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Abstract—Bayesian receiver autonomous integrity monitoring
(RAIM) algorithms are developed for the snapshot cellular
positioning problem in a simplified one-dimensional (1D) linear
Gaussian setting. They allow for position estimation, multi-fault
detection and exclusion, and protection level (PL) computation
by the efficient and exact computation of the position posterior
probabilities via message passing along a factor graph. Numerical
simulations show that the proposed Bayesian RAIM algorithms
achieve significant performance improvement over a baseline
advanced RAIM algorithm by providing tighter protection levels
(PLs) that meet the target integrity risk (TIR) requirements.

Index Terms—Cellular Positioning, Positioning Integrity,
Bayesian Inference, Factor Graph

I. INTRODUCTION

With widespread deployment, large bandwidth, and massive
antenna arrays, 6G cellular networks promise to provide reli-
able positioning services for vertical industries with stringent
performance requirements, such as factory automation and
autonomous driving [1], [2]. In addition to traditional require-
ments such as high accuracy and low latency, safety-critical
applications place new demands on positioning integrity, i.e.,
the level of confidence in the correctness of the positioning
results [3]–[6]. The rigorous quantification of integrity is
typically done through the formulation of an upper bound of
instantaneous position error, termed protection level (PL), to
meet the required confidence level, often given in the form
of one minus the so-called target integrity risk (TIR). PLs
can be computed for each dimension of user position, or
jointly for two or three dimensions. Together with the position
estimates, they describe a three-dimensional (3D) geometry
that contains the true user position with the desired confidence
(probability). An application can then decide whether the
needed safety margins are provided. Therefore, it is expected
that the computed PLs are tight enough so that their availability
in safety-critical applications can be maximized [7].

In global navigation satellite systems (GNSSs), integrity as-
surance mechanisms and receiver autonomous integrity mon-
itoring (RAIM) algorithms have been employed for a long
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time, primarily for aviation needs [8], [9]. Integrity support
for GNSS assistance has been incorporated into the latest
3GPP Release-17 standard [10], whereas radio standalone
positioning with integrity guarantee is expected from Release-
18 onward [11]. The main task of RAIM is to detect and
exclude faulty measurements, which can arise from many
different causes [6] and often deviate from the expected values
under nominal conditions, in order to avoid large errors in
position estimates [12]. RAIM methods can be grouped into
traditional RAIM algorithms and Bayesian RAIM methods.

Traditional RAIM algorithms detect and exclude faulty
measurements by performing rounds of consistency checks
on the statistics (e.g., range residuals and position estimates)
associated with the fault patterns (i.e., the alternative hy-
potheses in the language of statistical hypothesis testing).
This frequentist approach relies on redundant measurements
and does not directly lead to instantaneous position error
probability distributions. To avoid underestimating tail risk,
the formulation of solvable PL equations has to conservatively
overbound the error distribution. Consequently, the computed
PLs tend to be loose.

In contrast, Bayesian RAIM methods [13]–[16] aim to find
the posterior probability distribution of position error directly
based on the information contained in the measurement models
(prior) and actual measurements (evidence). It can be expected
that the computed PLs are tight, since, in theory, all the
position information contained in the measurements can be
preserved in the posterior. The downside of Bayesian RAIM
is its potentially high complexity associated with posterior
computation, particularly when the number of unknown pa-
rameters is large and the problem model admits no closed-form
expressions (which, unfortunately, is the general situation).
Therefore, a major challenge of Bayesian methods is to find
computationally efficient implementations. To date, research
work on Bayesian RAIM methods is limited, mainly based on
Monte Carlo algorithms, such as particle filters [15], [16] or
Gibbs samplers [14], for posterior distribution computation.

In this paper, we consider the RAIM problem for snapshot1

cellular positioning, providing three distinct contributions:

1The connection of user position between epochs is ignored, although it can
be included naturally through the prediction step in the proposed Bayesian
(filter) framework, and we assume that all measurements are taken at the same
time instance in one snapshot.



(i) we propose a novel factor graph-based Bayesian RAIM
method to compute position and PL, including multi-fault
detection and exclusion; (ii) we evaluate the method in a
simplified one-dimensional (1D) linear Gaussian scenario and
compare its performance with a baseline advanced RAIM
algorithm [9] using Monte-Carlo simulation; (iii) we demon-
strate that, while fulfilling the TIR requirement and incurring
comparable computational complexity, the resultant PLs are
much tighter than the baseline algorithm due to the exact
posterior probability density computation by the new method,
thus greatly improving the availability of the system. These
pave the way for the development of the Bayesian RAIM
method in 3D scenarios.

II. PROBLEM FORMULATION

In this section, we describe the snapshot 3D positioning and
integrity monitoring problem and its simplified 1D version on
which we test the proposed Bayesian RAIM method.

A. Snapshot Integrity Monitoring Problem

Consider a downlink/user-centric positioning scenario with
M time-synchronized base stations (BSs) with known lo-
cations xi ∈ R3, i ∈ I ≜ {1, . . . ,M}, and a single
mobile user equipment (UE) with unknown position x =
[xX, xY, xZ]

T ∈ R3 and clock bias C ∈ R (expressed in
meters). At each positioning epoch, the BSs send coordinated
positioning reference signals (PRSs), and the UE estimates M
times-of-arrival (ToAs) from the received PRSs over the line-
of-sight (LoS) paths, which are converted to pseudo-ranges as
follows: For i ∈ I,

yi = ∥xi − x∥+ C + bi + ni, (1)

where ni is the independent measurement noise, and bi is
the range bias that accounts for any possible faults, such as
synchronization errors or non-line-of-sight (NLoS) biases. We
further consider that an initial estimate of the UE position is
available, so that (1) can be linearized [17]–[19] to yield (after
removing unnecessary terms)

yi = aT
i

[
x

C

]
+ bi + ni, (2)

where ai ∈ R4×1 is a known vector. The objective of integrity
monitoring is to calculate a position estimate x̂ and a PL for
each dimension n in {X,Y,Z} such that

Pr(|xn − x̂n| > PLn) ≤ TIRn, (3)

where Pr(|xn − x̂n| > PLn) is the actual integrity risk (IR)
and TIRn the TIR for dimension n. A schematic illustration
of the problem is given in Fig. 1.

B. Simplified Problem

Inspired by the observation from (3), that the PL is com-
puted per dimension, we propose a simplified observation
model, with the purpose of understanding the possible gains
of Bayesian integrity monitoring over conventional frequentist
approaches. In its most simple and nontrivial version, that is, a

BS

BS

BS

BS
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Fig. 1. Illustration of the cellular positioning with integrity monitoring
problem. In the displayed scenario, one BS is in NLoS condition due to
blockage and causes a large bias to the pseudo-range measurement. When
a RAIM algorithm failed to exclude this faulty measurement, the computed
position estimate x̂ and PLs {PLX,PLY,PLZ} are represented by the blue
ellipsoid are obtained; when it excludes the faulty measurement successfully,
better results represented by the green ellipsoid are obtained.

1D positioning problem without clock bias and with Gaussian
error, the 1D model analogy to (2) is2

yi = x+ bi + ni, (4)

where x, {bi}, and {ni} are treated as realizations of indepen-
dent random variables X , {Bi}, and {Ni}, respectively, from
a Bayesian perspective. The measurement noise is modeled
as Ni ∼ N (ni; 0, σ

2
n,i), where the notation Z ∼ N (z;m,σ2)

represents the Gaussian distribution for the random variable
Z with mean m and variance σ2. A latent variable Λi, which
takes value λi ∈ {0, 1} following a Bernoulli probability
mass function (PMF) given by pΛi(λi) = θλi

i (1 − θi)
(1−λi),

where 0 < θi ≪ 1 is a known prior probability, is adopted
as an indicator of whether the measurement yi is faulty or
not. When λi = 0, bi = 0 with probability 1 and yi is
free from fault; when λi = 1, Bi is modeled as a Gaussian
random variable Bi ∼ N (bi;mb,i, σ

2
b,i), whose variance σ2

b,i

is considered considerably greater than σ2
n,i. Consequently, the

prior probability density function (PDF) of Bi is given by

pBi
(bi) = pBi|Λi

(bi | 0) pΛi
(0) + pBi|Λi

(bi | 1) pΛi
(1)

= (1− θi)δ(bi) + θi N (bi;mb,i, σ
2
b,i), (5)

where δ(·) denotes the Dirac delta distribution. The objective
is then to find a position estimate x̂ and a PL such that

Pr(|x− x̂| > PL) ≤ TIR. (6)

III. BASELINE ADVANCED RAIM

For performance benchmarking purposes, we modify the
hypothesis testing-based advanced RAIM algorithm [9] to the
1D problem described above. The original algorithm was de-
veloped in a multi-fault and multi-constellation GNSS setting.
The algorithm has four components: (i) computation of the so-
called all-in-view solution based on all M measurements; (ii)

2The focus on the 1D model is without any significant loss of generality
since the method can be applied directly to a 3D scenario, computing the PL
for each dimension separately.



identification of the fault modes that will be monitored, that is,
which combination of BSs will be considered; (iii) detection
of the faults and computation of PL if no faults were detected;
(iv) exclusion of possibly faulty measurements if faults were
detected and computation of PL.

A. All-in-View Solution
We rewrite the measurement model (4) in vector form:

y = 1Mx+ z, (7)

where y = [y1, . . . , yM ]T, 1M is a M × 1 all-one vector and
z = [z1, . . . , zM ]T with elements zi = bi + ni, i = 1, . . . ,M .
When all measurements are free of fault, z ∼ N (0,Σ),
where Σ is the diagonal covariance matrix with diagonals
Σi,i = σ2

n,i, i = 1, . . . ,M , and the weighted least squares
(WLS) estimate for x, which in this case also is the maximum
likelihood (ML) estimate, is given by

x̂(0) =
(
1T
MΣ−11M

)−1
1T
MΣ−1y = W0c

T
0 y, (8)

where W0 ≜
(
1T
MΣ−11M

)−1
=

(∑M
i=1 σ

−2
n,i

)−1
, and cT0 ≜

1T
MΣ−1 = [σ−2

n,1, . . . , σ
−2
n,M ].

B. Fault Modes Identification
First, the baseline RAIM algorithm determines the set of

fault modes to be monitored, based on prior knowledge of the
probability of each measurement being faulty. A fault mode
is a specific subset of measurements that are simultaneously
faulty, while the rest of the measurements are fault-free. The
baseline algorithm lists all fault modes that contain up to M−2
measurements3 and computes the corresponding probabilities
of occurrence. The total number of fault modes is given by
NFM =

∑M−2
j=1

(
M
j

)
. For convenience, the fault-free case

is denoted as the fault mode 0. We denote by Ik the set
of faulty measurement indices contained in the fault mode
k ∈ {0, 1, . . . , NFM}. In particular, I0 = ∅.The probability
that this fault mode occurs is thus given by

pFM,k =
∏
i∈Ik

θi
∏

i∈I\Ik

(1− θi). (9)

Fault modes are sorted in decreasing order of their probability
of occurrence. Namely, pFM,k ≥ pFM,k+1, for k < NFM. Note
that since 0 < θi ≪ 1, pFM,0 > pFM,1 is considered true.

To ensure the best possible performance, all fault modes that
can be monitored are listed in this baseline RAIM algorithm. It
is also possible to skip fault modes that contain a large number
of faulty measurements but with a very small probability
of occurrence for computational complexity reduction at the
expense of an extra TIR margin [9].

C. Fault Detection
For fault mode k, we define Wk ≜

(∑
i∈I\Ik

σ−2
n,i

)−1
and

let cTk to be the vector given by replacing elements of cT0 with
indices in Ik by 0. It can be easily verified that

x̂(k) = Wkc
T
k y (10)

3To be able to perform fault detection, as will be soon detailed, there should
be at least Nunknown + 1 measurements available, where Nunknown stands
for the number of unknown position variables, which is 1 in the 1D model.

is the WLS estimate of x using the remaining measures after
excluding those contained in fault mode k from y.

The baseline RAIM algorithm determines whether the mea-
surements contain faults by performing a list of solution
separation (SS) tests for each fault mode. When all measure-
ments are fault-free, it can be shown that the test statistic
∆x̂(k) ≜ x̂(0) − x̂(k) is a Gaussian random variable with zero
mean and variance given by

σ(k)2
ss ≜

(
Wkc

T
k −W0c

T
0

)
Σ
(
Wkc

T
k −W0c

T
0

)T
. (11)

To be able to identify the test thresholds, a false alarm
probability PFA is also required as input to the algorithm.
The false alarm budget is evenly allocated to the NFM fault
modes that contain fault(s), leading to the following SS test
threshold for fault mode k, k = 1, . . . , NFM,

Tk = σ(k)
ss Q−1

(
PFA

2NFM

)
, (12)

where Q−1(·) is the inverse of the Q function, Q(u) =
1√
2π

∫ +∞
u

e−
t2

2 dt. To be specific, |∆x̂(k)| will be compared
with Tk, and if |∆x̂(k)| ≤ Tk, ∀k = 1, . . . , NFM, all
measurements are considered fault-free and the baseline RAIM
algorithm outputs x̂(0) as the position estimate. The choice of
PFA, therefore, affects the continuity and availability perfor-
mance of the positioning system: the larger the value, the more
likely the algorithm is to warn upon a potential fault and will
put more computational effort into fault exclusion attempts.

A PL is computed by solving the following equation:

2Q

(
PL

σ(0)

)
+

NFM∑
k=1

pFM,k Q

(
PL− Tk

σ(k)

)
= TIR, (13)

where σ(k) ≜ Wk

√
cTkΣck, and Q

(
PL
σ(0)

)
and Q

(
PL−Tk

σ(k)

)
are

in fact upper bounds for the two tails of the actual IR when
fault mode k occurs but the SS test passes. The formulation
process of the above equation can be found in [9, Appendix
H], and a solution of (13) is found using the bisection search
method detailed in [9, Appendix B].

D. Fault Exclusion

When any SS tests fail, that is, |∆x̂(k)| > Tk for some k, the
baseline RAIM algorithm will try to exclude faulty measure-
ments that cause failure. Starting from k = 1, the algorithm
performs the complete process of fault modes identification
and fault detection on the new problem formed after removing
the measurements contained in fault mode k. The remaining
number of measurements in this new problem is M − |Ik|.
If the SS tests pass successfully, the fault exclusion process
is terminated and a PL can be computed in the same way
as described above (but using the newly obtained values for
pFM,k, Tk, NFM, etc.). Otherwise, the algorithm continues to
check the next fault mode (k + 1). If the SS tests fail for
all fault modes, then the fault exclusion attempt is considered
failed. In this case, the algorithm terminates without being able
to compute a PL and declares integrity unavailable.
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p(y1 | x, b1)
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Fig. 2. Factor graph of the Bayesian RAIM problem, corresponding to the
factorization (14). The order of message computation and passing is given by
the numbers in circles (shown only on the ith branch, but is the same for all
branches), while the arrows indicate the passing direction.

IV. PROPOSED BAYESIAN METHODS

For each epoch of the integrity monitoring problem, the
proposed Bayesian RAIM computes the marginal posterior
distributions pX|Y (x|y) and pΛi|Y (λi|y), i ∈ I, via message
passing along a factor graph built according to the model
described in Section II-B. Based on the obtained posterior
distributions, different methods can be selected to compute
the position estimate x̂ and PL to meet the TIR requirement.
In the description of the message passing algorithm, the prior
probability distribution of X , pX(x), which would be passed
on from the previous epoch(s) in practice, is assumed known.
In the absence of prior knowledge, pX(x) can be set to a
uniform distribution over a large region, as will be assumed
in our numerical study.

A. Message Passing Algorithm

Based on the assumptions made in Section II, the joint
posterior probability of x, b ≜ [b1, . . . , bM ]T and λ ≜
[λ1, . . . , λM ]T can be factorized as

p(x, b,λ | y) ∝ p(y | x, b,λ)p(x, b,λ)

= p(x)

M∏
i=1

p(yi | x, bi)p(bi | λi)p(λi). (14)

For clarity, the subscripts of the probability distributions are
omitted in (14) and all subsequent expressions and the vari-
ables to which they belong should be clear from the context.

Despite the seemingly simple form, the task of computing
the desired posterior probabilities from (14) is not trivial. To do
that, a cycle-free factor graph representation of (14), shown in
Fig. 2, is adopted. Each term of (14) is represented by a factor
node in a rectangle and connected to the variable nodes that
appear in parentheses, represented by circles in the graph. For
simplicity, factor nodes p(bi|λi) and p(yi|x, bi) are denoted by
fi and gi respectively. A message-passing schedule is applied
following the sum-product algorithm [20].

The following notations and operations are involved.
GM(z, L) stands for a Gaussian mixture (GM) distribution for
Z with L components:

∑L
l=1 wlN (z;ml, σ

2
l ) with

∑L
l=1 wl =

1. Many messages passed on the factor graph are of this
form, and their weights {wl}, means {ml}, and standard
deviations {σl} are what actually needs to be sent. Given
GM(z, L1) =

∑L1

l1=1 wl1N (z;ml1 , σ
2
l1
) and GM(z, L2) =∑L2

l2=1 wl2N (z;ml2 , σ
2
l2
), their product is given by

L1∑
l1=1

L2∑
l2=1

wl1wl2sl1l2 N (z;ml1l2 , σ
2
l1l2) ∝ GM(z, L1L2),

(15)
where sl1l2 , ml1l2 and σl1l2 are obtained by solving the
following simple equations:

1/σ2
l1l2

= 1/σ2
l1
+ 1/σ2

l2
,

ml1l2/σ
2
l1l2

= ml1/σ
2
l1
+ml2/σ

2
l2
,

sl1l2 = N (ml1 ;ml2 , σ
2
l1
+ σ2

l2
).

(16)

A limited number of arithmetic operations are needed to solve
these equations. Therefore, the computational complexity as-
sociated with this product is given by O(L1L2).

The message-passing schedule is described below for the
ith branch. It proceeds in parallel along all M branches.

1 The prior p(λi) is sent from the leaf node to variable
nodes λi, and then directly to fi. Meanwhile, p(x) is
sent to the variable node x.

2 Factor node fi sends the following message to variable
node bi:

µfi→bi(bi) =
∑
λi

p(bi | λi)p(λi), (17)

which is a GM distribution of bi, given by µfi→bi(bi) =
(1 − θi)N (bi; 0, 0) + θi N (bi;mb,i, σ

2
b,i). This message

will be passed directly to factor node gi.
3 Factor node gi sends the following message to variable

node x:

µgi→x(x) =

∫
p(yi | x, bi)µfi→bi(bi) dbi. (18)

Since p(yi|x, bi) = N (bi; yi−x, σ2
n,i), based on (15) and

(16), the integration results in a GM(x, 2) density:

(1− θi)N (x; yi, σ
2
n,i) + θi N (x; yi −mb,i, σ

2
n,i + σ2

b,i).
(19)

4 Variable node x sends the following message back to gi:

µx→gi(x) = p(x)
∏

j∈M\i

µgj→x(x). (20)

Under the assumption of Gaussian or uniform distribution
of p(x), µx→gi(x) ∝ GM(x, 2M−1).

5 Factor node gi sends the following message back to bi:

µgi→bi(bi) =

∫
p(yi | x, bi)µx→gi(x) dx, (21)

which is then passed on to factor node fi directly. Since
p(yi|x, bi) can also be regarded as Gaussian PDF of x,
i.e., N (x; yi − bi, σ

2
n,i), following the same procedure as



in step 3 , it is clear that µgi→bi(bi) ∝ GM(bi, 2
M−1)

and the parameters are easy to compute.
6 Finally, the factor node fi sends a message back to λi,

which is given by

µfi→λi
(λi) =

∫
p(bi | λi)µgi→bi(bi) dbi. (22)

The message is computed separately for λi = 0 and λi =
1. In particular, µfi→λi(λi = 0) = µgi→bi(bi = 0), and
the computation of µfi→λi

(λi = 1) requires 2M−1 terms
of product of two Gaussian in the integrand.

The message-passing process terminates after the above
six steps. The desired marginal posteriors are then calculated
following

p(x | y) ∝ p(x)
∏
i∈M

µgi→x(x), (23)

which leads to a GM distribution with 2M terms, and

p(λi | y) =
{
1− θ′i ∝ (1−θi) · µfi→λi(λi = 0), if λi = 0,

θ′i ∝ θi · µfi→λi(λi = 1), if λi = 1,

(24)

where θ′i can be obtained after normalization. Note that since
the factor graph is cycle-free, convergence is guaranteed.

B. Fault Exclusion

In theory, all the information about the user position con-
tained in the measurements and priors has been collected in
p(x|y) given by (23), and a position estimate and a PL can
be computed directly based on it. However, the bias term in
a faulty measurement will introduce a large uncertainty in
the posterior, which will lead to a large PL. To counteract
this effect, fault exclusion can be performed based on the
marginal posterior PMFs of the indicators given by (24),
before computing the marginal posterior PDF of x using the
remaining measurements. To be specific, a threshold θT is
selected, and if θ′i > θT , the measurement yi is considered
faulty, the corresponding branch will be pruned from the factor
graph and the message µgi→x(x) passed to variable node
x along it will be discarded. No other additional message
computation/passing is required.

Denoting the set of indices of excluded measurements is
by IF, the marginal posterior of x after fault exclusion is
computed by

pFE(x | y) ∝ p(x)
∏

i∈I\IF

µgi→x(x), (25)

which leads to a GM posterior distribution of 2M−|IF| terms.

C. Position Estimation and PL Computation

With or without fault exclusion, the marginal posterior of x
can be written in the following form:

pposX (x) =

L∑
l=1

wx,l N (x;mx,l, σ
2
x,l), (26)

where {wx,l, l = 1, . . . , L} is sorted in decreasing order
and L is either given by 2M following (23), or by 2M−|IF|

following (25). For position estimation, the weighted mean
(WM) method is adopted, so that x̂ =

∑L
l=1 wx,l mx,l.

Based on (26), the IR associated with a position estimate x̂
and a said PL can be formulated as

IR = Pr(x < x̂− PL) + Pr(x > x̂+ PL)

=

L∑
l=1

wx,l

[
ΦN ,l(x̂− PL) + 1− ΦN ,l(x̂+ PL)

]
, (27)

where ΦN ,l(·) stands for the cumulative density function
(CDF) of the lth Gaussian term in (26). Using the notation
of Q function as in (13), the goal is to find the smallest value
for PL such that the following inequality holds:

L∑
l=1

wx,l

[
1−Q

( x̂−PL−mx,l

σx,l

)
+Q

( x̂+PL−mx,l

σx,l

)]
≤ TIR. (28)

For this, a bisection search is again employed by the Bayesian
RAIM algorithms.

Depending on whether to perform fault exclusion or not,
two variations of the Bayesian RAIM algorithm have resulted
under the same framework (labeled using FE or NFE in
the numerical study). Their performance will be compared
with the baseline RAIM algorithm in the following section.
We also remark that other position estimation methods, e.g.,
maximum a posterior (MAP) estimation, can also be adopted,
which can be expected to have an impact on the computed
PL according to (28). The comparison of different position
estimation methods will be left for future work.

D. Computational Complexity Comparison

For all other steps except PL computation, the Bayesian
RAIM algorithm has a fixed complexity scaling of O(3M ×
2M−1), mainly due to the computation of (23) via message
passing. The baseline RAIM has variable complexity (as
the number of SS test varies), between O (NFM) (when all
SS tests pass in the fault detection step) and approximately
O
(
N2

FM

)
(when every fault mode is examined in the fault

exclusion step), where NFM =
∑M−2

j=1

(
M
j

)
= 2M −M − 2.

Both methods require a bisection search to compute the
PL, which is an iterative algorithm. For a given number of
iterations, say Nit > 0, the complexity of the PL computation
in Bayesian RAIM is O(Nit2L), where L = 2M without fault
exclusion and L = 2M−|IF| with fault exclusion. For baseline
RAIM, this complexity is O(NitNFM).

Remark 1. In cellular positioning, there are usually few con-
nected BSs (M ≤ 10). Therefore, the computational complex-
ities of the baseline and proposed Bayesian RAIM algorithms
can be said in a similar order for the 1D positioning problem.
We note that in GNSS, the number of observable signals
can be much higher, which could entail high computational
complexities of the Bayesian algorithms.



V. NUMERICAL STUDY

A. Simulation Setting

We conduct a numerical study with one UE and M BSs,
where M is set to either 5 or 8. Without loss of generality, the
UE’s true position is fixed at x = 0. Although measurement
noise levels (σn,i) in practice can vary across BSs and possibly
depend on their locations, we assume a single value (σn)
for all BSs in this simulation for validation purposes. We
evaluate the performance as σn increases from 1 to 9 meters
with 2-meter increments. We also assume that the probability
of each BS generating a faulty measurement is the same
(θi = 0.05, for all i = 1, . . . ,M ). Gaussian biases in the faulty
measurements have the same variance (σb,i = 50 meters) but
different mean values, which are randomly generated follow-
ing mb,i ∼ uni[−50, 50] meters in each set of simulations
(corresponding to a certain pair of values for M and σn).

The TIR is set to 10−3, and we simulate at least 5 × 106

independent realizations in each set of simulations. For the
Bayesian RAIM algorithm with fault exclusion, we set the
threshold θT = 0.5. For the baseline RAIM algorithm, we
select PFA = 5× 10−2.

B. Results and Discussion

In each set of simulations, the simulated IR is obtained, that
is, the ratio of realizations when the actual position error |x−x̂|
exceeds the computed PLs among all realizations. It is found
that the simulated IRs resultant from the Bayesian RAIM
algorithms, with or without fault exclusion, all converged
to the TIR after running enough realizations. This in turn
demonstrates that the posterior probabilities computed via the
factor graph are exact. On the other hand, the simulated IR
results of the baseline RAIM algorithm are in the order of
10−6, much lower than the TIR. For visualization, the results
given by the Bayesian RAIM algorithm (with fault exclusion)
and the baseline RAIM algorithm (also with fault exclusion)
in the setting with M = 8 BSs and σn = 1 meter over 5×106

realizations are presented in the form of Stanford diagram
[3] in Fig. 3. As can be seen, the proposed Bayesian RAIM
provides much tighter PLs while meeting the TIR requirement,
compared to the baseline RAIM. The latter is conservative
in PL computation, so the computed PLs are larger and the
actual IR is significantly smaller than the TIR. One can also
see that the PL results the baseline RAIM algorithms returns
are discrete. This is because, unlike the Bayesian methods, the
actual measurements are not utilized in the PL computation,
as can be seen from (13). In particular, in (13), NFM is
determined by the number of measurements excluded, and
pFM,k, Tk and σ(k) can only take a limited number of values,
since the measurement models are assumed to be the same for
all BSs.

For each set of simulations, empirical complementary cu-
mulative distribution function (CCDF) curves of the computed
PLs are obtained. Four sets of the CCDF curves are presented
in Fig. 4, from which the significant performance improvement
of the proposed Bayesian RAIM algorithms over the baseline

(a) Bayesian RAIM with fault exclusion

(b) Baseline RAIM

Fig. 3. Stanford diagrams of the proposed Bayesian RAIM algorithm with
fault exclusion in (a) and the baseline RAIM algorithm in (b). Plotted for
M = 8 and σn = 1 over 5 × 106 realizations, and with a 1 cm ×1 cm
pixel size. A dot that appears on the bottom right side of the diagonal line
represents an integrity failure (i.e., |x − x̂| > PL); the simulated IR of the
Bayesian RAIM (a) is much tighter to the desired bound ≤ TIR (10−3).

RAIM algorithm in obtaining tighter PLs can be clearly seen.
In addition, the importance of fault exclusion before PL com-
putation is revealed. Comparing the PL results given by the
Bayesian RAIM algorithms with and without fault exclusion,
we see that the large uncertainty introduced by the potentially
faulty measurements in the posteriors leads to larger PL results
(in a statistical sense), and the gap increases when σn increases
or/and when M decreases, because the uncertainty can be
reduced by providing more fault-free measurements or by
reducing the measurement noises. To better illustrate this
effect, in Fig. 5, the PL values at 99% percentile (given by
the intersections of the horizontal line at 10−2 with the CCDF
curves) obtained under all sets of simulations are shown.
Another interesting observation from Fig. 5 is that the 99%
percentile PL results given by any evaluated RAIM algorithms
seem to increase linearly with σn.
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Fig. 4. CCDF curves of PLs at two measurement noise levels.
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Fig. 5. PL at 99% percentile as a function of the measurement noise level.

VI. CONCLUSION

In this paper, we have developed Bayesian RAIM algorithms
for snapshot-type positioning problems in a 1D linear Gaussian
setting, which serves as a methodological validation. These
algorithms enable position estimation, multi-fault detection
and exclusion, and computation of PL based on exact posterior
distributions obtained through message passing along a factor

graph. Monte-Carlo simulations demonstrate that our proposed
algorithms achieve tight PLs while satisfying the given TIR re-
quirement, resulting in a significant performance improvement
over the baseline advanced RAIM algorithm. Based on these
promising results, we plan to extend the algorithms to the ToA-
based 3D positioning problem within the same framework.
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