
Exploring turn signal usage patterns in lane changes: A Bayesian
hierarchical modelling analysis of realistic driving data

Downloaded from: https://research.chalmers.se, 2025-07-03 05:58 UTC

Citation for the original published paper (version of record):
Jokhio, S., Olleja, P., Bärgman, J. et al (2024). Exploring turn signal usage patterns in lane changes:
A Bayesian hierarchical modelling
analysis of realistic driving data. IET Intelligent Transport Systems, 18(2): 393-408.
http://dx.doi.org/10.1049/itr2.12457

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It
covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is
administrated and maintained by Chalmers Library

(article starts on next page)



https://ietresearch.onlinelibrary.wiley.com/action/showCampaignLink?uri=uri%3A7ddcd0be-50d3-4d8f-a8b0-bc91566666db&url=https%3A%2F%2Fietresearch.onlinelibrary.wiley.com%2Fhub%2Fjournal%2F17519578%2Fhomepage%2Fcfp%3Futm_medium%3Ddisplay%26utm_source%3Ddartads%26utm_content%3DIET_ePDF_call_for_papers_feb23%26utm_term%3DITR2&pubDoi=10.1049/itr2.12457&viewOrigin=offlinePdf


Received: 12 June 2023 Revised: 16 October 2023 Accepted: 13 November 2023 IET Intelligent Transport Systems

DOI: 10.1049/itr2.12457

ORIGINAL RESEARCH

Exploring turn signal usage patterns in lane changes: A Bayesian

hierarchical modelling analysis of realistic driving data

Sarang Jokhio1 Pierluigi Olleja2 Jonas Bärgman2 Fei Yan1 Martin Baumann1

1Department of Human Factors, Institute of
Psychology and Education, Ulm University, Ulm,
Germany

2Division of Vehicle Safety, Department of
Mechanics and Maritime Sciences, Chalmers
University of Technology, Gothenburg, Sweden

Correspondence

Sarang Jokhio, Department of Human Factors,
Institute of Psychology and Education, Ulm
University, 89081 Ulm, Germany.
Email: sarang.jokhio@uni-ulm.de

Funding information

H2020 Marie Skłodowska-Curie Actions,
Grant/Award Number: 860410

Abstract

Using turn signals to convey a driver’s intention to change lanes provides a direct and
unambiguous way of communicating with nearby drivers. Nonetheless, past research has
indicated that drivers may not always use their turn signals before starting a lane change.
In this study, realistic driving data are analyzed to investigate turn signal usage during lane
changes on highways in and around Gothenburg, Sweden. Turn signal usage is examined
and factors that influence it are identified by employing Bayesian hierarchical modelling.
The study found that drivers used their turn signal before changing lanes in 60% of cases,
after starting the lane change in 33% of cases, and did not use it at all in 7% of cases. The
Bayesian hierarchical modelling results indicate that various factors, such as the speed and
direction of lane changes and the presence of surrounding vehicles, influence the usage of
turn signals. The study concludes that understanding the factors affecting turn signal usage
is crucial for improving traffic safety in current and future mixed traffic with autonomous
vehicles. The study discusses the implications of findings concerning increasing turn signal
compliance through general policy-making, improving existing in-vehicle technologies and
including turn signal usage in Pay-As-You-Drive insurances.

1 INTRODUCTION

The behaviour of drivers in traffic can be unpredictable, lead-
ing to complex and dynamic interactions that pose a challenge
to the smooth functioning of autonomous vehicles (AVs). To
be able to navigate and respond to human drivers safely and
efficiently, AVs should be programmed with the ability to antic-
ipate and interpret human driver behaviour. Understanding and
interpreting the various explicit and implicit signals that human
drivers use in traffic is crucial for AVs to communicate effec-
tively and interact with other road users in different situations.
One of the interaction situations that can occur is during a lane
change. The lane change is a frequently performed but complex
manoeuvre that requires effective communication with other
drivers to ensure safe completion. In a lane-changing scenario,
a driver uses implicit and explicit forms of communication to
convey the intentions to other road users [1]. An implicit or indi-
rect form of communication during a lane change occurs when
the driver positions the vehicle in a certain way, such as mov-
ing closer to the lane boundary line, as an indication of their
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intention to change lanes. An explicit or direct form of commu-
nication during a lane change is using a turn signal to announce
the driver’s intentions to change lanes to surrounding drivers.

A turn signal is a crucial safety feature that plays a vital role
in effective communication between drivers, as it allows them
to announce their intention to change lanes [2]. As such, it is
essential that turn signals are used properly and consistently,
particularly before starting a lane change. Although the liter-
ature lacks a formal definition of “proper turn signal use” it
is widely recognized that it involves activating the turn sig-
nal before starting a lane change. Using a turn signal before
changing lanes allows drivers in the target lane to anticipate and
prepare for the upcoming lane change by providing them with
enough time to react and adjust their speed or position accord-
ingly. Many countries require drivers to use turn signals before
making a lane change, but there is a lack of clear regulations
regarding the onset time (i.e. when it should be activated). For
example German road traffic law only requires drivers to sig-
nal the lane change intention “in good time” [3], leaving room
for interpretation. However, some states in the United States,
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such as California, have more specific regulations in road traffic
law, requiring drivers to use a turn signal at least 5 s before a
lane change [4]. Proper turn signal usage is essential, as it could
avoid many potential crashes [2] and also increase cooperative
behaviour (such as opening up gaps for lane changing vehicles)
by drivers in the target lane [1, 5]. The use of proper turn signals
is also imperative in the context of future mixed traffic sce-
narios, where AVs will coexist with conventional human-driven
vehicles on shared roadways. This is because, as AVs rely heav-
ily on strict rules, they may not understand the implicit forms of
communication used by human drivers [6].

1.1 Relevant literature

Research on lane changes has substantially increased in the past
two decades due to advancements in data collection technol-
ogy and the availability of large-scale data [7, 8]. However, a
substantial portion of lane change research focuses on char-
acteristics like lane change duration [7, 9, 10], gap acceptance
[11–13]. Despite its crucial role in safe lane-changing, turn signal
usage has remained relatively under-explored. We have summa-
rized the findings of studies investigating turn signal usage in
the following section.

Tijerina et al. [14], investigated turn signal usage of drivers
while performing a lane change. The data for the study was
collected on public roads in Ohio, USA, using an instrumented
vehicle, with the driver being accompanied by an observer. They
reported that a turn signal was used 92% of the time. How-
ever, the observers’ presence in the passenger seat might have
resulted in higher compliance than if no observers were present
[15]. In a later study by Lee et al. [15], 16 participants drove an
instrumented vehicle on an interstate highway in Virginia, USA,
without an observer. The study found that the turn signal was
used only 44% of the time. Turn signal usage for lane changes
to the right was only 35% compared to 48% in the case of lane
changes to the left lane. Unlike the above two studies, Ponziani
[2] used an observer with two tally counters in a vehicle driv-
ing around Ohio, USA. The observer recorded the lawful use of
the turn signal on one counter and unlawful or neglected on the
second tally counter. A total of 2000 data points were gathered
for lane changes. It was found that only 51.65% of drivers com-
plied with proper turn signal usage while making a lane change.
Lin and Bao [16] used data collected in Michigan, USA, during
the Safety Pilot field-operational-test sponsored by the National
Highway Traffic Safety Administration [17]. They reported the
use of turn signals in about 70% of lane changes. Fitch et al. [18]
conducted an analysis of lane-change events using data from
the 100-Car Naturalistic Driving Study. Of the total 135 lane
change cases, three were crashes, and the remaining were near-
crashes. The study found that while 85% of drivers used their
turn signals during planned left-lane changes, only 24% did so
when making unplanned left-lane changes to avoid a forward
crash threat.

All of the above studies were from the USA. However, similar
numbers were reported in the two studies conducted in China.
For example, Dang et al. [19], used an instrumented vehicle and

studied 12 participants who drove approximately 200 km (on
each side) on a two-lane highway between the city of Beijing and
Baoding. On the first leg of the journey (Beijing to Baoding),
the drivers drove the vehicle with their usual driving behaviour.
On the second leg of the journey (Baoding to Beijing), drivers
were asked to make frequent lane changes and use turn sig-
nals before starting a lane change. The percentage of turn signal
usage in the first leg was about 40%. However, despite being
instructed to use the turn signal before starting a lane change,
the study found that its usage in the second leg of the drive was
only about 65%. The second study by Wang et al.[20], used data
collected during the Shanghai Naturalistic Driving Study. They
analyzed lane changes made by the vehicle in the adjacent lane
(both left and right) to the instrumented vehicle. After extract-
ing the time of lane changes (called cut-in the original paper),
they observed turn signal usage by watching forward roadway
videos from the subject vehicles. The results showed that turn
signal usage was less than 50% on all types of roads, includ-
ing freeways and expressways. These results indicate that turn
usage during lane change is relatively low, even though traffic
law mandates it in many countries worldwide.

1.2 Current study

As previously emphasized, the use of turn signals to indicate
intent during a lane change is a vital aspect, yet it has received
less attention than other characteristics, such as the duration
of the lane change and acceptance of the gap. Only a few
studies on this topic have been conducted, and they predomi-
nantly originate from just two countries: the United States and
China. To the authors’ knowledge, there is a lack of research
on turn signal behaviour, specifically in the context of drivers
from European countries. The current literature also primarily
relies on observations (turn signal used by other vehicles), by
a person in the vehicle or via videos recorded by instrumented
vehicles. Such methodologies are prone to errors, particularly
when events are observed or recorded from the perspective of
the ego vehicle, rather than focusing on the behaviours of the
ego vehicle itself. For example there is a scarcity of research that
differentiates between turn signals used before and after start-
ing a lane change, except for [16]. This scarcity might largely be
due to the challenges posed by observation-based methodolo-
gies, which make it difficult to accurately determine the relative
timings of turn signal activation in comparison to the actual
initiation of the lane change. Additionally, there is a gap in exten-
sive research exploring the various factors that could potentially
impact the usage of turn signals during lane changes. There-
fore, this study aims to examine the usage of turn signals among
Swedish (European) drivers by analyzing data on their natu-
ralistic behaviour during lane changes. Additionally, the paper
provides an in-depth analysis of potential influencing factors on
turn signal usage.

We used Bayesian hierarchical modelling to analyze the turn
signal usage data. We used realistic driving data, which typically
has a hierarchical or multilevel structure where observations are
nested within participants. In recent years, Bayesian approaches
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have been increasingly applied in transportation and other fields
such as social and behavioural sciences [21–23]. In the trans-
portation domain, the Bayesian approach has been used to
study road safety [24], such as crash estimation, prediction of
road accidents, and road network safety evaluation [25–28]. In
addition, Bayesian techniques have been employed to develop
reference models [29] and to produce synthetic data that mimics
driver behaviour [30].

The structure of this paper is as follows. In Section 2, we
thoroughly examine the data utilized in this study. In Section 3,
we discuss Bayesian hierarchical modelling, followed by a pre-
sentation of our findings in Section 4. Lastly, the implications
of our results, potential limitations, and recommendations for
future research are discussed in Section 5.

2 DATA DESCRIPTION

The data used in this paper were collected during the L3Pilot
Project [31]. A dataset collected by Volvo Car Corporation
for this project includes vehicles equipped with an automated
driving function being driven on the highway surrounding the
city of Gothenburg, Sweden. This dataset includes both trips
where the driving task was purely manual (baseline) and trips
where the automated driving function was activated (treatment).
Drivers in the baseline dataset were primarily non-professional
drivers. The professional drivers were involved in part of the
baseline and in the whole treatment dataset. In the context
of L3Pilot, the term “professional” referred to drivers with a
qualification in operating prototype vehicles for testing specific
features [31, 32]. Professional drivers were also compensated
for driving. Non-professional drivers, on the other hand, are
individuals who are recruited within the company [31]. In our
study, only baseline trips with both non-professional and pro-
fessional drivers were considered. The cars were equipped with
cameras facing outside towards traffic (Front and Rear) and
inside towards the driver, radars, accelerometers and angular
rate sensors, and a global positioning system (GPS). In addi-
tion, data from the Control Area Network (CAN) bus in the
vehicle was also collected, including information such as turn
indicator usage and ego vehicle speed. Furthermore, the longi-
tudinal and lateral positions, the speed of surrounding vehicles,
and traffic density were also collected. In this study, we used data
from the ego vehicle described below to determine the start and
completion of a lane change manoeuvre.

Determining the start and completion of a lane change from
time-series data can be challenging since the measured values are
highly sensitive to the definitions selected by authors [33]. As a
result, researchers often use various methods to identify lane
change start and completion in their data. What can and cannot
be done primarily depends on which data is available [34]. The
thresholds of lateral distance to a lane marking and the lateral
velocity of the vehicle are common variables used to deter-
mine a lane change’s start and completion point. This approach
has been used on data collected from vehicle-mounted cam-
eras [35] and data from high-rise building-mounted cameras
[36]. However, neither study provided quantitative thresholds

for lateral position or velocity. Thresholds provide objective,
quantifiable criteria to determine lane change start and end-
points. For example [33], used a −0.2 m/s and [37], used a 0.33
m/s lateral velocity threshold to determine the start and end of
a lane change.

In this study, we first filtered lane change scenarios using
L3Pilot’s scenario definition, which only considered the distance
to lane markings [31]. However, we used thresholds of lateral
velocity and distance to lane markings as criteria to determine
lane changes’ start and completion points. To explore the appro-
priate thresholds, we first analyzed the driver’s lateral velocity
and position within the lane in a free-driving (the subject vehi-
cle following its path without any influence of other vehicles)
scenario. We found that in 90% of free driving time, the lateral
speed did not exceed 0.17 m/s both driving towards the left
and the right. Moreover, the lateral position within the lane was
found to be centered in the middle of the lane and to be within
0.42 m to the right and 0.36 m to the left 90% of the time.

Assuming that the lateral velocity at the start and comple-
tion of the lane change is zero [10], or using a smaller threshold,
may result in underestimating the start and completion of lane
changes. On the other hand, using a larger threshold could result
in identifying the start or completion of lane change after the
vehicle has already crossed the lane boundary. Therefore, we
tested different thresholds of lateral velocity to determine the
start and completion of a lane change. We selected five thresh-
olds from 0.10 m/s to 0.3 m/s (with an increase of 0.05 m/s)
in the lane change scenarios. We also verified random cases for
each chosen threshold by watching a front-facing video of the
lane-changing vehicle to see if the lane change occurred at a
particular threshold. We found that vehicles already crossed the
lane boundary while using a threshold of 0.20 m/s to 0.3 m/s.
Finally, we decided to use a threshold of 0.15 m/s to deter-
mine the start of a lane change. We selected this threshold to
strike a balance between instances where a vehicle may have
already crossed lanes and instances where a vehicle is fluctu-
ating within its current lane. To cover the situations where a
lane change might happen slowly without reaching the lateral
velocity criteria, we also included cases with a lateral motion
that got closer than 5 cm from the lane marking at a start of a
lane change. The lateral distance was measured between the side
of the vehicle and lane markings of the target lane. By select-
ing a smaller value such as 5 cm, we ensured that the vehicle
was getting closer to the target lane marking. The target lane
markings were determined from the direction of lane change.
It is important to note that the study’s focus was exclusively
on the start of lane changes. Therefore, all variables used in
the model were extracted at the start of the lane change, as
defined by the 0.15 m/s lateral speed, complemented with the 5
cm-from-lane-marking criterion.

2.1 Descriptive data

A total of 1791 lane change cases for 103 drivers were extracted
from the dataset, having met either of the previously described
thresholds. The driver’s age ranged from 23 to 64 years old,
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FIGURE 1 The frequency of LC cases per driver.

with an average of 40.2 years old. The drivers consisted of 71
males and 32 females. Among these drivers, 69% had more than
10 years of driving experience, while the remaining drivers had
shorter or non-specified driving experience.

As shown in Figure 1, there is an imbalance in the number of
lane changes per driver. Of the 103 drivers in the dataset, only
eleven (about 11%) were professional drivers. Despite this, they
accounted for nearly 40% of the lane changes. This was due
to the fact that professional drivers drove more and thus gen-
erated more driving data compared to non-professional drivers
who typically drove for only 1 h. As mentioned earlier, the exclu-
sion of trips where the automated driving function was activated
has led to an imbalance among the trips of professional drivers.
Furthermore, although the non-professional drivers drove for
a similar duration, they exhibited variation in their driving pat-
terns. This variation can be attributed to the fewer situations
where a lane change was required. To avoid losing valuable
insights, we decided to include data from both professional and
non-professional drivers. However, we conducted an additional
supplementary analysis using individual datasets for each group
to ensure that the inclusion of both groups did not introduce
any biases or obscure unique behavioural patterns specific to
each group. Please refer to the Appendix for more details.

Figure 2 illustrates a typical lane change scenario, which
depicts the different vehicles involved. The vehicles shown in
red (rear and lag vehicles) potentially impact the turn signal
usage behaviour of the lane-changing vehicles (shown in blue).
This is because the turn signal is primarily used to communicate
to the rear and lag vehicles that a lane change is imminent.

Overall turn signal usage was 92.8%, which is higher than
reported in previous literature. However, further examination
revealed a discrepancy in turn signal usage, specifically in rela-
tion to lane change start. In 59.9% of cases, a turn signal was
used before starting a lane change, while it was only used after
the start of a lane change in 32.9% of instances. Furthermore,
in 7.2% of cases, no turn signal was used at all.

The following variables were taken into consideration for
each lane change case: speed (km/h) of the ego vehicle, direc-
tion of lane change (right or left), presence of a rear vehicle
(yes or no), rear gap (seconds), presence of a lag vehicle (yes
or no), lag gap (seconds), and traffic density (vehicles/km/lane)
and driver type (pro and no pro). The variables were selected
because of their potential effect on turn signal usage. For
instance, it was demonstrated in [15] that turn signal usage var-

ied depending on the direction of the lane change. Research
has also shown that surrounding vehicles and their respective
gaps impact the overall lane change process [38], although not
directly on turn signal usage.

3 BAYESIAN HIERARCHICAL MODEL

The realistic driving data, such as the one we used, are
often large, noisy, sparse, and unbalanced [29]. Furthermore,
it typically has a hierarchical or multilevel structure, where
observations are nested within participants. To account for the
variation, hierarchical models such as mixed effect multino-
mial Logit models are typically used in the traditional approach
[39]. Nonetheless, hierarchical models based on the tradi-
tional approach have some limitations that can be addressed
by employing a Bayesian approach. Bayesian data analysis
provides a more intuitive interpretation of results using prob-
abilities as opposed to p-values in traditional approach. The
bayesian approach can handle more complex and non-linear
relationships, as well as non-normally distributed data [40].

At its fundamental level, the Bayesian approach uses Bayes’
theorem to update prior beliefs or knowledge with observed
data to make inferences about unknown parameters [41]. Bayes’
theorem is the fundamental rule that combines prior probability
and likelihood to compute the posterior probability. The prior
probability represents the initial belief about the parameters or
hypotheses before observing any data. In contrast, the poste-
rior probability is the updated belief about the parameters after
observing the data. For an in-depth introduction to Bayesian
data analysis, readers are referred to [42].

Bayesian hierarchical (or multilevel) models (BHM) are a class
of statistical models that allow for the modelling of complex
relationships within hierarchical or nested data structures [43].
In our case, the data for lane change measurements are obtained
from various drivers. This data has a multilevel structure, which
makes BHM an advantageous statistical modelling approach to
capture the intricate relationships within the nested data struc-
ture. Although not unique to BHM, a key feature of BHM is that
they allow for the estimation of both fixed and random effects,
enabling the decomposition of variance in the response variable
into components attributable to different levels of the hierarchy.

The categorical response variable signal has three levels:
before, after, and no. The level “before” is chosen as the base-
line. The model will estimate the person-specific effects of the
predictors and the random intercept for each driver. In sum-
mary, the model includes fixed effects for speed, direction, rear
vehicle, rear gap, lag vehicle, lag gap, traffic density, driver type,
and random intercepts for Driver ID. The random intercept
allows us to account for any variation across different drivers.
The hierarchy of the model is explained below.

∙ Random effects: At this level, the focus is on the individual
drivers represented by the variable Driver ID. The random
intercept (b0 j ) accounts for the differences in the baseline
of the response variable (signal) across different drivers. This
allows the model to capture variations between drivers, which
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FIGURE 2 A typical LC scenario.

can help understand individual drivers’ unique characteristics
and behaviour.

∙ Fixed effects: At this level of the model, the response vari-
able (Turn signal usage) is modelled as a function of the
fixed effects, which include the predictors’ (speed, direction,
rear veh, rear gap, lag veh, lag gap, traffic density, and driver
type). These fixed effects represent the average effects of
each predictor on the response variable across all drivers. By
including these fixed effects, the model captures the general
relationship between the predictors and the response vari-
able, allowing for an understanding of the overall trends in
the data.

In this study, the probability of observing each level of the
outcome variable (Signal) is modelled using Equations (1) and
(2)

logit

(
P (signal = after)

P (signal = before)

)
= 𝛼after + 𝛽1,after × X + b0 j ,after

(1)

logit

(
P (signal = no)

P (signal = before)

)
= 𝛼no + 𝛽1,no × X + b0 j ,no (2)

Here, X represents the vector of predictor variables, 𝛼after
and 𝛼no are the intercepts for the “after” and “no” cate-
gories, respectively. 𝛽1,after and 𝛽1,no represent the fixed effect
coefficients for the “after” and “no” categories, respectively,
corresponding to the vector X of predictor variables. In these
equations, b0 j ,after and b0 j ,no represent the random intercepts
for each driver.

Integrating prior knowledge into the estimation process is a
key advantage of Bayesian approach [44]. A prior is a probabil-
ity distribution that expresses the degree of belief or uncertainty
about the value of a parameter of interest before any data is
observed. The prior distribution is used as a starting point
to compute the posterior distribution, which represents the
updated degree of belief or uncertainty about the parameter
after observing the data. Nevertheless, this feature is also a
source of common criticism, as there is no unique way of choos-
ing a prior distribution, and prior specification can substantially
influence the model outcomes [44, 45]. Without prior knowl-
edge, often weakly informative or non-informative priors are
assumed [42]. Weakly informative priors are sometimes used
when some prior information about the parameters (e.g. the

direction of effect) is available. Still, it is not strong enough to
justify a prior solid distribution. Conversely, non-informative
priors are often used when no prior information is avail-
able or the analyst wants the data to determine the posterior
distribution completely.

The BHM approach allows the use of priors while reducing
the model’s sensitivity to the choice of the prior distribution
[45]. In BHM, the model parameters are organized into multiple
levels or layers, each with its own prior distribution. In BHM, we
incorporate additional information or structure into the model,
which can help reduce the influence of the prior distribution on
the resulting inference.

In our study, we used non-informative priors with normal
distribution  (0, 1 × 104) for the fixed effects. This decision
was made because there is no credible information available
regarding the size or direction of the effects of different factors
on turn signal usage. By using noninformative priors, we allow
the data to influence the estimates most while still incorporat-
ing the prior information in the Bayesian framework. The priors
for the random effects, such as for the standard deviations of
the “after” and “no” parameters within each Driver ID group,
are specified as half-normal Half-normal(0, 1 × 104) distribu-
tions. Half-normal distributions are suitable for random effects
because they are non-negative and non-informative [46]. They
have minimal influence on the results while providing some
regularization to improve convergence and sampling efficiency.

We also conducted a sensitivity analysis by comparing six
sets of priors with different means and variance, and then ana-
lyzed their respective posterior distributions. The goal was to
examine how the alternative prior specifications have affected
the posterior distributions of the model parameters. If the
posterior distributions are similar for different prior distribu-
tions, it implies that the posterior distribution is not sensitive
to different priors [44]. We conducted the prior sensitivity
analysis for each independent variable. However, to keep it con-
cise, only the posterior distribution comparison graphs for two
specific independent variables are provided in the Appendix.
The plots indicate that the posterior distributions overlap and
remain stable, suggesting low sensitivity to the selection of prior
distributions [44].

The model is implemented using brms [47] package of
R programming language [48], which provides an interface
to fit Bayesian models using Stan. Stan is an open-source
state-of-the-art platform for statistical modelling and high-
performance statistical computation [49]. The model uses
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TABLE 1 Random effects for the hierarchical model.

Random effects Estimate Est.Error l-95% HDI u-95% HDI Rhat Bulk_ESS Tail_ESS

Standard deviation

After

Intercept 0.36 0.11 0.13 0.57 1.00 2554 2557

No

Intercept 2.69 0.55 1.58 4.19 1.00 2685 4289

TABLE 2 Fixed effects for the hierarchical model.

Predictors Estimate Est.Error l-95% HDI u-95% HDI Rhat Bulk_ESS Tail_ESS

After

Intercept −1.67 0.51 −2.68 −0.7 1.00 12,851 8654

Speed 0.02 0.01 0.01 0.04 1.00 12,714 8803

Direction (right)a −0.81 0.11 −1.03 −0.59 1.00 17,352 7662

Rear vehicle (yes)b −0.37 0.18 −0.74 −0.02 1.00 9408 7662

Rear gap 0.19 0.09 0.02 0.37 1.00 9111 7480

Lag vehicle (yes)b −0.23 0.18 −0.59 0.13 1.00 9104 7691

Lag gap 0.07 0.09 −0.12 0.24 1.00 9031 7608

Traffic density −0.02 0.01 −0.04 0.00 1.00 15,617 7884

Driver type (pro)c 0.30 0.18 −0.04 0.65 1.00 5447 6251

No

Intercept −5.92 1.34 −8.60 −3.41 1.00 5553 5741

Speed 0.01 0.01 −0.01 0.03 1.00 11,882 7803

Direction (right)a 0.02 0.22 −0.40 0.47 1.00 15,624 7487

Rear vehicle (yes)b −0.44 0.38 −1.16 0.32 1.00 9182 7773

Rear gap 0.26 0.18 −0.10 0.60 1.00 11,790 8089

Lag vehicle (yes)b −1.10 0.35 −1.83 −0.46 1.00 8098 7838

Lag gap 0.48 0.14 0.20 0.75 1.00 7283 7006

Traffic density −0.07 0.03 −0.12 −0.02 1.00 16,416 7826

Driver type (pro)c 2.87 1.19 0.69 5.34 1.00 2647 4003

aLeft is the reference level.
bNo is the reference level.
cNon-pro is the reference level.

Markov Chain Monte Carlo (MCMC) sampling with four
separate chains, where each chain comprises 10,000 iterations,
including an initial 5000 burn-in iterations. During the burn-in
phase, the sampler adapts and fine-tunes its parameters.

4 RESULTS

Figure 3 displays the posterior distribution for the fixed effects
and the random effects parameters. These plots display the
probability distribution of a parameter given the observed data
and prior information. The plots provide a visual representa-
tion of uncertainty in the parameter estimates (see Tables 1 and
2), central tendency (e.g. mean), and spread. The uncertainty in
the estimates is characterized by the width of the highest pos-

terior density interval (HDI). The HDI represents a range of
values for the parameter, covering a certain percentage of the
posterior distribution. These values indicate the most credible
points within this distribution. A wider HDI indicates greater
uncertainty, while a narrower HDI indicates more precision in
the estimate [50]. If the HDI includes zero, it indicates that the
true value of the parameter might not be significantly different
from zero, given the data and the model [50]. The following
sections provide a comprehensive analysis of the results.

4.1 Random effects

Table 1 shows model results for random effects for the inter-
cept Driver ID. A random intercept is an extension of the fixed
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JOKHIO ET AL. 7

FIGURE 3 The density plot display the distribution of samples drawn from the posterior distribution for the fixed and random effects. The x-axis represents
the range of possible values of the parameter of interest, which is the regression coefficient for the predictor variable. The y-axis shows the density of the posterior
distribution for each coefficient value. The density represents the relative frequency of the coefficient occurring in the posterior distribution. Each plot is annotated
with the highest posterior density interval (horizontal at the bottom). The width of the HDI reflects the uncertainty in the parameter estimate.

intercept in a regression model that allows the intercept to vary
across different levels of a grouping factor. In this case, we have
a random intercept for each driver (Driver ID). This means that
each driver has their baseline probability of the response vari-
able (Signal) for the after and no categories after accounting for
the fixed effects. The random intercepts capture the variation in

the baseline probabilities across drivers, which is not explained
by the fixed effects (predictors).

The column “Estimate” represents the variability in the inter-
cepts and slopes among different levels of the grouping factor
(Driver ID in this case). The “Est.Error” measures the uncer-
tainty or variability in the estimate. A larger standard error
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8 JOKHIO ET AL.

indicates a greater degree of uncertainty in the estimate. The “l-
95%” HDI and “u-95% HDI” is 95%, the range within which
we can be 95% confident that the true parameter value lies. The
“Rhat” is a convergence diagnostic used to assess whether the
MCMC chains have converged to the target distribution. A Rhat
value close to 1 indicates good convergence, and a value less
than or equal to 1.1 is considered acceptable. Bulk ESS and
Tail ESS represent the effective sample size (ESS) measures.
The ESS estimates the number of independent draws from the
target distribution to which the MCMC sample is equivalent.
A higher ESS indicates that the MCMC sample provides more
information about the target distribution.

The standard deviation of the random intercept for the level
“after” suggests some variability in the “after” logits across dif-
ferent drivers. In other words, the likelihood of using a turn
signal after starting a lane change varies across drivers when
considering the average effect of all other factors. The stan-
dard deviation of the random intercepts for the “no” level
suggests substantial variability in the “no” logits across different
drivers. In other words, the likelihood of not using a turn signal
while changing lanes varies across drivers when considering the
average effect of all other factors.

4.2 Fixed effects

In Table, 2, estimates for the fixed effects in the “after” and
“no” compared to the response level “before” of the response
variable are presented. The sign of the coefficient of a predictor
determines its relation with the outcome variable. For a contin-
uous predictor, the estimates represent the change in log odds
associated with a one-unit increase in the respective predictor,
holding all other predictors constant. For categorical predictors,
the estimates represent the change in log odds associated with a
change from the reference category to the respective category,
holding all other predictors constant.

The speed of the lane-changing vehicle is positively associ-
ated with the outcome variable level “after”. This suggests that
the probability of using a turn signal after starting a lane change
slightly increases with the per unit (km/h) increase in the speed
of the subject vehicle. The speed of the lane-changing vehicle is
also positively associated with the outcome variable level “no”.
This indicates an increased probability of not using at all before
starting a lane change with a per unit increase in the speed of
a lane-changing vehicle. However, the HDI for the level “no”
includes a zero indicating that the value of the parameter might
not be significantly different from zero. Overall these results
indicate that high speeds are maybe the potential motivation
behind not using the turn signal properly while changing lanes.

The direction of lane change is negatively associated with the
outcome variable level “after”. This indicates the probability of
using a turn signal after starting a lane change decreases while
making a lane change to the right compared to the left. This
could be because rightward lane changes frequently occur after
overtaking slower vehicles and returning to the initial lane, or
because rightward lane changes (in right-hand traffic) are often
mandatory. In both cases, drivers may be more likely to use
turn signals correctly to inform surrounding traffic. Conversely,

the direction of the lane change has a positive association with
the “no” outcome variable level, which seems to contradict the
findings for the “after” level. However, the HDI includes zero,
indicating that the parameter estimate may not be significantly
different from zero. The discrepancy in the number of observa-
tions for each outcome variable level (after and no) could also
contribute to the contradictory findings and uncertainty regard-
ing the impact of lane change direction on the “no” outcome
variable level.

Having a rear vehicle in the current lane is negatively associ-
ated with the outcome variable level “after”. This indicates that
the probability of using a turn signal after starting a lane change
decreases when a rear vehicle is in the current lane. However, a
rear gap is positively associated with the outcome variable level
“after”. This indicates that even if there is a rear vehicle, the
probability of using a turn signal after starting a lane change
increase with one unit increase in the rear gap. This is gener-
ally the case in real traffic where surrounding vehicles affect the
lane change behaviour (e.g. as described in [38]). The association
between the rear vehicle and the rear gap with outcome vari-
able level “no” is the same as level “after”. However, the HDI
for both predictors includes zero, indicating that the parameter
estimate may not be significantly different from zero.

The presence of a lag vehicle shows a negative association
with both “after” and “no” outcome variable levels, whereas the
lag gap shows a positive association with these levels. Although
these results align with those of rear vehicle and rear gap, the
inclusion of zero in the confidence interval suggests uncertainty
about the true impact on the outcome variable. The presence
of rear and lag vehicles suggests increased overall traffic den-
sity. In our study, traffic density refers to the number of vehicles
per kilometre per lane. The findings show a negative associa-
tion between traffic density and both “after” and “no” outcome
variable levels, suggesting that a one-unit increase in traffic den-
sity reduces the probability of turn signal usage being as “after”
and “no.” However, the inclusion of zero in the HDI for the
“after” level indicates that the parameter estimate may not be
significantly different from zero.

Last but not least, driver type (pro) was positively associated
with both “after” and “no” outcome variable levels. This sug-
gests that the probability of using a turn signal after starting
a lane change and not using a turn signal increases for pro-
fessional drivers. However, the inclusion of zero in HDI for
the “after” level and a very wide HDI for the “no” level indi-
cates uncertainty about the true effect on the outcome variable.
Furthermore, the discrepancy in the number of observations
in the “no” level for the driver type could also contribute to
these findings. Therefore, these findings should be interpreted
with caution.

5 DISCUSSION

This research examined the use of turn signals by Swedish
(European) drivers during lane changes. Data for this study
was collected on actual roads in Gothenburg, Sweden, observ-
ing drivers’ natural behaviour without interference from the
experimenter. Out of the 103 participants, the majority were
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JOKHIO ET AL. 9

non-professional drivers (everyday drivers), while approxi-
mately 10% were professional test drivers. The dataset included
information on turn signal usage, the speed of the vehicle
making a lane change, the direction in which the lane change
occurred, the presence of and gaps between surrounding vehi-
cles, as well as the overall traffic density. The turn signal usage
was categorized into three levels: before starting a lane change,
after starting a lane change, and not using the turn signal at all.
The “before” level was selected as the baseline level due to its
higher frequency and overall significance.

Our results showed that the turn signal usage in this study
was very high, with approximately 93% of cases involving the
use of turn signals. The results indicate higher compliance
with turn signal usage than what has been reported in previous
studies (e.g. ref. [2, 15, 16, 20, 33]). There may be several reasons
for this high level of compliance. One possible reason could
be that Swedish drivers have a higher compliance rate and a
positive attitude towards adhering to traffic rules, as reported
in previous studies [51, 52]. However, a substantial number
(About 33%) of lane changes were observed where turn signals
were used improperly. While there is no universally accepted
definition of proper turn signal use in literature, it is generally
understood to mean activating the turn signal before starting a
lane change. The findings indicate comparable trends with the
study of Lin and Bao [16], which revealed that in 70% of lane
changes, a turn signal was used, but in half of those instances,
the signal was activated after the lane change had already begun.
Furthermore, our results indicated that in about 7% of the cases,
a turn signal was not used at all. Overall, our results showed that
only about 60% of the lane changes started with proper turn
signal usage.

We further examined factors that impact turn signal usage
through the application of Bayesian hierarchical modelling. The
model consisted of fixed effects for variables such as speed,
direction, rear vehicle, rear gap, lag vehicle, lag gap, traffic den-
sity, and driver type. Additionally, it included a random effect
for Driver ID. The random effect for the Driver ID allowed
to capture the variability in turn signal usage between different
drivers. The results show that a range of factors influences turn
signal usage, each with distinct levels of uncertainty. Highlight-
ing the uncertainty in the findings not only acknowledges the
fundamental principles of Bayesian analysis but also promotes
a nuanced comprehension of the relationships and insights
obtained from the data [50].

The results for the random effects indicated that the proba-
bility of using a turn signal after initiating a lane change is not
consistent across drivers when considering the average effect
of all other factors included in the model. Similarly, the prob-
ability of not using a turn signal while changing lanes is also
inconsistent across drivers when considering the average effect
of all other factors in the model. This variability suggests that
individual driver behaviour and preferences may play a role
in the likelihood of using a turn signal during lane change.
Future research should investigate the factors contributing to
individual differences in turn signal usage during lane changes.
These factors may include but are not limited to, driving habits,
personality traits, or other unmeasured factors.

The fixed effects in the model capture the overall relationship
between the predictors and the response variable, representing
the average effects of each predictor on the response variable
across all drivers. The speed of the lane-changing vehicle was
positively associated with both levels of the outcome variable.
That means, with an increase in speed, the probability of either
not using a turn signal or using it after starting a lane change
also increased. A plausible reason for this could be that drivers
tend to be less worried about vehicles in the intended lane when
driving at faster speeds.

The direction in which a vehicle moves during a lane change
can affect the overall manoeuvre. The direction of the lane
change is typically associated with the underlying motivation for
making the change. For example drivers may choose to make
discretionary lane changes to the left (in a right-hand traffic
scenario) to gain a speed advantage. Lane changes to the right
typically occur due to mandatory reasons, such as taking an exit.
The motivation behind a lane change subsequently influences
the characteristics of the manoeuvre [20]. Our findings indi-
cate that when drivers make lane changes to the right, they are
less likely to use their turn signal after initiating the lane change.
Conversely, the direction of the lane change has a positive asso-
ciation with the outcome variable level “no”. This observation
is consistent with [15], which reported that during right lane
changes in the US, drivers might not deem it necessary to sig-
nal their intentions after passing a slower lead vehicle. Please
note that the results for the outcome variable “no” should be
interpreted cautiously due to the inclusion of zero in the HDI.

According to prior research, the presence of vehicles in the
current and target lane impacts lane change behaviour [38]. A
slow vehicle in the current lane may prompt drivers to switch
lanes in order to increase their speed. Similarly, the rear vehicle
in the current lane and lag and lead vehicle in the target lane have
an impact on overall lane change (e.g. gap acceptance or lane
change duration). Similarly, the presence of a rear vehicle in the
current lane, as well as lag and lead vehicles in the target lane, can
influence the overall lane change process (e.g. gap acceptance or
lane change duration). Our findings indicate that the probability
of using a turn signal after starting a lane change, or not using
it at all, decreases when there are rear and lag vehicles present.
This is also reflected by the traffic density, which suggests that
an increase in traffic density reduces the probability of using
a turn signal after starting a lane change or not using it at all.
However, as the rear gap and lag increase, the probability of
using a turn signal after starting a lane change or not using it
at all also increases. In other words. the impact of surrounding
vehicles decreases with larger gap sizes. Future research should
explore the specific gap at which the influence of the gap on
turn signal usage during lane changes becomes negligible.

In our study, the main difference between driver types
was their training and driving experience. Professional drivers
were trained to operate prototype vehicles for testing specific
features, while they had more experience behind the wheel
than non-professional drivers. However, due to the imbalanced
data and the discrepancy in the number of observations for
each outcome variable level, the results concerning the driver
type should be interpreted cautiously. Although a comparison
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10 JOKHIO ET AL.

between professional and non-professional drivers was not a
focus of this study, we also independently performed individ-
ual BHM analyses of the two datasets. The comparison results
are provided in the Appendix. The results are provided in terms
of posterior distribution density plots for both random and
fixed effects.

5.1 Implications

Our findings showed that human drivers often do not use
turn signals properly during lane changes. These find-
ings carry significant implications, which we explore in the
following sections.

The AV technology’s success depends on its mass adoption
and smooth integration into existing traffic. Traffic is regarded
as a complex social system, where road users make decisions
based not only on traffic rules but also in response to the actions
and anticipated actions of others [53–55]. One challenge that
AVs will face in mixed traffic is communicating their intent
and predicting/comprehending the intentions of human drivers.
The use of turn signals is, therefore, a way through which
human drivers announce their intention to surrounding drivers.
Norman [56], regarded turn signals as the facial expression of
vehicles. However, our findings indicated variability in human
drivers’ turn signal usage patterns. While variability itself high-
lights the unpredictability of human behaviour, AV algorithms
may use this (probabilistic) information not just to predict when
signals might be used but also to develop more conservative
strategies when human-driven vehicles are likely to change lanes
or turn without signalling. In situations where a turn signal is
used, an AV can use this (probabilistic) information to improve
conflict avoidance (e.g. modifying lane position as well as longi-
tudinal position), to facilitate the generation of a safe trajectory
before the actual lane change begins [57]. Our study identified
several factors, such as the presence and gap to surrounding
vehicles, that influence turn signal usage. An AV should be able
to recognize these factors to anticipate potential lane changes by
surrounding vehicles, even when they do not use turn signals,
and subsequently prepare a safe trajectory in response.

Ponziani [2], pointed out that every instance where the use
of a turn signal is neglected increases the risk of a crash.
This study’s observed patterns of turn signal usage during lane
changes provide empirical evidence that can inform and shape
policy decisions to improve safety in existing traffic systems.
While turn signals are mandatory in most countries, clear rules
on their proper use are lacking. For example a proper turn
signal involves activating it for several seconds before chang-
ing lanes. While there may be no explicit regulations on the
onset of turn signal activation by human drivers, the findings
from our study can guide policymakers towards establishing
clearer guidelines. Notably, the German Federal Ministry of
Transport and Digital Infrastructure (BMDV) has recently set
a precedent in this direction, mandating that AVs activate
turn signals 3–5 s before starting a lane change [58]. In addi-
tion to general policy-making (which may be hard to enforce
[2]), other measures can also be considered to increase the
proper turn signal usage compliance. Two such measures – one

technology-based and one insurance-based – are discussed in
the following sections.

Most new cars are equipped with advanced driver assistant
systems such as lane departure warning (LDW) and lane keep-
ing assistant (LKA). The LDW and LKA systems do not issue
warnings if either the turn signal is activated or consistent steer-
ing movement (indicating a lane change) is detected. In the
future, and with the right information with improved sensing,
it may be possible for these systems to use algorithms to deter-
mine the context of driving (e.g. detection of lane change and its
relation to surrounding traffic) and either automatically initiate
turn signals, or prompt the driver to use the turn signal.

In addition to including more advanced technologies in our
cars, using the capabilities of Pay-As-You-Drive (PAYD) insur-
ance telematics, insurers may be able to play a pivotal role in
enhancing turn signal usage compliance by incentivizing con-
sistent and proper use of turn indicators during lane changes.
For example insurers can give safety scores (linked to insur-
ance premiums) based on proper turn signal usage, and provide
the drivers with feedback if the turn signal usage is frequently
ignored. However, further research is needed to investigate if
such measures would be widely accepted and if PAYD is enough
of an incentive to increase the turn signal.

5.2 Limitations and future work

Finally, like any scientific study, this research also has limitations.
The data were collected only in a specific city (Gothenburg)
in Sweden. The road conditions, traffic laws, and driving
behaviours in Sweden are unique to the country. Thus, the
findings are most relevant to comparable settings in other
Swedish cities and possibly neighbouring Scandinavian coun-
tries. Future studies should consider data from other parts of
Europe (and other parts of the world) to better understand turn
signal usage behaviour among different cultures. Additionally,
the current study only focused on passenger cars. Given the
current trajectory of research and development in the automo-
tive sector, passenger cars are expected to be one of the first
vehicles to widely adopt autonomous technology. As passen-
ger cars move towards autonomy, it is crucial to gain insights
also into their behaviour and patterns, across brands and over
time (as the driving policies of automated vehicles evolve). As
the proportion of automated vehicles and manual drivers on
our roads increase, there may also be a shift in how human
drivers use their turn indicators, depending on the driving
policies of the automated vehicles. Further, the behaviour of
large vehicles differs significantly from passenger cars. There-
fore, future studies should also include heavy vehicles as their
dynamics and behavioural patterns are distinct. The methodol-
ogy used in our study could serve as the foundation for future
studies.

The behaviour of changing lanes is also influenced by exter-
nal factors such as the road type, time of day, and traffic environ-
ment. Our data was exclusively collected during the daytime on
a single urban highway, known as the ring road in Gothenburg.
These are the conditions (e.g. day time, urban highway) that are
suitable for the (at least initial) widespread deployment of AVs.
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JOKHIO ET AL. 11

Future studies should explore how different road types, times,
and weather conditions affect turn signal usage. In this study,
we only focused on how surrounding traffic affects turn signal
usage. We showed the presence of lag, and rear vehicle impacts
the turn signal usage. However, the type of vehicle could not
be determined due to a high number of missing values for sur-
rounding vehicles’ lengths and widths. As a result, it would be
valuable for future studies to take into account the types of sur-
rounding vehicles present. We also found that the direction of
lane change impacts the usage of turn signals. The direction
could also be related to the motivation behind the lane change
(e.g. discretionary or mandatory lane change), which in turn
impacts the overall lane change process [59]. Therefore, future
studies should consider investigating the differences in turn sig-
nal usage based on motivation. Finally, it is important to note
that lane changes on divided highways with uninterrupted flow
may differ from those that occur on approach lanes to intersec-
tions. In intersections, vehicles have more degrees of freedom in
their movement [60]. Therefore, future studies should also con-
sider studying turn signal usage behaviour during lane changes
on the approach lanes of an intersection.

6 CONCLUSION

The results of this study make a valuable contribution to the
current body of literature by offering in-depth insights into the
usage of turn signals during lane changes. Using turn signals
while changing lanes has important effects on traffic safety and
flow. Failing to use a turn signal while changing lanes can cause
traffic disruption and increase the risk of collisions. However,
our results show that turn signals are not used properly in a
substantial portion of lane changes. Additionally, the use of
turn signals is affected by various factors, including speed,
the direction of lane change, and the presence of surrounding
vehicles. Using turn signals as a direct means of communication
is crucial for the future of mixed traffic, including both AVs
and traditional vehicles. AVs are designed to follow strict rules,
but they may face challenges in effectively communicating or
negotiating right-of-way in certain situations [6, 61]. In this
regard, a human driver’s lane change without using a turn signal
can cause problems for an AV. For instance, an AV may not
be able to signal its intentions or force the driver to cancel
a lane change. In such cases, the AV’s reaction would likely
be a sudden deceleration, potentially causing disruptions to
traffic and discomfort for its occupants and other vehicles on
the road.

In addition to the contribution to the existing literature, our
findings likely have implications for general policy-making aim-
ing to increase turn signal usage compliance, as well as possibly
on the design of in-vehicle technologies (e.g. LDW and LKA),
and PAYD insurance strategies. However, it is crucial to ensure
that such measures are effective and accepted. Further research
is therefore needed to cover more regions, driving cultures, road
infrastructure and regulations, and vehicle types, as well as the
acceptance of such safety measures.
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APPENDIX

Additional analysis

This section presents a comparison of the additional models
that we ran. The priors and the parameters (e.g. a number of

chains and iterations) for each additional model were kept the
same as in the original model. Please note that the number of
observations and drivers in each dataset differs. This difference
in sample size might affect the precision of the estimates and the
width of the HDI intervals. Figure A.1 shows the posterior dis-
tribution for the random effects for both levels of the outcome
variable (i.e. after and no). The extent to which both plots over-
lap can give us an idea of the difference between the two groups
[50]. For example, Figure A.1(a) shows that overlap in posterior
distribution for the outcome variable level “after” is lower than
the level “no” in Figure A.1(b). In other words, professional
drivers show less variability than non-professional drivers. How-
ever, further research is required considering a more balanced
dataset.

Figure A.2(n) shows the posterior distribution for the fixed
effects for both levels of the outcome variable (i.e. after and
no). For the level “after” we can see a substantial variability only
for the direction of lane change and traffic density as shown in
Figure A.2(b,g). However, for the level “no” we can see a sub-
stantial variability in all the variables. This is because the all cases
where a turn signal was not used belong to the professional
driver group.

Sensitivity analysis

This section shows the posterior distribution density plots com-
paring six different prior sets. The fixed effects were evaluated
using six distinct priors: the original priors followed a normal
distribution with a mean of 0 and a standard deviation of 104,
while the five alternative sets varied between means of 0 and
−1, and standard deviations ranging from 104 to 1. For ran-
dom effects, the original priors were based on a half-normal
distribution with a mode of 0 (to ensure non-negative val-
ues) and a standard deviation of 104, with two alternative sets
having the same mode but standard deviations of 10 and 1,
respectively. The posterior distributions plots in the Figure A.3
overlap and remain stable, suggesting low sensitivity to prior
distributions.
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FIGURE A.1 The density plot display the distribution of samples drawn from the posterior distribution for the random effects for both levels of outcome
variable (i.e. after and no). The x-axis represents the range of possible values of the parameter of interest, which is the standard deviation. The y-axis shows the
density of the posterior distribution for each coefficient value. The density represents the relative frequency of the coefficient occurring in the posterior distribution.
Each plot is annotated with the highest posterior density interval (horizontal line at the bottom). The width of the HDI reflects the uncertainty in the parameter
estimate.
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FIGURE A.2 The density plot display the distribution of samples drawn from the posterior distribution for the fixed effects for both levels of outcome
variable (i.e. after and no). The x-axis represents the range of possible values of the parameter of interest, which is the regression coefficient for the predictor
variable. The y-axis shows the density of the posterior distribution for each coefficient value. The density represents the relative frequency of the coefficient
occurring in the posterior distribution. Each plot is annotated with the highest posterior density interval (horizontal line at the bottom). The width of the HDI
reflects the uncertainty in the parameter estimate.
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FIGURE A.3 Comparative posterior distributions of six different priors. This visualization shows the differences in the posterior outcomes when the model is
subjected to six varied prior specifications, highlighting the influence of prior beliefs on the posterior inferences.
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