enabling feedback by end users and customers.

A good description of this property was given by Subject 3:

‘‘[. . . ]Working agile means being able to test what you are doing and improve
the quality continuously.’’ — S3 - AV engineer

It is, however, important to not rely solely on automated tests.
Subject 4 highlights the need to push for acceptance tests.

‘‘[. . . ] Put more emphasis on validation tests, that is, not only automated tests
but also test the quality in use.’’ — S4 - AV Engineer

This is generally a good fit for HF, as our interviewees mentio-
ned—for example:

‘‘Understanding that problem is crucial, as well as getting experience about what
users like. How do people want to be addressed?’’ — S10 - HF/AV Engineer

‘‘[. . . ] If you have a nice mindset and an open point of view, the iterations, incre-
ments, and multi-disciplinary work will fix many of these things. User-centered
design.’’ — S6 - HF Expert

There are, however, a number of conceptual mismatches be-
tween the HF and agile AV development domains. Examples
include agile focusing on delivering a working product and reject-
ing big up-front analysis and secondary documents (for example,
requirements, architectures, or HF studies)—and even remov-
ing those documents after implementation is complete (Meyer,
2014). These practices may lead a team to decide on a particular
design based on requirements and HF studies, and to maintain
only the actual work product. In future iterations, therefore, the
rationale for a design decision is no longer available, poten-
tially leading to duplicate or sub-optimal work (since previous
requirements and HF knowledge cannot evolve).

4.2.2. Properties of human factors.
In order to represent the relevant properties of human factors,

the following themes were derived from certain characteristics
referred to by the interviewees.

(P4) focus on quality in use.

P4 (HF) based on codes from interviews with: S2, S9, S10

HF experts also focus on quality in use, since they are con-
cerned with deriving knowledge from human interactions with
the system (here: the AV). Clearly, with that focus, the internal,
structural properties of the software are of little relevance. Even
external quality does not sufficiently describe a system’s quality
from a human factors perspective: A system that fulfills all re-
quirements on paper but is not pleasurable, satisfactory, or safe
to use in the real world will fail to win over an end user. As a
result, with agile, HF experts and AV engineers are much closer to
each other than they were in traditional development approaches
(which broke HF quality considerations down into internal and
external quality indicators for implementation). This concordance
is implied by the following response from S9:

‘‘[. . . ]Not sure we are good with agile yet, but ideally, through improved testing,
we should get even more improvements. As long as you can include an HF
expert, then all should be fine in the larger picture.’’ — S9 - AV Engineer
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Incremental, agile work can actually be ideal for addressing
HF. For example, S2 points out that it allows the quick generation
of feedback and an understanding of HF in relation to the system
under construction.

‘‘[. . . ] Could be really interesting to see how an HF requirement changes with
time. How and why does it change? You change it because of some feedback.
Why did it not work? Because of this test. Then assess the quality of the test
(formal or just friends trying it out). Then also heuristic evaluations, defining
usability errors. For those, you do not need a lot of subjects. This is not a
statistical approach; it can generate a lot of problems at a low cost. But are
these the right problems? The key problem is that HF experiments are expensive.’’
— S2 - HF Expert

(P5) the importance of experiments.

P5 based on codes from interviews with: S2-4, S7, S9, S11

HF experts highlight the importance of experiments and test-
ing the system. In agile development particularly, iterative work
demands continuous testing, both to avoid regression problems
and to address changing requirements.

HF experts aim to perform experiments with the system under
assessment using human subjects who are not on the engineering
team developing the product. Thus, HF experts might test how
humans react in specific situations, how they get distracted, how
they feel about the system, and how the system affects their be-
havior (e.g., over-reliance), while considering human variability.
S2, for example, relates the importance of experiments to the
need to identify assumptions:

‘‘You need to identify assumptions. . . . Start from someone’s idea and explore it
(from engineering), or you can take your own knowledge (HF) and bring it in.
And then you create the experiment and the conditions.’’ — S2- HF Expert

Again, the shift to agile work has significantly changed the
work with experiments. As S3 points out, it requires continuously
finding ways to test assumptions.

‘‘[. . . ] Before it was easier: Just ask this department to come up with require-
ments from HF perspective, then push it into the development teams. Then, have
test methods in place. What we have done. . .working agile means to be able to
test what you are doing and improve the quality continuously. That also well
matches with HF.’’ — S3 - AV Engineer

Even though it might have been easier before, as S3 points out,
referring to none-agile ways of working, our interviewees confirm
that agility promises to be more effective, as stated by S7:

‘‘Agile promotes these things; you need to demo regularly. [but are there enough
HF people?].’’ — S7 - HF Expert

Other interviewees reason that short, quick experiments with
quick feedback cycles should be preferred. The short feedback
cycle would help to identify challenges and notify the organiza-
tion while the topic is still hot. This could enable bringing in the
right expertise (e.g., HF or control theory) at the right time, and
consequently make the team ‘‘fluid and agile’’.

Perhaps experiments to check assumptions could become a
continuous source of input to agile development, since assump-
tions will always come up. S4, for example, speculates about a
shared service to provide support for such continuous experi-
menting:

‘‘You could treat this as a shared service for everyone, support to set up such
experiments. It should be quick and easy. It is also related to dealing with
assumptions in a more structured way than we currently do.’’ — S4 - AV
Engineer

(P6) the importance of considering human variability.

P6 based on codes from interviews with: S1, S4-5, S8, S12

HF play an important role in ensuring that the developed
systems are suitable for all humans (with different user charac-
teristics such as age, culture, experience, and visual and cogni-
tive capabilities). Depending on their backgrounds, humans have
different capabilities, limitations, and behavior, as for example
stated by S4:

‘‘Requirements are very different depending on the country and customer
company. How does culture change how people think about HF?’’ — S4 -
AV Engineer

HF knowledge can help design the system to improve its per-
formance, while considering human variability makes the system
usable for a diverse set of users. For example, S5 confirms:

‘‘Yes. Humans are complex, with strengths and weaknesses that are very different
from artificial systems, there is a lot of variability in the performance of a
human.’’ — S5 - HF Expert

This leads to a high level of complexity that must be managed
during AV development.

‘‘In many cases, the empirical data set is very complex.’’ — S1 - HF Expert

Bringing the complexity of human aspects into the develop-
ment of AV also poses technical challenges to engineering, as S8
suggests:

‘‘We need the car to handle random walks with these parameters or with those
parameters. Can we even model all human traffic in this way?’’ — S8 - AV
Engineer

The challenge of modeling complex human traffic behavior
could also be seen as an argument for the iterative development
of AV systems and HF experiments: it would not only allow the
incremental verification of assumptions that are relevant for the
current development, but it would also allow the accumulation
of knowledge about the bigger picture.

(P7) the importance of making HMIs and automation transparent.

P7 based on codes from interviews with: S4, S7, S10-11

It is critical for users of vehicle automation to have a proper
understanding of the system’s capabilities and limitations (i.e., the
decisions the AV makes must be understandable and the user
must understand what the system’s limits are) in order to re-
spond correctly and avoid misuse or disuse of the system. Yet
not all users read the manual or attend training. Therefore, the
system’s capabilities and limitations must be completely trans-
parent, through HMIs and kinematic cues; the AV’s capabilities
and limitations should be obvious as a result of proper HF design.
S10, for example, frames important HF questions around this
theme:

‘‘Who even checks the manual? Will you even be able to find the button that
activates an assisting system? With new functionality in a car, how do you
introduce it to users?’’ — S10 - HF/AV Engineer

If a feature is not transparent to users, they might deactivate it
(potentially reducing their safety, but even more problematically,
resulting in over-reliance and over-trust).
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‘‘Try to find ways so that users do not switch off active safety systems. It is
about the methods, how you use them, and their purpose, HF and RE.’’ — S4
- AV Engineer

It is through the effective interplay of systems and users
that the overall safety goals are reached. Making sure that typ-
ical users sufficiently understand new features is, therefore, an
integral HF part of developing AV.

‘‘[. . . ]There are certain design issues there, but there is also [the fact that] that
people trust the AV to be safe; how they perceive the risk is important. Do they
feel comfortable with the algorithms? Do the algorithms behave as expected?
Does it operate reliably?’’ — S11 - HF Expert

Aligning trust and understanding between users and auto-
mated systems is of critical importance—but also hard to do. HF
expertise is needed, which could, as S7 points out, be obtained
from experts on the team or from the results of surveys (or other
sources):

‘‘ . . . 8/10 people can make sense of the new function in the first attempt. We
need either to be there with our expertise or bring in the end users, e.g., in a
clinic or survey, have test drivers.’’ — S7 - HF Expert

4.3. Implications (RQ3)

This section presents the implications that emerged from in-
terview notes on the three themes related to research question
RQ3 (shown as I1–I10 in Fig. 2). Each theme (implications for agile
ways of working, implications for HF work, and implications for
managing requirements) is presented in a separate subsection.

4.3.1. Implications for agile
Given the set of properties of agile and HF discussed above,

there are certain implications for any organization that aims
to take HF knowledge explicitly into consideration during agile
AV development. These implications are not currently provided
by agile methods, nor are they easily achieved. This section,
therefore, highlights the need to adjust agile ways of working
and presents, where available, potential approaches indicated by
interviewees.

(I1) AV developers must run human factors experiments.

I1 based on codes from interviews with: S2, S5, S7-8, S12

‘‘[. . . ]Holistic view, ideas come up internally that developers and h/w designers
should know requirements by themselves. I feel like that is difficult.’’ — S7 -
HF Expert

‘‘[. . . ] it is less about handing over requirements, and instead being there for
discussion or to evaluate the concepts.’’ — S7 - HF Expert

Thus, when integrating HF knowledge into agile AV devel-
opment, it follows that agile teams must be able to run HF
experiments themselves. This ability is the first implication for
agile that we derived from our interview data. For example, S8
clearly states that the engineers are ultimately responsible for the
implementation of a function:

‘‘[. . . ] Engineers should make sure that those (requirements) are implemented
and tested.’’ — S8 - AV Engineer

This generally includes extensive testing. However, as S12
points out, tests that only focus on technical aspects and ignore
HF will not fully cover the actual needs.

‘‘You know engineers will test and retest and retest, but not really with a human
in mind. . . ’’ — S12 - HF Expert

Agile teams know best what specific knowledge is needed at
any given time. Yet, those teams usually lack the HF expertise and
knowledge, which must then be provided in a different way (see
Implication I3).

‘‘For an engineer without HF training, the fundamental thing in HF is to test your
assumptions. How do you communicate to engineers that to get HF knowledge,
you need to test it with human subjects? Experiments.’’ — S2 - HF Expert

‘‘[. . . ]I do realize that the teams need such HF knowledge.’’ — S5 - HF Expert

Our interview data indicates that a core challenge is that agile
frameworks do not offer dedicated support for teams to run HF
experiments. Due to the large number of autonomous agile teams
and the wide variety of situations in which HF considerations may
have to be made, there are often no dedicated HF resources avail-
able to take on the role of designing and running HF experiments
for the team.

Based on (P2) shifting responsibility to autonomous teams, (P3)
teams are responsible for discovering knowledge and (P5) the impor-
tance of experiments, we conclude from our data that AV develop-
ers must run human factors experiments.

(I2) experiment design & lessons learnt must be created, re-used, and
updated efficiently.

I2 based on codes from interviews with: S2, S8-9

If agile teams are to take responsibility for running HF exper-
iments (Implication I1), the teams should also be responsible for
decisions about which experiment design & lessons learnt must be
created, re-used, updated efficiently. S8, for example, suggests the
need to aim for re-use.

‘‘[. . . ] We must have a generic model for such experiments, that can be reused
in different products.’’ — S8 - AV Engineer

In particular, the re-use and updating of designs and lessons
require additional attention in agile ways of working. Agile setups
must support a single team as it creates HF experiment designs
and generates results, which are then re-used by other teams.
If a particular change to the system invalidates the results of a
study (e.g., by changing how a user interacts with the system),
the team must understand the change and, for example, run a
new, updated experiment. In short, teams must be able to judge
the validity of experimental designs and results and re-run the
experiments if needed, as mentioned by S9:

‘‘Create new knowledge on demand but also use the accumulated knowledge
from previous projects. Several levels of tests, even with customers.’’ — S9 -
AV Engineer

AV development therefore must integrate discovery and reuse
of HF knowledge into agile methods, where the focus is on main-
taining tests and deploying working versions of the product itera-
tively. S2 provides thoughts on how this could work in principle:

‘‘With the agile approach, you continuously test. It allows you to fake a finished
product. Then you can put an experienced user in the car and see how they
react. You can go in both directions: Start from someone’s idea and explore it
(from engineering), or you can take your own knowledge (HF) and bring it in.
And then, you create the experiment and the conditions and then update it.’’
— S2 - HF Expert

Our second implication therefore follows from our data, specif-
ically considering (P1) iterative incremental work, (P4) focus on
quality in use, and (P5) the importance of experiments.

12



A.P. Muhammad, E. Knauss and J. Bärgman The Journal of Systems & Software 205 (2023) 111810

(I3) human factors expertise must be included on the teams.

I3 based on codes from interviews with: S1-2, S6-9

Agile teams should have the expertise that allows them to take
ownership and responsibility for identifying HF needs and rele-
vant HF knowledge. Interviewees suggested including HF expertise
in the agile teams (for example, in the form of T-shaped teams),
with each team member having a certain area of expertise.

‘‘Not sure we are good with agile yet, but ideally, through improved testing, we
should get even more improvements. As long as you can include an HF expert,
then all should be fine in the larger picture.’’ — S9 - AV Engineer

In the experience of our participants, while there is a lack of
availability of HF expertise in most companies, there are, different
ways of ensuring teams have the necessary expertise.

S8, for example, wonders whether HF experts should be in-
volved in creating abstract, reusable models, or instead be part of
the teams which are deriving operational requirements.

‘‘[. . . ]But this requires a good model of the HF. We must have a generic model
for such experiments that can be reused in different products, or do we need to
create those models within the operational requirements specification? In that
case, HF experts must be included in the teams.’’ — S8 - AV Engineer

Similar considerations were also discussed with S6. In typical
scaled-agile frameworks, such as SAFe, HF experts could be as-
signed as a shared resource or within a particular release train.
S6 suggests that as a shared resource, HF experts would lack
visibility and would thus not be able to have an impact on agile
design decisions.

‘‘I like the way we work now with agile trains. Things are very visible; you see
all the stories created in the different teams, you have clear goals... The problem
is, if you are not on the train, you are not able to promote yourself. If you are
a shared resource team, you have less visibility. So it will be better to be on
the train.’’ — S6 - HF Expert

For the same reasons, S1 also considers adding HF experts
to the release trains; but in line with S8 above, advances the
alternative consideration of having HF experts as part of the
individual development teams within an agile release train.

‘‘You cannot be everywhere. But having your requirements and hand them over
and then wait, that is not going to work. Being a part of the team or an agile
train to some extent is the way forward.’’ — S1 - HF Expert

S7 indicates a clear preference that the HF expert should be
involved with the teams directly.

‘‘[. . . ]The way you communicate your requirements is within the teams. You
need to be there. If you are not in the teams, it will be a challenge.’’ — S7 -
HF Expert

In summary, our interviewees indicated that successful AV
development relies on HF experts who can guide developers with
respect to how to set up an experiment, run it, and interpret
its results—as well as judge its credibility (and identify when a
change invalidates previous experiment results, requiring another
experiment iteration).

While there are clear advantages to including HF experts di-
rectly in agile work (i.e., within the teams or in larger release
trains that combine a number of teams working on a specific
product area), there are also challenges with this setup: for ex-
ample, lacking HF experts as S2 indicated.

‘‘But we are lacking HF people.’’ — S2 - HF Expert

I3 is established based on (P2) shifting responsibility to au-
tonomous teams, (P3) teams responsible for discovering knowledge,
(P5) the importance of experiments and (P6) the importance of
considering human variability.

(I4) the role of suppliers in agile AV development that integrates
human factors must be defined strategically.

I4 based on codes from interviews with: S3-6, S10

Given the lack of HF expertise, one has to identify a strategy
that ensures that HF are taken into account in agile AV develop-
ment. Our participants pointed out that the strategy may consist
of getting support in certain specialized areas from outside the
team or release train, or even from suppliers with expertise in the
area. As the automotive value chain is increasingly transformed
into agile ways of working and continuous integration and deliv-
ery, new collaborative models are emerging that integrate sup-
pliers tightly into incremental work for specific purposes. In fact,
large suppliers already do a substantial amount of research on
HF related to their current and future product portfolios as, for
example, mentioned by S6.

‘‘Currently, we are working more on component level. This is even more
challenging since it depends on system level engineering decisions, so you
should ideally work with an OEM to define the particular requirements for the
component and its context.’’ — S6 - HF Expert

A particular impediment is the access of suppliers to users of
a specific AV, which limits the supplier to relying on their more
general expertise and specific requirements from the manufac-
turer, as discussed by S4.

‘‘Yes, but we do not often have access to the users, we get the requirements
from the OEM, and we rely on them to tell us what is really needed. So perhaps,
it is good that things are then indeed separate (HF, RE).’’ — S4 - AV Engineer

Still, we conclude from the overall interview data that the role
of suppliers is significant for two reasons: (a) they often possess
HF expertise that could be valuable to their customers and (b) as
agile development includes increasingly large parts of the value
chain, our previous reasoning about the need for HF expertise in
agile teams also holds for suppliers.

Our final implication for agile is, therefore, to systematically
decide whether and how to include (or get engaged as) a supplier in
the agile development of AVs, including the supplier’s HF exper-
tise in the teams when collaboratively designing, developing, and
integrating AV components. It is based on (P2) shifting responsibil-
ity to autonomous teams, (P6) the importance of considering human
variability and (P7) the importance of making HMIs and automation
transparent.

Summary and important questions. The four implica-
tions for agile lead to the following important questions
for future research in agile AV development:

1. How can developers be encouraged to run HF
experiments?

2. How can we efficiently create, re-use, and update
HF experiment designs and lessons learnt?

3. How can HF expertise be included in agile teams,
given that few experts are available?

4. How can suppliers be involved strategically in
working with human factors?

4.3.2. Implications for HF
(I5) raise awareness among AV developers.

I5 based on codes from interviews with: S5-7, S9
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Through our interviews, we learned the need to raise aware-
ness among engineers about HF and the implications for the final
product of not including HF in the development process.

‘‘It is a lot about marketing yourselves internally. For example, we are part of PI
planning for different trains, talk to the teams, explain what we need at which
point.’’ — S7 - HF Expert

Although conducting extensive experiments and communicat-
ing their results are part of agile development, engineers often do
not have enough time to acquire the needed information (e.g., due
to short, agile development cycles). Moreover, engineering com-
panies may have engineering cultures; generally, engineers prefer
gathering information through data rather than HF, which may
be considered less important than simply getting the technology
working. This culture is implied in the following quote from S5:

‘‘[. . . ]Sometimes, engineering sometimes just seems to think that HF is about
putting nice wallpaper on the wall. They do not understand how early [how
fundamentally] HF needs to be taken into account.’’ — S5 - HF Expert

S6 points out that for managers, it is often easier to bring
a particular expert onto a team than to work on changing the
mindset of the engineering department (although it is much less
effective):

‘‘They like to bring in a UX engineer rather than work on the mindset. ’’ —
S6- HF Expert

A shift of the overall company mindset would be needed so
that HF knowledge can be integrated into the AV development
more effectively, as S9 hopes for:

‘‘[. . . ] Then, as an engineer, you should have enough awareness to know when
to seek out that expertise.’’ — S9 - AV Engineer

I5 is based on (P2) shifting responsibility to autonomous teams,
(P5) the importance of experiments, (P6) the importance of consider-
ing human variability and (P7) the importance of making HMIs and
automation transparent.

(I6) provide teams with questions, not requirements.

I6 based on codes from interviews with: S2-4, S7, S11

As AV engineers adapt to work in an agile way, communication
about HF and its incorporation in the development process must
be adjusted as well. One of our interviewees formulated this
implication clearly:

‘‘Put questions on teams, not requirements.’’ — S3 - AV Engineer

Agile teams do not like detailed requirements, which are often
too detailed and too static, interfering with their autonomy as
they seek appropriate solutions and adjust to change as indicated
by for example, S2.

‘‘We had requirements, but that has changed with the agile transformation. We
now see it mainly as knowledge transfer, how to move HF knowledge to the
teams. The game has completely changed. It is much more a social kind of
setting.’’ — S2 - HF Expert

It might be better, therefore, to raise important questions and
allow the agile team to find answers that fit their current state of
development as stated by S7.

‘‘[. . . ] it is less about handing over requirements, and instead being there for
discussion or to evaluate the concepts.’’ — S7 - HF Expert

A complementary approach (to raising questions for the team)
relies on storytelling. By using stories that highlight the critical
concepts while considering questions that point to the critical
information needed, agile teams are enabled to take responsibility
for HF knowledge. This empowerment is the consequence of (P3)
teams responsible for discovering knowledge, and (I3) human factors
expertise must be included on the team.

(I7) provide basic HF knowledge as checklists and design principles.

I7 based on codes from interviews with: S1, S6-7, S12

A key impediment to providing HF expertise to agile teams is
the availability of experts, as mentioned by S7:

‘‘ We have tried different things. We had one HMI expert in each team, but
that did not scale, we do not have enough experts to have one in each team
for 100%. Maybe HF experts should provide checklists to engineers.’’ — S7 -
HF Expert

We, therefore, add implication (I7): HF experts should provide
basic HF knowledge as checklists and design principles to develop-
ment teams. S1, for example, points out that HF experts should
work on a higher abstraction level to increase their reach. They
should provide guidelines and other reusable knowledge, rather
than specific, system-related requirements:

‘‘From an HF perspective, it is important to prioritize the human experience.
Better to talk about guidelines than about requirements.’’ — S1 - HF Expert

The availability of such reusable guidelines would be an asset,
as S5 confirms:

‘‘Ideally, one would need some guidelines, to coordinate between application
projects that must be communicated. Those guidelines can be in PowerPoint or
other company standards.’’ — S5 - HF Expert

According to S12, this could be done via checklists:

‘‘I think we need to make engineers aware of the typical HF limitations and
capabilities. . . You know, how is the mental model affected, or, you know, what
is the relationship between the system and our mental model, or fatigue,
distraction, situation awareness, workload, all of this everyday stuff that we
as people suffer from when it comes to interacting with systems. So, you know,
it is almost like a checklist. . . I guess we need to have a certain checklist.’’ —
S12 - HF Expert

Several of our interviewees agreed that this could lead to a
better utilization of the available HF experts’ skills. This impli-
cation is supported by (I1) AV developers must run human factors
experiments, (I3) human factors expertise must be included on the
teams, (P5) the importance of experiments, (P6) the importance of
considering human variability, and (P7)the importance of making
HMIs and automation transparent.

Summary and important questions. The implications
for HF indicate a strategic, rather than operational, role
for HF experts. Instead of designing and running exper-
iments themselves, these experts are increasingly men-
toring and supporting agile teams. This raises important
questions:

1. How can awareness of HF be raised in agile AV
development?

2. How can agile teams be enabled to effectively
create and maintain HF knowledge?

3. Which guidelines and design principles can pro-
vide basic HF knowledge to agile teams?

4.3.3. Implications for requirements engineering
(I8) use epics and user stories to express a need for learning require-
ments in the backlog.
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I8 based on codes from interviews with: S1, S3, S6

Agile methods provide only a limited view of requirements,
focusing mainly on epics and user stories in various backlogs. This
shortcoming introduces new challenges for decomposing high-
level concerns into different backlog items and distributing them
over the different release trains and value streams, as S3 pointed
out.

‘‘Base product stream, the AD product stream. SAFe will affect the effort to find
the right solution very much. Epic on high level, how to divide it into different
backlog items. Need to learn it.’’ — S3 - AV Engineer

While interviewees mention that there is still a lot to learn,
advantages and best practices slowly become manifest, as men-
tioned by S6:

‘‘ Things are very visible, you see all the stories created in the different teams,
you have clear goals. . .We should likely start documenting them as part of epics
in JIRA. We have HF streams, active safety streams, . . . . The work is cross-
functional, so I am both in HF and active safety streams. The recommendations/
functions should be written in a user-friendly way and which value it provides
to customer and user.’’ — S6 - HF Expert

This, in particular, affects strategies to get cross-cutting and
interrelated requirements such as those related to HF into the
system, as the following practice from S1 suggests:

‘‘[. . . ] Do the guerilla requirements. Do not write requirements, but tell interest-
ing stories based on empirical data, getting the right concepts into the brains
of engineers (where it then stays because they are so bad at forgetting things).’’
— S1 - HF Expert

In the experience of our interviewees, for RE experts in the au-
tomotive domain, the change in focus from providing a compre-
hensive requirements document to managing continuous learn-
ing with respect to certain goals is challenging. From our inter-
views, we conclude that an RE expert should enable teams to
approach and document this learning systematically, instead of
writing requirements for them. This implication is based on (P1)
iterative incremental work and (P4) focus on quality in use.

(I9) increase capability to use prototypes for requirements elicitation
and validation.

I9 based on codes from interviews with: S2, S4, S10-11

Prototyping was suggested by S4 when discussing require-
ments engineering:

‘‘Prototyping for requirements engineering, so one can find specific details about
a problem, and use them to discover new requirements.’’ — S4 - AV Engineer

This is not only a good way for agile teams to discover require-
ments, but also a necessary way for HF experts to uncover new
HF knowledge, as S2 suggests:

‘‘Then I like to ask them to help me build a prototype, a Wizard of Oz car. Then
I can test it. Because prototyping is a good way for requirements elicitation and
validation.’’ — S2 - HF Expert

Consequently, prototypes are key for aligning HF experts and
agile teams as well as facilitating synergies as indicated by S11.

‘‘Prototype adds a set of requirements, but also how the requirements are
manifest in terms of interaction or physical design. Then HF experts get involved
in evaluating that in usability testing and heuristics evaluation.’’ — S11 - HF
Expert

The infrastructure for constructing prototypes has become
quite sophisticated, as mentioned by S10—allowing a huge variety
of tests to be run and collecting large amounts of data.

‘‘What do we need for hardware to succeed in ADAS or AD platform(first
question from the system team)? We have this box full of things we can
measure in our prototype.–> Which of these tools do we need... It is fun to
work with everything. But we need to find the key sensor outputs for good
collaboration. If we have new sensor inputs, how can we put a value on those
for a collaboration? How can we structure that kind of work?’’ — S10 - AV
Engineer

We summarize our interview data in this theme as an im-
plication for RE to increase the capability to use prototypes for
requirements elicitation and validation, based on the identified
needs and HF checklists within agile teams. This implication res-
onates well with (P3) teams responsible for discovering knowledge
and (P5) the importance of experiments, and might offer good
support for (I2) experiment design & lessons learnt must be created,
re-used, and updated efficiently. This is also in line with (P6) the im-
portance of considering human variability, as prototype validation
must take into account the range of human variability.

(I10) express the relationship between design decisions and human
factors as system requirements during development.

I10 based on codes from interviews with: S3, S5, S9, S10

While it makes sense to describe stakeholder requirements
as epics or user stories (see Implication I8), it is important to
document the desired capabilities of components and subsys-
tems, which follow system requirements; otherwise, it is not
sufficiently clear how HF related to essential requirements for
automated vehicles can be managed, as implied by S9:

‘‘How does this relate to requirements? It is even tricky to define what a
safety requirement is. For safety analysis, the human aspects are critical input
to system design and testing. That is with safety as a purpose of design. In
particular, the person in the car. In trucks, it is mainly for the safety of other
road users. But that is very different from functional safety requirements.’’ —
S9 - AV Engineer

However, it is difficult to clearly define these requirements, as
well as architectural decisions, in agile projects, as indicated by
S3:

‘‘Architectural decisions are taken all over the place. The architect must go
around and collect them to raise those aspects that should be treated globally.
The decisions now are made differently than they were made before. The design
decisions should follow system requirements.’’ — S3 - AV Engineer

Thus, in the experience of our participants, there is a need
to document system requirements, which describe how the dif-
ferent parts of the system under construction will address the
stakeholder needs. While these requirements are valuable to
manage the knowledge about the system with respect to stake-
holder needs and HF, they are not suitable input to agile devel-
opment work. As S10 implies, one needs to closely investigate
collaboration in agile system development to identify system
requirements.

‘‘To be able to create requirements or needs, one has to understand what is the
problem with collaboration today.’’ — S10 - HF/AV Engineer

From the interviews, we derive the implication of using system
requirements to express the relationship of design decisions to HF
knowledge. In the context of the other implications, we suggest
that this implies the need to allow teams to create system require-
ments together with the system, i.e. while developing its software

15



A.P. Muhammad, E. Knauss and J. Bärgman The Journal of Systems & Software 205 (2023) 111810

and the corresponding tests, and not before. Requirements would
be provided during development (in the form of stories) rather
than at the beginning. This sequence allows the requirements to
remain up-to-date with the current implementation, rendering
them useful for informing future system evolution.

Thus, a general approach that fits our interview data is as
follows: teams would run experiments during a sprint and then
modify the system accordingly for the next release. They would
also, at the same time, describe the updated capabilities of the
system and trace system requirements to related existing/future HF
experiments, in order to provide rationales for the decisions.

This implication is based on (P1) iterative incremental work.

Summary and important questions.
As with HF, the implications for RE call for a changed role
for requirements engineers. A high percentage of require-
ments will be discovered and managed just-in-time by
agile teams. RE experts, therefore, will increasingly pro-
vide infrastructure and coaching, which raises important
questions:

1. How can epics and user stories be positioned as a
means to learn rather than to specify?

2. How can agile teams be enabled to use prototyp-
ing to perform HF experiments and discover and
manage requirements?

3. How can system requirements be used to effi-
ciently express the relationship between design
decisions and HF in continuous development?

5. Evaluation study

We evaluated the results using a questionnaire-based survey
in a workshop setup. By presenting the topic to the audience and
directly answering their questions, the workshop format allowed
us to ensure that participants understood the topic

The anonymous questionnaire started with basic demographic
questions to assess basic response behavior differences between
participants based on their background. We then provided the
context, introduced the main topic in the presentation form, and
explained the research questions. Next, we explained the research
results so that participants could better understand the topic.
Keep in mind that the context and description of the outcome
of the paper were also provided to participants before the ses-
sion. Afterward, we asked participants to indicate their level of
agreement (on a 5-point Likert scale) with the stated impacts
of the properties of agile and HF on AV development. Finally,
we asked for the participants’ agreement on the implications of
the agile way of working, HF, and managing requirements in AV
development.

5.1. Participants’ demographics

Fig. 3 presents the demographic data of the workshop par-
ticipants. It displays the absolute number and percentage of re-
spondents for each answer. For this survey, participants were
invited from different automotive companies and research insti-
tutes, mainly based in Sweden. There were 28 participants in the
workshop and we asked three basic demographic questions. We
did not include participants from the original interview study, to
avoid bias. On average, 17 participants responded to each ques-
tion, and the rest (on average 11) chose not to answer. Fig. 3(a)
depicts the overall results and shows that the majority (50%) of
participants work for automotive OEMs, 5% work for automotive

Fig. 3. Demographics. (Semicolon ‘;’ separates absolute numbers and percent-
ages of respondents.)

suppliers, 20% work in research institutes, and the rest were from
academia.

Out of the total participants, 20 responded to the second
demographic question 3(b). Among these respondents, nine had
human factors work perspective, seven had an engineering per-
spective, and three had experience in both fields. Regarding the
third question about work experience, eighteen participants re-
sponded, and Fig. 3(c) depicts that 48 percent of participants have
more than ten years of work experience.
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Fig. 4. Level of agreement regarding the impacts of the properties of Agile on AV development. (Semicolon ‘;’ separates numbers and percentages of respondents.)

Fig. 5. Level of agreement regarding the impacts of the properties of HF on AV development. (Semicolon ‘;’ separates numbers and percentages of respondents.)

Overall, the fact that all participants were from Sweden limits
the generalizability of the results. However, the survey aimed to
evaluate our already identified findings (which were obtained us-
ing industry experts in Sweden) rather than arriving at a general
conclusion or discovering new implications/properties. At the end
of the workshop, we asked the participants if we had missed any
critical topics.

5.2. Evaluation of properties of agile and HF

On the next questionnaire page, we started with RQ2 and
explained the properties of agile and HF which can impact AV
development. We then asked the participants to indicate their
level of agreement with our interview study findings (on the 5-
point Likert scale), in order to assess whether the participants
identified the same properties as important.

The survey results are shown in Figs. 4 and 5 for the properties
of agile and HF, respectively. The blue bars on the left indicate
the percentage of participants who agreed (light blue) or strongly
agreed (dark blue) with the findings. The grey bar in the middle
shows the percentage of neutral participants, the light orange bar
depicts the percentage of participants who showed disagreement,
and the dark orange bar on the right shows strong disagreement.

Fig. 4 shows that the majority of participants agreed with
(P1) iterative incremental work. Five participants were neutral,
and nobody disagreed with (P1). For (P2) shifting responsibility
to autonomous teams, 13% of participants were slightly in dis-
agreement. 40% and 20% of the participants strongly agreed or
agreed, respectively, while the rest were neutral. Fifteen par-
ticipants rated (P3) teams responsible for discovering knowledge,
majority of participants showed their agreement (54% agreed and
13% strongly agreed) with (P3). For (P4) focus on quality in use,
67% of respondents agreed with the statement. One participant
strongly disagreed, and the rest were neutral. Fig. 5 presents
the properties of human factors. The survey results show that

the majority of participants agreed with all the statements, while
only a small percentage of respondents disagreed.

The majority of participants either agreed or were neutral with
the identified properties for both agile and human factors. Thus
we can say that our initial impression that these properties are
critical for defining HF requirements in agile AV development is
supported by the participants.

5.3. Evaluation of implications

With respect to RQ3, the questionnaire presented Likert scale
statements about the implications of combining the relevant
properties of HF and scaled agile into the agile way of working,
HF, and managing requirements in AV development. The sur-
vey results are presented in Figs. 6, 7, and 8, which show the
distribution of responses for each implication. In these figures,
semicolons ‘;’ are used to separate the numbers and percentages
of respondents.

We started with the agile implications, asking the participants
to rate their level of agreement for each implication. Fig. 6 shows
the findings for each implication of scaled agile on the agile way
of working. For both (I1) AV developers must run human factors
experiments and (I2) experiment design & lessons learnt must be cre-
ated, re-used, and updated efficiently, 50% of participants showed
strong agreement, and 72% in total expressed their agreement
with the stated implications. The majority (57%) of participants
strongly agreed with (I3) human factors expertise must be included
on the teams, and 64% of participants agreed with (I4) the role
of suppliers in agile AV development that integrates human factors
must be defined strategically.

Generally, more than 50% of respondents agreed with the
stated implications of HF and RE (presented in Figs. 7 and 8,
respectively). An exception was (I6) put questions on teams, not
requirements. An equal number of participants agreed and dis-
agreed; however, as 40% of the participants were neutral, there
was no clear-cut disagreement. This result suggests that (I6)
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Fig. 6. Level of the agreement for the implications for the agile way of working on AV development.

Fig. 7. Level of the agreement for the implications for the HF on AV development.

Fig. 8. Level of agreement for the implications for RE on AV development.

should be investigated further. (I8) use epics and user stories to
express a need for learning requirements in the backlog also showed
mixed agreement, indicating the need for extended research on
how to represent the need for HF knowledge to AV developers.

For (I10) Express the relationship between design decisions and
human factors as system requirements during development, all the
participants indicated their agreement (57% agreed and 43%
strongly agreed).

The results for HF and AV Engineers were similar for most
of the questions. However, two HF experts (one with more than
ten years of experience and one with less than five) rated the
implications for HF very low. On the other hand, all AV engineers
rated them highly.

Generally, the majority of participants agreed that all the im-
plications that we derived from the interview notes were relevant
and important for bringing HF knowledge into an agile way of
working for AV development.

6. Discussion

Based on an exploratory interview study with ten experts
from the industry and two experts from academia, this paper
charts the landscape of human factors (HF) in relation to the
agile development of automated vehicles (AVs). We adopted a Re-
quirements Engineering (RE) perspective, since requirements are
traditionally the mechanism for notifying automotive engineers
about conditions that should be met by their systems as well as
capabilities that the systems should possess (IEEE, 1990; Liebel
et al., 2018).

6.1. Implications for practice

We argue that our findings can provide valuable insights for
both HF experts and AV engineers in the automotive industry.
Particularly, our findings on how to integrate HF and communi-
cate HF requirements during the development should be useful
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for guiding practitioners. Previous work shows how crucial it is to
integrate HF into the RE process. Our results support this finding
(e.g. in our themes P5-P7 and I1-I7), but also identify that actually
doing so is more difficult with agile development (c.f. themes I1-
I10). This is also the case because, the traditional approach to
RE has been challenged by the success of agile methods (Meyer,
2014) and their adoption in systems engineering (Liebel et al.,
2018). We also acknowledge that areas of AV development that
are relatively new, such as AV functionality development based
on artificial intelligence (AI, including machine learning) (Nasci-
mento et al., 2019), may require specific focus in the integration
of HF. Otherwise, the impact on humans (drivers, occupants, and
surrounding traffic) of the (typically highly data-driven Bosch
et al., 2018) AI approaches can easily be overlooked.

New roles for HF and RE. Our study took place at a pivotal time
in the automotive industry. The automation of driving tasks is
proceeding rapidly, adding significant complexity to automotive
systems. Automotive companies are transitioning to agile ap-
proaches in order to enable shorter development times despite
this increased complexity. We were surprised by the strong focus
on agile methods in all of our interviews. At the same time, the
role of HF knowledge and requirements becomes less clear in the
agile setting. Standard RE processes, such as multi-stakeholder
analysis, are therefore hard to systematically apply, as discussed
by Cheng and Atlee (2009). RE appears to play a smaller role, par-
tially replaced by increment planning and backlog management.
Moreover, RE often focuses on specific technical aspects such as
functional safety.

This adds to another trend: Automated systems development
often prioritizes the technology, without much consideration of
HF (Carayon and Hoonakker, 2019). In fact, HF is rarely consid-
ered in the early phases (Dul and Neumann, 2009), although our
results highlight the importance of doing so. We suggest that this
change be enacted through RE, which may help to identify a role
for HF in organizations that seek ‘‘to inform AV development by
providing fundamental knowledge about human capabilities and
limitations throughout the design cycle so the product will meet
specific quality objectives’’.

We also suggest further refining the role of RE so that it
can better adjust to the needs of agile development, while also
improving the support required to integrate HF knowledge into
agile development. We envision a role that is less prescriptive and
focused on setting requirements for developers, and instead more
supportive: enabling developers to explore, document, and re-use
requirements-related knowledge. This role will be particularly
useful for identifying HF knowledge (e.g., results from experi-
ments) that is no longer valid due to system/software changes—
thus, calling for new experiments.

Finally, our findings likely also have implications outside of
the actual development of AVs. For example, it may have im-
plication on how computer sciences, agile methods, requirement
engineering, and human factors are taught at university level.
Exactly how teachers should integrate it in their teaching is out
of scope of this study, but it may be relevant to at least talk about
the engineer/human factors communication gap, as well as how
experts from different domains can contribute to, for example,
experiments that include both technology and HF.

Testing and experiments. The field of HF highly prioritizes exper-
imenting and testing. With agile’s fast, iterative way of working,
there is a need to test regularly and quickly while keeping ac-
cumulated knowledge in mind. In contrast with fields such as
software testing, in which tests are very formalized and mature,
HF has a few substantial challenges:

1. In the context of AV development, formalization of (most)
experiments is not mature enough.;

2. Humans are adaptive and unpredictable, making the for-
malization of experimental protocols and passing thresh-
olds difficult.

Thus, we encourage future research to improve the integration
of tests and experiments from an HF perspective into AV devel-
opment, keeping accumulated knowledge and ensuring that HF
experts are part of the experimental setup.

6.2. Implications for research

Common understanding of terms. Definitions provided by our in-
terviewees differed substantially, not only between the HF ex-
perts and the AV engineers, but also among the HF experts. This
ambiguity identifies a critical communication gap (Bruseberg,
2008). In this work, we propose a slightly refined definition of
HF, geared towards the development of AVs (see Definition in
Section 4.1) and relating specifically to the essential phases of
system engineering. Our results, however, call for future research
to achieve an aligned understanding of HF and related concepts
through all the systems engineering disciplines involved in AV
development.

Raise awareness and develop mindset in agile engineering. It is
important to raise awareness and develop an HF-friendly mindset
in development teams, in order to improve the communication
of HF requirements and their incorporation in the development
process. A suitable mindset would consider not just the user
experience or HMI, but all aspects of human interactions with a
system. Many HF experts agree with this assessment (Wickens
et al., 2003; Salvendy, 2012; Flemisch et al., 2008); however, to
our knowledge, there is little awareness in systems and software
engineering, areas where research is highly encouraged. Aware-
ness could be raised by training engineers in interdisciplinary
work so that it becomes easier to integrate HF experts in agile
teams (as in I3). In addition, research is needed to determine
how to increase the ability of agile teams to manage open ques-
tions (see I6) as well as their experimentation infrastructure (see
I2) (Fagerholm et al., 2017b; Schermann et al., 2018; Fabijan et al.,
2017).

Need to develop and empirically evaluate new approaches to man-
age HF knowledge. This qualitative study presents several im-
plications which human factors experts, AV agile teams, and
requirement engineers can adopt to integrate the knowledge of
HF during the agile AV development process.

‘‘Or should the team explore the HF? But then we would need a really good
model that the team can explore and a lot of expertise that the team can assess.
On the high level, we may only have a very crude understanding.’’ — S8 - AV
Engineer

In particular, the need to have AV developers participate in
(or even run) HF experiments (I1) requires the attention of re-
searchers. In continuous software development, there is a trend
towards data-driven decision making and experimentation (Fabi-
jan et al., 2017; Schermann et al., 2018; Meyer, 2015; Kohavi
et al., 2009; Kevic et al., 2017).

It could be exciting to compare such experiments on variants
of software with HF experiments and investigate possible syner-
gies, which might provide insights into how HF experiments can
be integrated into the fast-paced agile development environment.

In summary. We believe that our exploratory study provides
a foundation for future research that could improve RE in AV
development, as well as refining communication about the HF
perspective within the agile way of working. Both HF and RE
experts should re-interpret their roles, enabling and facilitating
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agile teams seeking knowledge—instead of providing compre-
hensive and detailed knowledge themselves. We anticipate that
future research in agile work will formalize ways to manage HF
experiments, as well as their results, efficiently. Being able to
keep knowledge across design cycles will contribute to a mature
synergy between these formerly disparate ways of working.

6.3. Discussion of quality

Our particular epistemological stance (critical realism with
influences from pragmatism and constructivism) and choice of
method for data collection and analysis also influence the discus-
sion of research quality. In particular, the predominant positivist
approach to validity – in terms of construct validity, external
validity, internal validity, and generalizability – fits this study
poorly. Instead, for this qualitative inquiry, we followed advice
from Leung (Leung, 2015), discussing validity, reliability, and
generalizability in terms that are a better fit in the context of this
study.

6.3.1. Credibility
The credibility of our study is supported by the diverse back-

ground of the researchers and our ability to interview the leading
experts in the domain. This was the first joint interview study
of the authors, which allowed us to bring in complementary
perspectives by recruiting interviewees from each author’s per-
sonal network. Further, we asked each interviewee to suggest
additional candidates to mitigate a potential selection bias. By
inviting such a diverse group of interviewees and collecting
their potentially contradicting perspectives on the topic, we had
to challenge and overcome pre-conceptions. We described our
background assumptions in detail in Section 2 and challenged
them throughout the analysis of our data. This approach has
led us to construct our mental model about HF in agile system
development. For example: We learned that most participants
had only recently moved to agile development approaches. We
understand that in such approaches, teams are expected to gener-
ate knowledge as needed to implement features. We learned that
high-quality HF knowledge stems from experiments and relies
on a high level of HF expertise. Thus, we conclude that HF ex-
pertise must be included in agile teams to facilitate agile system
development that includes HF knowledge, an implication that
fits the data from our interviews well and resonated also with
participants in the evaluation workshop. The credibility of this
study also relies on the quality of answers that we received, both
during the interviews and the evaluation activities. Most of our
interviewees have to solve the challenges described in this paper
as part of their daily job. Significant events can of course influence
the answers we receive and we assume that potential challenges
encountered at individual case companies with the ongoing agile
transformations may fall into this category. We also understand
that the context of each expert matters to a degree, therefore, a
different sampling might have caused variation in our findings.
We mitigated such effects to the best of our ability through an
in-depth analysis and construction of what we believe to be the
underlying causal relationships, as dictated by critical realism. It
is our estimate that such variations would mainly affect ideas
about suitable solutions, and to some degree the implications
that we derived from our interviews, while the definition and the
properties would have been affected to a lesser degree.

6.3.2. Resonance
Through our data collection and analysis, we aimed to estab-

lish resonance, e.g., by asking for clarification when we felt that
our assumptions were challenged. One such example occurred
when we learned that something that was described as relatively

easy to accomplish by one participant was described as very
difficult by another participant. We learned that in the first case
(driver monitoring), a rich set of models, checklists, and design
principles exists, which was missing for the second (monitoring
of cyclists). The lack of these resources made communication and
incorporation of HF considerations considerably more difficult in
the second case. Thus the apparent contradiction was explained,
providing us with a richer understanding of possible challenges.
Implication I7 (provide basic HF knowledge as checklists and
design principles) and our definition of HF in the context of the
design and development of automated vehicles both reflect the
lesson learned.

6.3.3. Usefulness
We believe that our study, albeit a preliminary exploration, is

significantly useful. Integrating the design cycle into our working
definition of HF in the context of the design and development
of automated vehicles is one example of its utility, since the
new definition makes it possible to specify where in the design
cycle HF knowledge becomes useful. In addition, we believe that
our implications provide useful knowledge to those who are
tasked with the design of methods and tools for development,
as well as to HF experts who aim to increase their impact on
AV development. We derive confirmation of these conclusions
through feedback received after presenting the study results to
the participating companies.

6.3.4. Transferability
Case studies aim to investigate a phenomenon in depth within

its natural context. They do not generally aim for generaliz-
able findings in the same way, as for example, an experiment
would. Instead, as qualitative research, case studies should lead
to theoretical generalizability: concepts that are transferable in
principle. Wieringa and Daneva, for example, highlight the ability
to provide a causal or structural (architectural) explanation as
a theoretical generalization (Wieringa and Daneva, 2015), which
then can be transferred to other contexts.

In our study, we provide such explanations through the prop-
erties of agile and HF, and the implications for agile, HF, and
requirements. Fig. 2 provides an overview of these findings in a
qualitative model, specifically relating the concepts (implications)
to assumptions (properties) that we have identified through our
interviews with experts. In this way, we provide both causal
explanations (properties of agile and HF generate implications)
and structural explanations (integrating HF into large-scale agile
system development will benefit from addressing implications in
the area of agile, HF, and RE). This knowledge is transferable, al-
lowing experts from different domains to judge how our concepts
apply to them.

Our results stem from the automotive industry, including con-
siderations of automated cars and trucks, and should be appli-
cable to other cases in that domain. We further believe that
our concepts are transferable, not only beyond the national AV
hotspot where we recruited most of our interviewees, but also
to other automated vehicles such as aircraft or ships. It would
be harder to transfer beyond the realm of automated vehicles,
and even more so if no physical product is created. For example,
we would assume that a web application will have very different
constraints on prototyping and testing.

7. Conclusion

In this paper, we present an exploratory, qualitative inquiry
into how to manage HF knowledge during AV development. Our
investigation revealed the fundamental role that large-scale agile
development plays in the automotive sector. From our data, we
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Table A.3
Overview of themes in relation to codes.
Themes Example codes

Human factors in relation to AV development HF relates to safety; HF relates to limitations and capabilities; HF
relates to user preferences; Designing in light of understanding;
HF is human–machine interaction; Understand, Create and
evaluate cycle; HF journal definition

Properties

(P1) Iterative incremental work Agile transformation; Agile way of working; Iterative work;
Mindset-Agile way of working; Iterative work

(P2) Shifting responsibility to autonomous teams Teams responsible for topic; Work with agile teams; Teams’
autonomy

(P3) Teams responsible for discovering knowledge Guerrilla requirements; Teams responsible for topic; Knowledge
by discussion; Teams’ autonomy; Knowledge discovery by Eng.

(P4) Focus on quality in use - Agile Testing and quality; Quality in use; User centered design;
User-centric development

(P4) Focus on quality in use - HF Quality assessment with HF knowledge; quality improvement
with HF knowledge; Assist people

(P5) The importance of experiments Assumptions and experiments; Continues test and HF
experiments; Test assumptions; Agile support; Criticality of
human aspects; Agile Experiments

(P6) The importance of considering human variability Empirical data; Demographic and culture; Human variability;
Consideration of different parameters; HF expert evaluate
differently

(P7) The importance of making HMIs and automation transparent Clear HMI; User understandability; Transparency; User trust and
comfort

Implications

(I1) AV developers must run human factors experiments HF experiments by engineers; Teams & HF knowledge; Engineers
& HF requirements; Engineers & HF knowledge; Test with human
subject

(I2) Experiment design & lessons learnt must be created, re-used,
and updated efficiently

Experiments design; Experiment Model; Use of accumulated
knowledge

(I3) Human factors expertise must be included on the teams HF in teams; Lacking HF people; HF in teams; HF in the teams;
Include HF in teams; Improvement with HF in teams

(I4) The role of suppliers in agile AV development that integrates
human factors must be defined strategically

HF knowledge by Suppliers; HF requirements by OEM; Work
with OEM; OEM’s thoughts; OEM’ s role

(I5) Raise awareness among AV developers HF awareness; Mindset; HF marketing; Awareness by engineers
(I6) Provide teams with questions, not requirements Knowledge transfer; Ask questions, not requirements; HF on

crucial questions; No requirements, only discussion; HF on teams
(I7) Provide basic HF knowledge as checklists and design
principles

Human experience via guidelines; Provide HF data; checklists by
HF; HF Req as checklist

(I8) Use epics and user stories to express a need for learning
requirements in the backlog

Tell stories; SAFe & backlog; Stories & Epics

(I9) Increase capability to use prototypes for requirements
elicitation and validation

Prototyping for Req elicitation & validation; Prototyping for
requirements; Use of prototyping; Prototyping for requirements
and evaluation

(I10) Express the relationship between design decisions and
human factors as system requirements during development

Design Decisions; Decision and requirements; Purpose of design;
Identify problem with collaboration

derived a working definition of Human Factors for AV develop-
ment, discovered the relevant properties of agile and HF, and
defined implications towards agile ways of working, managing HF
knowledge, and managing requirements.

Experiments and experience are integral parts of HF. It is a
challenge to fit HF knowledge (and the corresponding require-
ments) into the agile way of working that the automotive indus-
try is moving towards, with its fast pace of change.

As our properties and implications reveal (e.g., P3 and I3),
there is an increased need to bring HF expertise to the devel-
opment teams, caused by the team-based approach and team
responsibilities inherent in agile AV development. The paucity of
HF experts and the intermittent need for HF expertise in many
agile AV development teams makes the inclusion of HF expertise
in teams a challenge. In addition, fast, iterative increments do not
typically allow time for the rigorous experiments that HF experts
may need in order to ensure user-centered quality. In general,
reflections from this study and responses from (especially but
not exclusively) the HF experts indicate that it is important to
push for an HF culture in companies, in the same way that
many automotive companies have a safety-first culture. Why not
safety and human factors first? Our exploratory study, admittedly
limited in scope, relies on 12 interviewees, mainly recruited from

a national hotspot of AV development. We believe that our study
demonstrates the relevance of this research topic, as well as the
value that additional interviews (beyond the scope of this study)
could provide.

While further research is still required, our study indicates the
potential benefits of integrating HF into the agile way of working.
This integration may include protocols where the process can
support an environment suitable for iterative HF experiments
and user studies based on accumulated knowledge, epics, user
stories, and HF checklists. Over time, these protocols will enable
developers to create knowledge and data with good reliability.
Hence, future work will have to provide a conceptual framework
which HF experts and AV engineers can use to support iterative
experiments and to accumulate HF knowledge over time. Imple-
mentation of this framework would help the automotive industry
and individual agile teams alike.
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