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Abstract
Bayesian inference can quantify uncertainty in the predictions of neural networks using
posterior distributions for model parameters and network output. By looking at these posterior
distributions, one can separate the origin of uncertainty into aleatoric and epistemic contributions.
One goal of uncertainty quantification is to inform on prediction accuracy. Here we show that
prediction accuracy depends on both epistemic and aleatoric uncertainty in an intricate fashion
that cannot be understood in terms of marginalized uncertainty distributions alone. How the
accuracy relates to epistemic and aleatoric uncertainties depends not only on the model
architecture, but also on the properties of the dataset. We discuss the significance of these results
for active learning and introduce a novel acquisition function that outperforms common
uncertainty-based methods. To arrive at our results, we approximated the posteriors using deep
ensembles, for fully-connected, convolutional and attention-based neural networks.

1. Introduction

The user of an artificial neural-network wants to know when the prediction of the model is accurate and
trustworthy. When target ground truth is unavailable, as is usually the case, one must instead rely upon
surrogate measures that correlate with accuracy and trustworthiness in a robust way. Uncertainty
quantification aims to provide such measures. Recently there has been an intensive effort towards a better
understanding of uncertainty of neural-network predictions [1, 2]. To quantify this uncertainty in a way that
informs on the efficacy of the model, and to identify its sources, is of key significance in many applications of
machine-learning algorithms using neural networks, from real-time predictions to active learning [3–9].

When the outputs of neural networks can be viewed as probability distributions over possible output
values, certain distributional measures naturally capture the uncertainty of the network predictions. For
instance, if the output distribution is sharply peaked, one might expect the prediction to be accurate. To
which extent this expectation is borne out, depends not only on the model architecture and parameters, but
also on the input data (for example whether it is from a domain the model has knowledge about).

Bayesian inference [10] provides a theoretical framework to reason about the conditional distribution of
model parameters, and of the model output, given the available training data. More precisely, given a neural
network with parameters θ, a prior p(θ), and a training datasetD = {(x1,y1),(x2,y2), . . .} of pairs
(input, target), Bayesian arguments determine a distribution over the neural-network parameters p(θ|D)
[11]. This so-called posterior distribution tells us the probability of different model parameters given the
training dataset. Using this posterior distribution for the parameters, a corresponding posterior distribution
of the neural-network predictions,

p(y|D,x) =

ˆ
θ

p(y|θ,x)p(θ|D)dθ, (1)
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can be derived. The posterior predictive distribution in equation (1) is the marginalization over model
parameters θ, conditioned on a particular input x that is either previously unseen or contained in the
training dataset. Together, the posterior distribution of model parameters and the posterior predictive
distribution characterize the knowledge of the model, and their entropies provide measures of uncertainty.

The entropy of the posterior parameter distribution measures the uncertainty of the model parameters,
and as such is epistemic. Uncertainty stemming from the input data is often referred to as aleatoric, and it is
related to the entropy of the posterior predictive distribution [12]. Bayesian modeling makes the distinction
between epistemic and aleatoric uncertainty clear. The posterior probability p(θ|D) of the neural-network
parameters θ given the observationsD determines the epistemic uncertainty. The aleatoric part, by contrast,
is determined by the likelihood p(y|θ,x) given model parameters θ and input data x. The entropy of the
posterior predictive distribution in equation (1) contains through the two factors in the integrand a mixture
of aleatoric and epistemic uncertainty, referred to as predictive uncertainty.

Hence, the decomposition of uncertainty into aleatoric and epistemic parts can be quantified by the
entropy of the posterior predictive distribution in equation (1), containing both aleatoric and epistemic
contributions, and the posterior parameter distribution p(θ|D). The epistemic uncertainty associated with a
particular input x can then be quantified by the conditional mutual information I(θ;y|x,D) =H(θ|D)−
Ep(y|x,D)[H(θ|(x,y),D)], where H(·|·) denotes conditional entropy, between parameters and predictive
distribution conditioned on the input x and training datasetD [11]. However, it turns out that this
separation of uncertainty into aleatoric and epistemic parts can be hard to use in practice, as evident by the
following two examples. The first one comes from active learning: It is found that using a decomposition of
predictive uncertainty into aleatoric and epistemic parts does not necessarily improve sample selection
[13–16]. This is surprising, since high epistemic uncertainty is a natural criterion for samples where the
model can hope to learn something new. The second example relates to safety critical applications such as
medical diagnosis. For medical image analysis in particular, uncertainty quantification has been used to
improve model precision, and to guide clinical assessment [17–21]. By selecting for low epistemic and
aleatoric uncertainty one could hope to increase prediction accuracy at the cost of recall. Again, marginalized
measures in terms of epistemic and aleatoric parts do not seem to provide better precision over predictive
uncertainty [22]. Why is it hard to use the decomposition into aleatoric and epistemic uncertainty
effectively? To answer this question we evaluate the correlation between accuracy and uncertainty
quantification using the joint distribution of predictive uncertainty and epistemic uncertainty, as measured
by the entropies of the posterior predictive distribution and the posterior parameter distribution.

Our results show that the accuracy of a model has non-trivial correlations with the combination of
predictive and epistemic uncertainty, and that this correlation depends on model architecture and dataset. We
test these insights in application by proposing and evaluating a novel acquisition function based on expected
accuracy. Using the joint distribution of predictive uncertainty and epistemic uncertainty, we quantify how
the approximate posteriors of three common neural-network architectures for image classification differ
from each other and how they depend on data-distributional shifts in the form of impulse noise [23] for
MNIST [24] and CIFAR [25]. We conclude that the joint distribution contains important information
regarding model accuracy, and that it needs to be calibrated for a particular model architecture and dataset.

2. Contributions

• We quantify the joint distribution of prediction accuracy, predictive uncertainty and epistemic uncertainty
for the MNIST [24] and CIFAR [25] datasets. The non-trivial patterns we find makes it clear that model
accuracy cannot be understood in terms of marginalized uncertainty measures.

• We introduce a novel acquisition function for active learning that outperforms acquisition using marginal-
ized uncertainty distributions.

• Weuse the joint distribution of predictive entropy and conditional mutual information between parameters
and targets to quantify the variability of uncertainty measures over different model architectures and data-
distributional shifts.

• We show that neural networks with different architectures can disagree about the origin of uncertainty for
data-distributional shifts in image classification tasks.

3. Related work

Depeweg et al [26] uses aleatoric and epistemic uncertainty separately for active learning on low dimensional
regression and classification tasks, concluding that epistemic uncertainty provides a better criterion for
selecting training samples than the predictive uncertainty. This provides a clear example of where the
intuition of epistemic uncertainty being a good sample selection criteria holds. In contrast, this does not
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extend to higher dimensional computer vision domains where epistemic uncertainty is no longer superior
[16]. In the context of reinforcement learning, [26] uses a combination of aleatoric and epistemic
uncertainty to find balanced policies. The joint distribution, architecture dependence, and dataset
dependence is not considered. In [21], the correlation between accuracy and uncertainty is quantified for
image classification. Correlation with accuracy is shown for predictive uncertainty and epistemic uncertainty
separately, the architecture and dataset dependence is not discussed. The joint distribution of aleatoric and
epistemic uncertainty is considered in [20], where the correlation between predictive probabilities and the
joint uncertainty distribution is quantified in the context of medical image semantic segmentation. Using a
fixed residual U-Net architecture and datasets for semantic segmentation it was shown that there is a
correlation between predictive probabilities and the uncertainty measures, and that accuracy for their
semantic segmentation model on the considered datasets shows correlation with epistemic uncertainty. In
terms of open questions, [20] highlight the effect of data-distributional shifts, model architecture, and data
modality on the quality of uncertainty quantification. These are in line with two of our target questions on
how the perceived origin of uncertainty depends on model architecture and how the dataset impacts
uncertainty quantification. Quantifying uncertainty under data-distributional shifts was investigated in [27]
where accuracy, calibration and entropy of the posterior predictive is evaluated for different shifts introduced
in [28]. Here, the epistemic uncertainty is not considered and the model dependence of the uncertainty
measures is not analyzed.

4. Background

4.1. Bayesian inference
An artificial neural network f with parameters θ ∈ R can be seen as a map from input space X to the output
space Y [29], where we take Y to be the space of distributions over possible outcomes so that the likelihood is
given by p(y|x,θ) = f(y,x;θ). Bayesian inference [30] allows us to reason about uncertainty in terms of
posterior distributions for the parameters of a model. With a training datasetD ∈ X×Y corresponding to
observations (xt,yt) with t ∈ {1 . . .N}, the posterior distribution for the neural-network parameters p(θ|D)
can be calculated using Bayes theorem in terms of the likelihood as

p(θ|D) =
p(D|θ)p(θ)

p(D)
, (2)

where p(D|θ) (assuming independent samples in the datasetD) can be expressed as p(D|θ) =
∏N

i=1

f(yi,xi;θ), p(θ) the parameter prior and the evidence p(D) is the marginalization over the parameter prior.
A prediction, or more generally a distribution over possible outputs, is computed using the posterior

predictive distribution in equation (1) by marginalizing over the parameters. Each parameter configuration
is weighted by its posterior probability given the training data. For large neural-network architectures, it is in
general very challenging to evaluate the high-dimensional integral over θ [31]. To implement Bayesian
inference for neural networks, the posterior needs to be approximated.

There are a number of different methods available that range from computationally expensive
Monte-Carlo simulations [10] to more efficient dropout approximations [32, 33], as well as simpler
ensembling methods [34]. The most accurate approximations to the true posterior rely on the Hamiltonian
Monte-Carlo (HMC) methods [35–37]. Through intensive computational efforts, HMC methods have
recently been used to approximate the posteriors of larger convolutional neural networks such as a 20-layer
ResNet [31]. The HMC computations show that simpler approximation schemes such as ensembling and
variational inference can fail to accurately describe the true posterior, but that ensembles often provide more
accurate posteriors than more advanced methods. Here we use deep ensembles, as described in appendix A,
to approximate the Bayesian posteriors of the neural networks [38].

4.2. Uncertainty quantification
For classification over a discrete set ofM classes, the entropy [39] of the predictive distribution

H(p) =−
M∑
c=1

p(c) log(p(c)) , (3)

provides a measure of the information content and thus its uncertainty.
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In terms of the ensemble approximations of the posterior predictive distribution, see appendix
equation (A.1) for details, this takes the form

H(p(y|x,D)) =−
M∑
c=1

(
1

N

N∑
i=1

fc
(
x;θ(i)

))
log

(
1

N

N∑
i=1

fc
(
x;θ(i)

))
, (4)

where H(p(y|x,D)) is the entropy of the posterior predictive distribution, referred to here as predictive
uncertainty. The entropy of p(y|x,D) in equation (4), as a measure of uncertainty, contains contributions
that are both epistemic and aleatoric.

Epistemic uncertainty stems from uncertainty in model parameters. This is captured by the shape of the
posterior distribution of these parameters. To quantify the epistemic uncertainty associated with a single data
sample x, we can ask how this shape changes when the dataset is extended to include x [11]. The epistemic
uncertainty associated with a data sample x can be quantified by the expected change in entropy of the model
parameter posterior distribution p(θ|D) when x is added to the observations [11],

I(x) =H(p(θ|D))− Ep(y|x,D) [H(p(θ|D,(x,y)))] . (5)

The entropy difference in equation (5) is the conditional mutual information I(θ;y|x,D) between the
parameter posterior and the predictive posterior distribution for the new sample point (x, y). Since mutual
information is symmetric, this can be written in terms of the entropy of the predictive distribution instead:

I(x) =H(p(y|x,D))− Ep(θ|D) [H(p(y|θ,x))] , (6)

where H(p(y|θ,x)) is the entropy of the likelihood p(y|θ,x). See appendix B for an example of how this
relation manifests in a toy model. The first term in equation (6) is the entropy of the posterior predictive
distribution given the datasetD, whereas the second term is the expected value of the likelihood entropy over
the model posterior distribution.

Using the approximate posteriors from the ensemble method, the first term in equation (6) is given by
equation (4) and the second term is given by

Ep(θ|D) [H(p(y|θ,x))] = 1

N

N∑
i=1

M∑
c=1

fc
(
x;θ(i)

)
log
(
fc

(
x;θ(i)

))
. (7)

Together, equations (4) and (7) provide a concrete way to evaluate epistemic uncertainty as defined by
equation (6) in practice.

The epistemic uncertainty in equation (6) is large when the posterior predictive entropy is large and the
mean likelihood entropy is small. In terms of the ensemble members this corresponds to the situation where
each member has a sharp distribution but they disagree about the mean. Large aleatoric uncertainty is
ascribed to broad output distributions from the individual members f(·;θ(i)), also implying a large posterior
predictive entropy. Since entropy is positive, both the term H(p(y|x,D)) and the expected entropy of the
likelihood in equation (6) are positive, and so the entropy difference in equation (6) is bounded by the
posterior entropy in equation (4), resulting in the inequality

I(x)⩽H(x) , (8)

i.e. a large epistemic uncertainty implies a large posterior predictive entropy. This can be seen by noting that
a collection of sharp member distributions that disagree about the mean necessarily adds up to a broad mean
distribution. One way to describe a sample with large epistemic uncertainty is that the model might fit the
data well, but in many different ways. The parameters with high posterior probability could all result in sharp
distributions, whereas the full posterior can be broad [40].

Since the epistemic uncertainty in equation (6) measures the change in posterior entropy, a model can
have irrelevant parameters that contribute to a broad posterior distribution, but the change in posterior
entropy can still be small when adding a given sample to the training set. If the parameter posterior for some
irrelevant parameter is equally broad after we add sample x, then we do not want to consider this as a point
of high epistemic uncertainty.

Even though entropic measures are a natural starting point for quantifying uncertainty of predictions,
they have been shown to possess a number of unwanted properties such as ataining maximal values in
un-intuitive scenarios [41]. In this work we take a pragmatic view and consider uncertainty quantification
based on entropy as a flawed, but still practically useful tool to understand neural network predictions.
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Figure 1.MNIST (left) and CIFAR10G (right) with impulse noise parameterized by α. Darker colors indicate a value closer to 0.
For CIFAR10G the original RGB image is shown in the right-most column. The CIFAR10 classes in the examples are, from top to
bottom: airplane, automobile, bird, cat, deer.

Table 1. Summary of the three different neural-network architectures used for comparisons. The accuracy for MNIST and CIFAR10G is
over the validation datasets with standard deviation calculated for ten separate trainings. The dense model uses three layers (128, 128,
10) with ReLU activations, CNN is model A in [42] and Swin is a shifted window transformer [43] based on the KERAS vision
implementation [44].

Model Parameters MNIST CIFAR10G

Dense 118k 99.5%± 0.07% 45.8%± 0.5%
CNN 836k 99.9%± 0.06 74.1%± 0.95%
Swin 147k 97.3%± 0.1% 66.2%± 1.3%

5. Methods

5.1. Datasets
Two datasets are used for all numerical experiments, MNIST [24] and a grayscale version of CIFAR10 [25].
We choose these simple datasets to be able to train ensembles efficiently and still be in the domain of realistic
images with CIFAR10. To be able to compare relative shifts in uncertainty measures between the two datasets
we choose to work with a grayscale version of CIFAR denoted CIFAR10G so that the data-distributional shift
acts in exactly the same way for both MNIST and CIFAR10G. MNIST is an example of an image classification
dataset with minimal complexity, whereas CIFAR10 provides a more realistic data distribution for image
classification. The grayscale conversion for the RGB data from CIFAR10 is given by the standard BT.601
luminance Y= 0.2989r+ 0.5870g+ 0.1140b. We apply impulse noise [23], a common corruption present in
digital images, to the original datasets (MNIST, CIFAR10G) where the strength of the perturbation is
controlled by a noise parameter α. For ‘salted’ noise with parameter α> 0 a random sample of pixels of size
αNpixels are given the maximum value 1.0, and for ‘peppered’ noise with α< 0 a corresponding amount of
pixels are set to 0. We pick Nα distinct values between αmin =−0.3 and αmax = 0.3.

MNIST consists of 60 000 grayscale images with resolution 28× 28. The original CIFAR10 dataset
consists of 60 000 RGB images with resolution 32×32 that we resample to a single grayscale channel. See
figure 1 for examples of the different noise levels.

5.2. Network architectures
In order to quantify how the architecture affects the uncertainty estimates, we use three neural-network
architectures: fully connected (Dense), convolutional (CNN) and attention-based (Swin) neural networks.
The fully connected neural network has a three-layer architecture with two 128-neuron hidden layers using
ReLU activations. The convolutional neural network is identical to model A in [42], a simple fully
convolutional model with five layers using max-pooling for spatial down-sampling and ReLU activations.
Finally, we also use a small version of a shifted windows transformer (Swin) [43], a popular attention-based
model for computer vision. All architectures use a softmax output layer. See table 1 for a summary of the
model sizes and baseline accuracy on the target datasets.

5.3. Active learning
One way of improving the accuracy of a neural-network model is to extend the training set. Active learning
[45–48] makes use of the network predictions to choose inputs that contribute the most to increased
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accuracy. Which inputs to choose can be phrased in terms of a so-called acquisition function [49], that
determines how samples are picked from the pool of unlabelled data. Common acquisition functions include
BALD scoring [50] that picks samples with highest epistemic uncertainty as measured by mutual
information I(x) in equation (6). Another common acquisition function is or to choose samples with highest
predictive uncertainty [51] quantified by H(y|x,D) in equation (4). We refer to these two methods as BALD
and max entropy respectively. Based on our results for the correlation between accuracy and the joint
distribution (H, I) we propose a novel acquisition function that picks samples with lowest expected accuracy
in section 6.2.

6. Results

6.1. Accuracy
Figure 2 shows the accuracy of predictions of three neural networks for MNIST and CIFAR10G as a function
of predictive and epistemic uncertainty, evaluated on the union of all noise levels including the uncorrupted
test set.

For CIFAR10G in figure 2, the simple fully connected neural network in the first panel has a pronounced
correlation between the predictive uncertainty and model accuracy. In the center panel, the convolutional
model shows a different pattern where both epistemic and predictive uncertainty correlates equally with
accuracy. For the attention-based model in the last panel, there is a more intricate relation. Decreasing
epistemic uncertainty correlates with higher accuracy, but predictive uncertainty for a fixed epistemic value
does not. In general, lower epistemic and aleatoric uncertainty does not always imply higher accuracy.

Turning to MNIST in figure 2, the first panel shows that the correlation between accuracy and predictive
uncertainty is not as pronounced as in the first panel in figure 2. In the domain of MNIST where the dense
model has higher accuracy there is instead a stronger correlation between decreasing epistemic uncertainty
and prediction accurac. The center panel shows that for the convolutional neural network, for a fixed
moderate predictive uncertainty, the accuracy does not monotonically increase with epistemic uncertainty.
On the other hand, the attention-based Swin architecture in the right panel shows a monotonically
increasing accuracy with decreasing epistemic uncertainty with similar structure as for CIFAR10G.

The moments of the joint uncertainty distribution for CIFAR10G at a fixed distributional shift are
summarized in table 2 together with average prediction accuracies. For MNIST, the corresponding joint
uncertainty distribution at fixed data-distributional shift is given in table 3. For reference, the moments and
accuracy on the unshifted test set is shown in table 4. Comparing the average accuracy over the shifted
dataset in table 2 with the accuracy on the validation set in table 4, we see that the dense model retains its
accuracy better than the more complex architectures. For each individual architecture, a decrease in average
predictive and epistemic uncertainty is accompanied by an increase in average accuracy.

6.2. Active learning
Given the patterns in the accuracy distributions in the (H, I) plane shown in figure 2, is it possible to use
information on where the model is less accurate to improve training? According to the results in section 6.1,
both the predictive uncertainty and the epistemic uncertainty are needed to parameterize the accuracy. Since
standard acquisition functions, such as BALD [50] and max entropy [51], only refer to the marginal
uncertainty distributions, we propose here an acquisition function that uses H as well as I to pick inputs
from the pool of unlabelled data Dpool corresponding to low-accuracy regions in the (H, I) plane.

The goal is to increase the prediction accuracy of the model by choosing low-accuracy inputs from Dpool

to label and train on. The problem is of course that the samples from Dpool are not labeled, therefore there is
no direct way of determining the accuracy. The idea is to create a look-up table EA(H, I) that parameterizes
the relation between expected accuracy and (H, I). This is done using a labeled calibration dataset Dcalibration,
and discretising H as well as I to obtain the look-up table.

Using this look-up table an active-learning loop is constructed in the following way. For each iteration,
the values of H and I are computed for all input samples in the unlabeled pool Dpool, and the expected
accuracy EA(H, I) is evaluated. The input samples are then ordered by their expected accuracy, and the 50
samples with lowest expected accuracy are labeled and added to the training dataset. A new ensemble of
neural networks is trained using the updated training dataset, and a new look-up table is created. This loop is
iterated 20 times such that a total of 1000 inputs from Dpool have been acquired.

To evaluate the proposed acquisition function LEA, we use a simple active learning setup [50] where an
ensemble of neural networks is first trained on a small class-balanced subset of 20 inputs from the CIFAR10
training set. For the accuracy calibration dataset, we use a random subset of 10 000 samples from the
CIFAR10 training dataset, corresponding to about 17% of the training data. We discretise the (H, I) plane
into 16× 16 regular bins limited by the minimum and maximum values ofH and I. As the pool of unlabelled
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Figure 2. Accuracy distribution in the (H, I)-plane, and marginal accuracy distributions (above and to the right of each panel), for
a union over noise levels−0.27 ⩽ α ⩽ 0.27 evaluated on CIFAR10G (top row) and MNIST (bottom row). Grey bins indicate less
than ten inputs in the corresponding region. Prediction accuracy conditioned on the joint distribution of posterior predictive
entropy H and epistemic uncertainty I is shown for the ensemble posterior.

Table 2.Mean and standard deviation for predictive and epistemic uncertainty for fully connected (Dense), convolutional (CNN) and
attention-based (Swin) models with posterior approximations using ensembles evaluated on CIFAR10G at fixed data-distributional shift
α= 0.09.

Architecture Acc. H I

Dense 41% 1.66± 0.39 0.10± 0.04
CNN 20% 1.92± 0.22 0.39± 0.11
Swin 20% 1.12± 0.47 0.27± 0.14

Table 3.Mean and standard deviation for predictive and epistemic uncertainty for fully connected (Dense), convolutional (CNN) and
attention-based (Swin) models with posterior approximations using ensembles for MNIST at fixed data-distributional shift α= 0.09.

Architecture Accuracy H I

Dense 65% 0.54± 0.47 0.35± 0.32
CNN 73% 0.67± 0.54 0.25± 0.22
Swin 58% 0.69± 0.44 0.44± 0.30

Table 4.Mean and standard deviation for predictive and epistemic uncertainty and accuracy for fully connected (Dense), convolutional
(CNN) and attention-based (Swin) models with posterior approximations using deep ensembles evaluated on CIFAR10G without
data-distributional shift.

Architecture Acc. H I

Dense 45% 1.58± 0.41 0.07± 0.04
CNN 75% 1.07± 0.64 0.14± 0.10
Swin 65% 0.90± 0.55 0.08± 0.06
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Figure 3. Active learning on CIFAR10 by iterated acquisition using lowest expected accuracy (LEA), mutual information I(x)
(BALD) and predictive entropyH(y|D,x) (max entropy). Each active-learning iteration acquires 50 new samples from the pool of
unlabelled data sorted by the acquisition function calculated using the ensemble of neural networks trained on the data from the
previous active-learning iteration. Our acquisition function picks samples with lowest expected accuracy as inferred by the
accuracy distribution in the (H, I)-plane for the calibration dataset. The black dashed line in the left panel corresponds to
active-learning iteration 14. The right panel shows the accuracy on the calibration dataset (background tiles), pool of unlabelled
data (red crosses) and acquired inputs (green circles).

data we use the remaining CIFAR10 training dataset after the initial inputs and accuracy calibration dataset
have been removed. We evaluate the active-learning scheme for three different acquisition functions: BALD
(maximum mutual information), max entropy (maximum predictive entropy) and our proposed lowest
expected accuracy function, LEA, described above.

Figure 3 shows the results of this procedure. The left panel shows the evolution of the accuracy on the
validation set for the dense and convolution architectures, using the three different acquisition functions.
LEA consistently outperforms BALD, as well as active learning based solely on the maximum predictive
uncertainty. To visualize the acquisition process for a particular active-learning iteration, we also show (right
panel) the accuracy on the calibration dataset (background tiles) for an example active-learning iteration,
together with the pool of unlabelled data (red crosses) and the inputs acquired by the acquisition function
(green circles). The panel shows that the acquired inputs are from regions in the (H, I) plane that neither
maximise epistemic uncertainty nor predictive uncertainty, thus acquiring different inputs than using BALD
or max entropy as acquisition function. This explains why LEA outperforms the other two acquisition
functions: neither H nor I alone suffice to estimate the expected accuracy.

6.3. Uncertainty
To understand how the uncertainty distribution in figure 2 correlates with noise level, we now turn to the
uncertainty density distributions at a fixed noise level. Figure 4 shows, for different neural-network
architectures, the joint distribution of the predictive uncertainty defined by equation (4) and epistemic
uncertainty as defined by equation (6) in the (H, I) plane. The uncertainty measures are calculated using
approximations to the Bayesian posterior provided by the ensemble method as explained in section 4.2. The
joint distributions in figure 4 are evaluated on the test set of CIFAR10G shifted by impulse noise with noise
parameter α= 0.09, corresponding to 9% of pixels set to the maximum grayscale intensity, see figure 1. The
joint distributions in figure 4 allow us to separate the origin of uncertainty: a sample with large value of I on
the vertical axis has higher epistemic uncertainty, whereas a sample on the horizontal axis has no epistemic
uncertainty. The dashed red diagonal line indicates the bound on epistemic uncertainty imposed by
equation (8). In particular this means that a sample close to the epistemic bound is dominated by epistemic
uncertainty.

The first panel in the top row of figure 4 shows the joint distribution for the dense model. The joint
distribution is shifted towards higher predictive uncertainty and lower epistemic uncertainty. The top-center
panel in figure 4 shows the joint uncertainty distribution for the convolutional neural network. Here, the
perceived epistemic uncertainty is larger compared to the other models. The right-most panel in figure 4
shows that the attention-based model exhibits similar epistemic uncertainty to the convolutional neural
network in the center panel. The attention-based model does however perceive a lower aleatoric uncertainty,
although this is not accompanied by a significant increase in accuracy.

Turning to MNIST, figure 4 shows the corresponding joint distributions for the three architectures at
noise level α= 0.09. The first panel shows joint distributions of predictive and epistemic uncertainty for the
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Figure 4. Joint distribution (H, I), corresponding to predictive uncertainty and epistemic uncertainty, for different neural
networks trained on CIFAR10G (top row), MNIST (bottom row) and evaluated on noised data with noise parameter α= 0.09.
The posterior distributions are approximated using ensembling. Inset in each frame is the noise level (α). The dashed diagonal
indicates the bound on epistemic uncertainty from equation (8). The marginal probability density distributions are shown above
and to the right of each panel.

Table 5. Change in mean predictive and epistemic uncertainty,∆H̄ and∆Ī, for fully connected (Dense), convolutional (CNN) and
attention-based (Swin) models from α= 0 to α= 0.09. Posterior approximation by ensembling.

Architecture Dataset α ∆H̄ ∆Ī

Dense MNIST 0.09 0.49 0.33
Dense CIFAR 0.09 0.08 0.03
CNN MNIST 0.09 0.65 0.24
CNN CIFAR 0.09 0.85 0.25
Swin MNIST 0.09 0.63 0.41
Swin CIFAR 0.09 0.22 0.20

dense model. In contrast to the dense model on CIFAR10G, the epistemic uncertainty is larger than the other
models and the predictive uncertainty is smaller. The center panel shows the joint distribution for the
convolutional neural network, and the right-most panel the attention-based Swin model.

To evaluate the dependence of the uncertainty quantification on the training dataset we calculate the
induced shift in joint distribution of predictive and epistemic uncertainty when we apply the same
data-distributional shift to neural networks trained on MNIST and CIFAR10G. The shift from α= 0 to
α= 0.09 in mean predictive and epistemic uncertainty is quantified in table 5. For the dense and Swin model
we observe a significantly smaller shift in both H and I on CIFAR10G compared to MNIST, whereas the
convolutional neural network perceives a larger shift on CIFAR10G compared to MNIST.

The dense and Swin model both contain more parameters for CIFAR10G compared to MNIST stemming
from the four extra pixels in both spatial directions. One possible method to keep the parameter count
constant would be to resample the resolution of the images, however this would also introduce some
dependence on the resampling method. Here we keep the original resolution for simplicity and leave the
possibility of resampling for future work.
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7. Discussion

7.1. Accuracy
Our results allow us to draw three conclusions regarding the connection between the joint distribution of
epistemic and predictive uncertainty, and prediction accuracy.

First, looking at the joint distribution helps to identify samples where a given model is more accurate.
One important goal of uncertainty quantification is to assess when the predictions of a model can be trusted.
It is natural to expect that a prediction is more accurate when the predictive uncertainty is low. We show that
the joint distribution of epistemic and predictive uncertainty can identify accurate predictions while
predictive uncertainty or epistemic uncertainty alone cannot. This can be seen in figure 2, where the joint
distribution clearly resolves where the models are accurate, and where they are not. Figure 2 show that the
projection of the joint distribution on either the axis of predictive uncertainty or the axis of epistemic
uncertainty mixes samples with high and low accuracy. As a consequence, selecting for predictive uncertainty
or epistemic uncertainty alone, is not as effective in identifying where a given model is more accurate. This
explains the findings in e.g. [20, 52], regarding the clustering of incorrect predictions at high uncertainty,
and also explains why it is difficult to achieve higher precision using the marginalized measures of epistemic
and predictive uncertainty, as observed in [22]: samples with small values for the marginalized distributions
can still have accurate model predictions.

Second, for the attention-based model it is difficult to find a threshold of the projected distribution on
either predictive uncertainty or epistemic uncertainty that results in high accuracy. The top-right panels in
figure 2 show a distinct structure for the accuracy conditioned on the joint distribution where the
marginalized distribution on either axis mixes samples of high and low accuracy. This has implications for
active learning. In the present example, choosing samples based on e.g. posterior predictive uncertainty alone
is inefficient, because it results in training on data regions where the model is already accurate.

Third, by training on data regions where the accuracy is low, there is potential to increase overall
prediction accuracy. The joint distribution of epistemic and predictive uncertainty can be used to identify
such data regions where the model accuracy can be improved, also for data that is not yet labeled. Figure 2
show that the regions are specific to each network architecture, and to the dataset used for training. The
mixing of high and low accuracy prediction when projecting the distributions in figure 2 also explain the
difficulty in achieving better sample efficiency by using the decomposition into aleatoric and epistemic
uncertainty observed in [13]: the projected distributions will contain regions of high prediction accuracy for
small uncertainties. An active learning scheme that makes use of uncertainty quantification could therefore
benefit from selection using the joint distribution.

7.2. Active learning
Since prediction accuracy depends on both epistemic and predictive uncertainty, we proposed an acquisition
function for active learning that uses a parameterization of expected accuracy in terms of both conditional
mutual information and predictive entropy. Our proposed LEA (lowest expected accuracy) acquisition
function, defined in section 5.3, outperforms acquisition functions using marginal uncertainty distributions.
The left panel in figure 3 shows that our calibrated accuracy acquisition produce samples that enable the
neural networks achieve higher validation accuracy with less training samples. The right panel in figure 3
shows that LEA picks inputs from regions that would have been missed by BALD (acquired inputs do not
maximise mutual information) and max entropy (acquired inputs do not maximise predictive entropy). We
stress that the proposed acquisition function only considers single sample uncertainty, we expect that e.g
accuracy gain per iteration can be further improved by incorporating expected accuracy in state of the art
acquisition functions such as BatchBALD [40] or EPIG [53]. Also note that the comparison with BALD and
max entropy in figure 3 can be argued to be unfair in the sense that LEA uses information about the targets
from the calibration dataset. This could be amended by calibrating on the current training dataset instead of
a held-out calibration dataset.

7.3. Uncertainty
We can draw two conclusions from our results regarding how uncertainty quantification depends on model
architecture.

First, the origin of uncertainty is not objective. Table 4 shows that there are significant differences in the
perceived origin of uncertainty between the different model architectures for in-domain data. For
CIFAR10G, the fully connected neural network perceives a higher degree of aleatoric uncertainty, and low
epistemic uncertainty compared to the convolutional and attention-based models. This shows that the origin
of uncertainty depends on the model architecture: the fully connected neural network struggles to express
the relationship between inputs and classes of CIFAR10G, and thus perceives a higher degree of aleatoric
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uncertainty. Even though the model has low accuracy, the ensemble posterior approximation show a low
epistemic uncertainty. Thus we do not expect to be able to salvage the accuracy of the fully connected neural
network by increasing the size of the dataset. For CIFAR10G, the top row of figure 4 and table 2 show that for
a moderate data-distributional shift, the fully connected neural network perceives a higher degree of aleatoric
uncertainty and low epistemic uncertainty compared to the convolutional and attention-based models. Here
the dense architecture is already perceiving the validation data as aleatoric noise and thus continues to do so
for further shifts.

Second, the different model posteriors agree about the origin of uncertainty when the dataset complexity
is low. In the case of MNIST, the bottom row of figure 4 and table 3 show that all neural-network
architectures considered here have similar joint distributions of predictive and epistemic uncertainty. In
other words, the MNIST data has relatively low complexity, as evident by the higher average accuracies in
table 1, and therefore all three architectures succeed in capturing the important features. As a consequence,
all three architectures agree about the origin of uncertainty.

In addition, there are two conclusions we can draw from our results regarding how predictive and
epistemic uncertainty depend on the dataset. First, the relative change in perceived uncertainty under a fixed
data-distributional shift depends on the dataset, and varies with model architecture. Comparing the change
in the joint distribution under a fixed data-distributional shift in table 5, we observe that a given model
architecture understands the same data-distributional shift in different ways, depending on the underlying
training dataset. There is an asymmetry in this shift sensitivity: only the convolutional model shows a
stronger sensitivity of the predictive and epistemic uncertainty when evaluated on CIFAR10G compared to
MNIST. Furthermore, the fully connected model perceives the impulse noise on CIFAR10G very differently
from impulse noise on MNIST. The distributional shift for MNIST induces a large change in both epistemic
and predictive uncertainty, whereas for CIFAR10G the induced shift in uncertainty is significantly smaller.
This can be explained by CIFAR10G containing realistic digital images, hence we expect impulse noise to be
more in-domain than for MNIST. The converse is true for the convolutional model, where the induced shift
is larger for CIFAR10G. In summary, the sensitivity to a particular data-distributional shift depends on the
data domain and on neural-network architecture. Even though this difference in perceived relative change of
uncertainty is present for widely different data, it also has implications for different domains in the same
training dataset, something that would be interesting to quantify in more detail.

Second, robustness of prediction accuracy under data-distributional shifts for a given model depends on
the dataset. For CIFAR10G, the higher accuracy of the fully connected neural network on noised data in
table 2 shows that this architecture is more robust against this particular distributional shift, even though the
model is less accurate close to the training domain as seen in table 4. For MNIST, the convolutional model is
instead more robust than both the dense and attention-based architectures as seen in table 3.

8. Conclusions

Posterior predictive entropy and mutual information are used extensively as measures of predictive
uncertainty and epistemic uncertainty to assess the uncertainty and performance of neural networks and
their predictions [2]. We introduced the joint distribution of predictive uncertainty and epistemic
uncertainty and demonstrated how it is related to model accuracy.

Previous work have shown that in both active learning [16, 26] and predictive uncertainty estimation [20,
21], it is difficult to formulate a general strategy making use of a decomposition of uncertainty into
predictive and epistemic parts. Our results explain why it is difficult to use predictive or epistemic
uncertainty separately as a measure of model efficacy by showing how the joint distribution resolves
information that is lost in projections. We showed that the joint distribution contains information about
when a neural network is accurate, and that the distribution is specific to the particular choice of
neural-network architecture and dataset.

To test these insight, we proposed a novel acquisition function using expected accuracy parameterized in
terms of epistemic and predictive uncertainty. The proposed acquisition function outperforms two common
acquisition functions based on marginal uncertainty distributions.

In addition, we also demonstrated that the origin of uncertainty is not objective: different model
architectures will disagree about the aleatoric and epistemic uncertainty. Furthermore, for a given model, the
sensitivity of the uncertainty quantification to a specific type of data-distributional shift depends on the
underlying training dataset.

We conclude by mentioning the most important open questions. First, is it possible to explain how
uncertainty quantification depends on architecture from the mathematical theory of neural networks, and
how to use this to build architectures that target robust uncertainty quantification. Second, given the recent
rise of attention-based architectures across multiple domains such as natural language processing and
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computer vision, it is of utmost importance to properly understand their posteriors and related uncertainty
measures. Third, in practical application, uncertainty quantification using the Bayesian posterior depends on
accurate posterior approximations. Here we used ensembles as a robust baseline, but there is a growing need
for accurate and computationally effective posterior approximation methods. Finally, entropy and mutual
information are two measures of uncertainty derived from the high-dimensional model posterior and the
posterior predictive distribution. Whether there might be other, complementary or more informative,
derived quantities that can capture the uncertainty of artificial neural networks better also remains an
interesting question.

In summary, the joint distribution of predictive and epistemic uncertainty can inform on neural-network
efficacy when calibrated for a given dataset and architecture.
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Appendix A. Ensemble posterior

The Bayesian mean in equation (1) can be approximated by Monte-Carlo sampling of the integration over
model parameters. Given N parameter samples θ(i) of equal posterior probability, the Bayesian mean can be
approximated as in equation (A.1).

p(y|x,D) =

ˆ
θ

f(y,x;θ)p(θ|D)dθ ≈ 1

N

N∑
i=0

f
(
y,x;θ(i)

)
. (A.1)

A frequently employed method to sample from the model space is to train an ensemble [34, 38] of N

identical neural networks using different initial parameter values θ(i)initial and regularized by quadratic loss on
parameter norm corresponding to the Gaussian prior. Training these neural networks to maximize the
likelihood of the training data gives a set of parameters θ(i), that then provides an approximation to the
Bayesian mean by equation (A.2), where θ(i) are the ensemble member parameters.

p(y= c|x,D)≈ 1

N

N∑
i=0

fc
(
x;θ(i)

)
. (A.2)

Here it is assumed that the likelihood of the minima attained by θ(i) are equally probable. Note that it is
not clear a priori whether the minima θ(i) are degenerate, but for the regime of neural networks for visual
perception it is typically the case that they are not [54].

Appendix B. Toymodel posterior

The relation between mutual information of the parameter posterior and mutual information of the
posterior predictive in equation (6) provides a way of calculating the expected change in entropy of the
high-dimensional parameter posterior p(θ|D) in terms of the typically lower-dimensional posterior
predictive distribution p(y|x,D) and the likelihood p(y|x,θ). To illuminate this relation, and evaluate the
involved quantities in closed-form, we present a detailed verification for a simple toy model. This also serves
as an illustration of the computational complexity involved in computing the Bayesian posterior directly.

The toy problem consists of classifying points on the real line into two classes c1, c2 and we use a simple
two-parameter linear model

p( c1|x,θ1,θ2) =


1 x− θ1 <−θ2,
(x−θ1+θ2)

2θ2
|x− θ1|< θ2,

0 x− θ1 > θ2,

(B.1)
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Figure B1. Example of the likelihood p(c|θ1,θ2,x) in equations (B.1) and (B.2) over the two classes c ∈ {c1, c2} for different
values of x with model parameters θ1 = 5 and θ2 = 1 corresponding to the decision boundary.

Figure B2. Prior class distribution given the uniform prior p(θ1,θ2) on the model parameters.

p( c2|x,θ1,θ2) = 1.0− p( c1|x,θ1,θ2) . (B.2)

By construction, this model has a strong prior for samples of class 1 being located to the left of a decision
boundary at θ1 and class 2 to the right. See figure B1 for the resulting probability distributions for a
particular choice of the model parameters θ1 and θ2.

Let θ1 be uniformly distributed on [−1,1] and θ2 on [ 12 ,2]. With this prior on the parameters, we can
calculate the prior predictive distribution over the two classes by

p( c|x) =
ˆ
θ1

ˆ
θ2

p(c|x,θ1,θ2)p(θ1,θ2)dθ1dθ2, (B.3)

visualized in figure B2, where we see that the prior parameter distribution results in a smooth prior
predictive distribution.

Suppose we observe class c1 at x1 = 2, we can then calculate a posterior distribution for the model
parameters

p(θ1,θ2|{x1, c1}) =
p(c1|x1,θ1,θ2)p(θ1,θ2)

p(c1|x1)
(B.4)

where we have used Bayes theorem to express the parameter posterior in terms of conditional probabilities
that can be calculated explicitly.

With this posterior we calculate the posterior predictive distribution in equation (1) of the introduction,
resulting in a slightly shifted distribution for class 1 in figure B3, compared to the class prior in figure B2.

Using the toy model we can now explicitly verify the relation between equations (5) and (6). The
expected entropy difference in equation (5) is given by
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Figure B3. Posterior predictive distribution given one observation of class c1 at x1 = 2 compared to the prior predictive
distribution. The observation of class 1 to the right shifts the posterior in this direction.

Figure B4. Entropy difference I(θ1,θ2|x) and I(c|x) for the toy model quantifying the epistemic uncertainty for different x using
only the prior.

I(θ1,θ2|x) =
ˆ
θ1

ˆ
θ2

p(θ1,θ2) log(p(θ1,θ2))dθ1dθ2

−
∑
i=1,2

p(ci|x)
ˆ
θ1

ˆ
θ2

p(θ1,θ2|{x1, ci}) log(p(θ1,θ2|{x1, ci})) dθ1dθ2 (B.5)

and the posterior predictive entropy difference in equation (6) is given by

I(c|x) =
∑
i=1,2

p(ci|x) log(p(ci|x))

−
ˆ
θ1

ˆ
θ2

∑
i=1,2

p(ci|x,θ1,θ2) log(p(ci|x,θ1,θ2))

p(θ1,θ2) dθ1dθ2. (B.6)

Note that in this case, where we compute the entropy difference when adding a single observation
equation (B.6) only uses the prior distribution.

Numerically evaluating these expressions gives figure B4 where the two curves are indistinguishable, as
expected.

Figure B4 shows that the epistemic uncertainty is largest close to the decision boundary of the prior. This
can be understood intuitively by the fact that the model and parameter priors are such that adding
observations of class 1 far to the left (or class 2 far to the right) does not add new information.

Continuing, we can perform the same calculation but instead add a new observation on top of the first
one. Assuming independent observations the posterior now becomes

p(θ1,θ2|(x1, c1) ,(x2, c2)) =
p(c1|x1,θ1,θ2)p(c2|x2,θ1,θ2)p(θ1,θ2)

p((x1, c1) ,(x2, c2))
(B.7)

and carefully calculating the entropy differences now instead results in the epistemic uncertainty in figure B5.
Note first that the two expressions are still in excellent agreement. The observation of class 1 at x= 2 is in
tension with the prior which can be seen by the bi-modal epistemic uncertainty.

The epistemic uncertainty can be compared to the entropy of the posterior predictive distribution in
figure B6 which peaks in the region between the prior decision boundary and the observed class 1 sample.
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Figure B5. Entropy difference I(θ1,θ2|x,{x1 = 2, c= 1}) and I(c|x,{x1 = 2, c= 1}) for the toy model quantifying the epistemic
uncertainty for different x after a single observation {x= 2, c= 1}.

Figure B6. Entropy of the posterior predictive distribution using the prior H(c|x) and after one observation
H(c|x,{x1 = 2, c= 1}) for the toy model quantifying aleatoric and epistemic uncertainty for different x.
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