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ABSTRACT: In this work, we present a framework to support
designers in the early-stage screening and design of chemical processes
under uncertainty. The suggested framework is a stepwise approach
which identifies: (1) if structural design proposals are structurally
feasible, (2) the necessary and most cost-efficient overdesign of
equipment size to allow for steady-state flexible operation, and (3) a
basis to compare different structural design proposals with respect to a
given objective. In contrast to previous work, the suggested framework
utilizes advanced modeling of the expected uncertainty space to allow
for considering dependencies in the uncertain parameters as well as
independent operating periods. Theoretical examples illustrate how the
advanced modeling can enable a better representation of the actual
flexibility of a process compared to using more traditional
representations of the uncertainty space. To illustrate the benefits of the proposed framework, the paper also presents an industrial
case study of a heat exchanger network retrofit.

1. INTRODUCTION
Chemical process design is usually subject to uncertainty. This
uncertainty can have different origins; for example, process
parameters such as flow rates or heat-transfer coefficients may
vary (uncontrolled) or may not be known exactly. Traditionally,
as reported in the literature,1−3 the approach to handle
uncertainty in such parameters is to consider (only) nominal
conditions during the design stage and use overdesign to
compensate for the potential impact of the uncertainty. Some of
this overdesign may be unnecessary, resulting in suboptimal
design solutions. To identify the optimal solution to such a
problem, specific methods and strategies have been developed,
which are usually allocated to the field of optimization under
uncertainty.
Grossmann and Sargent4 defined the objective of the optimal

design problem with uncertain parameters as designing
processes “that are always able to meet the specifications for
any feasible [or expected] values of the [uncertain] parameters
and that, at the same time, are optimum with respect to a [···]
cost function”. Note that the authors explicitly considered the
uncertain parameters to be continuous (and bounded), that is,
the parameters can take any value between a lower bound and an
upper bound, and that the optimal process design allows for
feasible operation at any of these values. The authors concluded
that design under uncertainty is an infinite problem. There exist
two categories of approaches to solve such a problem, as pointed
out by Steimel and Engell,5 namely, sampling-based approaches
and parametric approaches. In parametric approaches, the
sampling of the uncertainty space is not required, meaning that

the expected value of the objective function is obtained without
approximation. Examples have been presented by Pistikopoulos
and Ierapetritou,6 Acevedo and N. Pistikopoulos,7 as well as
Rooney and Biegler.8 Difficulties may arise when the number of
uncertain parameters increases due to the increased computa-
tional expenses. Sampling-based approaches are commonly
based on the two-stage stochastic programming with recourse
formulation and its transformation into a discretized determin-
istic equivalent problem. The idea behind two-stage stochastic
programming for chemical process design is to optimize the
design parameters (first-stage decisions) for a suitable cost
function whose expected value is computed for an optimal
choice of control variables (second-stage decisions). When
transforming the problem to a discretized problem (sampling-
based), the expected value of the cost function is approximated
for a discrete set of realizations of the uncertain parameters. The
interested reader is referred to the studies by Sahinidis9 and
Birge and Louveaux10 for further information.
A major challenge with sampling-based approaches is that the

number of samples necessary for accurate approximation of the
expected objective function value as well as guaranteed
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feasibility strongly increases with the number of uncertain
parameters. Several studies in the literature suggest strategies to
reduce the number of samples while maintaining a fair
approximation of the expected objective value. Examples can
be found in studies by Wei and Realff11 and Pintaric ̌ et al.12
Recently, especially in the field of power engineering, algorithms
based on machine learning have been utilized to identify
representative operating points/periods from a given distribu-
tion of operating points (see, e.g., Mozafari and Rosehart13). In
addition to the expected value of the objective, the discretization
needs to detect the minimum set of samples required to
guarantee steady-state flexible operation, that is, feasible
operation at any combination of uncertain parameter values
within the expected uncertainty spacea. In this context, flexibility
analysis has evolved into a useful tool.
Flexibility analysis originates from the 1980s and aims to

quantify a system’s ability to cope with uncertainties. In this
context, Halemane andGrossmann14 formulated a flexibility test
problem for fixed design specifications which enables the user to
determine whether steady-state flexible operation of a process is
possible given an expected uncertainty space. The authors
further defined critical parameter values as those combinations
of uncertain parameter values for which the feasible region of
operation is the smallest. In this context, they postulated that a
design that meets its operational targets at these critical
operating points will also allow for steady-state flexible
operation. To identify these critical operating points for
processes which can be described by convex constraints, the
authors utilized a procedure suggested by Grossmann and
Sargent4 which builds upon individual maximization of each
constraint assuming monotonicity. Based on the work by
Halemane and Grossmann, Pintaric ̌ and Kravanja suggested in
two studies15,16 several algorithms to identify those combina-
tions of the uncertain parameter values that require the largest
overdesign of process units for the expected uncertainty space.
Although the authors presented no rigorousmathematical proof,
they indicated that these algorithms can also identify critical
operating points for nonconvex constraint functions. Based on
the suggested algorithms to identify critical operating points, the
authors developed frameworks for synthesis of chemical process
design17 and for designing heat exchanger networks18 which are
subject to uncertain operating data.
In order to quantify a system’s ability to cope with

uncertainties, several metrics were suggested in the 1980s,
including the flexibility index developed by Swaney and
Grossmann19 which has gained much attention in the literature,
and is still subject to research (see, e.g., Di Pretoro et al.,20 da
Silva et al.,21 and Luo et al.22). The flexibility index is a scalar
value that expresses the share of the expected uncertainty space
that is feasible. More specifically, for each uncertain parameter,
the flexibility index indicates the share of the expected
disturbance range in which the respective parameter may vary
while achieving feasible operation. For an extensive review on
flexibility analysis, the interested reader is referred to the reviews
by Grossmann et al.2 and Zhang et al.23 The flexibility index was
utilized in several (stepwise) frameworks to design or redesign
chemical processes which are subject to uncertain parameters
(see, e.g., Floudas and Grossmann,24 Papalexandri and
Pistikopoulos,25 and Pintaric ̌ and Kravanja18). In line with
these studies, we previously presented a framework26 to achieve
optimal retrofit measures of heat exchanger networks consider-
ing parameter uncertainty. The referred framework is a stepwise
approach which requires structural design proposalsb as input

and utilizes flexibility analysis as well as identification of critical
operating points. The optimal design specifications as well as the
expected objective value are obtained by solving the discretized
design under uncertainty problem considering representative
and critical operating points.
As a complement to flexibility analysis, the concept of process

operability analysis has been suggested in the literature. The
interested reader is referred to the work by Lima et al.27 who
presented a comparative review on the concepts of flexibility and
operability analysis. The authors concluded that the concepts
examine a process from different perspectives and provide
valuable complementary information. More specifically, flexi-
bility analysis aims to identify whether a given process design can
operate feasibly over the entire expected uncertainty space. In
comparison, the results obtained by operability analysis provide
insights into whether a process controller can achieve its mission
or if operability is limited by the process design. According to
Lima et al.27 such considerations are of special interest if the
operational target of a process is defined by intervals and not as a
single set point.
In the aforementioned studies15−18,24−26 on chemical process

design based on flexibility analysis, it is assumed that the
expected distribution of the uncertain parameter values is
independent, that is, no correlating trends between different
uncertain parameters can be observed. The assumption of
independent variation is reflected in the models used to express
the expected uncertainty space, which are utilized for flexibility
analysis. However, for real applications, this assumption is not
always valid. Especially for industrial case studies, it is likely that
when defining the system boundaries and thereby also the input
parameters, which often are subject to some uncertainty,
upstream dependencies between (some of) these input
parameters can be missed (due to the size and complexity of
the underlying system). Several studies28−30 have investigated
the impact of considering dependencies between uncertain
parameters when modeling the expected uncertainty space for
flexibility analysis. All of these studies conclude that ignoring
dependencies may lead to the flexibility analysis metric
underestimating the actual flexibility of the process, sometimes
even significantly, as a consequence of bad resemblance between
the modeled and the actual expected uncertainty space.
Therefore, wrong conclusions may be drawn during a design
process, for example, process design proposals may be discarded
based on the flexibility metric although steady-state flexible
operation for the actual uncertainty space would be possiblec.
Furthermore, Rooney and Biegler32 reported differences in the
obtained design parameter values, that is, equipment sizes, when
solving the discretized design under uncertainty problem using
realizations of uncertain parameters drawn from an independent
distribution and from distributions which show a (positive or
negative) correlation.
In this work, we build upon recent developments in flexibility

analysis to propose a framework that can be utilized in the design
and retrofit of chemical processes subject to uncertainty. In
contrast to existing approaches, the proposed framework
includes strategies for considering parameter dependencies
and multiple independent operating periods (see Section 2.2 for
further information). The proposed framework expands upon
previous work26 for investigating flexible and cost-efficient
retrofit measures of heat exchanger networks, which utilizes
flexibility analysis and identification of as well as consideration of
critical operating points. The main motivation for this work is
the need to consider parameter dependencies when modeling
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the expected uncertainty space to avoid wrong conclusions
being drawn from flexibility analysis. Additionally, we show that
the application of traditional models may lead to a significant
discrepancy between the modeled uncertainty space and the
actual uncertainty space for problems characterized by the
occurrence of (multiple) independent operating periods. To
overcome these issues, we adopt new approaches to model the
expected uncertainty space with high accuracy, based on our
recently published studies on flexibility analysis considering
parameter dependencies31 as well as multiple independent
operating periods.33,34 One consequence of inexact modeling of
the expected uncertainty space can be that identified critical
operating points represent combinations of uncertain parameter
values which are not expected to occur simultaneously, which in
turn can result in unnecessary overdesign of the equipment. To
avoid this, new approaches to model the expected uncertainty
space can also be used to identify critical operating points. With
the proposed developments, we aim to avoid unnecessary
overdesign of the equipment and thereby reduce costs/increase
revenue by ensuring that the modeled uncertainty space
coincides well with the actual uncertainty space.
The paper is structured as follows: in Section 2, the theoretical

and mathematical background of the different methodologies
utilized in the suggested framework is provided. More precisely,
the two-stage stochastic programming with recourse formula-
tion and its deterministic equivalent problem are presented
followed by essential background information on flexibility
analysis, modeling of the expected uncertainty space and critical
operating points. In Section 3, the proposed framework is
introduced, followed by a detailed explanation of the different
steps with a focus on the new additions to the framework. In
Section 4, the applicability and benefits of the new additions to
the framework are illustrated by an industrial case study. Finally,
the findings of this work are discussed followed by concluding
remarks.

2. THEORETICAL BACKGROUND
2.1. Design Problem under Uncertainty. Steimel and

Engell5 and Pintaric ̌ and Kravanja18 formulated the discretized
equivalent to the stochastic two-stage design under uncertainty
(with recourse) formulation, as given in problem 1.
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The objective function in problem 1 consists of two parts. The
first term G(d) describes the cost connected to investment in
process units to provide the capacity necessary for steady-state
flexible operation�this selection of the design parameters, d, is
referred to as the first-stage decisions. The second term is the
expected value of the operating costs, which is approximated via
the summation of the costs for discrete scenarios, Cs, multiplied
by the probabilities of the scenarios, ws. The expected value of
the operating costs is dependent on the selection of the design
parameters, d, and the second-stage decisions which are the

selection of the control variables, zs. The design problem is
subject to equality constraints (hi∀i ∈ I) which often result from
the models of the process units and the interconnections
between them, and inequality constraints (gj∀j ∈ J) which
commonly arise from product property constraints and capacity
specifications.
Due to the discretization of the scenarios (s ∈ S) in problem 1,

the numerical integration over the expected uncertainty space to
approximate the expected value of the operating costs as well as
the selection of the design parameter values can be performed
simultaneously. In problem 1, the discrete choices of the
uncertain parameters to represent the discrete scenarios are
explicitly denoted by θs. Problem 1 can consequently be seen as a
multiperiod (non-)linear program (NLP) which aims to
minimize some objective value (e.g., the total annualized cost,
TAC) of the design or retrofit of a chemical process considering
its operation during discrete scenarios or operating periods.
Note that state variables, xs, are included in problem 1 which, in
the mathematical sense, are similar to the control variables but
are uniquely determined by the equality constraints.
As outlined in Section 1, when designing or retrofitting a

chemical process which is subject to uncertainty, a sufficient
number of realizations of the uncertain parameters, that is,
scenarios, need to be considered to allow for steady-state flexible
operation as well as a fair approximation of the objective
function value, for example, TAC. A common approach for
defining the scenarios to be included in the discretized design
problem is to identify the most representative scenarios for
operation of the process, that is, scenarios that are expected to be
a good representation of typical conditions that occur during
normal operation. Such representative operating scenarios
should represent the operating conditions during specific time
periods (e.g., different seasons or different production
campaigns) and should allow for adequate approximation of
the expected objective value.
To also ensure steady-state flexible operation within the

expected uncertainty space, critical operating points need to be
identified and included in the constraints of problem 1 (i.e., hi∀i
∈ I and gj∀j ∈ J). Note that critical operating points usually
represent extreme operating conditions and not typical
conditions that occur during normal operation. Therefore,
critical operating points should not be considered when
approximating the expected value of the objective function,
that is, the operating costs, Cs, for operation at the critical
operating points should not be considered in the objective
function of problem 1. When denoting the set of representative
scenarios with OP and the set of critical operating points with
CP, the operating costs, Cs are calculated for all scenarios in OP
while the constraints of problem 1 are evaluated at all scenarios/
points in the union (OP ∪ CP).
The concept of critical operating points originates from

flexibility analysis (see Section 2.2) and refers to those
realizations of the uncertain parameters within the expected
uncertainty space that require the largest overdesign of process
units to allow for steady-state flexible operation. In the next
section, a comprehensive overview on flexibility analysis is given
followed by further information on critical operating points (see
Section 2.3).
2.2. Flexibility Analysis and Modeling of the Un-

certainty Space. As mentioned in Section 1, a well-established
concept for performing flexibility analysis of chemical processes
is the flexibility index which was introduced by Swaney and
Grossmann.19 The core idea of the flexibility index is to provide
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a scalar value ≥0 which scales a geometric shape that is used to
model the expected uncertainty space in the (hyper-)space of
the uncertain parameters. More specifically, the returned value
of the flexibility index problem is the scaling factor for which the
scaled geometric shape intersects with the boundary of the
feasible region, meaning that for any higher value of the scaling
factor parts of the shape would be outside the feasible region.
Swaney and Grossmann19 modeled the expected uncertainty
space using the expected extreme values, which they expressed as
expected deviations (Δθ− and Δθ+) from a nominal or mean
operating point (θN). Consequently, the modeled uncertainty
space can be imagined as a hyperrectangle, that is, a
multidimensional rectangle such as a cuboid for three
dimensions. This means that the flexibility index can be
imagined as the ratio between the largest scaled hyperrectangle
within the feasible region and the hyperrectangle defined by the
expected extreme values. The mathematical formulation of the
scaled hyperrectangle is given in eq 2. Note that the scaling
factor is depicted by δ.

= { | + }+T ( ) i i N i i i N i
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To obtain the flexibility index, Swaney and Grossmann19

defined the flexibility index problem. The aim of the problem is
to identify the maximum value of δ for which none of the
constraint functions describing the process (i.e., hi∀i ∈ I and gj∀j
∈ J in problem 1) is violated, that is, the maximum value of δ for
which the operational targets of the process are met given the
(fixed) design specifications of the process. Consequently, if the
index is greater than or equal to 1, the process can be operated
for all expected variation. For two uncertain parameters, this
search for the largest scaled rectangle within the feasible region
(i.e., feasible uncertainty space) is visualized in Figure 1a. In
Figure 1a, the feasible uncertainty space is smaller than the
expected uncertainty space, that is, the rectangle corresponding
to the expected variations. Thus, feasible operation with respect
to all expected variations cannot be guaranteed. Note that in
Figure 1a, the point at which the feasible uncertainty space
coincides with the boundary of the feasible region has been
marked as critical point. This is discussed further in Section 2.3.
Different algorithms have been suggested to solve the

flexibility index problem, including the active set approach
proposed by Grossmann and Floudas.28 The advantage of the
active set approach is that an iterative evaluation of the vertices
of the expected uncertainty space can be avoided. As a result,
global solution schemes have been developed for this approach
(see, e.g., the work by Floudas et al.35).

2.2.1. Flexibility Analysis Considering Dependencies in the
Uncertain Parameters. Expressing the uncertainty space as a
hyperrectangle is often accurate when the uncertain parameters
are independent of each other. On the other hand, it has been
reported in the literature28−30 that if dependencies occur in the
uncertain parameters, the flexibility index (δ) based on the
hyperrectangle uncertainty space may underestimate the
flexibility of the process. To consider these parameter

dependencies when modeling the expected uncertainty space
for flexibility analysis, we31 recently proposed to utilize upper
and lower boundary functions. To define boundary functions,
we grouped the uncertain parameters (θ) into independent
uncertain parameters (θind) and dependent uncertain parame-
ters (θdep) and reformulated the hyperrectangle uncertainty
space to eq 3.
A conceptual illustration of the flexibility index based on

upper and lower boundary functions in comparison to the
(hyper-)rectangle uncertainty space is shown in Figure 1b.
Figure 1b shows that similar to the (hyper-)rectangle
uncertainty space, the feasible uncertainty space based on
boundary functions is smaller than the expected uncertainty
space. However, the flexibility index in the example shown in
Figure 1b is closer to 1 compared to that in the example shown in
Figure 1a. Consequently, Figure 1 illustrates that the value of the
flexibility index is strongly dependent on the chosen model or
representation of the expected uncertainty space.

Figure 1. Visualization of the flexibility index for two uncertain
parameters using the (hyper-)rectangle approach (a) and the approach
based on boundary functions (b) to model the expected uncertainty
space.
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Note that the extreme values (maximum andminimum values
of the uncertain parameters, θ1 and θ2) are similar in Figure 1a,b,
while not all possible combinations are expected to occur in
Figure 1b. Consequently, Figure 1 shows that the presence of
parameter dependencies requires a different geometric shape to
model the expected uncertainty space with good accuracy
compared to the hyperrectangle representation (which is a good
representation for independent parameter variation). When
using boundary functions for modeling the expected uncertainty
space, the resulting geometric shape in Figure 1b is an irregular
square which can be imagined as a hyperpolygon in higher
dimensions. Note that this irregular square shown in Figure 1b is
defined by the extreme values of the independent parameter θ2
and the boundary functions. Our approach based on boundary
functions offers additional degrees of freedom when modeling
the expected uncertainty space which allows for excluding
regions or subspaces of the modeled hyperrectangle uncertainty
space in which no operating points are observed/expected. Note
that more than a single upper and lower boundary function may
be utilized to enhance the modeling of the uncertainty space.We
can conclude that a good model representation of the actual
uncertainty space is essential to obtain a value of the flexibility
index which is a good indicator for the actual flexibility of the
process.

2.2.2. Flexibility Analysis Considering Independent Oper-
ating Periods. When formulating the flexibility index problem,
the uncertainty space should reflect all operating conditions
expected during the lifetime of the process. Usually these
different realizations of the uncertain parameters are aggregated
in a single model/representation, for example, a hyperrectangle
for independent uncertain parameters or a hyperpolygon when
considering parameter dependencies. The modeled uncertainty
space is, thus, independent of time, potentially ignoring that
certain realizations of the uncertain parameters may only occur
during certain periods of the expected lifetime. A common
example where certain realizations of the uncertain parameters
occur only during certain periods is the seasonal variation over a

year. Another example is differences in day-time and night-time
operation. In these, two examples (some of) the uncertain
parameters show a systematic pattern which is also known as
seasonality.36 Note that seasonality can be observed in available
data (retrofit problem), while it can also be anticipated
(greenfield problems). Since seasonality occurs with a certain
frequency (which may be known or anticipated), it allows the
data to be divided into several (independent) intervals. For
illustration, Figure 2 shows the inlet temperature of the air used
for drying at a Swedish pulp mill over a three year period. The
data show a clear indication of seasonality. To exemplify the
impact of this seasonality, the operating data have been divided
into seasonal periods of three months eachd. Figure 2 shows that
(during the respective seasonal periods) the deviations from the
seasonal mean values are significantly smaller compared to the
deviation from the overall mean value to the (overall) maximum
and minimum temperature.
The aforementioned phenomenon can also occur if the

system of interest is part of a plant that is adjusted to produce
different products, for example, during different production
campaigns. An example for such a system is given in the case
study section of this work (see Section 4). To summarize, in
certain situations (see above), certain parameter values may be
expected only during certain operating periods of the entire data
sequence. Consequently, when modeling the expected un-
certainty space, such independent operating periods should be
considered. In our previous studies,33,34 we proposed to divide
the time-horizon of the analysis into several instances
representing the different independent operating periods. The
expected combinations of the uncertain parameter values can
then be allocated to the respective (independent) operating
periods, defining an individual uncertainty space for each period.
Based on a second theoretical example (see Figure 3), we wish

to illustrate how the structuring of data into independent
operating periods, for example, due to seasonality, can impact
the result of flexibility analysis, that is, the flexibility index. In
Figure 3a, the feasible uncertainty space of the theoretical

Figure 2. Measurement data of the inlet temperature of the drying air flow at a Swedish pulp mill over a period of three years 2017−2019.
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example is determined by using the expected uncertainty space
as defined by all operating periods (modeled as a rectangle). On
the other hand, in Figure 3b, this overall expected uncertainty
space is divided into three independent (or uncoupled)
uncertainty spaces, resulting from independent operating
periods. Note that the overall extreme values (maximum and
minimum values of the uncertain parameters, θ1 and θ2) are still
expected to occur also for the representation of uncertainty
shown in Figure 3b, but their occurrences are expected in
different periods. It should also be noted that similar to the
boundary function approach for modeling the expected
uncertainty space in the presence of parameter dependencies
(see Section 2.2.1), the approach shown in Figure 3b excludes
subspaces in the overall uncertainty space in which no operation
is expected.
Generally, different approaches can be chosen to model the

expected uncertainty spaces of independent operating periods,
for example, the hyperrectangle model for independent
uncertain parameters or the hyperpolygon model when
expecting parameter dependencies. For simplicity, in Figure

3b each of the three uncertainty spaces is modeled using the
hyperrectangle approach. Note that operation of the process
would be feasible for all expected variations in two of the three
periods, while for the period around θmean,1, the feasible
uncertainty space is smaller than the expected uncertainty space.
In a case such as that illustrated in Figure 3b, the flexibility can

be assessed by first determining the flexibility index for each
independent operating period and then calculating the overall
flexibility index, as proposed by Marton et al.33 For N
independent operating periods, the overall flexibility index is
found by

= n NFI min(FI ) 1,2, ...,n (4)

Another cause of independent operating periods can be that
the nominal operating point changes due to a (future) uncertain
singular/rare event, as discussed by Marton et al.33 and Langner
et al.34 Examples of such a singular/rare event are a permanent
switch of feedstock, a change of operational parameters required
to comply with new emission legislation and/or a change in the
production rate. All these events may have a lasting effect on the
operation of the process in question, and a possible consequence
is that the nominal operating conditions change temporarily or
even permanently. Additionally, disturbances around the
nominal point (current and future) may be present which are
comparable to the traditional interpretation of operational
uncertainty (which Swaney and Grossmann19 aimed to analyze
by means of the flexibility index). In line withMarton et al.33 and
Langner et al.,34 we refer to this (more traditional)
interpretation of uncertainty as short-term operational dis-
turbances. Note that these short-term operational disturbances
may also be affected when the nominal operating point changes,
for example, due to a singular event.
In terms of modeling the expected uncertainty space, these

types of changes caused by an uncertain singular/rare event
show similar characteristics as the independent operating
periods caused, for example, by seasonality. More specifically,
an uncertain singular or rare event divides the time-horizon of
the flexibility analysis into two independent operating periods. If
the expected uncertainty space before and after the change can
be quantified with high certainty, the flexibility of the respective
process can be evaluated by calculating the flexibility index for
each individual uncertainty space to eventually determine the
overall flexibility index (see eq 4). On the other hand, such
singular/rare events usually comewith high levels of uncertainty,
and the impact on both the nominal operating conditions as well
as the expected uncertainty space before and after the change
must be estimated.
To illustrate such an uncertain singular/rare event, in Figure

4, a third theoretical example shows a situation in which the
nominal value of one of two uncertain parameters is expected to
change. The new nominal value after the singular/rare event is
uncertain, but we assume that the change has an upper limit.
Furthermore, Figure 4 shows that the expected uncertainty
space for the short-term operational disturbances around the
current nominal point is within the feasible region, that is,
steady-state flexible operation is possible at the current nominal
operating point. On the other hand, Figure 4 shows that the
change of the nominal value can result in a situation where the
process cannot handle the expected short-term operational
disturbances if the (absolute) deviations (Δθ− and Δθ+) remain
constant even when the operating point changes. To identify the
maximum feasible change of the nominal value, the flexibility
index problem needs to be formulated for different discrete

Figure 3. Visualization of the flexibility index for two uncertain
parameters considering a single overall expected uncertainty space (a)
and three independent operating periods observed within the overall
expected uncertainty space (b). Note that the (hyper-)rectangle
approach was used to model the expected uncertainty space(s).
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values, that is, discrete points on the line illustrating the expected
(maximum) change of the nominal value of θ2 in Figure 4, and
the resulting formulations can then be solved in an iterative
scheme. To avoid such a time-consuming iterative scheme, we34

have previously presented a reformulation of the original
flexibility index problem (formulated by Swaney and Gross-
mann19), which allows for considering uncertainty in the
nominal value, and which yields the maximum feasible change of
the nominal value such that all expected short-term operational
disturbances are (exactly) feasible. The solution obtained when
applying this reformulation to the flexibility index problem for
the theoretical example is shown in Figure 4 and marked as the
feasible maximum shift.
In comparison to the first and the second theoretical example,

the example shown in Figure 4 includes a new dimension of
uncertainty which is the combination of the uncertain change of
the nominal value and the short-term operational disturbances
(see also Langner et al.34 where this is referred to as overlaying
uncertainty sources). Even for the case of a retrofit where
historical measurement data may be available to describe current
short-term operational disturbances, this kind of analysis relies
on assumptions regarding how the operation of the process will
be affected by the rare event; that is, uncertainty in data is added
to the uncertainty in operation.
To summarize this section, we have established that certain

realizations of the uncertain parameters may occur only during
certain periods of the time-horizon considered for the flexibility
analysis. By allocating realizations of the uncertain parameters to
different independent operating periods and modeling those
periods as individual uncertainty spaces, some time-dependency
can be enabled in the flexibility analysis.
2.3. Critical Operating Points. In Figures 1a,b and 3a,b,

the points at which the feasible uncertainty space coincides with
the boundary of the feasible region are marked as critical points.
These points define the sizes of the feasible uncertainty spaces
(e.g., the rectangle in Figure 1a and the irregular square in Figure
1b). In principle, if there are several independent periods, the
feasible uncertainty space of each independent period is limited
by different critical points. For example, three critical points
could have been marked in Figure 3b, although for reasons of
clarity only the critical point determined by the period with the
smallest flexibility index was marked. Finally, in Figure 4, the
critical point marks the point which defines the maximum

feasible change of the nominal value when requiring that the
short-term operational disturbances are also feasible at the
nominal operating point after the uncertain event occurred.
Note that at the marked critical points, feasible operation is

possible, but even a small deviation from the critical parameter
values may lead to infeasibilitye. This observation is of special
interest if some of the constraints forming the feasible region are
functions of some design parameters, d, which, for example, can
represent the size of certain equipment. If the size of the feasible
uncertainty space is limited by constraint(s) depending on d,
debottlenecking may be possible by manipulating the respective
design parameter(s) enabling a larger feasible uncertainty space
(if desired, e.g., if the flexibility index is < 1). Note that generally
not all constraint functions which form the feasible region (i.e.,
hi∀i ∈ I and gj∀j ∈ J in problem 1) are dependent on d. Those
constraints, which are dependent on d and therefore can be
manipulated by increasing (or decreasing) the equipment size,
are hereafter denoted design constraints.
When conducting structural flexibility analysis, design

constraints are discarded, and only structural constraints are
considered, that is, unlimited equipment size is assumed to be
available (see, e.g., Langner et al.26). This implies that the value
of the structural flexibility index is an upper bound for the
general flexibility index, which also considers the design
constraints. This is illustrated by an example in Figure 5. For

this example, the feasible uncertainty space which is limited by
structural constraints is larger than the expected uncertainty
space, that is, the structural flexibility index is >rbin1. However,
when including the design constraint for the installed equipment
size, the feasible uncertainty space is smaller than the expected
uncertainty space resulting in a flexibility index which is < 1.
Figure 5 shows that if design constraints are included in the

flexibility analysis and the resulting flexibility index is smaller
than the structural flexibility index, the design constraints and
thereby the corresponding equipment size limit the value of the
flexibility index. In this context, Pintaric ̌ and Kravanja15,16

assumed that if, for a given structural design proposal, the
structural flexibility index is greater than 1, it is possible to
determine at least one set of values for the design parameters
which yields a (general) flexibility index of exactly 1. To identify
this set of values for the design parameters, Pintaric ̌ and Kravanja

Figure 4. Theoretical example illustrating the flexibility index
calculation suggested by Langner et al.34 to identify the maximum
feasible change of the nominal operating point due to an uncertain
singular/rare event.

Figure 5. Theoretical example to illustrate the difference between the
structural flexibility index where design constraints are discarded and
the (general) flexibility index where design constraints are included.
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suggested identifying critical operating points, that is combina-
tions of the uncertain parameter values within the expected
uncertainty space that require the largest overdesign of process
units in order to allow for steady-state flexible operationf.
In the example shown in Figure 5, we can graphically identify

the necessary increase of the equipment size by parallel shifting
the design constraint to the right so that the design constraint
intersects with the upper right corner point of the expected
uncertainty space. This is possible since in this two-dimensional
example, the identification of the critical operating point which
demands the largest equipment size (upper right corner point) is
trivial. However, as Pintaric ̌ and Kravanja15,16 also pointed out,
in more complex cases, that is, if more than two uncertain
parameters and/or more design parameters are present, several
combinations for the design parameter values may yield a

flexibility index of 1 (when design constraints are included). In
such cases, the aim should be to identify the unique combination
which simultaneously yields the smallest cost and a flexibility
index of 1. To achieve this, the authors suggested solving the
bilevel optimization problem in which each design variable is
individually maximized while simultaneously minimizing a given
cost function. Furthermore, the authors suggested several
algorithms to solve this bilevel optimization problem, and the
interested reader is referred to their work for further
information. Note that critical operating points are dependent
on the nature and placement of the equipment; that is, for each
structural layout, a unique set of critical operating points can be
identified.
Finally, note that the algorithms by Pintaric ̌ and Kravanja15,16

were defined for a hyperrectangle representation of the

Figure 6. Extended framework for addressing design under uncertainty problems when designing or redesigning chemical processes/plants. Steps 2, 3,
and 6 are highlighted since they represent additional steps to the original framework. Additionally, step 4 is highlighted since it involves the calculation
of the flexibility index which requires modeling techniques which were not considered in the original framework.
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uncertainty space. However, the examples in Section 2.2
illustrate that the combination(s) of uncertain parameter values
which are identified to be the critical operating point(s) strongly
depends on the chosen model of the expected uncertainty space.
Thus, ignoring factors such as parameter dependencies and
independent operating periods when identifying critical
operating points could imply that equipment is designed for
combinations of uncertain parameter values which are not
expected to occur. Particularly conservative modeling of the
expected uncertainty space may result in equipment being
oversized. To avoid these problems, we suggest a strategy in
Section 3 to consider these factors when identifying critical
operating points.

3. METHODOLOGY
The framework proposed in this work can be seen as a tool to
analyze the results of early design stage screening processes for
chemical processes subject to uncertain parameters. The
suggested framework extends our previously developed frame-
work26 to identify flexible and cost-efficient retrofit measures of
heat exchanger networks. The different steps of the extended
framework are visualized in Figure 6. In the following sections,
we present the individual steps of the framework with a special
focus on the novel steps suggested in this work.
The proposed framework can be used to evaluate and improve

one or several structural design proposals that are provided by
the designer. In this way, it is possible to utilize proven design
methodologies available for single steady-state operating
conditions to generate the basic structure of the design. This
setup also allows for incorporating nonquantifiable knowledge
such as experience-based heuristics in the design proposals,
which can be advantageous for complex industrial case studies.
Since the (structural) design proposals are defined prior to the
application of the framework, the framework can be utilized to
guide both greenfield and retrofit design projects. When
following the suggested framework, the design proposals are
first checked for feasibility for varying operating conditions (i.e.,
flexibility analysis) to establish a basis for comparison. Second,
the design proposal which achieves the lowest TAC during the
entire operating period is identified.
3.1. Identification of Uncertain Parameters. In this

work, we consider uncertainty in the input parameters of a given
process or system. Since these parameters are determined
outside the system’s boundary, they cannot be affected by
measures within the system. However, recourse actions can be
taken to ensure that the operational target of the system of
interest is met. These recourse actions are limited by the
structure of a design and/or the size and/or capacity of the
equipment. Once the uncertain parameters are identified, the
expected uncertainty space needs to be modeled, that is, the
space in which all possible combinations of operating values for
these parameters are expected. As shown in Section 2.2,
dependencies in the uncertain parameters as well as independent
operating periods should be considered to ensure a good
resemblance between the modeled and the actual uncertainty
space. Therefore, additional data analysis is necessary, that is,
checking for such dependencies and independent operating
periods, to model the uncertainty space with good accuracy.
3.2. Analysis for Independent Operating Periods. In

this step, the existence of potential independent operating
periods is identified. These independent operating periods can
be identified manually by analyzing if (potential) causes for
independent operating periods are present such as

• seasonality in the operating data (e.g., differences in day-
time and night-time operation or seasonal variation),

• different production campaigns,
• uncertain singular/rare events resulting in changes in the

nominal operating conditions (overlaying uncertainty
sources).

Additionally, automated approaches such as data clustering
may be utilized to identify whether the operating points can be
divided into separate subsets. Note that automated approaches
rely to a larger extent on the availability of (good-quality)
operating data, that is, measurements of the uncertain
parameters, which is often only the case in retrofit projects.
On the other hand, anticipating different operating cases such as
those described in the list above is commonly carried out for
greenfield design projects where no historic operating data are
available. In such cases, also the expected disturbance ranges of
the different (presumably) uncertain parameters need to be
anticipated.
Since the identified operating periods or data clusters are

(ideally) independent of each other, a separate uncertainty space
should be defined for each period/cluster, for example, as shown
in Figure 3b. The following steps of the framework (steps 3−6)
are then performed for each identified uncertainty space.
3.3. Analysis for Dependencies among Uncertain

Parameters. For each identified uncertainty space (overall or
for each individual independent operating period), the shape of
the uncertainty space needs to be approximated. If the uncertain
parameters are noncorrelated, the shape can be described by the
expected lower and upper bound values yielding several
hyperrectangle spaces in the overall space of uncertaintyg. If
dependencies (correlations) are observed or expected, the real
uncertainty space would be smaller than the space approximated
by the hyperrectangle representation since there will exist
regions within the hyperrectangle in which no operating points
are expected. By considering dependencies when modeling the
uncertainty (sub)spaces, such “empty” regions may be identified
and removed, achieving a more accurate approximation of the
actual uncertainty (sub)spaces. To identify dependencies
between different uncertain parameters, we propose two
alternative approaches in this work:

1. Calculation of Pearson’s correlation coefficient.
2. Ratio of the area of the polygon convex hull around the 2-

d projections of the observed operating points to the area
of the rectangle defined by the expected lower and upper
bound values.

Pearson’s correlation coefficient determines the strength and
the direction of the linear relationship between two random
variables.37 When nonlinear dependencies occur, Pearson’s
coefficient may fail to detect the dependency. For this reason, we
developed a complementary methodology (see the second
alternative in the list above) to identify dependencies based on
the abovementioned observation that the actual uncertainty
space reduces (significantly) in volume compared to the
hyperrectangle model if parameter dependencies are present.
This means that when a dependency occurs between two
uncertain parameters, the area of the tightest polygon which
covers all observed or expected operating points, that is, the
polygon convex hull, should be considerably smaller than the
rectangle formed by the expected lower and upper bound values,
for example, as illustrated in Figure 7.
The determination of the polygon convex hull can be

automated by means of the Quick Hull algorithm (see, e.g.,
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Barber et al.38). Once there is an indication that a dependency
exists between two or more uncertain parameters, it has to be
determined if the dependency indicated by data should be
considered when modeling the uncertainty spaceh. Such a
decision can bemade based on different criteria, for example, the
strength of the dependency. Next, for each identified pair of
uncertain parameters (which show a dependency/correlation),
there is a need to determine which of the two parameters is to be
classified as dependent and consequently modeled in terms of
the other (independent) parameter, for example, by using
boundary functions which are formulated based on the
independent parameters. This decision can sometimes be
enhanced by background knowledge about the process to
identify the origin of the dependencies. Finally, the identified
dependencies which should be considered when modeling the
expected uncertainty space can be formulated in the following
general form

= f ( , , ...), ,j i i i j,1 ,2 ind dep (5)

3.4. Structural Flexibility Analysis. In the next step, it is
analyzed if the structural layout of each design proposal allows
for steady-state flexible operation. As previously outlined, this
can be done by calculating the flexibility index, discarding all
design constraints and considering only structural constraints. If
design proposals can be identified that are structurally infeasible
for at least some operating points within the uncertainty space
(i.e., flexibility index smaller than 1), these design proposals are
discarded.
If independent operating periods and/or dependencies in the

uncertain parameters are identified in steps 2 and 3, it is
necessary to adjust the calculation procedure of the flexibility
index compared to the conventional procedure based on a single
hyperrectangle uncertainty space. In order to assess the
structural feasibility in the presence of independent operating
periods, the identified uncertainty spaces of the different periods
need to be analyzed individually (as discussed in Section 2.2.2)
to eventually determine the overall flexibility index following eq
4. In the special case where an uncertain singular/rare event is
expected to lead to permanent or temporary changes in the
nominal operating conditions, there is an inevitable need for
assumptions regarding the future change of operation (see also
Section 2.2.2). If the change of the nominal operating point and
short-term disturbances around the new nominal operating
point can be predicted with high certainty, the situation is similar

to the other cases of independent operating periods, and the
overall flexibility index can be calculated following eq 4.
However, in the case of high uncertainty with respect to how
the nominal operating point and/or the short-term disturbances
are affected by the uncertain future event, it may be desirable to
identify the maximum change of the nominal operating point
which is structurally feasible (compare Section 2.2.2 and Figure
4). In such a case, our reformulation of the deterministic
flexibility index problem can be utilized avoiding the otherwise
necessary iterative assessment of different (nominal) operating
points (see also our previous work34 for further information).
If parameter dependencies (correlations between uncertain

parameters) have been identified in step 3 (see Section 3.3),
then those should be considered when calculating the structural
flexibility index. Considering parameter dependencies by means
of boundary functions requires more advanced modeling of the
uncertainty space compared to the hyperrectangle approach
(see Section 2.2.1), which can lead tomore complex problems to
solve. Therefore, it can be advantageous to know beforehand if
considering a given dependency when computing the flexibility
index is likely to have an influence on the results. Such
knowledge is usually very much dependent on the process, but it
is possible to establish guidelines for specific types of processes,
such as heat exchanger networks (see Section 2 in the
Supporting Information file for further information).
3.5. Identification of Critical Operating Points. For each

of the remaining structural design proposals, we suggest
identifying the respective critical operating points. Including
the critical operating points in the discretized design under
uncertainty problem (i.e., problem 1, see also Section 2.1)
ensures that each piece of equipment is of sufficient size to allow
for steady-state flexible operation within the expected
uncertainty space. As shown in Figure 6, we propose to identify
the critical operating points for each independent operating
period, individually. For this identification procedure, we
propose two steps. In the first step (step 5), which is described
in this section, we propose to identify the critical operating
points for the hyperrectangle representation of the uncertainty
space, that is, ignoring potential parameter dependencies. If
parameter dependencies are expected, the subsequent step 6 of
the framework (see Section 3.6) allows the obtained critical
operating points to be updated considering these parameter
dependencies.
In this work, we propose a new strategy to identify the critical

operating points of a hyperrectangle representation of the
uncertainty space. The proposed strategy builds upon the theory
of critical operating points described in Section 2.3. More
specifically, for the example shown in Figure 5, the solution of
the flexibility index problem, θ*, considering an initial
equipment size (installed or estimated) and the critical
operating point, θc, (demanding the necessary change in
equipment size) are on the same diagonal of the rectangular
expected uncertainty space. Consequently, it would be possible
to identify θc by projecting θ* from the feasible uncertainty space
(given the initial equipment size) to the expected uncertainty
space, that is, following the aforementioned diagonal from the
feasible to the expected uncertainty space. Based on this
conclusion, we developed and utilized a two-stage iterative
algorithm for identifying the critical operating points of a
hyperrectangle representation of the uncertainty space (see also
Figure 8):

Figure 7. Visual example for two dependent parameters whose polygon
convex hull encloses a significantly smaller area than the rectangle
defined by the most extreme operating points.
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• Initialization of list of candidates with the solution of the
structural flexibility index problem and the nominal
operating point of the given uncertainty space

• Stage 1: Solve simplified design problem for the identified
candidate(s) to obtain necessary equipment size to be
able to operate at all identified candidate(s)

• Stage 2: Calculate flexibility index including design
constraint(s) with updated size value(s) obtained by
solving the simplified design problem

• If flexibility index ≥1: terminate
• If flexibility index <1: update candidate list (according to

the scheme presented below) and return to stage 1
In the first stage, the optimal (with respect to cost) design

parameter values are identified, which allow for operation at
each point from a list of critical candidates (C). At the second
stage, it is checked if the obtained design parameter values allow
for steady-state flexible operation within the respective
uncertainty space, that is, if the list of critical candidates is
complete. To avoid a full and computational expansive
evaluation of the problem 1 at this stage, a simplified design
problem is suggested. This simplified version of problem 1
searches for the set of optimal design parameter values with
respect to the investment cost (considering the list of critical
candidates, C) but without optimizing the expected operating
cost of the system. The simplified design problem is given in
problem 6.
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Two essential steps of the suggested two-stage algorithm are
initialization and updating of the candidate list. We suggest to
utilize the solution of the structural flexibility analysis (θstructual* )
as well as the nominal operating point for the initialization. Note
that if the structural flexibility index is >rbin1, θstructual* needs to be

projected to the expected uncertainty space. For additional
information on the initialization of the list of critical candidates,
the interested reader is referred to Section 3 in the Supporting
Information file.
Updating the candidate list is necessary if the flexibility index

considering the design specifications obtained during stage 1 is <
1 since this result indicates that the candidate list is incomplete.
We suggest the following scheme for identifying a new candidate
based on the solution of the flexibility index problem obtained
during stage 2 (θ*, δ*)
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1 Calculate the critical direction for each uncertain
parameter according to eq 7

2 Utilize the critical direction to calculate a new candidate
according to eq 8

When calculating the critical direction (as described by eq 7)
followed by the calculation of the new candidate (eq 8), we
utilized the expected positive and negative deviation from the
nominal operating point (θN) of the respective operating period
(Δθ− and Δθ+). This way, we can project the solution of the
flexibility index problem (θ*) from the feasible uncertainty
space to the expected uncertainty spacei. The new candidate is
added to the list of candidates, and the algorithm returns to stage
1.
3.6. Updating of Critical Operating Points Considering

Parameter Dependencies. If dependencies in the uncertain
parameters are identified in step 3, we proposed to model the
expected uncertainty space using boundary functions to ensure a
good representation of the actual uncertainty space (see
Sections 2.2.1 and 3.3). However, such modeling implies that
the previously identified critical operating points may represent
combinations of uncertain parameter values which are outside of
the hyperpolygon model, that is, the model of the expected
uncertainty space defined by the extreme values of the
independent parameters and the boundary functions. Such a
situation can lead to unnecessary overdesign of equipment since
equipment may be designed for operating points that are not
expected/observed.
In this work, we developed an iterative updating scheme that

aims to determine if the previously identified critical operating
points are within the hyperpolygon model of the expected
uncertainty space. If the previously identified critical operating
points are outside the hyperpolygon model, the critical values of
(at least) some uncertain parameters must be adjusted/updated.
For this adjustment, it is assumed that the actual critical
operating points represent uncertain parameter values at the
boundary of the hyperpolygon model. Note that in multidimen-
sional cases, not all independent uncertain parameters, θind, are
expected to be utilized when defining boundary function
models. Thus, it can be assumed that updating/adjusting of
the critical parameter values is only required for those uncertain
parameters (dependent and independent) that show correlating

Figure 8. Visual representation of the two-stage iterative algorithm for
identifying the critical operating points of a hyperrectangle
representation of the uncertainty space.
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trends. The iterative updating scheme is visualized in Figure 9

and given in the following:

1 Initialization with critical point(s) for independent
variation and the nominal operating point of the
uncertainty space

2 For each point in the list of critical point(s) and for each
identified parameter dependency:

(a) Identify the critical direction (di,c) of the dependent
parameter using eq 7 setting δ* = 1:
•If di,c < 0, the lower bound is critical
•If di > 0, the upper bound is critical

(b) Evaluate the critical bound at the critical value of the
independent parameter and update the critical value of
the dependent parameter with the obtained solution

3 Solve the simplified design problem (i.e., problem 6) for
the updated candidate(s)

4 Calculate the flexibility index considering the hyper-
polygonmodel of the uncertainty space, and including the
(convex) design constraint(s) with values for design
parameters obtained by simplified design problem
If flexibility index ≥1: terminate
If flexibility index <1: update each critical point in the list
according to the updating scheme in Section 3.5 and
return to step 2

If certain conditions are fulfilled, we assume that the suggested
scheme will terminate after 1−2 iterations. These conditions are

• convex design constraints,
• two-dimensional dependencies meaning that a parameter

dependency is described between two uncertain param-
eters, only (one dependent and one independent
parameter),

• one upper and one lower boundary function.

The reasoning behind our assumptions is discussed in Section
4 in the Supporting Information file, where it is also illustrated in
Figures S2 and in S3. Note that the corresponding material
presented in the Supporting Information file does not constitute
a rigorous proof for the validity of the updating scheme. Further
note that the suggested scheme may terminate also if the
abovementioned conditions are not fulfilled. Alternative
formulations may be necessary if the suggested updating scheme
does not terminate.
3.7. Identification of RepresentativeOperating Points.

In this work, we suggest to decrease the number of scenarios or
operating periods considered in the discretized design under
uncertainty problem, (i.e., problem 1) by identifying represen-
tative operating points. As mentioned in Section 2.1, the defined
representative operating points should enable a good approx-
imation of the objective function value (compared to
considering all operating conditions) while avoiding issues
with the problem complexity.
Note that the identification of representative operating points

is not equivalent to the identification of independent operating
periods, even though the methodological approaches show
similarities (see the next paragraph). There is a fundamental
difference concerning the origin and the objective of
independent operating periods on one side and representative
operating points on the other side. More specifically, when
identifying representative operating points, the probability that
certain operating conditions will occur is the essential criteria:
for example, the mean operating point is the most trivial
interpretation of a representative operating point. This means
that operating conditions with high probability are to be
represented, while operating conditions with low probability are
omitted. On the other hand, when defining independent
operating periods, the aim is to approximate the actual (i.e.,
expected or observed) uncertainty space as accurately as
possible (see Section 3.2). Commonly, this uncertainty space
is influenced or even defined by extreme operating conditions
with (usually) low occurrence over the entire operating period
and thereby low probability. Therefore, for defining independ-
ent operating periods, the essential criteria is that all expected/
observed combinations of uncertain parameter values are
captured (independent of probability), while all other
combinations are excluded. This is further elaborated in Section
5 of the Supporting Information file.
To identify representative operating points, clustering

algorithms such as Lloyd’s clustering algorithm39 commonly
known as K-means can be utilized to identify centroids among all
the operating points (see also, e.g., Jin andHan40). Alternatively,
mean values for certain time periods (daily, monthly, etc.) may
be considered. If an uncertain singular event is expected to affect
(future) operation, assumptions about how the operating
conditions change are necessary. In this context, note that the
exact time-point when the singular event is expected to happen
may also be uncertain. Consequently, if cost for the entire
lifetime is to be considered in the final design problem, for
example, TAC, further assumptions are necessary. In this
context, Marton et al.33 presented a strategy based on different
extreme scenarios which can be utilized to obtain a lower and
upper bound for the expected objective function value.
3.8. Design Problem. After the critical operating points as

well as the representative operating points are identified (CP ∪
OP), the discretized design under uncertainty problem (i.e.,
problem 1) can be solved for the remaining structural design
proposalsj. The solution yields the optimal design parameter

Figure 9. Visual representation of the iterative updating scheme to
identify the critical operating points of a hyperpolygon uncertainty
space based on the critical operating points of a hyperrectangle
uncertainty space.
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values, as well as an approximation of the expected objective
function value, usually TAC, by optimizing the settings for the
control variables. In this context, data for the investment and
installation cost of the equipment as well as data for the
operating costs for the process and the maintenance costs of the
equipment are necessary. Additionally, possible cash flows
generated by selling products or by avoiding expenses need to be
considered.
3.9. Feasibility Check. The final step of the framework is a

feasibility assessment to check that the obtained values for the
design parameters allow for steady-state flexible operation
within the expected uncertainty space, that is, a final validation of
the previously identified critical operating points. In this context,
the flexibility index, including design constraints, may be utilized
considering the identified independent operating periods and
possible parameter dependencies. Alternatively, the optimal
operation problem (see problem 9) may be solved for discrete
operating points (OPall). These operating points may be
generated by means of sampling methods. Also, historical
measurement data, if available, may be utilized. Problem 9 is a
single-period optimization problem to identify the optimal
control variable settings for fixed design parameter values.
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In general, the (N)LP given in problem 9 is significantly easier
to solve compared to the discretized design under uncertainty
problem (i.e., problem 1) since the number of optimization
variables is lower. If a feasible solution C d z( ( , , ) )s s s can be
identified for each operating point (s ∈ OPall), the design
parameters derived in step 8 allow for operation at all expected/
observed operating points. If the final feasibility check reveals
that operation is not possible at certain operating points, that is,
that parts of the uncertainty space(s) are outside of the feasible
region, then the previously identified set of critical operating
points is incomplete. In such a case, the infeasible operating
points need to be added to the previously identified set of critical
operating points, and steps 8 and 9 need to be repeated until a
final indication of feasibility of the design is achievedk.

4. INDUSTRIAL CASE STUDY
In this section, the benefits of the proposed framework are
illustrated by applying it to an industrial case study of a heat
exchanger network retrofit. The studied system is a simplified

Figure 10. Structural layout (process flow diagram) of the mill subsystem before retrofitting. Locations where process conditions (heat capacity flow
rates or supply temperatures) are determined outside the system’s boundary are highlighted in yellow.
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representation of a subsystem of the secondary heating system of
a Swedish pulp mill. In comparison to the real system installed in
the mill, in the simplified system, several heat exchangers (HEX)
have been aggregated. The system layout is shown in Figure 10.
In the system, three cold process streams (combustion air,

feedwater, and district heating water) are heated to their target
temperatures by different heat sources, namely, hot secondary
heating water, excess hot water, and hot diluted process water.
Although a substantial amount of heat can be recovered by
HEXs, utility steam is needed to ensure that the target
temperatures of the cold process streams are met.
To illustrate a situation in which the proposed framework can

be utilized to guide a retrofit project related to the presented
system, a fictitious scenario is assumed, where the three steam
heaters in the system need to be replaced. This assumed scenario
creates an economic incentive to investigate opportunities for
reducing steam demand (low and medium pressure steam) by
increasing heat recovery. As shown in Figure 10, a diluted black
liquor stream is currently utilized to upgrade warm secondary
heating water to hot secondary heating water. The full thermal
potential is, however, not utilized since the supply temperature
of the diluted black liquor flow (133 °C) is significantly higher
than the target temperature of the upgraded hot water.
Estimations by mill process engineers indicate that the amount
of hot water generated by using this heat source corresponds to
roughly 50% of the heat capacity flow rate of the diluted black
liquor stream. Consequently, the integration of heat recovery
from the black liquor with the given system could potentially

lead to reduced steam demand and thereby a lower investment
requirement for new steam heaters.
The steam used in the process is extracted from the mill’s

extraction-condensing turbine. The steam flow to the turbine is
high-pressure steam generated in the recovery boiler. Since the
amount of black liquor fired in the boiler is constant, the amount
of high-pressure steam is also constant. There are several options
for harnessing the benefits of the reduced steam demand in the
investigated system. If the capacity of the condensing section of
the turbine is sufficiently large, then the steam that is not
required for process heating can be expanded in the condensing
section to increase electricity production. Alternatively, steam
extracted at low and medium pressure levels that is no longer
needed by the mill may be utilized as a heat source for other
processes. In this case study, only changes in electricity
production are considered. Several flow arrangements are
possible when integrating the black liquor cooling in the given
system as well as resequencing of the existing HEXs. However,
since the case study is used for illustrative purposes, only one
flow arrangement is investigated, as shown in Figure 11. In this
design proposal, four new HEXs (HEX A, B, C, and D) are
installed. HEX A, B, and C are placed immediately upstream of
the respective steam heater of each of the three cold process
streams.
Data regarding the heat-transfer areas and the heat-transfer

coefficients of the already installed HEX units were not available.
To account for installed heat-transfer area and effective heat-
transfer coefficients, individual minimum temperature differ-
ences in the exchangers were assumed. The exact values of the

Figure 11. Structural layout (process flow diagram) of the subsystem after retrofitting. Locations where process conditions (heat capacity flow rates
and/or supply temperatures) are determined outside the system’s boundary are highlighted in yellow.
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assumedminimum temperature differences, as well as additional
assumptions and data regarding the mathematical modeling of
the existing and new HEX units are listed in Section 6 in the
Supporting Information file. The mathematical model of the
retrofitted system, including definitions of state and control
variables as well as uncertain parameters (see Section 4.1), is
provided in Section 7 of the Supporting Information file
together with the system design parameters and constraints. The
systemmodel includes bilinear and other nonlinear terms, which
may lead to difficulties when calculating the flexibility index
based on the active set approach (see Grossmann and Floudas28

for more information). On the other hand, all constraints
considered are representative of typical constraints in regular
heat exchanger network superstructures, and Floudas and
Grossmann24 concluded that the active set approach is
applicable for systems described by similar constraints. Addi-
tionally, the global NLP framework BARON41 (Version
21.1.13) was used for solving all optimization problems in this
work. This framework guarantees the global solution of
nonconvex optimization problems within the given variable
bounds and for a manually chosen epsilon tolerance. All
optimization problems presented in this work were formulated
using the PYTHON package Pyomo42 (Version 5.6.6) and
translated to GAMS (Version 37.1.0) using the interface
between Pyomo and GAMS.43

4.1. Identification of Uncertain Parameters. In Figures
10 and 11, nine locations (marked in yellow) within the current
and the retrofitted system were identified where process
conditions, more specifically heat capacity flow rates and/or
(supply) temperatures, are determined outside the system’s
boundary. For these measurement locations, 3694 hourly
measurement instances were available. The available data were
adjusted to reflect normal operating conditions. For this filtering
step, it was decided to only consider operating points at which
the mill’s recovery boiler was operating at a minimum of 75% of
its nominal load, and 3415 operating points were thus retained
for the analysis. In the Supporting Information, the mean value
as well as the maximum positive and the maximum negative
deviation from this mean value for all uncertain parameters are
provided.
4.2. Identification of Independent Operating Periods.

In general, different factors and strategies may be considered
when analyzing the operating data for independent operating
periods as outlined in Section 3.2. Since the secondary heating
system of the pulp mill is affected by ambient conditions, for
example, through the fresh water inlet temperature, seasonal
variations over the year are likely. However, since the time
period considered in the case study is relatively short, no
seasonal effect on the data was expected. However, the mill
produces softwood and hardwood pulp in campaigns according
to a regular schedule with roughly a 3 weeks production of
softwood pulp followed by a 1 week production of hardwood
pulp. The considered 3415 operating points were classified
according to the processed raw material, resulting in 2481
operating points for five different softwood campaigns and 934
operating points for five different hardwood campaigns.
Consequently, two independent uncertainty spaces were
identified, corresponding to the two independent operating
periods representing softwood and hardwood campaigns. For
each raw material and each uncertain parameter, the mean value
as well as the maximum positive and the maximum negative
deviation from this mean value is listed in the Supporting
Information file.

4.3. Analysis for Parameter Dependencies. Both
identified uncertainty spaces were analyzed for parameter
dependencies. As mentioned in Section 3.3, the presence of
parameter dependencies reduces the volume of the actual
uncertainty space compared to the hyperrectangle model based
on lower and upper bound values. In Section 3.3, two
approaches were presented to identify parameter dependencies,
and the results of each approach can be visualized using heat
maps. In Section 10 of the Supporting Information file, for each
uncertainty space heat maps indicate the estimated strength as
well as the sign of a dependency between each pair of uncertain
parameters according to the two approaches.
In Section 2 of the Supporting Information file, we present

guidelines to identify if a (given) dependency between two
uncertain parameters is likely to have an influence on the result
of the flexibility index for the specific application of heat
exchanger network design. These guidelines are based on the
effect of variations in the temperature and heat capacity flow rate
on the total availability and demand of heat from hot and cold
streams. The heat maps shown in the Supporting Information
file were specifically analyzed for such dependencies considering
that reaching the target temperatures of the three different
(cold) process streams defines the operational target of the given
subsystem. Eventually, three parameter dependencies were
identified, of which two are present in both softwood and
hardwood campaigns while a third parameter dependency was
observed during hardwood campaigns, only. These depend-
encies are listed in the following and shown in Figure 12 and 13:

1 The heat capacity flow rate of excess hot water correlates
with the heat capacity flow rate of the combustion air
(positive correlation coefficient during softwood and
hardwood campaigns, see Figures 12a and 13a).

2 The heat capacity flow rate of the extraction flow to the
hot water tank correlates with the heat capacity flow rate
of the (main) hot secondary heating water flow (positive
correlation coefficient during softwood and hardwood
campaigns, see Figures 12b and 13b).

3 The supply temperature of the feedwater correlates with
the heat capacity flow rate of the combustion air (positive
correlation coefficient during hardwood campaigns, only,
see Figure 13c).

The first and third parameter dependency can potentially have
an impact on the flexibility index, as identified by following the
guidelines listed in Section 2 in the Supporting Information file.
For the second parameter dependency, the guidelines presented
in the Supporting Information file could not be applied since the
extraction flow to the hot water tank is not clearly defined as a
hot or cold stream within the investigated system. More
precisely, Figure 11 shows that the extraction flow to the hot
water tank is a split branch of the main hot water flow of the
secondary heating system. The extraction flow leaves the system
and thereby reduces the flow rate of the main hot secondary
heating water flow which is utilized to provide heat to the
feedwater stream and district heating water. Therefore,
variations in the flow rate of the extraction flow would have
opposite implications as flow rate variations in hot streams; that
is, an increased flow rate (of the extraction flow) would reduce
the (net) heat available in the system. Thus, a positive
correlation between the extraction flow and the main flow of
the hot secondary heating water can influence the flexibility
index since high extraction flow rates are only expected when the
flow rate of the main hot secondary heat water flow is also high

Industrial & Engineering Chemistry Research pubs.acs.org/IECR Article

https://doi.org/10.1021/acs.iecr.3c01584
Ind. Eng. Chem. Res. 2023, 62, 19715−19739

19729

https://pubs.acs.org/doi/suppl/10.1021/acs.iecr.3c01584/suppl_file/ie3c01584_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.iecr.3c01584/suppl_file/ie3c01584_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.iecr.3c01584/suppl_file/ie3c01584_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.iecr.3c01584/suppl_file/ie3c01584_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.iecr.3c01584/suppl_file/ie3c01584_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.iecr.3c01584/suppl_file/ie3c01584_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.iecr.3c01584/suppl_file/ie3c01584_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.iecr.3c01584/suppl_file/ie3c01584_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.iecr.3c01584/suppl_file/ie3c01584_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.iecr.3c01584/suppl_file/ie3c01584_si_001.pdf
pubs.acs.org/IECR?ref=pdf
https://doi.org/10.1021/acs.iecr.3c01584?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(and vice versa). Consequently, worst-case operating conditions
where the extraction flow is high while the main flow of the hot
secondary heating water is low can be excluded from the
analysis.
4.4. Structural Flexibility Analysis. In the structural layout

of the retrofit proposal shown in Figure 11, there is no structural
feasibility issue as long as sufficient amounts of steam are
available to always be able to provide the heat required by the
three cold process streams (combustion air, feedwater, and
district heating). Sufficient availability of steam can be assumed
since there were no indications that the steam availability would
be affected by the retrofitl. Also the heating of the secondary
heating water through heat recovery from the diluted black
liquor stream is not critical (based on the information that the
heat capacity flow rate of the water stream corresponds to only
50% of the liquor rate). The given retrofit proposal thereby
fulfills the requirement to be structurally feasible, and it is
possible to proceed with step 5 of the framework.
To illustrate the application of structural flexibility analysis,

we utilized it to investigate the impact of a (small) modification

Figure 12. Operating points and parameter dependencies for the
softwood campaigns.

Figure 13. Operating points and parameter dependencies for the
hardwood campaigns.
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of the suggested structural retrofit proposal. An interesting
modification would be to investigate if the steam heater for the
district heating water flow can be removed since the target
temperature of the district heating system is lower than the
supply temperature of the hot secondary heating water. By
means of structural flexibility analysis, we can identify if the heat
available in the hot secondary heating water and the diluted
black liquor is sufficient to provide the necessary heating to the
district heating system (at all times). The results of this analysis
are summarized in Table 1. When dependencies were

considered, one upper and one lower boundary function were
used to improve the representation of the uncertainty space. The
active set approach28 in combination with optimization
framework BARON41 was chosen to calculate the flexibility
index.
The results illustrate the impact when parameter depend-

encies are ignored during the analysis. More precisely, according
to the analysis the modified structural retrofit proposal would be
structurally infeasible for the operating data expected during
softwood campaigns. However, when considering the identified
parameter dependencies when modeling the uncertainty space
(bymeans of boundary functions), the structural flexibility index
is ≥1 for both softwood and hardwood campaigns. Con-
sequently, operating conditions that fall within the hyper-
rectangle uncertainty space, but not within the more accurate
space defined by boundary functions, are infeasible. We can
conclude that removing the steam heater of the district heating
system can be viable option with respect to structural flexibility
analysis. Note that when considering the identified parameter
dependencies when modeling the uncertainty space (by means
of boundary functions) for hardwood campaigns, the structural
flexibility index also increases. However, since the structural
flexibility index for hardwood campaigns is also ≥1 when
ignoring parameter dependencies, the effect of this observation
is irrelevant for the analysis.
In addition to the analysis of (small) design modifications, we

utilized structural flexibility analysis to quantify the minimum
total steam savings potential of the retrofit design proposal. Such
information can be important if the “saved” steam is intended to
be used to provide the base-load of another (new) process. To
identify the minimum total steam savings potential, we solved
the (structural) flexibility index problem, including an upper
bound for the total steam available. The upper bound of
available steam was changed iteratively to identify the minimum
steam demand for which the value of the flexibility index is
exactly 1. The results of this analysis are summarized in Table 2.
When dependencies were considered, one upper and one lower
boundary function were used to improve the representation of
the uncertainty space. The active set approach28 in combination

with the optimization framework BARON41 was chosen to
calculate the flexibility index.
The values for the minimum total steam demand in Table 2

represent lower bounds for the steam demand in all three steam
heaters (compare Figures 10 and 11) when assuming that an
unlimited heat-transfer area is available. The results illustrate the
impact when parameter dependencies are ignored during the
analysis. More precisely, according to the analysis both the
original and the retrofit layout are estimated to require a higher
steam demand when dependencies are ignored. Consequently,
operating conditions that fall within the hyperrectangle
uncertainty space, but not within the more accurate space
defined by boundary functions, are responsible for this
overestimated steam demand. In other words, the difference is
caused by operating conditions representing parameter values
that can be expected individually, but never in combination.
4.5. Identification of Critical Operating Points Assum-

ing No Parameter Dependencies. The suggested two-stage
algorithm for identifying critical operating points presented in
Section 3.5 was utilized to identify critical operating points for
both hardwood and softwood campaigns. The optimization
framework BARON41 was utilized to solve the simplified design
problem in stage 1 of the algorithm. To calculate the flexibility
index during the second stage, the active set approach28 in
combination with BARON41 was chosen. In both cases, more
than one iteration was necessary.
For softwood campaigns, the algorithm terminated during the

second iteration after it utilized the solution of the flexibility
index obtained during the first iteration to add a second critical
point to the list. For hardwood campaigns, a total of three
iterations was necessary, resulting in a list of three critical points.
Note that for both lists of critical points (softwood and

hardwood campaigns) it was not possible to obtain a (general)
flexibility index ≥1 (design constraints were included) when the
simplified design problem (i.e., problem 6) was solved as a
single-period problem, that is, when design parameter values
were utilized which were obtained for individual points in the
lists of critical points. This indicates that either the identified
critical points in a list need to be combined using a set covering
algorithm as used by for example Pintaric ̌ and Kravanja16 or that
only the consideration of all identified critical points yield values
for the design parameters which allow for steady-state flexible
operation (within the hyperrectangle uncertainty space). The
list of critical points for the two different uncertainty spaces
(softwood and hardwood campaigns) is provided in the
Supporting Information file.

Table 1. Results of Structural Flexibility Analysis for the
Modified (Structural) Retrofit Proposala

raw material dependencies considered structural flexibility index

softwood 0.96
1 and 2 1.05

hardwood 1.26
1 and 2 and 3 1.29

aIn contrast to the initial (structural) retrofit proposal, no new steam
heater is considered for controlling the target temperature of the
district heating water flow.

Table 2. Minimum Total Steam Demand of the Installed and
Retrofitted Systems for the Different Raw Materialsa

raw
material

system design
(original/retrofit)

dependencies
considered

minimum total steam
demand for reaching

FI = 1

softwood original 56 MW
1 and 2 54 MW

retrofit 52 MW
1 and 2 50 MW

hardwood original 40 MW
1 and 2 and 3 39 MW

retrofit 36 MW
1 and 2 and 3 35 MW

aNote that only structural constraints were considered.
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4.6. Updating of Critical Operating Points Considering
Dependencies in the Uncertain Parameters. The scheme
for updating the list of critical points identified for a
hyperrectangle model when considering parameter depend-
encies presented in Section 3.6 was utilized. Again, the
optimization framework BARON41 was utilized to solve the
simplified design problem while the active set approach28 in
combination with BARON41 was chosen to calculate the
flexibility index. Both lists, that is, the list considering operating
conditions during softwood campaigns and the list considering
operating conditions during hardwood campaigns were
successfully updated after one iteration. This underlines the
expected efficiency of the proposed scheme.
Note that before utilizing the updating scheme, the conditions

listed in Section 3.6 were checked partially. With respect to the
considered dependencies, only 2-D dependencies were
identified (compare Section 4.3) which were modeled using a
single upper and a single lower bound. The convexity of the
design constraints, which depends on an approximation of the
logarithmic mean temperature difference (see the Supporting
Information file), was not rigorously checked. Nevertheless, the
two lists of critical points obtained for softwood campaigns and
hardwood campaigns could be updated (i.e., the updating
scheme terminated successfully). The two lists are presented in
the Supporting Information file.
4.7. Identification of RepresentativeOperating Points.

As previously stated, 2481 and 934 operating points were
available for softwood and hardwood campaigns, respectively,
representing typical operating conditions for the two campaigns.
Including all available operating points in the discretized design
under uncertainty problem (i.e., problem 1) would increase the
problem size dramatically and the computational burden for
solving it may be unacceptable. To reduce the number of
operating points while not (or at least not significantly) reducing
the accuracy of the obtained result, representative operating
points were identified using Lloyd’s clustering algorithm39

commonly known as K-means.
When utilizing the K-means algorithm, the number of clusters

must be specified in advance. Consequently, there may be an
influence of the number of clusters on the result of the problem
1. To investigate this influence, problem 1 was solved for
different numbers of clusters (Section 4.8). Note that clustering
was performed on the entire data set and not on the separated
operating data for the individual raw materials.
4.8. Design Problem. Problem 1 was solved, including the

previously identified critical operating points in the constraints
and different numbers of representative operating points in both
constraints and the objective function. The optimization
framework BARON41 was utilized to solve the resulting
multiperiod NLP. To illustrate the influence of the critical
operating points as well as the effect of considering the
parameter dependencies for updating the critical operating
points, three cases were considered for each set of representative
operating points:

1 No critical operating points and only representative
operating points.

2 Critical operating points of uncertainty space modeled as
hyperrectangle as well as representative operating points.

3 Critical operating points of uncertainty space modeled as
hyperpolygon using boundary functions as well as
representative operating points.

The results of these calculations are presented in Section 4.10.
Note that the modification discussed in Section 4.4 (i.e., the
removal of the steam heater for the district heating water flow) is
implicitly considered since the heat-transfer area of each (new)
HEX unit can be set to 0. The cost functions used to quantify the
investment cost of the new HEX units are provided in Section 8
of the Supporting Information file together with the assumed
economic conditions that were used to calculate the capital
recovery factor.
Since exact data for the current steam demand of the

investigated subsystem were not available, it was not possible to
quantify the steam savings resulting from increased heat
recovery to calculate the potential revenue from increased
electricity production. Instead, to compare the different cases
(see the list above) with each other, we calculated the loss of
revenue which occurs when using steam for heating in the
investigated subsystem instead of producing and selling
electricity. More precisely, it was assumed that utilizing steam
in the steam heaters increases the TAC (as a loss of revenue)
since this steam cannot be utilized to produce electricity. This
loss of revenue was calculated by approximating the lost
electricity production when using steam for heating multiplied
with the representative electricity price for the respective
representative period (obtained by utilizing the K-means
algorithm, see Section 4.7). To approximate the lost electricity
production, effective electrical efficiencies were assumed to
estimate the electricity generation by means of expanding
medium and low pressure steam to the condensing level, as
shown in the Supporting Information file. For the electricity
price, scenario data generated by Göransson et al.,44 which
estimates the electricity price with an hourly resolution in the
year 2030 in the Nordic countries, was utilizedm.
4.9. Final Feasibility Check. Due to the previously

mentioned nonlinear terms in the mathematical model of the
subsystem as well as the potentially nonconvex design
constraints, the final feasibility check is important to ensure
that the identified critical points (for hyperrectangle and
hyperpolygon modeling approach) indeed ensure operability
for all expected/observed operating points. Consequently, the
calculation of the flexibility index is not chosen for evaluating the
final feasibility of this case study (since it was already utilized in
steps 4, 5 and 6). As an alternative approach, the single-period
operational optimization model (i.e., problem 9) was evaluated
for all 3415 operating points. The evaluation of each operating
point took on average less than 0.3 s on an Intel Core i7-11800H
with 32 GB of installed RAM. The final feasibility check revealed
that for the investigated cases where critical operating points
were considered when solving problem 1 (cases 2 and 3, see
Section 4.8), operation at each of the 3415 operating points was
possible. However, if only representative operating points were
considered, operation was only possible for a fraction of these
operating points. The fraction increased with an increase in the
number of representative operating points, as outlined in
Section 4.10.
4.10. Numerical Results of Case Study. The discretized

design under uncertainty problem (i.e., problem 1) was solved
considering different numbers of representative operating
points, namely, 1 (mean value), 5, 25, 50, and 75. For each set
of representative operating points, the three different cases that
differ with respect to the critical operating points included in the
problem formulation were considered (case 1: only representa-
tive operating points; case 2: representative and critical
operating points for hyperrectangle approach; case 3:

Industrial & Engineering Chemistry Research pubs.acs.org/IECR Article

https://doi.org/10.1021/acs.iecr.3c01584
Ind. Eng. Chem. Res. 2023, 62, 19715−19739

19732

https://pubs.acs.org/doi/suppl/10.1021/acs.iecr.3c01584/suppl_file/ie3c01584_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.iecr.3c01584/suppl_file/ie3c01584_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.iecr.3c01584/suppl_file/ie3c01584_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.iecr.3c01584/suppl_file/ie3c01584_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.iecr.3c01584/suppl_file/ie3c01584_si_001.pdf
pubs.acs.org/IECR?ref=pdf
https://doi.org/10.1021/acs.iecr.3c01584?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


representative and critical operating points for hyperpolygon
approach; compare Section 4.8). As mentioned in Section 4.9,
feasible operation for all (3415) discrete operating points was
achieved only when critical operating points were included
(cases 2 and 3).
As mentioned previously, increasing the number of

representative operating points allows for a better approxima-
tion of the expected objective value: here: the expected TAC.
On the other hand, we assume that the influence on the obtained
solution of adding more representative operating points is
reduced for higher numbers of representative operating points.
Figure 14 shows how the expected TAC is changed by a stepwise

increase in the number of representative operating points (from
1 to 5, from 5 to 25, etc.) for the three cases. For example, the
bars for the set of 25 representative operating points show how
much the expected TAC changed compared to the expected
TAC obtained when considering (only) 5 representative
operating points.
For all three cases, the largest change in the expected TAC can

be observed when comparing the results obtained for the mean
value and 5 representative operating points.When increasing the
number of representative operating points in the set (here: 25,
50, and 75), the difference in the expected TAC decreases. Note
that for cases 2 and 3, only a marginal difference in the expected
TAC can be observed when the number of representative
operating points in the set is increased beyond 5. This
observation indicates the strong influence of the critical
operating points which are included in cases 2 and 3. Moreover,
the change in the expected TAC becomes negligible when
comparing the solutions obtained for 25, 50, and 75
representative operating points. Consequently, we can conclude
that for cases 2 and 3, a set of 25 representative operating points
allows for a good approximation of the expected TAC. For case
1, Figure 14 indicates that a significantly higher number of
representative operating points must be considered to obtain a
good approximation of the expected TAC. Note that for case 1
even the largest set of representative operating points considered
in this work (75 points) may not be representative; that is, the
expected TAC may change remarkably when considering sets
with more than 75 representative operating points. This
observation illustrates that due to the absence of critical
operating points, operating conditions with lower probability
(which are increasingly represented in large(r) sets of
representative operating) have a measurable effect on the

solution. Additionally, we can conclude that the additional effort
for identifying critical operating points can be justified since
higher numbers of representative operating points lead to
increasing problem complexity.
Moreover, the expected TAC as well as the optimized design

specifications which were obtained for cases 2 and 3 were
analyzed and compared. Differences between cases 2 and 3 are of
special interest since such differences originate from the
different approaches to model the uncertainty space. Note that
the final feasibility check revealed that steady-state flexible
operation is possible for both cases independent of the chosen
set of representative operating points. Table 3 presents the

results obtained for cases 2 and 3 for the set of 25 representative
operating pointsn. Significant differences between the cases can
be identified for HEX B. For the other HEXs, no difference or
only a small difference (≤10%) was identified. Nevertheless, the
numbers show that the total optimized heat-transfer area is
lower when the uncertainty space is modeled as hyperpolygon
(i.e., when considering parameter dependencies: case 3)
compared to the hyperrectangle approach (i.e., when assuming
that no parameter dependencies are present: case 2). Addition-
ally, the total heat-transfer area is distributed differently among
the different HEX units for cases 2 and 3.
Although the differences are rather low for this case study,

Table 3 shows a 5% lower requirement of total heat-transfer area
as well as a 3% decrease in the expected TAC when boundary
functions are used to model the uncertainty space(s) compared
to results obtained for the hyperrectangle approach. These
findings support the made assumption that a more accurate
model of the uncertainty space allows to guarantee steady-state
flexible operation with less overdesign and reduced cost.
Furthermore, we analyzed and compared the expected TAC

when solving problem 1 for case 3 (critical points for
hyperpolygon approach and representative operating points)
as well as case 1 (only representative operating points).With this
comparison we aimed to quantify the additional cost for
flexibility, that is, the additional cost to guarantee steady-state
flexible operation. Figure 15 presents the results of this analysis.
Note that Figure 15 shows the differences in the expected TAC
for both cases compared to a reference value which is defined as
the expected TAC obtained for case 1 with one representative

Figure 14. Difference in the expected TAC (in percentage) obtained
for a certain set of representative operating points compared to the next
lower set with fewer representative operating points, e.g., the bars for
the set of 25 representative operating points show how much the
expected TAC increase compared to the expected TAC obtained when
considering (only) 5 representative operating points.

Table 3. Comparison of Optimal Design Specifications and
Expected TAC when Modeling the Expected Uncertainty
Space as a Hyperpolygon (i.e., when Considering Parameter
Dependencies: Case 3) or as Hyperrectangle (i.e., when
Assuming that No Parameter Dependencies are Present:
Case 2)a

heat-transfer area [m2] case 2 case 3
abs

(difference)

HEX A 1098.47 1194.86 96.39
HEX B 602.88 0 602.88
HEX C 0 0 0
HEX D 360.47 318.3 42.17
feed water heater 1107.75 1034.16 73.59
district heating water heater 135.8 135.8 0
combustion air heater 11,973.32 11,846.11 127.21
total heat-transfer area 15,278.69 14,529.23 749.46
expected total annualized
cost [€]

6,484,349 6,313,190 171,159

aResults obtained with 25 representative operating points.
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operating point. Further note that this reference value
corresponds to a design for which feasible operation is possible
for (only) 20% of the 3415 operating points (result obtained
during step 9 of the framework; see Section 4.9).
Figure 15 shows a substantial increase in the expected TAC

for the different optimization runs of case 3 compared to that of
the reference. For example, for case 3, the expected TAC
considering (only) one representative operating point (mean
value) is 23% higher than the reference value. Additionally, we
see that the majority of the expected additional TAC for case 3
compared to the reference is caused by increased capital costs
since more investment in heat-transfer area is necessary. Note,
however, that for case 3 almost no changes in the annualized
capital cost were observed when increasing the number of
representative operating points. On the other hand, Figure 15
shows an increased steam demand (compared to the reference
case) when 5 or more representative operating points were
considered (which is shown as an increased loss in revenues
from steam turbine electricity generation). Consequently, the
steam demand was underestimated when only the mean
operating point was considered.
Figure 15 also shows the expected TAC for the different

optimization runs of case 1 compared to the reference, that is,
the optimization runs for the four additional sets of
representative operating points (5, 25, 50, and 75). We see
that when more representative operating points are considered,

the expected TAC for case 1 increases. In comparison to the
expected TAC for case 3, this increase in the expected TAC for
case 1 compared to that for the reference is significantly more
pronounced. However, even with a large number of
representative operating points, the TAC for case 1 remains
significantly lower compared to the results achieved for case 3.
The percentage given in the respective column shown in

Figure 15 illustrates the share of the 3415 operating points at
which the respective design is able to operate (results obtained
during step 9, see Section 4.9). For case 1, this percentage
increased when more representative operating points were
included. However, even for the largest investigated set of 75
representative operating points, a steady-state flexible operation
was not achieved.
A closer look at the results obtained for the set of 75

representative operating points reveals that the additional
expected TAC obtained when solving problem 1 considering
only representative operating points (case 1) is more than 50%
lower compared to the additional expected TAC for case 3
(additional expected TAC compared to the reference case, see
Figure 15). In absolute numbers, the expected TAC values for
case 3 are 10% higher than the expected TAC for case 1 (75
representative operating points). We can conclude that the
significantly higher cost for case 3 is needed for ensuring steady-
state flexible operation, that is, feasible operation at the

Figure 15.Differences in expected TAC compared to the reference value. Results obtained by solving the discretized design under uncertainty problem
(problem 1) considering different numbers of representative operating points and either no critical operating points (case 1) or critical operating
points for the hyperpolygon approach (case 3). Reference value obtained by solving problem 1 as a single-period problem for the mean operating point
(with no critical operating points). The percentage given in the respective column illustrates the share of the 3415 operating points at which the
respective design is able to operate.
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(remaining) 4% of the operating points at which the design
obtained for case 1 cannot reach the operational targets.
It is worth mentioning that the expected TAC would be even

higher when parameter dependencies are not considered during
the identification of critical operating points (comparison of
cases 2 and 3, see Table 3). However, this increase in the
estimated expected TAC would not correspond to actual
improvements in process flexibility but rather be a result of a
poorer representation of the uncertainty space.
Finally, as mentioned in Section 1, the traditional approach for

dealing with uncertainty in (chemical) process design is to
approximate the design specifications for a single operating
point, such as the mean operating point, and apply empirical
overdesign factors to these values. For the purposes of
illustration, we investigated this option. The design obtained
by solving problem 1 considering (only) the mean operating
point was used as a basis. The design specifications obtained
suggested installation of HEX A and HEX D as well as steam
heaters for the feedwater and the combustion air (compare the
process flow sheet of the suggested retrofit in Figure 11). Based
on these design specifications, different overdesign factors were
investigated. The resulting share of operating points at which
feasible operation can be obtained is presented in Table 4. The

results clearly show that even when the heat-transfer areas of the
suggested HEX units are increased by 50%, steady-state
operation at all 3415 operating points is not feasible.
Table 4 also reports the difference in the expected TAC

compared to the expected TAC for case 1 as well as case 3 (for
one representative operating point). We see that considering
overdesign factors leads to a significant increase in the expected
TAC which can be higher than the expected TAC for case 3
(overdesign factor ≥30%) while steady-state flexible operation
still cannot be achieved. This illustrates the potential
ineffectiveness of overdesign factors for design under
uncertainty problems. However, there is reason to believe that
additional HEX units would have been considered for ensuring
that all process streams reach their target temperatures.
Nevertheless, such experience-based modifications of a given
process design would not provide any guidance as to how much
heat-transfer area would be appropriate to install in the
complementary units.

5. DISCUSSION
5.1. General Discussion Regarding the Suggested

Framework. The proposed framework does not include a
design synthesis step but relies on the application of existing
methodologies for generating high-quality structural design
proposals. The framework can therefore be used for both retrofit

(redesign) as well as greenfield design problems. The structural
design proposals may be collected in a superstructure. Note that
structural design proposals in retrofit projects may include
resequencing of existing equipment, while the costs associated
with such measures can be hard to quantify. It should also be
noted that when following the different steps of the framework,
the optimal solution with respect to a defined objective can be
found (only) among the design proposals considered in the
superstructure. However, especially for large-scale industrial
problems, too many structural design options in the super-
structure can be inefficient, since the computational burden
increases.
The proposed framework allows uncertainties to be

considered when identifying the optimal design specifications
for structural design proposals. These uncertainties may result
from uncertain parameters, which are defined outside the system
boundary and can thereby not be affected by the respective
system, while recourse action is possible to counteract changes
in the uncertain parameters. The proposed framework does not
provide a strategy for dealing with uncertain parameters that are
not measurable since recourse action is not possible in such
cases.
The advanced modeling of the uncertainty space suggested in

this work relies upon availability of good-quality data, especially
data related to parameter dependencies. The availability of such
data is commonly limited, especially for the greenfield design of
chemical plants. However, it is usually possible to assume that
certain independent operating periods occur, such as differing
operating conditions during summer and winter times (typical
example of seasonality). Nevertheless, in certain projects, a
rough estimation of the uncertainty space such as upper and
lower bound values for the uncertain parameters (hyper-
rectangle uncertainty space) for the entire expected operating
period may be the best approximation possible in the early
design planning stage. Note that if a single hyperrectangle
representation is the only available approximation of the
uncertainty space, steps 2, 3, and 6 of the proposed framework
(compare Figure 6) may be omitted accepting a potentially
lower accuracy of the obtained results.
In this work, we propose a new approach for identifying

critical operating points. The reason is that in previous work,26

we identified issues when utilizing the algorithms suggested by
Pintaric ̌ and Kravanja.15,16 More specifically, in our previous
work, we investigated different structural design proposals for a
heat exchanger network retrofit, and for some proposals the full
set of critical operating points could not be identified using the
suggested algorithms. Based on these results, we identified that
the complexity of a structural design proposal can be an essential
barrier for the successful application of the previously suggested
algorithms. Since we assumed the design proposals in our
previous work to be less complex compared to the case study
addressed in this work (e.g., due to the presence of stream
splitting), we suggested a new approach to avoid the
aforementioned issues. Note that we did not perform a rigorous
testing of our suggested approach for identification of critical
operating points but simply concluded that it allowed the critical
operating points for the investigated industrial case study to be
identified. In future work, the performance of the different
approaches for the identification of critical points should be
further investigated for case studies of different complexity.
To allow the identification of critical operating points also

when the expected uncertainty space is modeled using the
hyperpolygon approach, that is, considering parameter depend-

Table 4. Impact of Different Overdesign Factors on the
Feasibility Share (Share of the Total Operating Points at
which Feasible Operation is Possible) as well as the TACa

overdesign factor 20% 30% 40% 50%

feasibility share [%] 59 67 76 83
Δ TAC (to case 1) [%] 15 23 30 38
Δ TAC (to case 3) [%] −4 3 9 15

aThe design obtained by solving problem 1 considering (only) the
mean operating point was used as a basis. Note that only the initially
suggested heat exchanger units were considered. Additional invest-
ment in other (initially not planned) heat exchanger units was not
considered.
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encies, a novel updating scheme was developed (compare
Section 3.6). We could confirm that the updating scheme
identifies the critical operating points for a hyperpolygon
representation of the uncertainty space if three conditions
(compare with Section 3.6) are satisfied. However, these
conditions limit the applicability of the developed updating
scheme since the successful termination of the updating scheme
cannot be guaranteed if multivariate dependencies as well as
multiple upper and/or lower boundary functions are present. In
future work, these limitations should be addressed.
In our framework, we suggest to identify representative

operating points to reduce the number of scenarios considered
in the discretized design under uncertainty problem and thereby
the computational complexity. However, it should also be noted
that available operating data (especially with high resolution)
usually represent historic measurements. In this context, there is
uncertainty regarding the extent to which such historic data also
represent future operating conditions. Consequently, aggregat-
ing available operating data to (a lower number of)
representative operating points can be a better approximation
of the future operating conditions compared to high-resolution
data, which may include operating conditions which will not
occur again.
In Section 3.9, we suggested solving the optimal operation

problem (see problem 9) for a discrete number of operating
points to investigate whether the obtained design specifications
allow for steady-state flexible operation. However, such a
feasibility check cannot guarantee that the derived values for the
design parameters are feasible for all possible operating points
within the uncertainty space(s). Such a proof can only be
obtained by solving the flexibility index problem, including
design constraints, to global optimality. However, according to
our experience, this problem (i.e., flexibility index problem) can
be significantly more computationally burdensome compared to
the flexibility index problem in the two-stage algorithm for
identifying critical operating points. The reason for this is the
influence of the representative operating points which can lead
to a certain overdesign of specific equipment compared to
equipment which is designed to exclusively operate at a list of
(potentially) critical operating points. In this context, other
work18 in the field which is based on the identification of critical
operating points suggests to conduct the final feasibility check
based on Monte Carlo process simulation for discrete operating
points. Note that the validity of the suggested feasibility check
based on the evaluation of discrete operating points increases
with the number of discrete operating points considered.
Consequently, more discrete operating points may be generated
by means of sampling methods.
5.2. Discussion Regarding the Industrial Case Study. In

Section 4.2, we identified two independent operating periods for
the industrial case study. To identify the influence of these
independent operating periods on the numerical results (i.e., the
expected TAC and the suggested system design), steps 3 to 9
could be performed for the overall uncertainty space and the
results could be compared to the results presented in Section
4.10. If the expected TAC is higher when considering only one
overall uncertainty space, it can be concluded that the additional
cost relates to unnecessary overdesign resulting from heat-
transfer areas being designed for combinations of uncertain
parameter values, which occur individually but never in
combination. However, if no (significant) difference can be
identified, it can be concluded that the separation into two

different uncertainty spaces and the connected additional work
was unnecessary.
Table 3 shows that the expected TAC is lower when problem

1 is solved considering parameter dependencies (case 3)
compared to ignoring parameter dependencies (case 2).
However, as previously mentioned, the difference in the
expected TAC is relatively small in this specific case. The
difference may be significantly more pronounced for other cases
studies.
Finally, Figure 15 illustrates that the expected TAC increases

significantly if feasible operation is required for all operating
conditions within the expected uncertainty space. For the set of
75 representative operating points, Figure 15 shows that more
than 50% of this additional expense is incurred to enable
operation for the final 4% of the operating points, which can be
assumed to be extreme values within this uncertainty space. This
observation underlines the necessity of careful assumptions and
data preprocessing such as outlier detection before utilizing the
suggested framework.

6. CONCLUSIONS AND OUTLOOK
In this work, we presented a framework that aims to support
designers in (early) design stage screening processes when
dealing with chemical process design under uncertainty. The
framework is a stepwise approach which identifies:

1 if structural design proposals are structurally feasible,

2 the most cost-efficient overdesign of equipment size
required to guarantee steady-state flexible operation,

3 a basis to compare different structural design proposals
with respect to a given objective.

As the first step of the proposed framework, structural
flexibility analysis is performed for (different) given structural
design proposals to exclude those proposals which are
structurally infeasible, that is, whose structural layout does not
allow for steady-state flexible operation. The design specifica-
tions of the remaining (structurally feasible) proposals can
thereafter be optimized by solving the discretized design under
uncertainty problem. This implies that the expected objective
function value is calculated for a set of representative operating
periods, while steady-state flexible operation is ensured by
including critical operating points in the constraints.
In contrast to previous work, our proposed framework

includes advanced modeling of the expected uncertainty space
to allow dependencies in the uncertain parameters to be
considered as well as variation between independent operating
periods. In this context, we also discussed different origins and
types of independent operating periods as well as strategies for
identifying such independent operating periods. Several
theoretical examples were introduced to illustrate how our
approach offers more degrees of freedom for modeling the
expected uncertainty space compared to the traditional
approach based on expected upper and lower bound values
(hyperrectangle representation). If dependencies in the
uncertain parameters and/or independent operating periods
are expected, these degrees of freedom can be exploited to
exclude subsets of the hyperrectangle uncertainty space that
contain combinations of the uncertain parameter values that are
not expected to occur. Consequently, a more accurate
representation of the actual uncertainty space is achieved, and
flexibility assessments based on this uncertainty model thereby
better represent the actual flexibility of the process.
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Furthermore, by means of different theoretical examples, we
showed that the modeling of the expected uncertainty space can
affect the identification of critical operating points. If the critical
operating points are identified assuming a hyperrectangle
representation of the uncertainty space, the identified critical
points may represent combinations of uncertain parameter
values that are not expected to occur simultaneously. If the
design is then optimized to be able to handle these critical, but
nonexpected, conditions, this is likely to result in unnecessary
overdesign of the equipment. We therefore proposed a novel
algorithm to consider parameter dependencies and independent
operating periods when identifying critical operating points.
The applicability and benefits of the proposed framework

were illustrated through an industrial case study of a heat
exchanger network retrofit. A structural design proposal that was
defined prior to the application of the suggested framework was
evaluated. We identified correlations between different un-
certain parameters as well as two independent operating periods.
Furthermore, critical operating points were identified utilizing
(i) a hyperrectangle model of the expected uncertainty space
and (ii) our advanced modeling approach. In addition to the
critical operating points, different sets of representative
operating points were investigated.
The results confirm that considering (only) representative

operating points in the problem 1 is problematic when aiming
for steady-state flexible operation. The results indicate that
steady-state flexible operation can only be guaranteed when
considering the identified critical operating points in the
constraints of the design problem. Note that steady-state flexible
operation was possible when considering critical operating point
identified (i) for the hyperrectangle model of the expected
uncertainty space as well as (ii) using our advanced modeling
approach. When considering only representative operating
points, feasible steady-state operation at all expected operating
points was not possible for the investigated sets of representative
operating points. Note that the absolute number of operating
points at which feasible steady-state operation is not possible is
bigger than the number of representative operating points, also
for the largest set investigated (75 points)o.
Furthermore, the results show that more total heat-transfer

area is required as well as a higher TACwhen the design problem
is solved considering the critical operating points identified for a
hyperrectangle uncertainty space, compared to the critical
operating points based on our modeling approach. It is worth
mentioning that for the investigated case study, our modeling
approach of the uncertainty space resulted in a 5% lower
requirement of total heat-transfer area while also the expected
TAC decreased by 3%. This observation supports our
assumption that an overly simplified model of the uncertainty
space may lead to overdesign and unnecessary costs.
The numerical results also indicate that including critical

operating points in the design problem significantly reduces the
number of representative operating points that need to be
considered to obtain a fair approximation of the expected
objective function value. More precisely, it was shown that for
the investigated case study, a set of 25 representative operating
points is sufficient to achieve a good approximation of the
expected TAC when considering critical operating points in the
constraints. When critical operating points are not included in
the design problem, the results indicate that the expected TAC
obtained for the largest set of representative operating points
considered in this work (75 points) may not be representative,
that is, the expected TAC may change remarkably when

considering sets with more than 75 representative operating
points. Since higher numbers of representative operating points
lead to increasing problem complexity, the additional effort for
identifying critical operating points can be justified.
For the investigated case study, a lower value for the expected

TAC was obtained when considering only representative
operating points but the obtained design specifications could
not handle all expected occurrences of the uncertain parameters.
For example, for the set with 75 representative operating points,
the expected TAC to guarantee steady-state flexible operation
was identified to be 10% higher compared to the expected TAC
when considering only representative operating points. Finally,
we showed that using overdesign factors is rather ineffective for
handling uncertainty in the investigated case study since the
additional expenses incurred may be significant while steady-
state flexible operation still cannot be guaranteed.
As mentioned in Section 5, rigorous testing and further

development of the novel strategy to identify the critical
operating points of both hyperrectangle and hyperpolygon
representations of the uncertainty set remain for future work.
Especially, the limitations of the proposed algorithm to identify
the critical operating points of hyperpolygon representations
should be addressed. Additionally, the proposed framework
could be extended by incorporating operability aspects. For
example, the calculation and evaluation of an operability metric,
such as the operability index initially proposed by Vinson and
Georgakis,45,46 after step 4 of the proposed framework could
reveal interesting insights with respect to the operability of
certain process design proposals.
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■ ADDITIONAL NOTES
aThe term expected uncertainty space refers to the space in
which the uncertain parameters are expected to vary, that is, the
expected uncertainty space is defined by the expected
disturbance range of each uncertain parameter.
bA structural design proposal describes the structural layout of
the process including the placement of equipment while the
design specifications, such as the size of the equipment, remain
unspecified.
cAn example can be found in our recent work on flexibility
analysis considering parameter dependencies31 where we
analyzed the flexibility of a design proposal for an industrial
heat exchanger network (HEN). When ignoring parameter
dependencies, the resulting flexibility metric indicates that the
design proposal would not allow steady-state flexible operation
while the opposite is found to be true when considering
dependencies between uncertain parameters during the analysis.
dNote that this division is an illustration and neither a
recommendation nor a suggestion to (always) divide operating
data according to calendar seasons.
eThis observation is in line with the definition of critical points
by Halemane and Grossmann14 who defined critical points as
those realizations of the uncertain parameters for which the
feasible region of operation is the smallest.
fNote that this idea is based on the work by Halemane and
Grossmann14 who observed that if feasible operation at the
critical operating points can be guaranteed, the same applies for
any other point within the expected uncertainty space.
gAs previously mentioned, this step can be performed relying on
historic operating data or by anticipating the uncertainty space.
hNote that considering a parameter dependency requires
(more) advanced modeling which means that (simply)
considering all identified parameter dependencies may increase
the problem complexity of the subsequent flexibility index
problem and the identification of critical operating points.
iNote that this procedure is universal for projecting a solution of
the flexibility index problem (θ*, δ*) from the solution space
(feasible uncertainty space) to the expected uncertainty space.
Further note that the same procedure was utilized to identify the
critical operating point for the example shown in Figure 5.
jNote that the critical operating points which were identified for
different independent operating periods must be combined to
one set to be included in problem 1.
kNote that a feasibility check based on solving problem 9 for a
discrete number of operating points cannot guarantee that the
derived values for the design parameters are feasible for all
possible operating points within the uncertainty space(s) of the
independent operating period(s). This is further discussed in
Section 5.
lNote that in current operation (before retrofit), sufficient steam
is available to meet the steam demand at all times, and the steam

demand is expected to be reduced in the future as a result of the
suggested retrofit.
mNote that estimations for the electricity prices for the year
2030 were chosen since this year can be seen as an average year
for the expected lifetime of the investment.
nThe set of 25 representative operating points was chosen since
it allows for a fair approximation of the expected TAC
(conclusion drawn based on the analysis shown in Figure 14).
oTherefore, the strategy outlined in Section 3.9 would be
ineffective in such a scenario since it proposes to include all
operating points at which feasible operation was not possible as
critical operating points in problem 1.
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