
On Input Generators for Cyber-Physical Systems Falsification

Downloaded from: https://research.chalmers.se, 2025-04-02 20:48 UTC

Citation for the original published paper (version of record):
Ramezani, Z., Donzé, A., Fabian, M. et al (2024). On Input Generators for Cyber-Physical Systems
Falsification. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
43(4): 1274-1287. http://dx.doi.org/10.1109/TCAD.2023.3333758

N.B. When citing this work, cite the original published paper.

© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained
for all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, or reuse of any copyrighted component of this work in other
works.

(article starts on next page)



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 1

On Input Generators for Cyber-Physical Systems
Falsification

Zahra Ramezani, Alexandre Donzé, Martin Fabian, and Knut Åkesson

Abstract—Falsification is a testing method that aims to increase
confidence in the correctness of cyber-physical systems by guiding
the search for counterexamples with some optimization algorithm.
This method generates input signals for a simulation of the
system under test and employs quantitative semantics, which
serves as objective functions, to minimize the distance needed
to falsify a specification. Various implementations based on
different optimization strategies and semantics have been proposed
and evaluated in the past. Generally, they assume that an
input generator is given. However, this is often not the case
in practice and different choices can lead to vastly different
outcomes. Therefore, this paper introduces and evaluates various
parameterizations of input generators, including pulse, sinusoidal,
and piecewise signals with different interpolation techniques.
These input generators are compared based on their performance
on benchmark examples, as well as coverage measures in the
space-time and frequency domains. Input generators facilitate
the exploration of numerous different input signals within a
single falsification problem, making them especially valuable for
industrial practitioners seeking to incorporate falsification into
their daily development work.

Index Terms—Cyber-Physical Systems, Testing, Falsification,
Simulation-based Optimization, Input Generators

I. INTRODUCTION

Cyber-physical systems (CPSs) [1] are systems that integrate
physical components with software to control them, and
communication to connect to other systems in the environment.
CPSs typically contain a mix of continuous and discrete
dynamics, i.e., they are hybrid systems. These systems are
often safety-critical, hence their correctness is essential. Formal
verification and testing are commonly used methods for
assessing the correctness of CPSs [2].

Since formal verification of hybrid systems is generally an
undecidable problem [3], formal verification is seldom a viable
option. Indeed, for numerous large-scale industrial systems,
no formal model is available, that is, no model exists for
which a current tool could produce a mathematical proof of
correctness. Nonetheless, models are typically available for
numerical simulation, so simulation-based testing (SBT), a form
of software testing, is a prevalent approach for CPS verification
and validation before integration and the construction of
concrete prototypes of the system under test (SUT).

Simulation-based testing of CPS differs from traditional
software testing due to the nature of the test cases involved.
For traditional software, a test case comprises a combination
of parameters for the SUT, whereas, for a CPS, a test case

Z. Ramezani, M. Fabian, and K. Åkesson are with the Department of
Electrical Engineering, Chalmers University of Technology, Gothenburg,
Sweden. E-mail: {rzahra, fabian, knut}@chalmers.se

A. Donzé is with Decyphir SAS, Moirans, France. E-
mail:alex@decyphir.com

typically involves a combination of parameters and signals,
i.e., continuous functions of time. Consequently, the search
space is significantly more complex, and specific strategies are
required for efficient testing.

Falsification of temporal logic specifications is a popular SBT
approach that aims at producing counterexamples of properties
expressed in signal temporal logic (STL), a formal language
adapted to continuous-time signals.

Optimization-based falsification is performed using quantita-
tive semantics that defines an objective function estimating the
distance to falsifying a given specification. By searching for
inputs that minimize this function, the falsification procedure
is guided towards inputs that falsify the specification if those
exist. If a falsifying input is found, we have a counterexample.
Falsification tries to show the presence of counterexamples
but cannot guarantee that counterexamples do not exist. An
important challenge with falsification is to reduce the number
of tests necessary to find the counterexamples. Three factors
affect the efficiency of the falsification procedure: 1) the choice
of quantitative semantics, 2) the optimization method used, 3)
and how the inputs are generated. The first two factors were
studied in previous works. In this paper, we focus on the third.
Different quantitative semantics [4], [5] and optimization-based
methods [6], [7] have been proposed in the literature. Evaluation
results on benchmark examples in [6], [7] indicate that the
choice of quantitative semantics is less significant than the
optimization method. Optimization-based approaches struggle
to handle high-dimensional problems; thus, the number of
optimization variables should be low.

Parameterized input generators generate their input signals
from a set of parameters. Typically, the parameters represent
control points, and interpolation between these points may
generate the signal. Input generators can also have other types
of parameters, e.g. a sinusoidal generator can be represented
with period and amplitude, but other types of input signals
are also possible, including periodic pulses. Defining suitable
parameters is a challenging problem where expert knowledge
of the SUT is required since system dynamics, especially for
large-scale industrial systems, are complex and often unknown.
Choosing the number of control points, or the interpolation
scheme, is often an arbitrary process, though this can be critical
for the success or failure of the falsification. Limiting the
number of control points decreases the dimensionality of the
problem, making it potentially easier to solve. However, it also
constrains inputs such that it may be impossible to generate an
input signal able to falsify the specification. Therefore, finding
the right balance between the flexibility of the input generation
and the dimension of the optimization problem is essential.

In [8], the effect of input generators for falsification is



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 2

Parameter initial

guess 𝑥
Generator Simulator

Output 𝑥𝑜
𝑠

Specification 𝜑

Quantitative

semantics

Parameter 

optimizer

Objective function

value 𝑓𝜑 𝑥𝑠
Function

evaluation
Stop

Not 

Falsified

Input 𝑥𝑖
𝑠

Input signal

parameter 𝑥

Fig. 1: A flowchart of optimization-based falsification. The input and output signals are denoted by x
s
i and x

s
o, respectively.

evaluated. A simple pulse generator is shown to be successful
in falsifying many problems with only a few iterations. In this
paper, we extend previous work by systematically evaluating
different formulations of input generators.

A test coverage measure can be used as a guide in deciding
when to terminate the falsification procedure. In [9], the
focus is primarily on state coverage measures. State coverage
measures determine what portion of a system’s state space is
covered by a test suite. State coverage measures can be used to
guide test generation algorithms to sample cases from under-
explored areas. A newly developed measure of continuous
signal coverage was presented in [10], which focuses on the
coverage of input signal spaces. Coverage tests of space and
time and frequency domains have not been evaluated for
falsification to the author’s best knowledge.

In this paper, we make the following contributions:
• We introduce several input generators for the falsification

of cyber-physical systems;
• We introduce and implement coverage measures for input

signals in the space, time, and frequency domains;
• We evaluate and compare experimentally the coverage

characteristics of our input generators;
• We provide a comprehensive evaluation of benchmark

problems comparing the performance of the different input
generators using different optimization strategies.

This paper is organized as follows: In Section II, we discuss
related work in the domains of both traditional software
testing and CPS testing including falsification. The general
falsification problem is introduced in Section III. Section IV
introduces input generators for falsification. Section V presents
coverage measures in space, time, and frequency domains.
Section VI evaluates the performance of the suggested methods
on benchmark problems. Finally, the paper is summarized in
Section VII.

II. RELATED WORK

a) Software and CPS testing: CPS falsification is a form
of software testing where test cases are signals and parameters.
Although the topic of this paper is to study the effect of
parameterization in falsification, i.e., going from a set of
signals to a set of parameters, once a given parameterization
is chosen, one can argue that the problem becomes quite
similar to software testing. Traditionally, test suites for software
testing and cyber-physical systems testing, in particular, are
developed manually. Even with a comprehensive test suite,

bugs can easily slip through unless the suite is very large.
Moreover, by increasing the software size and complexity
in the CPSs, automated testing as a complement to manual
testing is needed. Random testing [11], model-based testing
(MBT) [12], combinatorial testing (CT) [13], and search-
based testing [14] are automated testing methods that can
be used to generate test cases to validate a SUT automatically,
which leads to reduce both effort and time costs. Random
testing together with input generators is used in the tool
QuickCheck [15], which has been applied to the testing of large
software systems. QuickCheck was also extended to handle
CPSs in [16]. A potential shortcoming of random test case
generation is that counterexamples might be complicated; thus,
a shrinking procedure was also introduced in [16] to simplify
a counterexample after it has been found. Model-based tests
aim to make the intended behavior explicit using behavior
models. Software testing can be reduced in cost and increased
in effectiveness with combinatorial testing (CT) [17]. Input
interactions and sequence effects linked to user interaction
can go undefined during development, and CT may be able
to address them. In testing, coverage is an important notion
that, in principle, should guide designers as to when “enough”
testing was performed. It is also mostly a manual process.
In [18], a set of industrial falsification benchmarks is introduced
where a subset of the requirements to “falsify” are actually
coverage requirements, i.e., if a test suite manages to falsify
them, it means a specific set of behaviors of the SUT was
necessarily explored by the tests. Those requirements were
defined by the testers. Defining a more general notion of
coverage for a CPS domain requires both a tractable way of
computing the coverage and getting a meaningful interpretation
out of it. This is difficult due to the dimensionality of the
input signals and their continuous nature. Star-discrepancy
such as in [9] is mathematically precise but hard to compute
in general and interpret, which is why we introduced the
simpler cell partitioning approach, which can be interpreted
small projections. In that sense, our work is mostly inspired
by combinatorial testing, which aims at producing test suites
covering, e.g., all pairs of possible values, etc. Combining CT
methods with our measures for producing test suites with good
coverage properties is a subject for future work.

Coverage is not necessarily a reliable criterion for testing,
though. One reason is that bugs, the falsified points, are
typically not evenly distributed. Instead, they tend to cluster.
Thus, even with good coverage, falsification performance might
not be satisfactory, as is shown and discussed in this paper. For



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 3

CPSs, coverage-guided test criteria [9] can be used to assess
the quality of a test suite. Various coverage criteria can be
used to evaluate the extent to which a test suite has explored
a system’s behavior. These coverage-guided test criteria can
aid in deciding when to continue generating more test cases.
However, they generally do not help in determining when to
cease generating test cases since satisfying a coverage test
criterion does not guarantee the absence of counterexamples.
According to [19], test suites that achieve the modified
condition/decision coverage (MC/DC) over implementations are
generally larger and more effective than test suites that achieve
MC/DC over functionally equivalent but structurally simpler
implementations. The MC/DC and fault-finding effectiveness
of test suites generated over simpler implementations are
significantly lower when applied to complex implementations.
A simpler implementation still achieves high MC/DC, while
a complex implementation still achieves high fault finding.
In [20], however, it was shown that MC/DC was not always
a meaningful measure for hybrid systems. Also in general,
MC/DC is a white-box method, while the falsification process
done in our paper is a black-box method.

b) Input Generation: Few research works focusing on the
input generators are found in the literature. In [21], an input
generator that uses words accepted by a timed automaton (TA)
is presented, and it is shown how it can be used to develop
complex periodic behaviors. This is more general than the pulse
generator discussed in [8], but it also requires a lot more effort
to model the TA for input generation. In [22], the proposed
approach starts with constant signals and adds new control
points incrementally. Their results on dynamic parametrization
were promising but still preliminary and tested on a limited
number of case studies Interestingly, they mention coverage as
future work.

In [9], a method based on randomly exploring trees (RRT),
adapted from path-planning problems, is presented. The prob-
lem of choosing the number of control points in the benchmark
competition [23] was addressed by considering two input
instances for each example. For the first instance, a fixed
parameterization, given ranges and number of control points,
is considered; for the second instance, “free” parameterization,
the only constraint is that the input signal has to be piecewise
continuous and within a given range.

In [7], different falsification methods were evaluated on
benchmark problems. The steam condenser (SC) problem
introduced in [24] was not falsified by any tool or method.
However, it is possible to falsify the system, as shown
in [24], by using an optimal control-based approach. The
counterexample was a periodical input, switching between
the extreme values of the allowed input parameter range. This
counterexample was an inspiration to introduce the pulse input
generators in [8].

One of the advantages of a pulse generator is that with
a few parameters, it covers a wide range of typical testing
signals: from bang-bang inputs, high frequency pulses up
to steps, and constant signals when the period is larger
than half the simulation time. This likely explains why the
proposed pulse generator falsifies all the evaluated benchmark
problems, including the SC problem. However, the proposed

pulse generator in [8] left some unanswered questions. First,
which parameters should be free and which should be fixed?
Secondly, how to parameterize the pulse generator so it can
conveniently generate relevant input signals?

III. FALSIFICATION

The falsification procedure for the optimization-based fal-
sification approach is shown in Fig. 1. An n-dimensional
vector, x, is used to parameterize the input signals, restricting
each element to be within a defined range. Given the input
parameters x, the Generator, i.e., the input generator, generates
an input trace for each input signal, xs

i , which describes a
discrete sequence of input values x

s
i [k]. This paper focuses on

this part where different input generators can be parameterized
with a different number of control points and interpolation
between them or completely different parameterizations like
pulse and sinusoidal generator. Each element in the sequence
is indexed by k, where k ranges from the start to the end of
the simulation, and the full sequence is denoted by x

s
i . The

Simulator simulates the SUT with x
s
i as input and generates

x
s
o as output.
The combination of the input vector xs

i and the output vector
x
s
o, called x

s, together with the specification φ are used by the
objective function f

φ(xs) to evaluate whether φ is falsified
or not. If the specification is not falsified, the quantitative
semantics gives a value representing how convincingly the test
passed. On the other hand, if the specification is falsified, the
current set of input and output traces is a counterexample, and
the falsification procedure can terminate.

Metric Interval Temporal Logic (MITL) [25] and Signal
Temporal Logic (STL) [26] can be used to express specifica-
tions with explicit timing intervals, which is well suited for
CPS requirements. In this paper, STL is used. Two different
quantitative semantics are defined for STL, Max, and Additive.
Both of these can be expressed in terms of valued Booleans
(VBools) [16]. In [6], [27], the strengths and weaknesses
of different semantics have been compared from practical
experiments that result in suggesting multiple quantitative
semantics in [28]. Several toolboxes are available for simulation-
based falsification of CPSs, like S-TaLiRo [29] and Breach [30].
These tools are both MATLAB/Simulink toolboxes that can
be used to falsify large-scale industrial systems. S-TaLiRo
finds counterexamples using specifications usually expressed in
MITL, and Breach performs falsification using STL. This paper
uses Breach together with Additive to evaluate the proposed
input generators.

IV. INPUT GENERATORS

In this section, we present a modified pulse generator that is
parameterized differently and only uses the minimum and max-
imum values for each input signal, together with the simulation
time. Hence, it helps test engineers in setting up falsification
problems without requiring in-depth knowledge about the SUT.
This paper aims to also evaluate the effectiveness of other
input generations. Hence two groups of input generators will
be assumed, sinusoidal generator and piecewise inputs.



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 4

Fig. 2: A pulse input generator parameterization.

A. Input Generator Parameterization

Each input to the SUT is defined in a range [l, u]. In this
work, three different input generators are considered, pulse,
sinusoidal generator, and piecewise. In the following, we
discuss the parameterization of these input signals.

1) Pulse Input Generator Parameterization: A periodic
square wave with an initial delay is shown in Fig. 2. This signal
is parameterized by (period ′

,width
′
, delay

′
, high

′
, low

′). T is
the simulation time. The pulse generator presented in Figure 2
is parametrized as follows: period = period

′ ⋅ T,, width =

width
′ ⋅ period, delay = delay

′ ⋅ T , low = l + low
′ ⋅ (u − l),

high = low + high
′ ⋅ (u − low) where The control points

width
′
, delay

′
, low

′
, high

′ are all in the range [0 1]. period ′

can vary in two different ranges depending on the use of
delay

′. If period ′ and delay
′ are used together, period ′

∈ [0 1];
otherwise period

′
∈ [0 2]. This assumption is because if

delay
′
= 1, it can make a constant signal equal to low. On the

other hand, when the delay
′ is not included, period′ = 2 will

result in a step signal.
2) Sinusoidal Input Generator Parameterization: Five pa-

rameters (freq ′, decay ′
, high

′
, low

′
, delay

′) can be used to gen-
erate a sinusoidal generator signal, as shown in Fig. 3. The
period refers to the time from one peak to the next. The
right graph shows an exponentially decaying sine wave. In the
implementation of sinusoidal generator, a frequency parameter
(freq), is used such that period =

2π
freq

.
To generate the sinusoidal generator signal to the left in

Fig. 3, we parameterize it as follows: freq = freq
′/(2 ⋅ Ts),

decay = decay
′/T , delay = delay

′ ⋅ T , low = l + low
′ ⋅

(u − l), high = low + high
′ ⋅ (u − low), where Ts is the

sampling time which is considered to be 0.01 s. The parameters
freq

′
, delay

′
, low

′
, high

′ are in the range [0 1], while decay
′

is in [−1, 1].
3) Piecewise Input: A piecewise input signal has multiple

segments, which can have different ranges. Two parameters can
be defined for a piecewise input signal: control points and the
interpolation scheme used between them. Fig. 4 shows three
piecewise input signals where the intervals are (0, t1), (t1, t2)
and (t2, T ). For this signal, five control points are needed,
two control points in the time domain and three in the signal,
i.e., the amplitude domain. Time intervals define how long

the intervals should be. Different interpolations between the
points are possible, for example, previous, linear, and pchip.
Previous and linear interpolation are straightforward, but pchip
uses piecewise cubic polynomials. If the values of each of
the three sub-segments between (0, t1), (t1, t2) and (t2, T )
are the same, a constant input signal is generated, no matter
the values of t1 and t2. On the other hand, if t1 = t2 = 0, a
step input signal is generated. It should be noted here that in
the literature, piecewise with previous interpolation is called a
piecewise constant function. As a result, it is called previous
in this paper to distinguish it from the constant input signal
that has only one value in the signal domain.

4) Evaluating parameter combinations: In [31], an evalua-
tion of the importance of different parameters for the efficiency
of the falsification procedure using a pulse input generator
is done. The evaluation uses benchmark problems [32], [28]
with TuRBO as the optimization algorithm and Thompson
Sampling [33] as an acquisition function (i.e., how exploration
and exploitation of the search space are done in Bayesian
optimization [34]). In the report, all benchmark examples were
first evaluated with varying one input parameter and keeping
the other parameters at their default values. This was followed
by an evaluation of combinations of input parameters. We
considered combinations of input signals where one parameter
was successful in falsifying at least one specification, regardless
of the success rate.

This results in Table I, which contains the most successful
falsification combinations of different input parameters. To
compare the performance of each input signal, we choose one,
three, and five input parameters for the optimization. The reason
for not evaluating all possible combinations of parameters is
first due to time constraints. Secondly, for the piecewise input
signal, we cannot have two or four control points. Because
the number of control points must be an odd number. On the
other hand, with one control point, a constant input signal
is generated. In Section. VI, we evaluate the pulse signal
with width

′ for one input parameter, low ′
,width

′
, period

′ for
three input parameters, and all parameters when having five
input parameters. Similarly, the sinusoidal generator signal
will be evaluated with freq

′ for one input parameter, and
low

′
, freq

′
, decay

′ when using three input parameters. They
arrived at this setup after evaluation. Finally, the piecewise
signal will have only one control point in the signal domain
when only one parameter is allowed for the optimization. With
three parameters, piecewise will have one variable in the time
domain and two parameters that vary in the signal domain.

V. COVERAGE MEASURE

In this section, we introduce a method to measure how well
a finite set of inputs covers the set of all possible inputs.

A. Space Coverage

We start by describing how we measure the coverage of
a dense rectangular domain D by a finite, discrete set of
parameter vectors. This is essentially done by binning the
vectors into a set of cells (similar to binning [35]), and then
counting the proportion of non-empty cells over the total



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 5

Fig. 3: Sinusoidal input parameterization: The left graph shows how a sinusoidal generator can be generated with
(freq ′, decay ′

, high
′
, low

′
, delay

′). The right graph shows an exponentially decaying sine wave.

Fig. 4: Three piecewise input signals with five control points and with previous, linear, and pchip interpolation.

Fig. 5: Space coverage example with D = [0, 1)3, and P composed of 500 vectors with a normal distribution centered around
(0.75, 0.75, 0.5).



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 6

TABLE I: Most successful parameter combinations for falsification. The first value shows how many specifications, out of 40,
are falsified in at least one run. The second value shows the number of successful falsifications in each run, where there is a
maximum of 200 possible falsifications since we have 40 specifications, and each falsification run is repeated five times.

Num. of Inputs One Two Three Four Five

Pulse Input width
′

low
′, width

′
low

′, period ′, width
′

low
′, period ′, width

′, high ′ All

combinations low
′, period ′, width

′, delay ′ Parameters

Num. of 30;150 38;188 38;184 40;189 38;181

falsified spec.

number of cells. More formally, we define a set of cells
C = {Ci, i = 1, 2,⋯, nc} such that C is a partition of D
as

D =

nc

⋃
i=1

Ci with Ci ∩ Cj = ∅ if i ≠ j.

Given a finite set P = {p1,⋯, pN} of vectors in D, we
define CP = {C ∈ C,∃p ∈ P ∩ C}. Then

covD(C,P) = card(CP)
card(C) =

card(CP)
nc

, (1)

where card returns the cardinality of a set, i.e., the number
of its elements. This definition is quite general and flexible
as it depends on how C is defined, and its computation and
interpretation are mostly straightforward. It actually makes little
sense in general to compute only one such coverage measure.
We illustrate this concept with the example in Fig. 5, where
D = [0, 1)3 and S is a composed of 500 vectors generated
with a normal distribution centered around (0.75, 0.75, 0.5).
We report four different coverage measures: in the top left, Ci

is of the form

[c1i , c1i +0.1) × [c2i , c2i +0.1) × [c3i , c3i +0.1)

where c
1
i is in {0.1, 0.2,⋯, 0.9}. In other words, each dimen-

sion of D is divided in 10 intervals, resulting in a partition
into 1000 cells of size 0.1. The 500 samples result in a 3 D
coverage of 41.2%. For the other plots, we consider projected
measures on two dimensions. For instance, on the bottom right
plot, Ci is of the form

[c1i , c1i +0.1) × [c2i , c2i +0.1).

For this measure, the 500 samples result in a coverage of 88%.
Note that the two-dimensional plots feature the number of
samples in each cell.

B. Space and Time Coverage

In this work, we want to provide a coverage measure not only
for samples but, more importantly, for signals as functions of
time. Our proposition is a direct extension of the measure above
by considering time as an additional dimension in which the
signals are sampled. Consider a set of signals S = {x1,⋯, xN},
a domain D and a bounded time domain T such that xi(t) ∈
D for all i. We define a finite set of cells Cτ

= {Cτ
i , i =

1, 2,⋯, nc} such that

T ×D =

nc

⋃
i=1

C
τ
i with C

τ
i ∩ C

τ
j = ∅ if i ≠ j.

We define now CS = {Cτ
∈ Cτ

,∃x ∈ S, t ∈ T , x(t) ∈ C
τ}.

The coverage measure for T ,D, Cτ and S is then defined
almost identically to (1) by

covT ×D(Cτ
,S) = card(CP)

card(Cτ) , (2)

Similarly to the above, the measures depend heavily on
the choice of Cτ . This is again best explained with an
illustrative example. In Fig. 6, we considered a two-dimensional
input signal where each dimension is sinusoidal of different
frequencies. The set S = {trace1, trace2} has only two samples
(or traces) taking values in the sig1, sig2 dimensions. They
are plotted in the top left plot. The top right figure shows
coverage projected on time and sig1 dimensions, for which
a 37 % coverage is achieved. The bottom left figure shows
coverage projected on time and sig2 dimensions. Because
trace2 oscillates rapidly, it achieves 100 % coverage. Note that
time is, of course, the main and important difference with the
“space” coverage measure. However, our definition does not
require it to be explicitly included in the cell decomposition.
The bottom right plot of Fig. 5 shows the projected untimed
coverage in dimensions sig1 and sig2.

C. Frequency Domain Coverage

Finally, we introduce a notion of frequency domain cov-
erage for input signals. Assuming again a finite set S of
n−dimensional signals and a bounded set of frequencies
D̂ ⊂ Rn for which we define a cell partitioning Ĉ = {Ĉi, i =
1, 2,⋯, nc} such that

D̂ =

nc

⋃
i=1

Ĉi with Ĉi ∩ Ĉj = ∅ if i ≠ j.

The general idea is to find which sets of frequencies are
covered by the set of signals S. For this, we use the Fourier
transform [36], which for x in S we denote x̂, and define Ŝ
as:

Ŝ = {ν ∈ D, ∃x ∈ S, ∣x̂(ν)∣ > ε(x̂,S)}

where ε(x̂,S) > 0 is designed as a threshold for the norm of x̂
to be considered significant for coverage measurement purposes.
From there, we can define the coverage in the frequency domain
as:

ˆcovD(D̂,S) = covD(D̂, Ŝ)

where covD(D̂, Ŝ) is defined as in (1). We illustrate this
definition on Fig. 7.



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 7

0 2 4 6 8 10
time

-1

0

1

si
g1

trace1
trace2

0 2 4 6 8 10
time

-1

0

1

si
g2

0 2 4 6 8 10

time

-1

-0.5

0

0.5

1

si
g1

time__x__sig1 signals coverage: 37 %

0

1

2

0 2 4 6 8 10

time

-1

-0.5

0

0.5

1

si
g2

time__x__sig2 signals coverage: 100 %

0

1

2

-1 -0.5 0 0.5 1

sig1

-1

-0.5

0

0.5

1

si
g2

sig1__x__sig2 signals coverage: 100 %

0

1

2

Fig. 6: Coverage of two traces of two dimensional signals, where each dimension is sinusoidal of different frequencies (top
left). We show coverage projected on time and one dimension (top-left and bottom-right) as well as untimed two-dimensional
coverage (bottom right).

0 0.2 0.4 0.6 0.8 1
time

-1

0

1

si
g1

trace1
trace2
trace3

0 0.2 0.4 0.6 0.8 1
time

-1

0

1

si
g2

0 10 20 30 40 50

Frequency (Hz)

0

0.2

0.4

0.6

0.8

1

N
or

m
 o

f F
F

T
 fo

r 
si

g1

0 0.2 0.4 0.6 0.8 1

Norm of FFT for sig2

0

10

20

30

40

50

F
re

qu
en

cy
 (

H
z)

0 10 20 30 40 50

sig1 frequencies

0

10

20

30

40

50

si
g2

 fr
eq

ue
nc

ie
s

sig1_freqs__x__sig2_freqs signals_freqs coverage: 8 %

Fig. 7: Frequency coverage of three traces of a two-dimensional sinusoidal input signal. The Fourier transforms identify the
fundamental frequencies, which results in small regions of the frequency domain being covered (bottom right).



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 8

D. Implementation and Experimental Evaluation

We implemented the coverage measures in the tool
Breach1 [30]. We briefly sketch the complexity of their
computation. The approach avoids dimensional complexity
using a sparse coding of the cells and a hash table. First,
signals are discretized in time, and for each value, we check
which cell it belongs to, which is done in linear time in
dimension n, then check if the cell was already visited by
another sample (done in constant time using a hash table).
Computing the number of occupied cells over the total number
of cells is then trivial and done in constant time. Assuming
N signals of dimension n, discretized in time with the time
step δt giving k = T/δt samples, the complexity is then in
O(Nnk). Computing the frequency domain coverage measures
requires additional Fast Fourier Transforms computations,
which are done in O(k log k)[37], which gives a complexity
of O(Nnk +Nnk log k), so that the overall cost is actually
dominated by FFT computations.

We evaluated the coverage measures presented in Section V
on the different signal generators by sampling up to 1000 uni-
form random signals based on the parameterizations described
above. The results are presented in Fig. 8.

The sinusoidal generator demonstrates the best performance
in both time-space and frequency coverage. Piecewise gen-
erators have good performance for time-space coverage but
cannot achieve more than 10% frequency domain coverage.
Pulse generators provide average performance in both time-
space and frequency domain coverage. Recall that when using
only one variable, the pulse generator is allowed only two
values (min and max), and the period is fixed, which explains
the low performance for both time-space and frequency domain
coverage.

E. Remarks and Discussion

In [8], it was found that the pulse signal generator performed
remarkably well on falsification benchmarks. We speculated
that by changing the parameters of the generator, the signal
could efficiently represent different families of signals that are
typical falsification candidates, such as steps, but also signals at
variable frequencies. This motivated us to explore the coverage
properties of different families of signals.

Our choice of coverage measure was motivated by simplicity
and interpretability rather than more precise mathematical
concepts. For instance, our measure heavily depends on the
choice of the cells C. By changing from 10 cells to 20 cells per
dimension, the coverage measure of a given same set of signals
can easily be halved or more. This may not be desirable from a
mathematical point of view. However, assuming a careful and
conscious choice of each dimension and discretization, with
a simple default, normalized choice, the coverage number we
obtain is always easily interpretable. Moreover, since projection
on a few dimensions is easy, we believe that it makes it versatile
to obtain specific insights.

We exploited this versatility to define frequency domain
coverage. Basically, the Fourier transform that we used is

1https://github.com/decyphir/breach

one way of performing projection on a given feature before
measuring coverage. The frequency domain analysis that we
obtained is simple but enough to provide insights into our sets
of signals. We tested our frequency domain coverage measure
with the sinusoidal generator and could verify, as was expected,
that this generator is optimal, i.e., reaches 100% coverage, as
can be seen in Fig. 7 in the bottom graph. This motivated us to
include this generator in our evaluation for falsification, which
we do in the following section.

VI. EXPERIMENTAL EVALUATION

In this section, we evaluate the input generators on the
ARCH benchmark problems of [23] with three additional
benchmarks from [28]. For the ARCH benchmark problems,
the problems are denoted AT, CC, NN, AFC, and SC. The
benchmarks from [28] are AT

′, the ∆ − Σ modulator, and
SS. Note that the AT

′ (Automatic Transmission) problem has
different specifications and input ranges from the original AT
problem formulated in [28].

A. Evaluated Optimization Methods

We compare the performance of the input generators
using methods found in the literature: the hybrid corner-
random (HCR) strategy and line-search falsification (LSF) [7],
TuRBO [38], and πBO [39].

HCR, an optimization-free method, is included in the
evaluation because in [7], it is shown to be surprisingly efficient
in successfully falsifying many benchmark problems while
being straightforward to implement.

A direct search method, line-search falsification (LSF),
from [7] is also included because it showed to be an effi-
cient method for falsification. This method combines random
exploration with local search by randomly generating lines in
the n-dimensional parameter space and optimizing over the
line segments. In this work, we use Option 4 of this method
which works with lines extending beyond the boundaries of
input ranges and thus has a higher chance of resulting in corner
values; see [7] for more details.

Two approaches based on Bayesian Optimization (BO) [40],
TuRBO [38] with Lower Confidence Bound [41] as acquisition
function and πBO [39], were in [42] shown to have unique
capabilities for falsification.

B. Experimental Setup

The HCR method starts with corners and then switches to
uniform random (UR) samples. The number of corners is fixed
and depends on the dimensionality of the optimization problem,
i.e., the number of input parameters n. When the number of
corners, i.e., 2n corner points, is exhausted, HCR continues
using only random samples. It switches between corners and
UR until the maximum number of simulations, 1000 here, is
reached or a falsified point is found. For the LSF method, the
value of maximum iterations to work with a single line is set
to 3. As BO methods require a set of initial samples to start
the process, we set the initial number of samples to 2 ⋅ n.

The results for all input generators, across different numbers
of parameters and optimization methods, are presented in



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 9

0 100 200 300 400 500 600 700 800 900 1000

Number of random signals 

0

20

40

60

80

100

C
o
ve

ra
g
e
 (

%
)

Time Space Coverage for different generators

0 100 200 300 400 500 600 700 800 900 1000

Number of random signals 

0

20

40

60

80

100

C
o
ve

ra
g
e
 (

%
)

Frequency Coverage for different generators

Fig. 8: Coverage performance measures for different signal generators. For piecewise generators, we only show the results for
linear interpolation for clarity. For time space coverage, the result is similar for the three interpolation methods (slightly better
for pchip, and slightly worse for previous) and identical for frequency coverage for all interpolation methods and the number of
parameters.

TABLE II: Results for all evaluated input generators with different parameters and optimization methods. The first value
shows how many specifications, out of 44, are falsified in at least one run. The second value shows the number of successful
falsifications in each run, where there is a maximum of 220 possible falsifications since we have 44 specifications, and
each falsification run is repeated five times. The last number is the average number of simulations (rounded) per successful
falsification, where the maximum number of simulations is 1000.

Num. of Inp. Param. One Three Five

Inp. Gen. Interpolation HCR LSF TuRBO πBO HCR LSF TuRBO πBO HCR LSF TuRBO πBO

Pulse - 33;165;17 33;165;12 33;165;6 33;165;7 37;185;70 42;207;50 43;214;29 43;204;49 39;195;43 42;202;39 44;209;26 41;202;46

Sinusoid - 27;135;178 31;140;34 29;125;62 28;139;24 37;185;74 40;193;33 36;175;54 40;194;20 37;185;15 40;195;27 40;196;16 39;195;19

Piece-Wise

constant 28;140;21 30;150;25 29;142;43 30;147;55 - - - - - - - -

previous - - - - 40;200;41 43;213;63 42;205;50 43;211;61 39;195;43 43;213;47 42;208;36 43;209;56

linear - - - - 32;160;36 37;180;57 36;180;39 36;178;62 36;180;84 43;205;51 42;203;50 43;195;75

pchip - - - - 32;160;34 35;173;32 35;170;30 36;170;55 38;190;82 43;209;59 42;210;49 43;204;59

Table. II. In this table, the first column denotes the input
generator and the second column indicates the interpolation
scheme used for the piecewise signal. The subsequent four
columns display the evaluation results for a single input using
HCR, LSF, TuRBO, and πBO, respectively. The following
columns show the results for three and five input parameters.
Each falsification is capped at a maximum of 1000 simulations.
Each evaluation is repeated 5 times to account for the inherent
randomness of the algorithms. The evaluation utilizes 44
different problem specifications. For each method, two values
are presented: the first value represents how many specifications
(out of 44) that have been falsified. Given that there are
five falsification runs for each input parameter value and
specification, a total of 5 ⋅ 44 = 220 falsifications are possible.

The second value, provided after the semicolon, indicates the
number of specifications falsified in each run out of the potential
220.

C. Results Analysis

From the result in Table II, we observe that most of the
evaluated problems can be falsified with only one parameter
for the optimization. In fact, a maximum of 33 out of 44
problems can be falsified using the pulse generator. The
number of falsified specifications increases when the number
of parameters for each input signal to 3 and 5. With a single
input parameter, the pulse generator demonstrates superior
performance compared to other input generators. It manages



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 10

to falsify 33 specifications in each run amounting to a total of
165, irrespective of the optimization method used. When using
sinusoidal generator and piecewise generator, the LSF method
exhibits the best performance. By increasing the number of
parameters for optimization to three, more specifications can
be falsified, regardless of the choice of input generators. In this
scenario, pulse generator demonstrates superior performance
when paired with TuRBO, falsifying 43 specifications in all
runs except one in 4 out of 5 trials. When comparing the
performance of different interpolations of piecewise generator,
previous outperforms others, especially when used with LSF,
and three parameters are included. Increasing the number
of parameters to five for each signal slightly enhances the
falsification success rate. This improvement is particularly
significant for linear and pchip. For instance, when using LSF
with linear interpolation, 43 specifications are falsified with five
parameters, compared to 37 with three parameters. Similarly,
the number of falsified specifications jumps from 36 to 42 and
from 36 to 43 when using TuRBO and πBO, respectively. In
general, the best performance across all optimization methods
is achieved when five parameters are included. This is evident
when using TuRBO with the pulse generator signal results in
falsifying all 44 specifications in at least one trial.

Although increasing the number of parameters for optimiza-
tion generally helps to falsify more specifications, this is not
universally true. For instance, when using pulse generator with
three parameters, πBO falsifies 43 specifications with a total
of 204 successful falsifications per run. On the other hand,
πBO with five parameters only falsifies 41 specifications over
202 runs, a decrease from 43. This indicates that increasing
the number of parameters can make some specifications more
difficult to falsify, requiring more simulations. To show some
specific cases, Table III lists the results for three specifications
of benchmark problems, φSC

1 , φAT
′

7 and φ
CC
4 , that are hard to

falsify, as was discussed in [7], [8]. In this table, two values are
presented for each specification; the first is the relative success
rate of falsification in percent. Since there are 5 falsification
runs for each parameter value and specification, the success rate
will be a multiple of 20%. The second value, inside parentheses,
is the average number of simulations (rounded) per successful
falsification.

The problem φ
SC
1 was the motivation to introduce the pulse

generator in [8]. As shown in [8], φ
SC
1 is falsified using

pulse generator with only the period parameter, regardless
of the used optimization methods. As can be seen in Table III,
TuRBO is the best optimization method which falsifies φ

SC
1

with both three and five parameters. Adding more parameters
for optimization made the specification harder to falsify; for
example, πBO falsifies it with three parameters in one run and
not at all with five parameters.

The specification φ
AT

′

7 is falsified only if the gear signal
follows a given sequence with timing constraints. As can be
seen, piecewise generator with different interpolations is more
successful in falsifying this problem with all optimization-based
methods. In general, increasing the number of parameters from
3 to 5, opposite to φ

SC
1 , helps to falsify this example with less

number of simulations for some optimization. For example,

LSF’s success rate is increased to 100% from 80% using
previous. As can also be seen for this specification, how to
interpolate among the control points is an important factor,
which results in better performance of linear in general using
three parameters.

If the number of parameters is increased, the performance
of the optimization methods is reduced for φCC

4 . For example,
when using pulse generator with one parameter regardless of
the optimization method, it is possible to falsify this specifi-
cation. On the other hand, having three and five parameters
makes this specification hard to falsify. Three parameters for
piecewise generator demonstrate better performance than with
only one parameter. Compared to five parameters, having three
parameters using piecewise generator performs better.

From the above discussion, comparing the performance of
input generators, sinusoidal did not perform well for these
three specifications. On the other hand, pulse generator falsifies
all three hard benchmark problems using TuRBO, as shown
in Table II. Comparing the performance of the optimization
methods, TuRBO outperforms the other optimization methods.
On the other hand, πBO shows a reasonable performance for
these three specifications, probably because of the moderate
number of dimensions. As a result of the forgetting factor [39],
if the wrong falsified area is injected into this method, πBO still
converges to the falsified area. LSF shows worse performance
compared to the BO methods for these three specifications, as
was discussed in [42]. HCR does not show good performance
here because these problems are hard to falsify, and an
optimization-based method is beneficial.

The three evaluated specifications in Table III are belonging
to the subsets of benchmark problems where the falsification
efficiency is significantly changed when increasing the number
of optimization parameters. This means that increasing the
number of inputs for optimization might help to falsify a
specification, or it might worsen the performance. Also, for the
evaluated problems, the performance of falsification depends
on which input signal is used.

Three cactus plots are shown in figures 9– 11 to compare
different input generators and optimization methods for all 44
evaluated specifications with one, three, and five parameters,
respectively. In these figures, each optimization method is
shown with a specific marker: HCR (◦), LSF (□), TuRBO (⋄),
πBO (⋆). Different colors are used to show different input
parameters as pulse generator (green), sinusoidal generator
(blue), and piecewise generator with previous (magenta), linear
(red), and pchip (black). The constant signal is shown with red
color in Fig. 9.

As depicted in Fig. 9, pulse generator outperforms other
methods regardless of the optimization method used. Similarly,
the pulse generator with three parameters when optimized with
TuRBO falsifies more specifications using fewer simulations,
as seen in Fig. 10. Moreover, employing all five parameters
with pulse generator as the input generator and TuRBO as the
optimization method enables the falsification of all evaluated
benchmark problems in at least one of the falsification runs,
see Fig. 11.



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 11

TABLE III: Evaluation results for all input generators and optimization methods for three hard specifications to falsify (φSC
1 ,

φ
AT

′

7 , φCC
4 ). The first value is the relative success rate of falsification in percent. The second value, inside parentheses, is the

average number of simulations (rounded) per successful falsification.

Spec. Num. of Inp. Param. One Three Five

Inp. Gen. Interpolation HCR LSF TuRBO πBO HCR LSF TuRBO πBO HCR LSF TuRBO πBO

Pulse - 0 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 (-) 100 (126) 20 (184) 0 (-) 0 (-) 60 (432) 0 (-)

Sinusoid - 0 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 (-)

φ
SC
1

Piecewise

constant 0 (-) 0 (-) 0 (-) 0 (-) - - - - - - - -

previous - - - - 0 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 (-)

linear - - - - 0 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 (-)

pchip - - - - 0 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 (-)

Pulse - 0 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 (-) 80 (418) 100 (183) 100 (375)

Sinusoid - 0 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 (-) 20 (633) 0 (-)

φ
AT

′

7

Piecewise

constant 0 (-) 0 (-) 0 (-) 0 (-) - - - - - - - -

previous - - - - 0 (-) 80 (538) 100 (131) 100 (242) 0 (-) 100 (462) 100 (172) 80 (338)

linear - - - - 100 (251) 100 (226) 100 (212) 100 (219) 0 (-) 100 (454) 100 (103) 60 (390)

pchip - - - - 100 (251) 100 (182) 100 (84) 60 (339) 100 (844) 100 (296) 100 (240) 100 (317)

Pulse - 100 (393) 100 (129) 100 (47) 100 (134) 0 (-) 80 (125) 100 (216) 80 (261) 0 (-) 0 (-) 60 (457) 40 (515)

Sinusoid - 0 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 (-)

φ
CC
4

Piecewise

constant 0 (-) 0 (-) 0 (-) 0 (-) - - - - - - - -

previous - - - - 0 (-) 80 (603) 0 (-) 40 (612) 0 (-) 60 (373) 0 (-) 40 (551)

linear - - - - 100 (232) 100 (319) 100 (148) 100 (70) 0 (-) 100 (498) 100 (454) 60 (307)

pchip - - - - 100 (232) 100 (229) 80 (188) 100 (75) 0 (-) 100 (472) 100 (308) 40 (103)

0 20 40 60 80 100 120 140 160 180 200 220

Number of successful falsifications

10
0

10
1

10
2

10
3

N
u

m
b

e
r 

o
f 

s
im

u
la

ti
o

n
s

One Input Parameter

Fig. 9: A cactus plot showing the performance of different input generators using one input parameter and optimization methods
on all benchmark problems. The x-axis gives the number of successful falsifications completed for the number of simulations
(y-axis, logarithmic scale), a maximum of 1000 simulations.



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 12

0 20 40 60 80 100 120 140 160 180 200 220

Number of successful falsifications

10
0

10
1

10
2

10
3

N
u
m

b
e
r 

o
f 
s
im

u
la

ti
o
n
s

Three Input Parameters

Fig. 10: A cactus plot showing the performance of different input generators using three input parameters and optimization
methods on the benchmark problems. The x-axis gives the number of successful falsifications completed for the number of
simulations (y-axis, logarithmic scale), a maximum of 1000 simulations.

0 20 40 60 80 100 120 140 160 180 200 220

Number of successful falsifications

10
0

10
1

10
2

10
3

N
u
m

b
e
r 

o
f 
s
im

u
la

ti
o
n
s

Five Input Parameters

Fig. 11: A cactus plot showing the performance of different input generators using five input parameters and optimization
methods on all benchmark problems. The x-axis gives the number of successful falsifications completed for the number of
simulations (y-axis, logarithmic scale), a maximum of 1000 simulations.



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 13

VII. CONCLUSION

This paper explores the impact of various input generators on
the falsification of cyber-physical systems. This topic is relevant
to practitioners and has not been thoroughly explored within the
falsification community. The assessed input signal generators
encompass pulse, sinusoidal, and piecewise signals. These
inputs are appropriate for black-box falsification, in which no
assumptions are made about the SUT, apart from the ability to
modify inputs, simulate the system, and observe outputs. The
various input generators are assessed on benchmark problems,
and coverage measures of the different input generators are
presented in both the space-time and frequency domains. To
evaluate the efficiency of the distinct input generators, we
employ different search methods, including optimization-free
and optimization-based approaches. Pulse generators exhibit
average performance in space-time and frequency domain
coverage. They were able to falsify all benchmark problems
using TuRBO and having all five input parameters as decision
variables. The sinusoidal generator excelled in covering space
and frequency but demonstrated lower efficiency than other
input generators for falsification. A probable reason is their
overly regular nature, whereas typical falsification signals
exhibit discontinuous behavior, such as steps and “bang-
ban” patterns, which pulses effectively generate. This is
further exemplified by the piecewise constant input genera-
tor (previous), which demonstrates strong performance for
falsification and space-time coverage. However, its frequency
domain coverage is comparatively weak, which hindered its
success in some problems. The evaluation results indicate
that numerous specifications are falsified using only a single
input parameter. Increasing the number of parameters proves
beneficial for falsifying certain specifications, while adversely
affecting efficiency for others. Additionally, the evaluation
reveals that employing a learning-based approach, specifically
Bayesian optimization, reduces the number of simulations
required for the successful falsification of more challenging
problems. For future research, it would be compelling to
examine the proposed input generators on industrial-scale
problems with a large number of input signals, such as the
benchmarks presented in [43]. Moreover, several directions
warrant exploration concerning the coverage measures we
introduced:

• By calculating coverage measures during falsification,
we could potentially monitor the exploration versus
exploitation behavior of the solver and influence it in
either direction;

• Is it possible to “invert” the coverage measure of signals
to design efficient test suites, that is, test suites with a
minimal number of sets achieving a specified level of
coverage? The concept would be to extend ideas from
combinatorial testing to our framework [13];

• Investigate the theoretical and empirical connections with
other coverage measures, such as star-discrepancy for
samples [9], and more broadly, epsilon nets coverage for
signals and functions [44].

Finally, our results on input generation and parameterization
and the coverage measures we introduced can be incorporated

in metaheuristics for falsification such as in [10], [21]. However,
the design and evaluation of such automatic strategies should
be done carefully, as another extensive experimental study
in [45] has shown that adaptive strategies outperform simple
but effective ones, such as those based on corners and random
exploration (e.g., HCR in our work), only in relatively rare,
difficult cases.

ACKNOWLEDGMENT

This work was supported by the Swedish Research Council
(VR) project SyTeC VR 2016-06204 and by the Swedish
Governmental Agency for Innovation Systems (VINNOVA)
under project TESTRON 2015-04893. It was also partly funded
by the Wallenberg AI, Autonomous Systems, and Software
program (WASP), sponsored by the Knut and Alice Wallenberg
Foundation. The evaluations were conducted utilizing resources
at the High Performance Computing Center North (HPC2N)
of Umeå University, a Swedish national center for scientific
and parallel computing. The authors express their gratitude to
K. Šehić, L. Nardi, K. Claessen, and N. Smallbone for their
valuable input to this work.

REFERENCES

[1] R. Alur, Principles of cyber-physical systems. MIT press, 2015.
[2] S. Mitra, Verifying Cyber-Physical Systems: A Path to Safe Autonomy.

MIT Press, 2021.
[3] T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya, “What’s decidable

about hybrid automata?” in Proceedings of the Twenty-seventh Annual
ACM Symposium on Theory of Computing, 1995, pp. 373–382.

[4] V. Raman, A. Donzé, D. Sadigh, R. M. Murray, and S. A. Seshia, “Reac-
tive synthesis from signal temporal logic specifications,” in Proceedings
of the 18th Int. Conf. on hybrid systems: Computation and control. ACM,
2015, pp. 239–248.

[5] G. E. Fainekos and G. J. Pappas, “Robustness of temporal logic
specifications for continuous-time signals,” Theoretical Computer Science,
vol. 410, no. 42, pp. 4262 – 4291, 2009.

[6] J. L. Eddeland, S. Miremadi, and K. Åkesson, “Evaluating optimization
solvers and robust semantics for simulation-based falsification,” in
ARCH20. 7th Int. Workshop on Applied Verification of Continuous and
Hybrid Systems (ARCH20), ser. EPiC Series in Computing, G. Frehse
and M. Althoff, Eds., vol. 74. EasyChair, 2020, pp. 259–266.

[7] Z. Ramezani, K. Claessen, N. Smallbone, M. Fabian, and K. Åkesson,
“Testing cyber–physical systems using a line-search falsification method,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 41, no. 8, pp. 2393–2406, 2022.

[8] Z. Ramezani, A. Donzé, M. Fabian, and K. Åkesson, “Temporal logic
falsification of cyber-physical systems using input pulse generators,”
EPiC Series in Computing, vol. 80, pp. 195–202, 2021.

[9] T. Dreossi, T. Dang, A. Donzé, J. Kapinski, X. Jin, and J. V. Deshmukh,
“Efficient guiding strategies for testing of temporal properties of hybrid
systems,” in NASA Formal Methods Symposium. Springer, 2015, pp.
127–142.

[10] A. Adimoolam, T. Dang, A. Donzé, J. Kapinski, and X. Jin, “Classifica-
tion and coverage-based falsification for embedded control systems,” in
Int. Conf. on Computer Aided Verification. Springer, 2017, pp. 483–503.

[11] R. Hamlet, “Random testing,” Encyclopedia of software Engineering,
vol. 2, pp. 971–978, 1994.

[12] A. Pretschner, “Model-based testing,” in Proceedings. 27th Int. Conf. on
Software Engineering, 2005. ICSE 2005. IEEE, 2005, pp. 722–723.

[13] D. R. Kuhn, R. N. Kacker, and Y. Lei, Introduction to combinatorial
testing. CRC press, 2013.

[14] P. McMinn, “Search-based software testing: Past, present and future,”
in 2011 IEEE Fourth Int. Conf. on Software Testing, Verification and
Validation Workshops. IEEE, 2011, pp. 153–163.

[15] K. Claessen and J. Hughes, “QuickCheck: a lightweight tool for random
testing of Haskell programs,” in Proceedings of the fifth ACM SIGPLAN
Int. Conf. on Functional programming, 2000, pp. 268–279.



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 14

[16] K. Claessen, N. Smallbone, J. Eddeland, Z. Ramezani, and K. Åkesson,
“Using valued booleans to find simpler counterexamples in random testing
of cyber-physical systems,” IFAC-PapersOnLine, vol. 51, no. 7, pp. 408–
415, 2018.

[17] D. R. Kuhn, R. N. Kacker, Y. Lei et al., “Practical combinatorial testing,”
NIST special Publication, vol. 800, no. 142, p. 142, 2010.

[18] J. L. Eddeland, S. Miremadi, and K. Åkesson, “Evaluating optimization
solvers and robust semantics for simulation-based falsification,” in
ARCH20. 7th Int. Workshop on Applied Verification of Continuous and
Hybrid Systems, 2020.

[19] G. Gay, M. Staats, M. Whalen, and M. P. E. Heimdahl, “The risks of
coverage-directed test case generation,” IEEE Transactions on Software
Engineering, vol. 41, no. 8, pp. 803–819, 2015.

[20] J. Eddeland, J. G. Cepeda, R. Fransen, S. Miremadi, M. Fabian, and
K. Åkesson, “Automated mode coverage analysis for cyber-physical
systems using hybrid automata,” IFAC-PapersOnLine, vol. 50, no. 1, pp.
9260–9265, 2017, 20th IFAC World Congress.

[21] B. Barbot, N. Basset, T. Dang, A. Donzé, J. Kapinski, and T. Yamaguchi,
“Falsification of cyber-physical systems with constrained signal spaces,”
in NASA Formal Methods Symposium. Springer, 2020, pp. 420–439.

[22] J. Deshmukh, X. Jin, J. Kapinski, and O. Maler, “Stochastic local search
for falsification of hybrid systems,” in Int. Symposium on Automated
Technology for Verification and Analysis. Springer, 2015, pp. 500–517.

[23] G. Ernst, P. Arcaini, I. Bennani, A. Chandratre, A. Donzé, G. Fainekos,
G. Frehse, K. Gaaloul, J. Inoue, T. Khandait et al., “ARCH-COMP
2021 category report: Falsification with validation of results.” in ARCH@
ADHS, 2021, pp. 133–152.

[24] S. Yaghoubi and G. Fainekos, “Gray-box adversarial testing for control
systems with machine learning components,” in Proceedings of the 22nd
ACM Int. Conf. on Hybrid Systems: Computation and Control, 2019, pp.
179–184.

[25] R. Koymans, “Specifying real-time properties with metric temporal logic,”
Real-Time Systems, vol. 2, no. 4, pp. 255–299, 1990.

[26] O. Maler and D. Nickovic, “Monitoring temporal properties of continuous
signals,” in Formal Techniques, Modelling and Analysis of Timed and
Fault-Tolerant Systems, Hei2004, pp. 152–166.

[27] Z. Ramezani, N. Smallbone, M. Fabian, and K. Åkesson, “Evaluating
two semantics for falsification using an autonomous driving example,”
in 2019 IEEE 17th Int. Conf. on Industrial Informatics, vol. 1, 2019, pp.
386–391.

[28] Z. Ramezani, J. L. Eddeland, K. Claessen, M. Fabian, and K. Åkesson,
“Multiple objective functions for falsification of cyber-physical systems,”
IFAC-PapersOnLine, vol. 53, no. 4, pp. 417–422, 2020.

[29] Y. Annpureddy, C. Liu, G. Fainekos, and S. Sankaranarayanan, “S-TaLiR:
A tool for temporal logic falsification for hybrid systems,” in Tools and
Algorithms for the Construction and Analysis of Systems, P. A. Abdulla
and K. R. M. Leino, Eds. Springer Berlin Heidelberg, 2011, pp. 254–257.

[30] A. Donzé, “Breach, a toolbox for verification and parameter synthesis
of hybrid systems,” in Computer Aided Verification, T. Touili, B. Cook,
and P. Jackson, Eds. Springer Berlin Heidelberg, 2010, pp. 167–170.

[31] Ramezani, Zahra, and Åkesson, Knut, “Technical report: The effect
of input parameters on falsification of cyber-physical systems,” arXiv
preprint arXiv:2209.07131, 2022.

[32] G. Ernst, P. Arcaini, A. Donzé, G. Fainekos, L. Mathesen, G. Pedrielli,
S. Yaghoubi, Y. Yamagata, and Z. Zhang, “ARCH-COMP 2019 Category
Report: Falsification,” in ARCH19. 6th Int. Workshop on Applied
Verification of Continuous and Hybrid Systems, vol. 61. EasyChair,
2019, pp. 129–140.

[33] W. R. Thompson, “On the likelihood that one unknown probability
exceeds another in view of the evidence of two samples,” Biometrika,
vol. 25, no. 3/4, pp. 285–294, 1933.

[34] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. de Freitas,
“Taking the human out of the loop: A review of bayesian optimization,”
Proceedings of the IEEE, vol. 104, no. 1, pp. 148–175, 2016.

[35] M. Wand, “Fast computation of multivariate kernel estimators,” Journal
of Computational and Graphical Statistics, vol. 3, no. 4, pp. 433–445,
1994.

[36] R. N. Bracewell and R. N. Bracewell, The Fourier transform and its
applications. McGraw-Hill New York, 1986, vol. 31999.

[37] K. R. Rao, D. N. Kim, and J.-J. Hwang, Fast Fourier Transform -
Algorithms and Applications, 1st ed. Springer Publishing Company,
Incorporated, 2010.

[38] D. Eriksson, M. Pearce, J. Gardner, R. D. Turner, and M. Poloczek,
“Scalable global optimization via local bayesian optimization,” Advances
in Neural Information Processing Systems, vol. 32, pp. 5496–5507, 2019.

[39] Hvarfner, Carl and Stoll, Danny and Souza, Artur and Lindauer, Marius
and Hutter, Frank and Nardi, Luigi, “πBO: Augmenting Acquisition
Functions with User Beliefs for Bayesian Optimization,” in Tenth Int.
Conf. of Learning Representations, ICLR 2022, 2022, pp. 1–30.

[40] S. Shalev-Shwartz, S. Shammah, and A. Shashua, “On a formal model
of safe and scalable self-driving cars,” CoRR, vol. abs/1708.06374, 2017.

[41] N. Srinivas, A. Krause, S. Kakade, and M. Seeger, “Gaussian process
optimization in the bandit setting: No regret and experimental design,”
in Proceedings of the 27th Int. Conf. on Int. Conf. on Machine Learning,
ser. ICML’10. Madison, WI, USA: Omnipress, 2010, p. 1015–1022.

[42] Ramezani, Zahra, and Šehić, Kenan and Nardi, Luigi and Åkesson, Knut,
“Falsification of cyber-physical systems using Bayesian optimization,”
arxiv.org/abs/2209.06735, 2022.

[43] J. L. Eddeland, A. Donzé, S. Miremadi, and K. Åkesson, “Industrial
temporal logic specifications for falsification of cyber-physical systems,”
in ARCH20. 7th Int. Workshop on Applied Verification of Continuous and
Hybrid Systems (ARCH20), ser. EPiC Series in Computing, G. Frehse
and M. Althoff, Eds., vol. 74. EasyChair, 2020, pp. 267–274.

[44] H. Brönnimann and M. T. Goodrich, “Almost optimal set covers in finite
VC-dimension,” Discrete & Computational Geometry, vol. 14, no. 4, pp.
463–479, Dec. 1995.

[45] J. L. Eddeland, A. Donzé, and K. Åkesson, “Multi-Requirement Testing
Using Focused Falsification,” in HSCC ’22: 25th ACM Int. Conf. on
Hybrid Systems: Computation and Control, Milan, Italy, May 4 - 6, 2022,
E. Bartocci and S. Putot, Eds. ACM, 2022, pp. 4:1–4:11.

Zahra Ramezani received the BSc (2011) and
MSc (2013) degrees in Electrical Engineering from
Iran University of Science and Technology, Tehran,
Iran. She received her PhD at the Department of
Electrical Engineering (2022), Chalmers University
of Technology, Gothenburg, Sweden. Her research
interest is testing of cyber-physical systems.

Alexandre Donzé is the co-founder of Decyphir,
building design automation tools for Cyber-Physical
Systems. He received a computer science engineering
degree from ENSIMAG in Grenoble in 2002 and a
Ph.D in Math and Computer Science from Grenoble-
Alpes University in 2007. He worked at CMU
in Pittsburgh, Verimag Lab in Grenoble, and UC,
Berkeley in California. He made several contributions
to the field of CPS testing and verification with
significant impact both in academia and in the
industry.

Martin Fabian is since 2014 full Professor in
Automation and Head of the Automation Research
group at the Department of Electrical Engineering,
Chalmers University of Technology. He received
his PhD in Control Engineering from Chalmers
University of Technology in 1995. His research
interests include formal methods for automation
systems in a broad sense, merging the fields of
Control Engineering and Computer Science. He has
authored more than 200 publications and is co-
developer of the formal methods tool Supremica,

which implements state-of-the-art algorithms for supervisory control synthesis.

Knut Åkesson (Member) is Professor with the
Department of Electrical Engineering at Chalmers
University of Technology, Gothenburg, Sweden. His
main research is in using rigorous methods for
the analysis of cyber-physical systems. Åkesson
holds a Master of Science in Computer Science and
Technology from Lund Institute of Technology at
the University of Lund (1997), Sweden, and PhD in
Control Engineering from Chalmers University of
Technology (2002), Gothenburg, Sweden.


