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ABSTRACT 
Continuous advancement of the existing design of turbine rear structure (TRS) leads to new 

challenges in terms of aerodynamic efficiency. This work presents experimental aero studies of 
the effect of the 3D polygonal shroud in the TRS comprising several types of guide vanes 
representative of a modern TRS: regular vanes, thickened vanes, and vanes with a mount bump. 
The experiments were performed in an engine-realistic facility for a fixed Reynolds number, 
350000, and three operation points based on a low-pressure turbine (LPT) exit swirl angle. The 
current study shows that the thickened vane handles the on-design and off-design conditions 
with good aerodynamic performance. It is observed that a shroud bump significantly affects 
the pressure losses because of the additional vorticity region created from the bump itself, and 
it has an upstream influence on the outlet flow from the LPT.  
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NOMENCLATURE 
Cp0 total pressure coefficient, (Pt–Pt,ref)/(Pt,ref–Ps,ref) 
Cp static pressure coefficient, (Ps–Ps,ref)/(Pt,ref–Ps,ref) 
FC flow coefficient, Ux/V 
H channel height at inlet, m 
PS pressure side 
Ps static pressure, Pa 
Pt total pressure, Pa 
Re Reynolds number, UxH/ν 
SS suction side 
V blade velocity, m/s 
Ux axial flow velocity, m/s 
x streamwise coordinate, m 
ν kinematic viscosity, m2/s 
Θ angular coordinate, deg 

INTRODUCTION 
One of the main challenges of current air transport systems is aimed at achieving resource-

efficient, climate- and environmental-friendly level. In compliance with this requirement, including 
the global environmental targets such as reduction of fuel consumption, carbon dioxide emissions and 
relative to the engine noise, modern geared turbofan engines are being developed.  

Enabling the fan and turbine to rotate at different speeds provided by geared turbofan engines 
significantly increases the by-pass ratio and, therefore, the propulsive efficiency. At the same time the 
swirl angles from the last low-pressure turbine (LPT) rotor to the turbine rear structure (TRS) can be 
kept lower. However, with geared engines the off-design variations of the outlet swirl angle increases, 
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which makes it more aerodynamically challenging to design TRS with built-in outlet guide vanes 
(OGV) to recover the swirl flow and increase the thrust for all operating points of the turbine.  

In addition, modern turbofan engines must satisfy all structural and engineering requirements of 
the engine. Therefore, state-of-the-art TRS often requires a three-dimensional polygonal shape and 
comprises several vane types: regular vanes, thickened vanes with additional space for bearing oil 
pipelines, and vanes with mount bumps for attachment to the engine. From the perspective of 
aerodynamics, such engine-relevant modifications for shroud geometry as well as vane geometry can 
affect the development of end-wall boundary layers or even triggers possible flow separations, 
thereby, increasing pressure losses. Therefore, TRS development is directly related to the need for its 
aerodynamic investigation. 

Because of the lower cost and easier implementation, the annular arrangement of a TRS blade 
row is often simplified by a linear arrangement. Therefore, the first experimental investigations of the 
secondary flow development were carried out by Hjärne et al. (2006) in a linear cascade, providing 
insight into the interaction of boundary layers coming from OGV, hub and shroud in TRS. In further 
work by Hjärne et al. (2007), numerical validation of secondary flow evolution was performed. In 
addition, to deepen the analysis for the turbulence models, the authors also considered the effect of 
secondary flows on the downstream losses. Sonoda et al. (2008) compared two alternatively designed 
cascades and provided new insight on the flow mechanisms around the end-wall region. However, 
two-dimensional approximation of vanes suffers from weaknesses such as lack of possibility to 
simulate radial pressure gradients and limited flow periodicity.  

Regarding the problems mentioned above, the annular cascade reproduces the flow conditions 
more realistically than a linear cascade. Selic et al. (2012) were the first to investigate the effect of 
the leakage flow on the flow structure of the OGV in an annular rig with an unshrouded turbine. 
Radial variation in swirl, total pressure and yaw angle over the passage height as well as three-
dimensional effects were investigated by Schönleiner et al. (2014). Further works were done in an 
engine-realistic facility with shrouded LPT located at the Chalmers University of Technology. 
Considerable efforts were made by Jonsson et al. (2019) to measure heat transfer on regular OGVs 
for several design conditions indicating the laminar-turbulent transition, which is crucial for the TRS 
performance. More detailed investigation of regular OGV’s with additional CFD results can be found 
in a recent paper written by Jonsson et al. (2020).  

Besides, as mentioned above, modern TRS includes several vane types. Therefore, it is crucial to 
consider the aerodynamic performance of each type of vane and their mutual influence. The influence 
of the vane with mount bump in the linear cascade was previously studied by Hjärne et al. (2008). In 
addition, Vikhorev et al. (2020) also carried out aerodynamic studies. They revealed a significant 
effect of the bump vane on pressure losses in the near-hub region of the OGV and upstream influence 
on the inlet conditions. 

Moreover, the authors performed an oil-film visualization to demonstrate the flow behaviour 
around OGV’s and compared the patterns for the different design conditions. These measurements 
were done in an annular engine-realistic rig with a circular shroud. However, aerodynamic 
investigations for the TRS with polygonal shroud geometry have not previously been conducted. 
Therefore, the main goal of this work is to study the effect of a 3D polygonal shroud design in a 
modern TRS including several vane types: regular vanes, vanes equipped with bump and vanes with 
increased thickness to give more internal space for the passage of the bearing oil pipes and scavenge 
tubes. The engine realistic TRS with all three vane types mounted simultaneously was investigated 
to consider the mutual influence between the vanes. 

 
EXPERIMENTAL FACILITY AND INSTRUMENTATION 
The experimental study of the engine-realistic TRS was conducted in an annular low-speed large-

scale 1.5 stage LPT-OGV facility at Chalmers University of Technology, Sweden. The schematic view 
of the facility is shown in Fig. 1. The airflow driven by a 250-kW centrifugal fan passes through 
corner ducts and diffusers. After the expansion, the flow enters the settling chamber with stainless 
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steel screens and honeycomb to remove non-uniformities of the flow. Following this, the flow passes 
through the contraction and reaches an LPT stage which is required to simulate realistic boundary 
conditions to the TRS. The LPT stage comprised stator stage with 60 nozzle guide vanes (NGVs) and 
rotor stage with 72 blades and was designed by GNK Aerospace Engine Systems, Sweden. 

 

 
Figure 1: 3D view of the high-Reynolds number continuous operation LPT-OGV facility  
 

The Reynolds number in a TRS of an aero-engine based on channel height and axial velocity 
ranges from 100000 to 600000 depending on the engine type and size. The flow coefficient (FC), is 
a second main parameter of the facility, determining the turbine load, and defined as the ratio of the 
axial velocity to the blade speed: 

𝑭𝑭𝑭𝑭 = 𝑼𝑼𝒙𝒙/𝑽𝑽                        (1) 
 

The TRS section of the facility is built to be modified and, for the current configuration, designed 
by GKN Aerospace Engine Systems. It comprises 12 OGVs with a 3D polygonal shroud design (Fig. 
2a). It shall be noted that the LPT and TRS components have been designed solely for the 
experimental rig and are not related to any GKN Aerospace product characteristics.  

 

 
Figure 2: 3D model of tested Turbine Rear Structure 
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There are two internal traversing systems installed in the TRS section needed to position probes. 
Both systems are working independently and capable of moving in radial and circumferential 
directions. Moreover, one traversing system is equipped with an additional motor enabling the 
downstream probe to be positioned in the axial direction, and therefore, the traversing systems cover 
near full-volume of the TRS section. The positioning and data acquisition is controlled by a PC with 
in-house LabVIEW® (National Instruments Corporation, Austin, TX, USA) software scripts. The 
accuracy of positioning in the circumferential directions is 0.01° while in the radial and axial 
directions are 0.075 mm.  

The total pressure and swirl measurements are accomplished using pre-calibrated 5-hole and 7-
hole aero probes, located upstream (Inlet plane) and downstream (Outlet plane) respectively (Fig. 2b). 
Wall pressure measurements on the vane and shroud bump were done using two Scanivalve 
mechanical multiplexers with 48 ports each. Acquisition of pressure data was performed using a 16-
channel PSI-9116 system with a 500 Hz sampling rate and 2.5 seconds of sampling time. This data 
was time averaged and only average values were analysed. Pressure values were acquired relative to 
the total pressure taken from a stationary Prandtl tube located in the bulk flow region between OGVs 
at 0.7 chord distance from the leading edge. 

Furthermore, obtained pressure data were processed and converted to the form of non-
dimensional coefficients (Eq. 2 and 3).  

 

𝑭𝑭𝒑𝒑𝒑𝒑 = 𝑷𝑷𝒕𝒕−𝑷𝑷𝒕𝒕,𝒓𝒓𝒓𝒓𝒓𝒓

𝑷𝑷𝒕𝒕,𝒓𝒓𝒓𝒓𝒓𝒓−𝑷𝑷𝒔𝒔,𝒓𝒓𝒓𝒓𝒓𝒓
                       (2) 

𝑭𝑭𝒑𝒑 = 𝑷𝑷𝐬𝐬−𝑷𝑷𝒔𝒔,𝒓𝒓𝒓𝒓𝒓𝒓

𝑷𝑷𝒕𝒕,𝒓𝒓𝒓𝒓𝒓𝒓−𝑷𝑷𝒔𝒔,𝒓𝒓𝒓𝒓𝒓𝒓
                       (3) 

 
Tests are performed at on-design and off-design conditions. The flow Reynolds number of 350000 

is used for all three operation points. The flow coefficient values and, respectively, averaged LPT exit 
swirl angles (the TRS inlet conditions) are summarized in Table 1, where on-design parameters are 
marked with green. 

 

 
Table 1: TRS inlet conditions   
 

Following the goal of weight reduction, the current configuration consists of 6 thin vanes, called 
regular vanes. However, the requirement of allowing oil pipelines to pass through OGVs leads to the 
enlarged thickness of the OGVs. In addition, recent TRS designs require integration of vanes with 
sunken engine-mount bumps. Therefore, the test section was equipped with three thick vanes and 
three bump vanes together with six regular vanes.  

Figure 3 shows the 3D models of regular, thick and bump OGVs, which were manufactured with 
SLA rapid prototyping technology. Compared to the regular OGV, the mid-span airfoil section of the 
thick OGV has an increased thickness by 45% while the camber line was designed the same. The 
vane surfaces were fitted with pressure taps to measure static pressure distribution and obtain 
aerodynamic loads. For three spans (25, 50 and 75%) the pressure taps covered pressure and suction 
sides. For the bump vane, the bump was equipped with extra pressure taps on its surface.  
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Oil-film visualizations were carried out for the thick and bump vane due to the expected different 
nature of the flow development. The visualizations were performed using the oil-film technique at 
different design conditions. A mixture of a mineral oil and TiO2 powder, with particles from 0.2 to 
0.3 µm was used. The flow patterns were captured using a digital camera GoPro Hero4. 

 

 
Figure 3: 3D models of regular, thick and bump vanes with their midspan profiles 
 

RESULTS AND DISCUSSION 
This section presents the results and discussions concerning the experimental investigations 

divided into two sections according to the type of measurements. The following results were obtained 
for the new configuration, including 3D polygonal shroud and three types of vanes: regular, thick and 
bump vanes.  

Pressure measurements 

Inlet and outlet measurements 
Inlet measurements were performed for a 30-degree sector located upstream of the OGV. The 

azimuthal resolution was 0.6˚ and radial resolution was 9.7 mm. Figure 4 shows the comparison of 
upstream total pressure distributions for the regular, thick and bump vane at on-design condition.  

 

 
Figure 4: Inlet total pressure coefficient distributions for regular, thick, and bump vanes at on-
design condition 
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Concerning the flow structures coming from the LPT stage, stator wakes developed from NGVs can 
be observed for all configurations. In addition, the presence of vortex pair developed from each 
NGV’s results in local pressure drop near the hub region. A more detailed explanation of the flow 
development upstream of the TRS section can be found in Arroyo, 2009 and Rojo, 2015. 

Circumferentially averaged profiles of swirl angle and total pressure coefficient are presented in 
Fig.5. The figure shows that the upstream influence of the thickened vane is quite similar compared 
to the regular vane, although the vane has enlarged thickness. However, for the vane with a mount-
recess the bump results in redistribution of the upstream circumferentially averaged total pressure, 
which also causes a swirl reduction in the shroud region. The blockage of the flow due to the bump 
implementation leads to the pressure redistribution and therefore changes the inflow pressure 
conditions upstream of the OGV. The bump leads to a more skewed inlet total pressure profile shown 
by a red plot in the right figure.  

 

 
Figure 5: Circumferentially averaged inlet profiles for regular, thick and bump vanes at on-

design condition.  
 
Outlet measurements were performed for a 30-degree sector located downstream of the OGV. The 

circumferential resolution was 0.6˚ and radial resolution was 9.7 mm. The focus of this part of the 
study is on the wake comparison at on- and off-design conditions. For that reason, normalized 
pressure data are presented for a cropped 15-degree sector, which contains the downstream wake 
(Fig.6).  

The secondary flow developed in the hub suction side corner is the main source of pressure losses. 
Therefore, the hub region is the most sensitive to the additional pressure losses. For the regular and 
thick vane, the wake intensity changes only for the high loading condition, which can be explained 
by a formation of a small separation bubble near the vane trailing edge close to the hub, which is 
shown by the flow visualizations in the next section of the paper. However, for the low loading case 
and on-design condition, there is no noticeable difference in the wake formation between regular and 
thick vanes. 

For the bump vane, the influence of the bump is significant. It results in extra pressure losses 
located near the shroud, which can be seen for the on- and off-design conditions. The nature of the 
wake formation in the shroud region for the bump vane is different because of the interaction of the 
boundary layers coming from the bump as well as from the OGV. Even for the low loading case, this 
region with extra losses should be taken into account.   
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Figure 6: Outlet total pressure coefficient distributions for regular, thick and bump vanes at 
on- and off-design conditions  
 

Figure 7 presents vorticity distributions at on-design conditions. Streamlines of the flow plotted 
using crossflow velocity components are also added to these profiles. Apart from the region of a 
decelerated fluid with higher vorticity values for all vanes, one can observe a well-pronounced region 
of the increased vorticity for the bump vane. The boundary layer developed from the bump surface 
has separated from the rear of the bump, as will be shown by the flow visualizations. Therefore, a 
strong vorticity region with decelerated fluid has been created. As can be seen, vorticity values in the 
core of this vortical structure are twice higher than the values in the wake region. 

 

 
Figure 7: Downstream vorticity distributions for regular, thick and bump vanes at on-design 
condition 
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Static pressure measurements 
This section presents results of the vane pressure measurements performed for regular, thick and 

bump vanes as well as pressure measurements on the bump surface.   
The distribution of the static pressure coefficient at on-design condition is shown in Fig 8.  

 
Figure 8: Static pressure distributions for regular, thick and bump vanes at on-design condition  
 

Comparative analysis of these profiles shows that thickening of the vane, as well as presence of 
bump vane, creates a blockage for the passing flow. Therefore, it leads to a decrease in static pressure 
for the modified vanes. However, for the bump vane, the static pressure is very significantly affected 
at 75% span, which can be explained by the strong local influence of the bump. The flow acceleration 
near the front part of the bump results in much lower static pressure values both for the pressure and 
suction side, while the suction peak shifts downstream. Downstream flow expansion after a physical 
bump peak point leads to the flow deceleration. Consequently, the streamwise pressure gradient is 
significantly higher for the red curve from 40% chord to 70% chord. 
 Figure 9 presents normalized static pressure on the bump surface for different inflow conditions. 
For the lowest flow coefficient and, correspondingly, low loading case, a region with the lowest static 
pressure is located on the pressure side. For the on-design case, one can compare the previously shown 
profiles for the vane at 75% and the pressure distribution on the bump. As seen, the pressure minimum 
on the bump suction side is consistent with suction peak for the previous static pressure distribution. 
For the high loading case, the static pressure on the bump decreases on the vane suction side and 
increases on the vane pressure side. Therefore, there is a clear interaction of pressure distribution on 
the bump with pressure distribution on the OGV.  
 

 
Figure 9: Static pressure distributions on the bump at on- and off-design conditions 
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Flow visualizations 
The oil-film technique is an efficient qualitative tool in highlighting near-wall streamlines and 

flow separation regions. The focus of this section is on oil-film visualizations performed for thick and 
bump OGVs. Streamlines showing the flow development near the wall were obtained from the 
dynamic analysis of the flow visualization sequences and added to the visualization pictures. The 
results shown here are for the vane suction side at different flow coefficients. The suction side is the 
most influenced by the vane geometry and inlet conditions. 

The flow visualizations for the thick vane are shown in Fig.10. At the off-design point with low 
loading, there are no flow separations, and streamlines are slightly distorted near the suction side peak 
due to the interplay of the radial and streamwise pressure gradients. There is also a clear streamline 
deviation near the hub due to the flow diffusion in the corner.  

 

 
Figure 10: Oil-film visualizations for the thick vane at on- and off-design conditions 
 

Moreover, based on visualizations on the pressure side, which are not provided here, and static 
pressure contours for the bump, the stagnation line is located near the leading edge without indication 
of any flow separations on the OGV pressure side. Increasing the load, two deceleration zones, 
marked with red dashed lines, are being formed. A small region located at approximately 15-20% 
axial chord and 25% span with concentrated powder particles reflects the presence of the flow 
stagnation, which can be a small separation bubble with further reattachment. In addition to this 
region, a small stagnation area is formed near the hub and vane trailing edge which can be explained 
as highly diffused interaction of the boundary layers coming from the OGV and the hub. Even for the 
high loading case, this region does not indicate reversed flow, while the area with accumulating 
particles grows and shifts towards the mid-span. 

In contrast to the flow on the thick vane, for the bump vane, the flow has some pronounced 
differences (Fig. 11). For the on-design condition, the visualization does not indicate a clear flow 
stagnation in the hub corner near the vane trailing edge. However, there is a stagnation region with 
accumulated particles located at 20-25% of axial chord and 25% span. The location of this 
deceleration zone (0.45% chord) is consistent with the location of the suction peak from wall-pressure 
measurements. For the high loading case, this region is shifted towards the shroud as for the thick 
vane. As well a region with flow reversal is created in the hub corner close to the vane trailing edge, 
as for the thick vane. 
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However, the main contribution to the total pressure losses comes from a strongly decelerated 
flow in the shroud corner near the bump. For all three inlet conditions, one can observe that the flow 
near the shroud is complex and a pronounced deceleration zone is formed as the bump diffuses the 
flow. Moreover, this reversal flow is formed in this region, which subsequently downstream develops 
into a strong vortical structure visible in the downstream vorticity distribution in Fig. 7. 
 

 
Figure 11: Oil-film visualization for the bump vane at on- and off-design conditions 
 

CONCLUSIONS 
In this paper, an engine-realistic TRS configuration with polygonal shroud design and different 

types of OGVs (regular, thick and bump vane) was experimentally studied for the first time. The 
experimental measurements, including basic aerodynamic performance and flow visualizations, were 
carried out at engine-representative flow Reynolds number of 350000 at on- and off-design conditions 
of the flow swirl angle after the upstream LPT stage.  

Based on results from pressure measurements, the thickened vane is shown to have good 
aerodynamic performance without notable additional losses compared to the regular vane. Flow 
patterns obtained from the oil-film visualizations indicate two deceleration zones with small 
separation bubbles and further reattachment, however, does not indicate any reversal flow which 
proves a good vane design without loss of the turning performance.  

Concerning the vane with engine-mount recess, the bump significantly influences the 
aerodynamics around the OGV. From circumferentially averaged profiles, it was obtained that the 
bump affects the inlet conditions (swirl angle and total pressure profile) thereby influencing static 
pressure distribution and vane loading. Blade- and bump-loading analysis shows that bump pressure 
distribution interacts with vane pressure distribution influenced by the bump itself and, therefore, 
vane and bump combination should be designed as one aerodynamic unit. The flow around the OGV 
with a bump is shown to be complex due to the highly diffused boundary layer from the bump. The 
oil-film visualizations at all three inlet conditions have revealed reversal flow and additional 
stagnation area in the shroud corner region. 

Further downstream, the development of this flow results in an additional vorticity region with 
twice higher vorticity magnitude compared to the vane wake core. Moreover, for the high loading 
case, the bump influences the wake intensity in the hub region due to the developed reversal flow, 
which is confirmed by the results of oil-visualization and wake analysis. As a result, the presence of 
the bump leads to additional pressure losses for all presented design conditions. 
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