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Analysis of Time-to-Lane-Change-Initiation
Using Realistic Driving Data

Sarang Jokhio , Student Member, IEEE, Pierluigi Olleja , Jonas Bärgman , Fei Yan , and Martin Baumann

Abstract— Lane changing is a complex, yet extremely common
driving manoeuvre. Studying lane changes can provide insight
into how long drivers wait after activating their turn signal
before changing lanes - a time that we call time-to-lane-change-
initiation (TTLCI). TTLCI can offer valuable insights into
driver behaviour prior to changing lanes. However, a better
understanding of TTLCI, particularly in real-world settings,
is lacking. To address this knowledge gap, we investigated TTLCI
using driving data collected on public roads in Gothenburg,
Sweden. We used the Kaplan-Meier (K-M) method and the
mixed-effect Cox Proportional Hazard (CPH) model (statistical
techniques from survival analysis) to comprehensively analyze
TTLCI and identify factors that significantly influence it. The
results of the K-M method indicate that most lane changes were
initiated within two seconds of activating the turn signal. The
mixed-effect CPH model showed that the speed of the lane-
changing vehicle, the type and direction of the lane change,
the presence of lead and lag vehicles, and the lag gap were
all significant factors. These findings provide new insights into
pre-lane-change behaviour and pave the way for future studies,
in part by improving current lane change models. Moreover,
the findings have implications for future regulations concerning
turn-signal usage by human drivers. Additionally, our results
can contribute to the development of algorithms for autonomous
vehicles by improving their ability to detect imminent lane
changes by surrounding vehicles.

Index Terms— Lane change, time-to-lane-change-initiation,
realistic driving data, mixed effect Cox model, autonomous
vehicles.

I. INTRODUCTION

LANE changing is a complex manoeuvre commonly per-
formed in everyday driving. For example, a driver might

change lanes for a discretionary reason, such as for the speed
advantage, or a mandatory reason, such as exiting a highway
or avoiding a lane closure. In all cases, the driver must
make various decisions before executing the lane change.
Decisions highlighted in various studies include selecting a
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target lane [1], communicating the intention to the surrounding
traffic [2], finding an appropriate gap [1], and selecting the
proper speed [3]. In addition, these studies have demonstrated
that lane change behaviour is influenced by a range of factors,
including the direction and type of lane change, the presence
of other vehicles in the target lane, and individual driver
characteristics.

Over the past few decades, lane-change research has mainly
focused on investigating the duration of an entire lane change
manoeuvre, gap acceptance (finding an appropriate gap in
the target lane; see fig 1), and the impact of lane changes
on surrounding traffic [1], [4], [5]. However, communicat-
ing the intention to change lanes, a crucial aspect of safe
driving has not been given as much attention. Typically,
drivers alert other drivers (particularly in the target lane)
of their intention to change lanes using a turn signal. This
action is mandatory in many countries worldwide, including
Germany and Sweden. However, studies (mainly conducted
in the United States (US) and China) have shown that many
drivers do not always use their turn signal while changing
lanes [6], [7], [8].

Recent studies have shown that using a turn signal before
initiating a lane change increases cooperative behaviour by
drivers in the target lane, such as opening up a gap for the vehi-
cle to move into [2], [9]. Thus signalling can improve traffic
safety and promote drivers’ cooperative behaviour. In addition,
Ponziani [10] pointed out that proper turn signal usage could
avoid many crashes that occur during lane changing. Although
the literature does not provide an exact definition for “proper
turn signal use” it generally means activating the signal before
initiating a lane change.

In the US, a few states (such as California and Idaho) require
drivers to use a turn signal five seconds before changing
lanes [11], [12]. However, many countries do not have clear
rules about how long a driver should turn on the indicator
before the lane change. For example, according to section 7,
rule 5 of German Road Traffic Regulations, a driver should
signal the lane change intention in good time [13]. However,
individual drivers might interpret “good time” differently,
which makes the communication of the intentions between
drivers unclear and may further lead to misunderstandings and
even crashes. On the other hand, the German Federal Ministry
of Transport and Digital Infrastructure (BMDV) has recently
implemented a regulation mandating that autonomous vehicles
(AVs) activate their turn signals at least three to five seconds
before initiating a lane change [14].

The current literature on the communication of intention
during a lane change is mainly focused on the frequency of
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Fig. 1. A typical discretionary lane change scenario. The red vehicles are the ones whose impact is evaluated on LC vehicles. Relevant gaps are measured
when LC is initiated. The terms in the figure will be used throughout this paper.

turn signal usage [6], [8], [10]. However, recordings of real
traffic situations in which drivers use the turn signal before
starting to change lanes can be used to provide additional
helpful information about driver behaviour. The details could
help answer the important question, “How long after signalling
do drivers typically wait before starting a lane change?” We
refer to this time as time-to-lane-change-initiation (TTLCI).
TTLCI information could help researchers determine whether
drivers use turn signals in time to warn other road users.
Some drivers might use the turn signal to follow the law
yet entirely ignore its fundamental purpose of warning other
drivers in adequate time and starting their lane change quickly
after signalling. In this situation, a lag vehicle driver (see
figure 1) reacting to the lane change might decelerate abruptly,
disrupting traffic and creating the potential for a collision.

Kaufmann et al. [2] found that the lag vehicle driver
prefers an early warning (at least 20 meters before) from
the lane-changing vehicle driver. Furthermore, in their study,
a longer TTLCI was perceived as more cooperative when
the turn signal was used later. The appropriate use of turn
signals will also be crucial in future mixed traffic scenarios
when autonomous vehicles operate alongside conventional
human-driven vehicles on shared roads. AVs rely on other
vehicles’ direct communication (such as turn signals) to pre-
dict an upcoming manoeuvre [15]. Therefore, it is necessary
that drivers consistently use turn signals when changing lanes
in mixed traffic scenarios to facilitate the safe and efficient
movement of both human-driven and AVs. In the early stages
of deployment, AVs will likely be introduced on high-speed
roads such as motorways and highways. Lane-changing
maneuvers are a common phenomenon on high-speed roads.
As such it is necessary to investigate different characteristics
of lane changing (e.g. TTLCI) on these roads. An improved
understanding of lane changing characteristics will not only
contribute to improved lane-changing models but also to the
development of AV algorithms designed to understand human
driver behavior.

The importance of an adequate TTLCI and its potential
impact (both in current and future mixed traffic) is obvious.
Based on the evidence provided in the current literature, it is
also clear that a substantial proportion of drivers are not using
their turn signals, or at least not properly, before initiating
a lane change. The duration of the typical TTLCI and what

factors affect it are currently unknown. Furthermore, most
existing traffic regulations lack clear guidelines for the proper
use of turn signals by human drivers. For these reasons,
it is highly relevant to investigate drivers’ turn signal usage,
ideally in real traffic on real roads. Therefore, this paper
aims to investigate drivers’ TTLCI during a lane change
situation. Furthermore, the paper aims to investigate which
factors impact the TTCLI.

We used survival analysis (see section III) to analyze the
existing data on TTLCI because it is well-suited for time-
to-event data. Survival analysis, widely used in the medical
sciences, has recently gained popularity in transportation and
traffic engineering [16] since it provides better explainability
for the data than other methods [16], [17], [18]. For example,
many researchers have used hazard-based duration models (a
survival analysis technique) to study incident duration [19],
[20], [21]. In the last decade, survival analysis has also
attracted the attention of researchers studying lane change and
overtaking behaviour. For example, Vlahogianni [22] used sur-
vival analysis to model an overtaking manoeuvre using driving
simulator data in order to investigate the factors influencing the
manoeuvre’s duration on two-lane highways. More recently,
survival analysis has also been used to study lane change
duration. For example, Wu et al. [23] used Cox regression
analysis (a semi-parametric method of survival analysis) to
analyze mandatory lane change duration data collected by
an uncrewed aerial vehicle in a freeway construction area.
Li et al. [24], used survival analysis to study the LC duration
and factors influencing it. Survival analysis was also used
in a study by Ali et al. [25] to quantify the impact of a
connected driving environment on safety during mandatory
lane-changing. It can be seen in the studies mentioned above
that survival analysis is a potent tool for extracting meaningful
information from time-to-event (or duration) data. Therefore,
we chose this method to analyze the TTLCI.

The remainder of this paper is structured as follows.
Section II-B describes the data (including descriptive statistics
in subsection II-B) and the detailed methodology used to
identify the LC trajectories. Next, a detailed overview of the
survival analysis techniques and their mathematical formula-
tion is presented in Section III. Third, the survival analysis
results are provided in Section IV. Finally, the discussion and
conclusion are provided in Section V.
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TABLE I
VARIABLES AND THEIR DESCRIPTIONS

II. DATA DESCRIPTION

The purpose of our study was to analyze TTLCI in
real-world scenarios under clear conditions, such as during
clear weather and daytime. AVs are also likely to be deployed
under these conditions. Therefore, the data used in this study
was obtained from a large driving dataset collected as part of
the L3Pilot Project. [26]. The European Commission funded
the L3Pilot project from September 2017 to October 2021 to
test the viability of automated driving on public roads. The
dataset used in this study was a subset of data collected by
Volvo Car Corporation on the urban motorway known as the
ring road in Gothenburg, Sweden. The vehicles (Volvo XC90s)
were fitted with cameras facing out toward traffic (front and
rear) and in towards the driver, as well as radars, accelerome-
ters, angular rate sensors, and GPS. The data from the vehicle’s
Control Area Network (CAN) bus, which included details such
as turn indicator usage and vehicle speed, were also obtained.
Additionally, information about the longitudinal and lateral
position and speed of surrounding vehicles, as well as traffic
density, was collected using radars.

The data used in this study are different from data com-
monly referred to as “naturalistic driving data.” Naturalistic
driving studies (e.g., SHRP2 [27] in the United States and
UDRIVE [28] in Europe), typically involve the unobtrusive
and uncontrolled collection of data over extended periods of
time during everyday driving – the driving being performed
as part of the drivers’ everyday lives. The data we used
were collected during one to a few journeys, each lasting
approximately 60 minutes each. However, the data collection
process was uncontrolled and relatively unobtrusive during
those drives, aiming to collect reasonably naturalistic driving
behaviors. Therefore, we refer to this dataset as “realistic
driving data” since the data were also collected on actual
roads but not during everyday driving, distinguishing it from
commonly known “naturalistic driving data” and “test track
data”.

The L3Pilot data were divided into two groups: (1) base-
line (manual driving, performed solely by the driver) and
(2) treatment (autonomous driving functions were in use).
In the treatment group, only “accredited drivers” were
involved. In this context, the term “accredited” refers to drivers
who hold certification for operating prototype vehicles for
testing specific features [26]. The accredited drivers were
compensated for their driving time. In the baseline group,

both accredited and regular drivers participated. The regular
drivers were recruited within the company [26]. Accredited
drivers typically have extensive driving experience compared
to regular drivers. Our research aimed to examine the TTLCI in
the absence of any impact from autonomous driving features;
therefore, we only considered the baseline trips in this study.

Table I shows the different variables and their notation used
in this study. We had considered incorporating the type of
surrounding vehicle in our analysis. Initially, our strategy was
to determine the type of the vehicle based on its dimensions,
specifically its length and width. However, we found a lot of
missing data regarding the vehicle’s length and width in the
original database. To prevent potential bias resulting from data
imputation, we ultimately chose to exclude this variable. The
road type was not manipulated in the L3Pilot, and all were
vehicles operated only on a single type of road in Gothenburg,
i.e., an urban motorway. Therefore, variables like road type
and lane width were also excluded from the analysis. The
initiation and end of a lane change were identified from the
lane-changing vehicle data, described in detail below.

A. Identification of Lane Change Initiation and End

During a lane change, a driver moves laterally from one lane
to another while driving straight. Over the past few decades,
different data collection methods have been used to study
lane change behaviour, including cameras mounted on high-
rise buildings, drones, driving simulators, and instrumented
vehicles. Therefore, it is very challenging to identify the start
of the lateral movement from the time-series vehicle trajectory
data, so there are several definitions for it. The choice of a
particular definition is determined by the availability of the
input variables in the data set [29]. The most commonly used
variables to define the start and end points of lane change are
lateral distance, lateral velocity, and lateral acceleration [4],
[7], [8], [24], [30], [31], [32]. For example, Wang et al. [31],
used heuristic rules to identify lane change trajectories from
the Next-Generation Simulation (NGSIM) data set, collected
by Federal Highway Administration [33], using synchronized
digital video cameras along the highway. They used a lat-
eral velocity threshold of -0.2 m/s was used to identify
the initiation and completion of a lane change. Similarly,
Mullakkal-Babu et al. [32] used a 0.33 m/s lateral veloc-
ity threshold to determine the initiation and completion of
a lane change from NGSIM dataset. On the other hand,
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Dang et al. [7], used data collected in Beijing, China using
an instrumented vehicle. Their definition of lane change was
based on changes in lateral position (between 0 and 3.75 m);
the vehicle was said to have crossed the lane if the value of
the lateral position was greater than 2.5 m. A review paper
by Xi and Crisler [29] provides an overview of the studies
defining lane change start and end from 1970 to 2012.

In this particular study, we chose to define the initiation and
end of a lane change based on thresholds of the LC vehicle’s
lateral velocity and lateral distance with respect to the lane
markings. We selected lateral velocity and lateral distance
as our key variables because they show distinct patterns for
identifying lane change initiation and completion, compared to
other variables like lateral acceleration or steering angle. In our
study, a ‘distinct pattern’ in either lateral velocity or lateral
distance is characterized by well-defined lows, highs, and flat
segments in the time-series data. Specifically, a substantial
increase or decrease in the slope indicates the onset of a lane
change, whereas flattening of the curve after that, indicates
that the lane change has been completed. To set the thresholds,
an essential part of the extraction process, we initially analyzed
the lateral velocity and lateral position of the LC vehicle
during free driving. Free driving in L3Pilot is defined as “the
subject vehicle following its path without being influenced by
other vehicles in its path”. This step was performed to account
for noise as the vehicle fluctuated within its lane, even when
it was not changing lanes or being influenced by surrounding
vehicles. As expected, we found that drivers’ lateral velocity
(and, correspondingly, the lateral position) varied somewhat
during free driving. Our analysis found that during 90% of the
free driving time the lateral speed was below 0.17 m/s, both
to the left and to the right. Additionally, the lateral position
within the lane was within 0.36 m to the left and 0.42 m to
the right of the centre of the lane 90% of the time.

In this study, the lane change scenarios were first filtered
using the scenario definition provided in L3Pilot, which con-
sidered the distance to lane markings and compared it with
some threshold [26]. The next step was to determine a suitable
threshold for the initiation and end of a lane change. Previous
studies have assumed that the lateral velocities of a vehicle
at the beginning and end of a lane change are zero [4], [24].
However, this assumption, or the use of too low a threshold,
can lead to the inclusion of noise in lane change trajectories,
which could result in the algorithm misidentifying the start
or end of a lane change. We tested different lateral velocity
thresholds from 0.10 m/s to 0.30 m/s in increments of 0.05 m/s.
We also verified random cases by watching the videos to see
if a lane change actually occurred. With the higher thresholds
(0.20 m/s to 0.30 m/s), the vehicle had typically already
crossed the lane boundary before the lateral velocity criteria
were fulfilled. Thus for our analyses, we used a lower lateral
velocity threshold of 0.15 m/s–ensuring that the vehicle was
still in the current lane at the start of the lane change while
largely avoiding false positive identifications of lane changes.

However, a lateral velocity threshold is not sufficient to
define the initiation of a lane change because drivers might
change lanes slowly without ever reaching the lateral velocity
criterion. Thus an additional criterion is needed. A lateral

Fig. 2. The number of lane changes per driver ID. The x-axis represents driver
IDs, which range from 1-92 for regular drivers and 101-111 for accredited
drivers. Individual ID labels have been omitted for clarity due to the high
number of individual IDs. The lane changes are sorted in the order they were
extracted (i.e., from one and onwards).

distance threshold of 6 cm from the lane marking was selected,
calculated by subtracting half of the vehicle width from the
distance between the centre of the vehicle and lane markings.
Note that most of the lane change starts were determined based
on the lateral velocity threshold; the lateral distance criterion
determined only a small portion of the overall lane changes.
Two additional criteria determined the end of the lane change:
when the vehicle’s lateral velocity remained below 0.15 m/s
for at least one second or when the lateral distance to the
lane marking exceeded 6 cm after the vehicle had moved
to the target lane. The algorithm evaluated all four criteria
to identify lane change initiation and endpoints. It should be
emphasized that the primary focus of this investigation is on
the initiation phase of the lane change maneuver rather than
the entire process.

B. Descriptive Statistics

In total, 1791 lane change cases were extracted. How-
ever, only the 1073 cases in which the driver used the turn
indicator before starting a lane change were considered in
this study. Since survival analysis does not model a negative
time duration–in cases in which the driver used an indicator
after starting a lane change–those cases were omitted. In the
dataset, the average age of drivers was 40.2 years, with a
range of 23 to 64 years. Out of the 103 drivers, 71 were
male and 32 were female. Approximately 70% of the drivers
had over ten years of driving experience, while the rest either
had less or an unstated number of years. The distribution
of the number of lane changes per driver was imbalanced,
as seen in Figure 2. Although only 11 of the 103 drivers
were accredited, they accounted for nearly 40% of the lane
changes. This disparity was due to the fact that the accredited
drivers drove more (multiple times per day) and thus generated
more driving data than the regular drivers. On average, single
journeys by regular drivers lasted approximately 60 minutes.
In comparison, in baseline driving, accredited drivers com-
pleted multiple journeys per day, collectively contributing to
several hours of data per driver. Given the substantial number
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TABLE II
DESCRIPTIVE STATISTICS OF LANE CHANGE WAITING TIMES

Fig. 3. Distribution of Time-to-lane-change-initiation, defined as the time
from the start of turn signal until the initiation of a lane change.

of lane changes from the accredited drivers, we opted to
include their data to avoid the loss of potentially valuable
insights. However, we conducted supplementary analysis with
individual datasets (accredited vs regular drivers) to ensure
that the inclusion of both groups did not introduce any
biases or obscure behavioural patterns unique to each group
(see the Appendix).

Table II shows the categorization of the lane change cases
and the respective descriptive statistics; Figure 3 shows the
overall distribution of TTLCI.

Table II shows that most lane changes occurred toward the
right lane. Lane changes to the right occur mainly for two
reasons: (a) the driver is taking an exit from a highway, or
(b) the driver is moving back to the right (slower) lane after
making a lane change to the left to avoid a slow-moving
vehicle. The lane changes to the right also took longer to
initiate than those to the left. In everyday driving, most of the
drivers perform a lane change to an adjacent lane. However,
in some cases (e.g., when taking an exit), a driver may
perform a lane change across multiple lanes. The table shows
that MLC’s mean value is greater than SLC’s. This indicates
that drivers wait longer before initiating a lane change when

crossing multiple lanes. The delay might be caused by the
presence of lag vehicles in both the adjacent and target lanes,
which the driver must consider. Drivers also wait longer if
there is a lag vehicle in the target before initiating a lane
change for all cases.

III. SURVIVAL ANALYSIS

Survival analysis, also known as time-to-event or time-
to-failure analysis, is a collection of statistical methods in
which the dependent variable is the time until an event occurs.
Survival analysis is popular in medical studies, where the
outcome of interest is often the time to death–for example,
after a patient has been diagnosed with cancer [17]. Survival
analysis can demonstrate how the probability of survival (also
known as the survival function) changes over time. Survival
analysis can also be applied to other fields when time-to-event
data are relevant, so it is well suited to the study of lane change
initiation data as in our case. To be consistent with the method
terminology, we use the term survival function to refer to the
probability of initiating a lane change. The survival analysis
can handle highly skewed and censored data. Here missing
data are considered ‘censored’; for example, when the start
of the turn signalling is known, but the lane change initiation
time is missing. For details on censored data, see the work by
Gijbels [34].

While the survival function provides information about how
long an individual has survived after exposure, the hazard
function provides the opposite information and focuses on
the failure, i.e., on the occurrence of a particular event [35].
In our study, the survival function focuses on the likelihood
of a lane change not occurring within a given time frame.
The starting point for this time frame is when the driver
activates the turn signal. The survival function S(t) estimates
the probability that a lane change has not yet happened by
the specified time t [17]. This can help understand how long
drivers typically wait before initiating a lane change after using
their turn signal. For our purposes, the survival function S(t)
is the probability that the initiation of a lane change survives
from the time origin (here, after using the turn signal) to some
specified time t in the future. The hazard function h(t), on the
other hand, examines the instantaneous rate of lane change
initiation at a specific time t , given that a lane change has not
occurred up to that point. It represents the probability that a
driver will initiate a lane change exactly at time t , assuming
they haven’t changed lanes before that time [17].

There are many different parametric and non-parametric
methods for estimating the survival function. However, the
nonparametric methods that make no assumptions about the
underlying data distribution are the most popular. Among
those, the Kaplan-Meier (K-M) method is widely used to
estimate and visualize the survival function [36]. The K-M
method is a powerful method for estimating the probabilities
of a particular event over a period of time. It allows the visu-
alization of the overall trend as well as comparisons between
different groups. The survival function in K-M method is
computed by Equation (1).

St = St−1 ∗
Nt −Et

Nt
(1)
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Fig. 4. K-M estimate of survival probability for all variables. The shaded area represents the confidence interval. The dotted line represents mean survival
time (MST). “Strata” refers to the grouping of individuals based on a categorical variable (in this case entire group is considered).

Here, Nt represents the total count of lane changes that are
subject to the event at a given time t . Conversely, Et is the
count of occurrences (in this context, instances of lane change
initiations) at the same time t .

Like linear regression, the survival analysis method can
also assess the impact of several predictors on the dependent
variable. Cox proportional hazards (CPH) regression is one
of the more widely used regression techniques for survival
analysis [37]. In contrast to linear regression, CPH regression
models the relationship between a time-to-event response
variable and one or more predictors. That is, CPH regression
considers the effects of time on the response variable. The
CPH regression is semi-parametric, so it does not make any
assumptions about the data distribution. However, it does make
a parametric assumption about the effect of the independent
variables (here, TTLCI) on survival time. Using the observed
time-to-event data, the CPH regression builds a mathematical
relationship between independent variables and the hazard
function. The hazard function provides insights into the prob-
ability of an event’s occurrence (here, initiation of a lane
change), given that the participant has survived (in this case
waited) up to a specific time [38].

We discussed in the data description section regarding
variability and imbalance in the dataset. To better account for
driver level variablity we used mixed effect CPH model. Mixed
effect model (also known as the Frailty model) is an extension
of the standard CPH model [39]. The standard CPH model
assumes that the hazard function is proportional to a baseline
hazard function multiplied by an exponential term of covari-
ates (predictor variables). This model assumes that the effects
of these covariates are fixed across all individuals. Mixed
Effects Cox Models, on the other hand, introduce random
effects or frailties to account for unobserved heterogeneity or
shared characteristics among clusters of individuals (e.g., lane
changes from different drivers) [39]. The mixed effect CPH
model is given by Equation 2.

hi (t) = h0(t) ∗ exp(6(βn Xni) + ui ) (2)

where hi (t) represents the hazard function for the i-th subject
at time t , h0(t) is the baseline hazard function, βn represents
the coefficients of the fixed effects (covariates) Xni , and ui
represents the random effects for the i-th subject. The fixed
effects are weighted by their respective coefficients, and the
random effect ui accounts for the variability among subjects
(Driver ID) that is not captured by the fixed effects. The
baseline hazard represents the hazard rate when the values
of all continuous variables are set to zero and all categorical
variables set to their reference (baseline) level. The regres-
sion coefficients are estimated using maximum likelihood
estimation [40].

IV. RESULTS

This section provides the detailed survival analysis of the
TTLCI. Table II shows all the categorical variables and their
frequencies. The “*” sign represents the baseline of the respec-
tive variable, to which all the other levels are compared [41].
Since we only used cases with a positive waiting time, no case
was dropped from the analysis. The model was implemented
using Surival [42] and coxme [43] packages in R programming
language [44].

A. Kaplan-Meier Survival Estimation

The estimation of the K-M survival function (represented by
the step-like curve) of TTLCI is presented in Figure 4. The
x-axis represents TTLCI in seconds and the y-axis represents
the probability of TTLCI. The shaded areas in the graph
represent the confidence intervals (CIs). The probability of
survival in the beginning (at 0 seconds) is 1.0, indicating that
no lane change initiation event has occurred yet. However,
as the time increases, the probability of survival decreases,
indicating an increase in event occurrences (initiations of a
lane change). The graph shows that the survival function
rapidly decreases over the first two seconds. The steep decline
implies that most lane changes were initiated within this
time period after the turn signal was activated. In fact, this
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Fig. 5. Kaplan-Meier estimate of survival probability for lane change Categories as per Table II.

time frame accounts for almost 90% of the total lane change
cases. The median survival time, or in this case the TTLCI,
is shown by the intersection of the dotted horizontal line
(at 0.5) and vertical line (at 0.7 s). That is, 50% of lane
changes were initiated within 0.7 seconds. After 2 seconds,
the probability gradually decreases, indicating that fewer lane
change are initiated as time goes on. Approximately 8% of
lane changes were initiated between 2 and 4 seconds, and
only 2% were initiated more than 4 seconds after the turn
signal was activated.

As mentioned earlier, the K-M survival curve is also helpful
for comparing different groups. Figure 5 displays the individ-
ual K-M survival curves for the variables in Table II.

The spaces between the curves indicate that the two groups
have different survival experiences; one group has a higher
probability of survival over time than the other. In the context
of our study, this implies that one group has a longer TTLCI
than the other group. To determine whether the difference

between the two groups is statistically significant, the non-
parametric log-rank test could be used [45]. Given the detailed
assessment of the variables using Cox regression presented in
Section IV-B, we decided not to use the log-rank test here. The
decision to use Cox regression instead of the log-rank test was
driven by several factors. Firstly, Cox regression allows for
the simultaneous assessment of multiple variables and their
impacts on survival times, offering a more comprehensive
understanding of the factors influencing TTLCI. Secondly, Cox
regression provides hazard ratios, which quantify the relative
effect of each variable on the hazard function, giving us
more insight into the relationships between the variables and
the TTLCI. Lastly, Cox regression can handle time-varying
covariates and adjust for confounding factors, enabling a more
robust data analysis. Therefore, due to the advantages offered
by Cox regression over the log-rank test, we decided to focus
on this statistical method in our survival analysis to compare
survival times between groups.
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TABLE III
SCHOENFELD RESIDUAL TEST RESULTS

As stated in section II-B, the 11 accredited drivers per-
formed nearly 40% of the lane changes. This imbalance is
also reflected in the K-M graph as shown in figure 5f. The
graph suggests that the survival probability is higher (TTCLI
is shorter) for accredited drivers, with a clear separation of
the two curves. However, these results should be interpreted
with caution, given the imbalance in sample size between the
two groups. To better account for the differences between the
two groups we included Driver Type (accredited vs. regular
drivers) as a predictor (fixed effect) in the CPH regression
model (see Section II-B).

B. Cox Proportional Hazard Regression

One major assumption in the CPH model is that the hazard
ratio remains unchanged over time with different predictor
variables or their respective levels [35]. To test this assump-
tion, we used the Schoenfeld residual approach [46], which
is one of the most widely used methods for assessing the
PH assumption [47]. The proportional hazards assumption
implies that the hazard ratio for any two individuals should
remain constant over time. If this assumption holds, the scaled
Schoenfeld residuals should not exhibit any systematic pattern
or trend with respect to time. It calculates the chi-squared test
statistic and associated p-value for each predictor variable to
test the null hypothesis that there is no correlation between the
residuals and time. The Schoenfeld residual test results are
presented in Table III. The output shows the global p-value
as well as for each predictor variable. In this case, none of
the p-values are below 0.05, which means there is no strong
evidence that the proportional hazards assumption is violated
for any of the predictor variables.

Table IV provides information about the model fit, which
can be helpful when assessing the performance and signifi-
cance of the model. The “Null” model represents the baseline
model, which does not include any predictors. The “Inte-
grated” model only includes fixed effects (i.e., predictors). The
“Fitted” model is the mixed-effect CPH model that includes
both fixed effects and random effects. The log-likelihood is the
natural logarithm of the likelihood function, which quantifies
the probability of observing the data given a particular set of
model parameters. The BIC (Bayesian Information Criterion)
is used for model selection and comparison by considering
both the goodness of fit and the complexity [48]. When com-
paring models, a higher log-likelihood and lower BIC values
are preferred. Based on log-likelihood and BIC criteria, we can

TABLE IV
MODEL COMPARISON

TABLE V
RANDOM EFFECTS

see that the mixed-effect Cox model (represented as Fitted)
performed better compared to the “Null” and “Integrated”
models.

Table V shows the results model results for random effects
for the intercept Driver ID. Recall from section III that the
random effects account for the variation in the data that is not
explained by the fixed effects. Adding random effects allows
each driver to have a different baseline hazard rate rather than
assuming that all drivers share the same baseline hazard rate.
The distribution of the random effects is assumed to be Gaus-
sian (or normal), with a mean value of zero [43]. The standard
deviation (one standard deviation above the mean) of the
random intercept, in this case, is 0.374. A unique characteristic
of the mixed-effects Cox model is that the standard deviation
of the random effect can be directly interpreted [43]. The
value of 0.374 corresponds to a relative increase in the prob-
ability of the event happening, given by exp(0.374) = 1.45.
This suggests that for a driver who is one standard deviation
above the mean, there is almost a 45% increased probability
of the event (initiating a lane change) occurring compared to
the average probability across all drivers.

Finally, the model results for the fixed effects are presented
in Table VI. The column ‘Coefficients’ shows the regression
coefficients and the column ‘p-value’ shows the significance.
The column ‘Exp(Coeff)’ shows the hazard ratio. The hazard
ratio was computed using an exponent of the regression
coefficient. In the context of a categorical variable, the hazard
ratio evaluates the relative probability of an event happening
for a specific category in comparison to another category. For
a continuous predictor variable, the hazard ratio indicates the
multiplicative change in the probability of the event occurring
for every one-unit increment in that predictor. A hazard ratio
exceeding one signifies an increased probability of the event
occurring. In other words, the higher the hazard ratio, the
more likely the lane change initiation will occur. Conversely,
a hazard ratio of less than one indicates that a unit increase for
a particular variable will decrease the hazard. A hazard ratio
of one is associated with no effect on the event occurrence.

Results of the CPH model show that six out of ten vari-
ables significantly impacted the hazard: speed, lane change
direction, lane change type, presence of the lead vehicle and
the lag vehicle, and the lag gap. However, the remaining
variables (i.e., presence of the rear vehicle, the rear gap,
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TABLE VI
COX MIXED-EFFECTS MODEL RESULTS

overall traffic density, and driver type) had no significant
impact on the hazard. Recall from Section III that the hazard
function estimates the probability that an event (in our case,
the initiation of lane change) has occurred. The regression
coefficients predict the hazard for the event as a function of the
predictor variable in the model. They represent the changing
hazard when the continuous predictor variable is changed by
one unit (or compared to baseline in the case of a categorical
variable), holding all the other predictor variables constant.
A positive coefficient shows a positive relationship between
the hazard for the event and the predictor variable: the higher
the positive value of the predictor variable, the greater the
hazard for the event. A higher hazard indicates a lower survival
time (in our case, a shorter TTLCI). Conversely, a negative
regression coefficient is associated with a negative relationship
between the hazard and the predictor variable: the higher the
value of the predictor variable, the lower the hazard for the
event, which translates into a longer survival time, or TTLCI.

The lane-changing vehicle’s speed has a positive coefficient,
indicating an increased hazard for the event to occur with
higher speeds; the drivers tend to wait less before initiating
a lane change with the higher the speed. Specifically, a one-
unit (km/h) increase in the vehicle’s speed increases the hazard
1.024 times. In other words, the probability of a lane change
initiation increases by 2.4% for each 1 km/h increase in the
vehicle speed.

The negative coefficient for lane change direction (baseline
level: left lane change) indicates a decrease in the hazard for
lane changes to the right. The decrease in hazard for the event
indicates a higher TTLCI. For a lane change to the right, the
hazard was reduced by a factor of 0.86 (or by 14%), implying
that drivers took longer to initiate a right lane change than a
left lane change. The lane change type (reference level: MLC)
positively correlated with the hazard. This indicates that the
drivers tended to initiate an SLC earlier than an MLC. In the
case of an SLC, the hazard increased 1.47 times (or by 47%)
compared to an MLC.

The presence of a lag vehicle (reference level: no lag
vehicle) was negatively associated with the hazard, implying
that the presence of a lag vehicle decreases the hazard by 26%.
However, when a lag vehicle was present, the hazard increased
by almost 16% with every unit increase in the lag gap,
indicating that the TTLCI value decreases as the lag gap
increases. Last but not least, the presence of a lead vehicle in
the target lane was also negatively associated with the hazard,

suggesting that its presence decreased the hazard by 18.2%.
This result implies that the TTLCI is longer when a lead
vehicle is present in the target lane.

V. GENERAL DISCUSSION

The overall goal of this paper was to conduct a detailed
analysis of time-to-lane-change-initiation (TTLCI) using sur-
vival analysis techniques. The TTLCI is the amount of time
a driver waits after activating the turn signal and before
initiating a lane change. In this study, we used the realistic lane
change data of Swedish drivers that was collected on public
roads in Gothenburg, Sweden. We used the Kaplan-Meier
method (graphical univariate analysis) and a mixed-effect Cox
proportional hazard model (a regression technique).

Our results show that, in most cases, a lane change was
initiated within two seconds after a driver indicated the inten-
tion to change lanes by using the turn signal. Although no
prior studies have specifically investigated TTCLI, a driving
simulator study by [2] manipulated the wait time (1, 2, and
3 sec). They defined wait time as the “Period from turn
signal start until the vehicle begins to change the lane.” It
is essentially the same as the TTLCI. Their results showed
that other drivers perceived a wait time of three seconds as
more cooperative. However, our results show that only a small
portion of lane changes were initiated after three seconds.
Furthermore, our results show that half of the total lane
changes were initiated within 0.7 seconds after the signaling
started. This timing indicates that the lane-changing drivers
typically were not using their turn signals properly. The drivers
may not be taking enough time to check their surroundings
before changing lanes. However, further research is needed to
understand why drivers initiate lane changes with improper
turn signal usage. While no precise definition of proper turn
signal use is commonly accepted in the literature, it is under-
stood to mean turning on the signal before initiating a lane
change. An example of proper turn signal usage is described in
California, USA’s traffic law, which requires drivers to activate
their turn signal at least five seconds before changing lanes.

This paper also investigated which factors have a statisti-
cally significant impact on the TTLCI and what effect they
have by applying a mixed-effect CPH model. The chosen
factors were determined by their potential influence on lane
change behavior in general, as reported in existing literature.
The mixed effect CPH model is an extension of the standard
CPH model, a popular survival analysis technique used to
model the relationship between the hazard function (hazard
rate) and explanatory predictor variables. The random effects
result showed a variation in the hazard rates across different
drivers. The variability in the baseline hazard rate across
different drivers suggests that some drivers have a higher risk
of the event occurring than others. In other words, some drivers
tend to initiate the lane change quicker than others. This
variability could be attributed to unmeasured factors specific
to the individual drivers. Future studies should investigate how
driver-specific characteristics affect the TTLCI.

The results for the fixed effects indicated that speed, lane
change direction, lane change type, presence of the lead vehi-
cle and the lag vehicle, and the lag gap significantly impacted
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the hazard function. The speed of the vehicle is a primary
motivation behind discretionary lane changes, as drivers may
change lanes to achieve a higher speed or to avoid slower
vehicles [49]. We show that higher lane-changing vehicle
speed was associated with a shorter TTLCI. While the effect
of speed on TTLCI has not been previously reported in the
literature, existing studies on lane change duration suggest
that an increase in speed leads to a shorter duration of lane
change [24]. Moreover, the speed of the lane-changing vehicle
has been shown to influence the surrounding vehicles [50].
Exploring a potential relationship between speed, TTLCI, and
lane change duration could be an interesting avenue for further
research.

The direction of the lane change is another important factor
that affects the overall lane change process. Previous research
pointed out that the direction does impact characteristics like
lane change duration [4], [6]. Our model results also showed a
significant difference in the TTLCI while making lane changes
to the right (higher TTLCI) compared to the left. One possible
explanation is that lane changes to the right often happen after
a driver overtakes (lane change to the left) the slow-moving
vehicle. Hence, the driver waits a bit longer before returning
to the original lane (i.e., the right lane). No prior literature
has been found on the difference in TTLCI for different lane
change directions.

In everyday traffic, the majority of lane changes involve
switching to an adjacent lane, commonly referred to as
single-lane changes (SLCs). However, drivers may also exe-
cute multiple-lane changes (MLCs) for various reasons, such
as taking an exit on a highway. Prior research has shown
differences in driver behaviour when performing MLCs as
opposed to SLCs [51]. Our findings similarly show a sig-
nificant difference in the TTLCI between SLC and MLC.
The TTLCI was longer for MLC than SLC, possibly due to
the increased complexity of the manoeuvre. When making
an MLC, the driver must account for vehicles in all the
target lanes before initiating the lane change, which may
require additional time. Therefore, we suggest considering
the type of lane change when examining driver behaviour in
lane-changing scenarios in future studies.

The presence of a lag vehicle, presence of a lead vehicle,
and the gap to the lag vehicle also significantly affected the
TTLCI. It took longer to initiate a lane change if a lag vehicle
was present in the target lane. However, if a lag vehicle
was present and the gap between the lag vehicle and the
lane-changing vehicle was increasing, the TTLCI was found
to be reduced. We could not find any previous studies that
provide insights on the correlation between accepting lag
gaps and TTLCI. However, research on gap acceptance at
unsignalized intersections has shown that drivers who wait
longer are more likely to accept smaller gaps [52], [53], [54].
Although gap acceptance at intersections and lane-changing
situations have their own distinct characteristics, there may be
similarities as well. In lane-changing situations, it is possible
that a driver may reject available gaps before accepting the
next one, similar to intersection gap acceptance. On Ger-
man autobahns, especially during moderate to high traffic,
there tends to be a substantial speed difference between

lanes [55], [56]. If a driver gets stuck behind a slower truck
(the speed limit for trucks is 80 km/hr) in the right lane, it can
be difficult to find a gap due to the high speeds in the left lane.
This gap acceptance behaviour may vary based on individual
driver comfort zones [57] and can be influenced by various
factors such as waiting times and time constraints (e.g., that a
driver is in a rush), but that is out of scope of this study.

Similar to the presence of a lag vehicle, the presence of a
lead vehicle was also found to increase the TTLCI. Overall,
these findings align with prior research [58, e.g.,], indicating
that the presence of neighbouring vehicles influences lane-
changing behaviour.

Within the L3Pilot project, both accredited and regular
drivers participated in the data collection process. The overall
data collection process was divided into baseline trips (both
types of drivers participated) and trips when the automated
driving functions were active. In this study, we only considered
the baseline trips but for both types of drivers. Due to the
considerable amount of lane changes by accredited drivers,
we chose to incorporate their data to preserve potentially
valuable insights. Nevertheless, we conducted a supplementary
analysis to check if merging both groups introduced any bias.
The comparison of the two groups showed consistent direc-
tions of the effect for eight of the nine variables and for six
of the variables which had a significant impact on the TTLCI
in the combined dataset, with varying effect sizes across the
variables and groups. These results suggest that despite their
inherent differences, there seem to be substantial similarities
in TTLCI behaviour between the two groups. A detailed
comparison of the results for both groups is provided in the
Appendix.

A. Implications

Our study provides detailed insights into driver behaviour
before initiating a lane change. The results could help improve
the current microscopic models of lane change decision-
making, which do not consider the waiting time (or TTLCI) as
an input parameter [59]. These models generally assume that
a lane change is initiated as soon as the decision by the driver
is made. However, as our results show, drivers also tend to
wait before initiating a lane change. The TTLCI information
can be incorporated in virtual simulation models (e.g. traffic
simulations [60] and counterfactual simulations [61]). Lane
change decision-making models considering TTLCI could
provide a more realistic simulation of lane change behaviour.

As mentioned in the introduction section, lane changes also
impact the traffic in the target lane [5, see,]. For example,
Wang et al. [8] found that 44% of drivers decelerated while
responding to a cut-in (a lane change where a vehicle abruptly
moves to the target lane in front of them). The lane change
behavior of human drivers (mainly how they use their turn
signals) could also have a severe impact on AVs in mixed
traffic, where AVs share the same road space as human-
driven vehicles. Previous studies have shown that conventional
vehicles will influence the performance of AVs [62] such as
when cutting in [63]. If a human driver initiates a lane change
without proper signalling, an AV might brake abruptly, causing
discomfort for its occupants and disrupting traffic [63], [64].
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For safe interaction with AVs in future mixed traffic, it is
important to improve our understanding of human drivers’
behaviour during lane changes and similar situations. An AV
should be able to interpret the intention of human drivers
and communicate its intentions when required. The TTLCI
information from this study can be used to develop new AV
algorithms (or improve existing ones) to detect and predict the
timing of upcoming lane changes.

As described in the introduction section, many countries
(including EU countries) currently lack detailed guidelines on
how to use turn signals, especially in lane change situations.
Although turn signals are mandatory in many countries, there
are no specific rules regarding the timing of the signal when
changing lanes. The goal of using turn signals before changing
lanes is to warn surrounding drivers and give them ample time
to react. Our results suggest that the majority of drivers initiate
their lane changes within two seconds after signalling their
intention. This duration is actually shorter than three to five
seconds, which is required by recent German regulations for
turn signal usage by AVs [14]. While our findings may not be
generalizable to the wider population, the methodology can be
used to investigate TTLCI in different countries.

B. Limitations and Future Work

While the data we used were collected on real roads, they
were limited to passenger cars. The characteristics of heavy
vehicles are different; hence we expect different lane change
initiation times. Based on the findings of previous studies,
it is anticipated that heavy vehicles will require a longer
time to initiate a lane change than passenger cars, as this
pattern has been observed in lane change duration [4], [65].
Given the greater impact of heavy vehicles on traffic, future
studies should consider studying their lane change initiation
behavior and comparing it to passenger cars. Our results
also show the influence of surrounding vehicles on the lane
change initiation behaviour of car drivers. However, we did
not examine the impact of different types of vehicles on
that behaviour. We expect, however, that car drivers’ lane
change initiation behaviour is different in the presence of
heavy vehicles.

Our dataset did not categorize motivation, which refers
to the difference between discretionary and mandatory lane
changes [66]. Future studies should consider motivation while
studying lane change initiation behaviour. We expect to see
a difference, with mandatory lane changes exhibiting quicker
initiation. This result is suggested by current studies, which
show that lane change behaviour (such as gap acceptance and
lane change duration) differs in discretionary and mandatory
lane changes.

The external environment also plays a crucial role in lane-
changing behaviour. The external factors can include but are
not limited to road environment (e.g., type of road), traffic
environment, and time of the day. In this paper, we only con-
sidered the impact of the traffic environment, i.e., surrounding
vehicles. Given that the data was gathered exclusively during
daytime on a single urban motorway–(the Gothenburg ring
road), neither light condition nor road type was manipulated in
the studies. However, it is worth noting that the first AVs (e.g.

SAE level 3) are being, or will be, deployed under daytime and
divided highway conditions. As this study aimed to support the
development of AVs, the limitation of excluding their manip-
ulation may not be that problematic. However, future studies
should include various types of roadways, such as motorways
and local roads, and different times of day to understand the
factors influencing TTLCI more comprehensively- but that
would be relevant mostly for the development of AVs further
in the future.

The interactions during a lane change are highly dynamic,
with the behaviours of the lane-changing vehicle and sur-
rounding vehicles being interdependent (i.e., exhibiting game
behaviour) [67], [68]. Within these complex interactions, there
may be cases where a driver is unable to initiate and complete
a lane change. For example, a driver might initiate a lane
change, but lag vehicle’s behaviour might change (such as
speed up), forcing the driver to abandon the lane change.
However, identifying such cases from datasets, like the one
we used, presents a significant challenge and was beyond
the scope of our study. Future research should consider these
specific scenarios and analyze their potential impact on lane
change initiation behaviour.

It is important to note that the data for this study were
collected exclusively in Gothenburg, Sweden. The country of
Sweden has its own unique set of road conditions, traffic
laws, and driving behaviours. Therefore, the results are most
directly applicable to similar settings (around other cities in
Sweden) and perhaps in neighbouring Scandinavian countries.
However, certain conclusions drawn from the study–such
as the influence of speed and direction of lane change on
TTLCI, could have broader applicability. In studies from
various countries, the speed of the lane-changing vehicle and
direction have been shown to influence the duration of the
lane change similarly [4], [24], [31]. Even though TTLCI and
lane change duration are not same thing, they are components
of the overall lane change process, and therefore, their results
should be comparable. While the data used in this study is
country-specific, the overall methodology and some of the key
findings could serve as a foundation for similar studies in other
countries.

Finally, the demographics of drivers could provide valuable
insights into their impact on TTLCI. However, our data set was
unbalanced in terms of participant numbers and lane change
cases, and age and driving experience data were only available
for regular drivers. That is, for accredited drivers, we only
had data on gender. Due to these data limitations, we did not
perform an analysis of these demographic factors in our study.
Future studies should consider including driver demographics
(such as age, driving experience, and driving style) with a
more balanced dataset.

APPENDIX

The supplementary models were run with two independent
datasets. The Table VII presents the standard deviations of the
random intercepts for regular and accredited drivers.

The random intercept represents the baseline hazard rate
for each driver, accounting for the individual differences not
explained by the fixed effects in the model. The results suggest
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TABLE VII
RANDOM EFFECTS FOR REGULAR AND ACCREDITED DRIVERS

TABLE VIII
COX MIXED-EFFECTS MODEL RESULTS FOR REGULAR DRIVERS

TABLE IX
COX MIXED-EFFECTS MODEL RESULTS FOR ACCREDITED DRIVERS

slightly more variability in the baseline hazard rates across
Non-Pro drivers than across Pro drivers. This could potentially
indicate that accredited drivers exhibit more consistent behav-
ior compared to regular drivers. Nonetheless, considering that
our dataset consists of only 11 accredited drivers compared to
92 regular drivers, additional research is needed to examine
the differences between the two groups thoroughly.

For the sake of comparison of fixed effects, we can use the
direction of the coefficient and its significance as represented
by the p-value in Tables VIII and IX.

Overall, it can be observed that for both cases, eight out
of nine variables have the same coefficient direction or sign,
except for the traffic density. However, the different coeffi-
cients between the two groups suggest varying intensities or
strengths of these patterns. The overall model, which combines
two datasets, also shows the same trend. It can be observed
that pro-driver table has more significant variables compared
to the non-pro. These differences can be attributed to several
factors, such as data imbalance, variance between subjects, and
effect size. In conclusion, both groups exhibit a similar trend
in TTLCI behavior with varying effect sizes. Therefore, we
include both groups in the overall model. Nonetheless, further
research is needed with a more balanced dataset regarding the
number of drivers and lane change observations.

ACKNOWLEDGMENT

The authors would like to thank the L3Pilot (EC grant
agreement: 723051) project for funding data collection and
Volvo Car Corporation for providing us access to it. They
also want to thank SAFER Vehicle and Traffic Safety Center

at Chalmers, Gothenburg, Sweden, for providing us with the
necessary facilities to extract data.

DATA AVAILABILITY

The datasets generated and/or analyzed during the current
study are not publicly available due to privacy concerns and
restrictions imposed by the data collection source

REFERENCES

[1] T. Toledo, H. N. Koutsopoulos, and M. E. Ben-Akiva, “Modeling
integrated lane-changing behavior,” Transp. Res. Rec., J. Transp. Res.
Board, vol. 1857, no. 1, pp. 30–38, Jan. 2003.

[2] N. Kauffmann, F. Winkler, F. Naujoks, and M. Vollrath, “‘What
makes a cooperative driver?’ Identifying parameters of implicit and
explicit forms of communication in a lane change scenario,” Transp.
Res. F, Psychol. Behaviour, vol. 58, pp. 1031–1042, Oct. 2018, doi:
10.1016/j.trf.2018.07.019.

[3] P. Nilsson, L. Laine, J. Sandin, B. Jacobson, and O. Eriksson,
“On actions of long combination vehicle drivers prior to lane changes
in dense highway traffic—A driving simulator study,” Transp. Res. F,
Traffic Psychol. Behaviour, vol. 55, pp. 25–37, May 2018.

[4] T. Toledo and D. Zohar, “Modeling duration of lane changes,” Transp.
Res. Rec., J. Transp. Res. Board, vol. 1999, no. 1, pp. 71–78, Jan. 2007.

[5] Z. Zheng, “Recent developments and research needs in modeling lane
changing,” Transp. Res. B, Methodol., vol. 60, pp. 16–32, Feb. 2014.

[6] S. E. Lee, E. C. Olsen, and W. W. Wierwille, “A comprehensive exam-
ination of naturalistic lane-changes: (733232011–001),” Amer. Psychol.
Assoc., Virginia Tech Transp. Inst., Transp. Res. Plaza, Blacksburg,
VA, USA, Tech. Rep. DOT HS 809 702, 2004. [Online]. Available:
http://doi.apa.org/get-pe-doi.cfm?doi=10.1037/e733232011-001

[7] R. Dang, F. Zhang, J. Wang, S. Yi, and K. Li, “Analysis of Chinese
driver’s lane change characteristic based on real vehicle tests in high-
way,” in Proc. 16th Int. IEEE Conf. Intell. Transp. Syst., Oct. 2013,
pp. 1917–1922.

[8] X. Wang, M. Yang, and D. Hurwitz, “Analysis of cut-in behavior
based on naturalistic driving data,” Accident Anal. Prevention, vol. 124,
pp. 127–137, Mar. 2019.

[9] T. Stoll, M. Lanzer, and M. Baumann, “Situational influencing
factors on understanding cooperative actions in automated driving,”
Transp. Res. F, Traffic Psychol. Behaviour, vol. 70, pp. 223–234,
Apr. 2020. [Online]. Available: https://linkinghub.elsevier.com/
retrieve/pii/S1369847819303572

[10] R. Ponziani. (Apr. 2012). Turn Signal Usage Rate Results: A Com-
prehensive Field Study of 12,000 Observed Turning Vehicles. [Online].
Available: https://www.sae.org/content/2012-01-0261/

[11] M. Ferreira. (2019). When to Use Hand and Turn Signals. Accessed:
Oct. 25, 2022. [Online]. Available: https://mwg.aaa.com/via/car/turn-
hand-signals

[12] CDMV. (Aug. 2020). Safe Driving Practices. [Online]. Available: https://
www.dmv.ca.gov/portal/handbook/california-driver-handbook/safe-
driving-practices/#:~:text=Signal%3A,blind%20spot%20before%20
changing%20lanes

[13] BMDV. (2021). StVO—German Road Traffic Regulations. [Online].
Available: https://bmv.digital/SharedDocs/DE/Anlage/K/StVO-Novelle-
2021.pdf?blob=publicationFile&v=2

[14] BMDV. (2022). Regulation on the Approval and Operation
of Motor Vehicles With Autonomous Driving Function in
Defined Operating Areas (Autonomous Vehicles Approval
and Operation Regulation—AFGBV). [Online]. Available:
https://bmdv.bund.de/SharedDocs/DE/Anlage/K/presse/008-verordnung-
automatisierte-autonome-fahrfunktion.pdf?blob=publicationFile

[15] B. Farber, “Communication and communication problems between
autonomous vehicles and human drivers,” in Autonomous Driving.
Berlin, Germany: Springer, 2016, pp. 125–144.

[16] S. Washington, M. Karlaftis, F. Mannering, and P. Anastasopoulos,
Statistical and Econometric Methods for Transportation Data Analysis.
Boca Raton, FL, USA: CRC Press, 2020.

[17] T. G. Clark, M. J. Bradburn, S. B. Love, and D. G. Altman, “Sur-
vival analysis—Part I: Basic concepts and first analyses,” Brit. J.
Cancer, vol. 89, no. 2, pp. 232–238, Jul. 2003. [Online]. Available:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2394262/

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

http://dx.doi.org/10.1016/j.trf.2018.07.019


JOKHIO et al.: ANALYSIS OF TIME-TO-LANE-CHANGE-INITIATION USING REALISTIC DRIVING DATA 13

[18] N. M. Kiefer, “Economic duration data and hazard functions,” J. Econ.
Literature, vol. 26, no. 2, pp. 646–679, Jun. 1988.

[19] D. Nam and F. Mannering, “An exploratory hazard-based analysis of
highway incident duration,” Transp. Res. A, Policy Pract., vol. 34, no. 2,
pp. 85–102, Feb. 2000.

[20] R. Li, “Traffic incident duration analysis and prediction models based on
the survival analysis approach,” IET Intell. Transp. Syst., vol. 9, no. 4,
pp. 351–358, May 2015.

[21] R. Li, F. C. Pereira, and M. E. Ben-Akiva, “Overview of traffic incident
duration analysis and prediction,” Eur. Transp. Res. Rev., vol. 10, no. 2,
pp. 1–13, Jun. 2018.

[22] E. I. Vlahogianni, “Modeling duration of overtaking in two
lane highways,” Transp. Res. F, Traffic Psychol. Behaviour,
vol. 20, pp. 135–146, Sep. 2013. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S1369847813000612

[23] J. Wu, S. Zhang, A. K. Singh, and S. Qin, “Hazard-based model of
mandatory lane change duration,” in Proc. CICTP. Shanghai, China:
American Society of Civil Engineers, Jan. 2018, pp. 805–811. [Online].
Available: https://ascelibrary.org/doi/10.1061/9780784480915.082

[24] Y. Li, L. Li, D. Ni, and Y. Zhang, “Comprehensive survival anal-
ysis of lane-changing duration,” Measurement, vol. 182, Sep. 2021,
Art. no. 109707, doi: 10.1016/j.measurement.2021.109707.

[25] Y. Ali, M. M. Haque, Z. Zheng, S. Washington, and M. Yildirimoglu,
“A hazard-based duration model to quantify the impact of connected
driving environment on safety during mandatory lane-changing,” Transp.
Res. C, Emerg. Technol., vol. 106, pp. 113–131, Sep. 2019.

[26] M. Penttinen et al., “Deliverable D3.2 of L3Pilot: Experimen-
tal procedure,” VTT Tech. Res. Centre Finland, Espoo, Finland,
Tech. Rep., Feb. 2019.

[27] TRB National Academy of Sciences. (2013). The 2nd Strategic High-
way Research Program Naturalistic Driving Study Dataset. [Online].
Available: https://insight.shrp2nds.us

[28] R. Eenink, Y. Barnard, M. Baumann, X. Augros, and F. Utesch,
“UDRIVE: The European naturalistic driving study,” Proc. Transp. Res.
Arena, vol. 32, pp. 1–10, Jan. 2014.

[29] Y. Xi and M. Crisler, “A review of lane change definitions and iden-
tification methods,” in Proc. Transp. Res. Board 92nd Annu. Meeting
Transp. Res. Board, 2013, pp. 1679–1691.

[30] E. C. Olsen, S. E. Lee, W. W. Wierwille, and M. J. Goodman, “Analysis
of distribution, frequency, and duration of naturalistic lane changes,” in
Proc. Human Factors Ergonomics Soc. Annu. Meeting, vol. 46, no. 22.
Los Angeles, CA, USA: SAGE, 2002, pp. 1789–1793.

[31] Q. Wang, Z. Li, and L. Li, “Investigation of discretionary lane-change
characteristics using next-generation simulation data sets,” J. Intell.
Transp. Syst., vol. 18, no. 3, pp. 246–253, Jul. 2014.

[32] F. A. Mullakkal-Babu, M. Wang, B. van Arem, and R. Happee, “Empir-
ics and models of fragmented lane changes,” IEEE Open J. Intell.
Transp. Syst., vol. 1, pp. 187–200, 2020.

[33] V. Alexiadis, J. Colyar, J. Halkias, R. Hranac, and G. McHale, “The next
generation simulation program,” ITE J. Inst. Transp. Eng., vol. 74, no. 8,
p. 22, 2004.

[34] I. Gijbels, “Censored data,” Wiley Interdiscipl. Rev., Comput. Statist.,
vol. 2, no. 2, pp. 178–188, 2010.

[35] D. G. Kleinbaum and M. Klein, Survival Analysis: A Self-Learning Text,
vol. 3. Berlin, Germany: Springer, 2012.

[36] J. T. Rich, J. G. Neely, R. C. Paniello, C. C. J. Voelker, B. Nussenbaum,
and E. W. Wang, “A practical guide to understanding Kaplan–Meier
curves,” Otolaryngol.-Head Neck Surg., vol. 143, no. 3, pp. 331–336,
Sep. 2010.

[37] D. R. Cox, “Regression models and life-tables,” J. Roy. Stat. Soc. B,
Methodol., vol. 34, no. 2, pp. 187–202, 1972.

[38] J. Hiller, “Evaluation of automated driving by large-scale piloting on
European roads—The L3Pilot project,” in Road Vehicle Automation.
Berlin, Germany: Springer, 2019, p. 75.

[39] A. Wienke, Frailty Models in Survival Analysis. Boca Raton, FL, USA:
CRC Press, 2010.

[40] F. S. Richards, “A method of maximum-likelihood estimation,” J. Roy.
Stat. Soc., Ser. B, vol. 23, no. 2, pp. 469–475, 1961.

[41] X. Chen, P. Ender, M. Mitchell, and C. Wells, “Additional cod-
ing systems for categorical variables in regression analysis,” UCLA
Academic Technol. Services, Tech. Rep., 2011. [Online]. Available:
https://stats.oarc.ucla.edu/spss/webbooks/reg/

[42] T. M. Therneau and T. Lumley, “Package ‘survival,”’ R Top Doc,
vol. 128, no. 10, pp. 28–33, 2015.

[43] T. M. Therneau, “Package ‘coxme,”’ R Package Version, vol. 2, no. 5,
2015. [Online]. Available: https://cran.r-project.org/web/packages/
coxme/coxme.pdf

[44] R Core Team. (2022). R: A Language and Environment for Statistical
Computing, R Foundation for Statistical Computin. [Online]. Available:
https://www.R-project.org/

[45] D. G. Kleinbaum and M. Klein, “Kaplan–Meier survival curves and the
log-rank test,” in Survival Analysis. Berlin, Germany: Springer, 2012,
pp. 55–96.

[46] D. Schoenfeld, “Partial residuals for the proportional hazards regression
model,” Biometrika, vol. 69, no. 1, pp. 239–241, 1982.

[47] P. M. Grambsch and T. M. Therneau, “Proportional hazards tests and
diagnostics based on weighted residuals,” Biometrika, vol. 81, no. 3,
pp. 515–526, 1994.

[48] J. Kuha, “AIC and BIC: Comparisons of assumptions and performance,”
Sociol. Methods Res., vol. 33, no. 2, pp. 188–229, Nov. 2004.

[49] E. Balal, R. L. Cheu, T. Gyan-Sarkodie, and J. Miramontes, “Analysis
of discretionary lane changing parameters on freeways,” Int. J. Transp.
Sci. Technol., vol. 3, no. 3, pp. 277–296, Sep. 2014.

[50] J. He, J. Qu, J. Zhang, and Z. He, “The impact of a single discretionary
lane change on surrounding traffic: An analytic investigation,” IEEE
Trans. Intell. Transp. Syst., vol. 24, no. 1, pp. 554–563, Jan. 2023.

[51] A. Kusuma, R. Liu, C. Choudhury, and F. Montgomery, “Lane-changing
characteristics at weaving section,” in Proc. Transp. Res. Board 94th
Annu. Meeting, vol. 94, 2015, pp. 49–55.

[52] T. Jenjiwattanakul and K. Sano, “Effect of waiting time on the gap
acceptance behavior of u-turning vehicles at midblock median openings,”
in Proc. Eastern Asia Soc. Transp. Stud., 2011, p. 314.

[53] S. Nabaee, “An evaluation of gap acceptance behavior at unsignalized
intersections,” M.S. thesis, School Civil Construct. Eng., Oregon State
Univ., 2011.

[54] P. C. Devarasetty, Y. Zhang, and K. Fitzpatrick, “Differentiating between
left-turn gap and lag acceptance at unsignalized intersections as a
function of the site characteristics,” J. Transp. Eng., vol. 138, no. 5,
pp. 580–588, May 2012.

[55] W. Brilon and M. Ponzlet, “Variability of speed-flow relationships on
German autobahns,” Transp. Res. Rec., J. Transp. Res. Board, vol. 1555,
no. 1, pp. 91–98, Jan. 1996.

[56] J. Geistefeldt, “Assessment of basic freeway segments in the German
highway capacity manual HBS 2015 and beyond,” Transp. Res. Proc.,
vol. 15, pp. 417–425, Jan. 2016.

[57] J. Bärgman, K. Smith, and J. Werneke, “Quantifying drivers’ comfort-
zone and dread-zone boundaries in left turn across path/opposite
direction (LTAP/OD) scenarios,” Transp. Res. F, Traffic Psychol.
Behaviour, vol. 35, pp. 170–184, Nov. 2015.

[58] S. Moridpour, G. Rose, and M. Sarvi, “Effect of surrounding traffic
characteristics on lane changing behavior,” J. Transp. Eng., vol. 136,
no. 11, pp. 973–985, Nov. 2010.

[59] M. Rahman, M. Chowdhury, Y. Xie, and Y. He, “Review of microscopic
lane-changing models and future research opportunities,” IEEE Trans.
Intell. Transp. Syst., vol. 14, no. 4, pp. 1942–1956, Dec. 2013.

[60] P. Hidas, “Modelling lane changing and merging in microscopic traf-
fic simulation,” Transp. Res. C, Emerg. Technol., vol. 10, nos. 5–6,
pp. 351–371, Oct. 2002.

[61] J. Bargman et al., “The UDrive dataset and key analysis results,”
UDrive Deliverable 41.1, EU FP7 Project UDrive Consortium, Chalmers
Univ. Technol., Gothenburg, Sweden, 2017. [Online]. Available:
https://doi.org/10.26323/UDRIVE_D41.1

[62] P. Bhavsar, P. Das, M. Paugh, K. Dey, and M. Chowdhury, “Risk analysis
of autonomous vehicles in mixed traffic streams,” Transp. Res. Rec., J.
Transp. Res. Board, vol. 2625, no. 1, pp. 51–61, Jan. 2017.

[63] R. Fu, Z. Li, Q. Sun, and C. Wang, “Human-like car-following model for
autonomous vehicles considering the cut-in behavior of other vehicles
in mixed traffic,” Accident Anal. Prevention, vol. 132, Nov. 2019,
Art. no. 105260, doi: 10.1016/j.aap.2019.105260.

[64] P. Zheng and M. McDonald, “Manual vs. adaptive cruise control—
Can driver’s expectation be matched?” Transp. Res. C, Emerg. Technol.,
vol. 13, nos. 5–6, pp. 421–431, Oct. 2005.

[65] X. Cao, W. Young, and M. Sarvi, “Exploring duration of lane change
execution,” Australas. Transp. Res. Forum, Oct. 2013. [Online].
Available: https://australasiantransportresearchforum.org.au/wp-
content/uploads/2022/03/2013_cao_young_sarvi.pdf

[66] M. Vechione, E. Balal, and R. L. Cheu, “Comparisons of mandatory and
discretionary lane changing behavior on freeways,” Int. J. Transp. Sci.
Technol., vol. 7, no. 2, pp. 124–136, Jun. 2018.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

http://dx.doi.org/10.1016/j.measurement.2021.109707
http://dx.doi.org/10.1016/j.aap.2019.105260


14 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

[67] F. Meng, J. Su, C. Liu, and W.-H. Chen, “Dynamic decision making
in lane change: Game theory with receding horizon,” in Proc. 11th Int.
Conf. Control (CONTROL), Aug. 2016, pp. 1–6.

[68] A. Ji and D. Levinson, “A review of game theory models of lane chang-
ing,” Transportmetrica A, Transp. Sci., vol. 16, no. 3, pp. 1628–1647,
Jan. 2020.

Sarang Jokhio (Student Member, IEEE) received
the B.E. degree in civil engineering from the Mehran
University of Science and Technology in 2016 and
the M.S. degree in transportation system engineering
from the Korea National University of Transporta-
tion in 2019. He is currently pursuing the Ph.D.
degree with the Department of Human Factors, Ulm
University, Ulm, Germany. He is also a part of the
SHAPE-IT project, which has received funding from
the European Commission’s Horizon 2020 Frame-
work Program under the Marie Skłodowska-Curie

Actions Initiative (Grant agreement 860410). His research interests include
human factors in transportation, the interactions of autonomous vehicles in
mixed traffic, and driver behavior modeling.

Pierluigi Olleja received the bachelor’s and master’s
degrees in automotive engineering from Politecnico
di Torino, Italy, in 2018 and 2020, respectively.
He is currently pursuing the Ph.D. degree with the
Unit Crash Analysis and Prevention (CAP), Divi-
sion of Vehicle Safety, Mechanics and Maritime
Department, Chalmers University of Technology,
Gothenburg, Sweden. His research interests include
the development of reference driver models to
be used as safety targets for autonomous driving
vehicles.

Jonas Bärgman received the Ph.D. degree in
applied mechanics from the Chalmers University of
Technology, Gothenburg, Sweden, in 2016. He is
currently an Associate Professor and leads the
Research Group Safety Evaluation, Division of Vehi-
cle Safety, Mechanics and Maritime Department,
Chalmers University of Technology. His research
interests include quantifying driver comfort zone
boundaries in everyday driving, via the under-
standing of why crashes occur (crash causation
mechanisms) and to develop the quantitative models

of driver behavior in critical situation, to the development and application
of the counterfactual (computer) simulation method to evaluate the safety
impact of driver behaviors, driver support and automated systems, and the
environment.

Fei Yan received the Ph.D. degree in human factors
from the University of Ulm, Ulm, Germany, in 2018.
She is currently a Post-Doctoral Researcher with the
Department of Human Factors, Ulm University. Her
main research interests include empirical investiga-
tion and the modeling of driver uncertainty when
changing lanes, trust in automation, and cooperation
in automated driving.

Martin Baumann received the Ph.D. degree
in psychology from the Chemnitz University of
Technology in 2001. He is currently a Profes-
sor and the Head of the Department of Human
Factors at Ulm University, Ulm, Germany. His
main research interests include the psychological
basis of human-machine interaction in different
domains, mainly traffic, human–robot interaction,
interaction with intelligent systems, and the devel-
opment and validation of concepts of cooperative
human–machine systems.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 


