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Abstract
Modern robots are increasingly being designed to operate in dynamic and
unstructured environments shared with humans and other mobile agents. In
these scenarios, the robot must react to any online detected changes to pro-
vide a correct and safe operation. This thesis introduces techniques for mo-
tion planning and control employing Dynamical Systems (DSs) formulations,
such as Artificial Potential Fields (APF) and Dynamical Movement Primitives
(DMP). While several DS-based methods facilitate reactivity to changes in the
robot environment with guaranteed convergence to a specified goal, they often
lack the integration of robot constraints. Moreover, convergence depends on
specific environmental conditions, e.g., the environment being a star world.

To extend the range of practical scenarios in which convergence to the goal
is guaranteed in star worlds, a method is proposed for online adjustment of the
robot’s perceived environment to align with the necessary conditions. This
method is enabled through a comprehensive exploration of the concept star-
shaped hull. To account for robot constraints, two strategies are proposed.
The first approach employs online modification of the DS through a scaling
factor to meet velocity and acceleration constraints. Compared to standard
scaling approaches, focus is placed on mitigating the feasibility issues that are
more prominent in reactive motion planning. In particular, by proactively
scaling the DS before reaching the acceleration limits, the proposed method
retains the feasibility for a wider set of trajectories. The efficacy of the scaling
is showcased by experiments on a robotic arm. The second approach integrates
a DS method within a Model Predictive Control (MPC) scheme. This inte-
gration effectively combines the favorable convergence characteristics of the
DS with the intuitive representation of system constraints offered by MPC. In
this configuration, the DS generates a path with an obstacle clearance, while
the MPC provides a feasible trajectory that adheres to this clearance distance.
The scheme is proven to accomplish collision avoidance and to preserve the
convergence guarantees provided by the DS for a substantial portion of the
workspace. Furthermore, the scheme is extended to encompass path-following
control as well.

Keywords: Robotics, dynamical systems, optimization-based control, com-
putational geometry, online trajectory generation, navigation.
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CHAPTER 1

Introduction

Motion planning has been a central problem in robotics, studied extensively
for decades [1]. Traditionally, robots have operated in safety cages performing
a priori well-defined tasks, with many planning schemes having been developed
for such static scenarios. Modern robotic systems are increasingly designed to
operate in dynamic settings where they coexist with moving objects, including
humans and other autonomous systems. Moreover, these robots are intended
for tasks where the desired motion may vary during real-time execution. This
trend is evident in a variety of applications, such as collaborative robots that
work hand-in-hand with human employees [2], mobile robots for food delivery
in restaurants [3], and unmanned aerial vehicles deployed for visual monitoring
of civil infrastructure [4], to name just a few examples. In contrast to the
traditional operating conditions, a robot must constantly adjust its planned
trajectory when it operates in such dynamically changing environments.

Reactivity to detected changes in the robot environment is a key factor for
correct and safe operation. It is important that these responsive actions are
executed cautiously, adhering to any robot limitations. This thesis focuses
on reactive motion planning and control that takes robot constraints into
consideration.
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Chapter 1 Introduction

1.1 Motion Planning: An Overview
The classical approach to planning robot motion, widely used in industrial ma-
nipulators, involves hard-coded point-to-point motions. The trajectory in such
cases is defined by initial, goal and possible intermediate waypoints and can
be computed using, e.g., trapezoidal acceleration motion [5], or polynomial in-
terpolation [6]. While extensions for collision avoidance have been introduced,
e.g., [7], the core method they enhance is primarily suited for structured, well-
known environments. In later years, Programming by Demonstration (PbD)
has grown in popularity as a simplified user-friendly way of programming the
desired robot motion [8]–[10]. As the name suggests, PbD relies on learning
from demonstrations performed by a human, e.g., from visual or kinesthetic
demonstrations, instead of using explicit programming through machine com-
mands. While early methods operated in a pure “record-and-play” fashion,
modern PbD techniques focus on generalizing the taught skills to new situa-
tions or variations of the same task. This makes it suitable for applications
where reactivity to changes in the environment is needed, such as grabbing a
specific object that might be moving or obstructed by unforeseen obstacles.

Rather than programming the complete motion of the robot, the motion
planning problem has primarily been considered as the problem to find a
collision-free motion for a robot from an initial configuration to a goal con-
figuration. Motion planning is here distinguished from path planning in that
the latter is a purely geometric process focused solely on finding a collision-
free path. In contrast, motion planning involves finding a feasible trajectory
that adheres to the robot’s constraints. In the initial stages of motion/path
planning research, the focus was primarily on developing a complete1 plan-
ning algorithm, meaning that when executed, the algorithm within a finite
time either produces a valid solution if one exists or indicates failure. It has
however been shown that the problem of complete motion planning is im-
practical from a computational complexity perspective [11]. An alternative
planning paradigm which has grown popular is sampling-based techniques,
where the two most influential methods are probabilistic roadmaps (PRM)
[12] and rapidly exploring random trees (RRT) [13]. The main idea in such
strategies depend on a collision-checking module enabling construction of a

1In this thesis a control theory jargon will be used, where the motion planning problem
can be seen as analogous to setpoint stabilization, and completeness as analogous to
global convergence.
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1.1 Motion Planning: An Overview

graphic roadmap by connecting a set of points sampled from the obstacle-free
space. In this way, no explicit representation of the environment is needed.
While these methods are not complete, many provide probabilistic complete-
ness, meaning that the probability of finding a solution converges to one as
the number of samples increases. These are in their original formulation not
suitable for online motion planning and various methods to reduce computa-
tional complexity have been proposed [14]–[17]. An alternative approach to
handle dynamic or unknown environment is to locally deform a pre-computed
candidate path online. Elastic strips [18] compute a tunnel region around
the candidate path to enable locally deviating from the path to avoid obsta-
cles. This is however dependent on the existence of a free passage around
the candidate path. Another method for collision avoidance involves the use
of barrier functions [19], [20], where proof of (almost) global convergence has
been derived for scenarios with circular, adequately isolated obstacles [21],
[22].

With the increase of computational power and development of robust nu-
merical solvers for optimization problems, optimization-based planners have
in later years emerged. These methods facilitate straightforward integration
of system constraints while optimizing for additional criteria, for instance to
achieve a smooth motion. Trajectory optimization planners, such as CHOMP
[23] and TrajOpt [24], offer a way to online compute a feasible trajectory given
a candidate path. However, they provide no guarantee to find a feasible solu-
tion and may be trapped in local minima [25]. An increasing number of local
planning methods are based on Model Predictive Control (MPC). In MPC-
based trajectory planning, only the closest future of the trajectory is planned
in a receding horizon manner to track a specified setpoint [26], trajectory [27]
or path [28]. By explicitly including information of the obstacle regions in the
optimization problem [29]–[33] collision avoidance can be achieved also when
dynamic obstacles appear along the target path. Due to the receding horizon
nature of MPC, convergence guarantees are however not provided. Specifi-
cally, in environments with obstacles that obstruct a large area of the target
path, the MPC solution may lead to local attractors at obstacle boundaries.

5



Chapter 1 Introduction

1.2 Dynamical Systems for Motion Planning
A different approach to tackle the motion planning problem is to express the
desired motion in terms of a Dynamical System (DS). While generation of a
complete path in one go for static scenes is possible with these methods, such
formulations provide the capability to plan the next motion in response to cur-
rent observations. As a result, the desired motion is promptly computed and
the system can respond to perturbations in an immediate manner. Artificial
Potential Fields (APF) [34] are widely used for obstacle avoidance in various
scenarios [35]–[38]. The core concept of APF involves creating a scalar po-
tential function that is maximal at the obstacle surfaces and minimal at the
goal. This enables guiding the robot away from obstacles toward the goal
by following the negative gradient of the potential function. A well-known
drawback with APF is the possible existence of local minima [39] and various
methods have been proposed to treat this issue. Harmonic potential fields
[40] restrict the potential function to be a solution to Laplace’s equation and
provide a way to ensure (almost) global convergence. Numerical evaluation is
however necessary to identify them because of the difficulty in constructing
them [41]. Although closed-form solutions have been derived [42] these are
limited to static scenarios. Navigation functions, defined in [43], are a special
subclass of potential functions designed to be bounded and have gained a lot
of interest in the field [44]–[47]. Navigation functions provide (almost) global
convergence in a disjoint star world (DSW), i.e., when all obstacles are mu-
tually disjoint and strictly starshaped2. However, the need for correct tuning
of critical parameters dependent on the environment makes it hard to achieve
full convergence in practice. A method has been proposed for deriving tuning-
free navigation functions [48], but this presumes that the mapping from a star
world to an environment of disjoint circular obstacle is provided. As an al-
ternative to defining potential functions, direct construction of the underlying
vector fields can be made. Vector fields given a predefined cell-decomposition
of the environment was proposed in [49] and for environments with circular
obstacles in [50]. A method to modulate a DS was presented in [51] which
locally deform the original dynamics near obstacles such that collision avoid-
ance is guaranteed for environments with convex obstacles. This has later

2A set is strictly starshaped if there exists a point such that any ray emanating from this
point crosses the boundary once and only once. For a thorough definition of starshaped
sets and star worlds, see Section 3.1.
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1.2 Dynamical Systems for Motion Planning

been extended to apply for DSWs with proven (almost) global convergence to
a goal point [52].

A repeated assumption enabling the proof of (almost) global convergence
in many of the aforementioned methods is the premise of disjoint obstacles.
However, closely positioned obstacles are frequently perceived as intersecting,
e.g., when inflation is used to account for robot radius or safety margins, or in
situations involving perception uncertainties. A modification of the perceived
environment into disjoint obstacles is thus needed to apply these methods in
practice with preserved convergence properties. Forest of Stars [53] presents
a way to transform a set of intersecting starshaped obstacles into a DSW.
However, the transformation relies on a particular structure of the intersection
and correct tuning of scene-specific parameters which make it impractical for
dynamic environments.

Several methods have been proposed also for PbD using DS formulation
which provide the reactivity inherent of DS-based approaches. Notable works
include Stable Estimator of Dynamical Systems (SEDS) [54], where the dy-
namics are based on Gaussian Mixture Models and provide asymptotic stabil-
ity of a goal point, and Probabilistic Movement Primitives (ProMP) [55], that
takes a probabilistic approach to encode a movement primitive as a probability
distribution over trajectories. Another widely used framework is Dynamical
Movement Primitives (DMP) [56]–[58], where convergence to a goal point is
achieved with a stable second-order system while high flexibility in replicating
complex trajectories is attained by including a diminishing additive nonlinear
force. The frameworks have demonstrated capability to learn complex tasks
such as playing table tennis [55], assistive exoskeleton control [59], and peg in
hole assembly [60].

When employing a DS to generate a reference trajectory for a closed-loop
controller, care must be taken to the robot constraints in order to avoid poor
tracking performance and a distorted resulting path. Since the target tra-
jectory is computed online, a strategy is needed to prevent the target from
requesting unachievable motions. Such a strategy should ideally not compro-
mise the inherent characteristics of the DS, such as path shape. Techniques
have been proposed to online temporally scale DSs which inherently provide
path preservation [57], [61], [62], although these do not directly address robot
constraints.

7



Chapter 1 Introduction

1.3 Problem Formulation
This thesis studies reactive motion planning and control based on DS methods,
focusing on the integration of robot constraints while maintaining the desired
DS characteristics. In particular, it explores the following research questions:

Q1. How should a DS formulation be adjusted to integrate velocity and ac-
celeration constraints, all while maintaining path consistency?

Q2. What are the requirements for representing the robot environment as
a DSW? Can a constructive process be designed to online reshape the
environment to form a DSW?

Q3. Can DS methods be incorporated in a combined motion planning and
control scheme to address robot constraints while preserving the conver-
gence characteristics of the DS?

An answer to question Q1 would enable close tracking when a DS serves as
target generator within a closed-loop system that operates under constraints.
Aside from the intuitive expectation that the target path should remain unaf-
fected by velocity and acceleration constraints, the quest for path preserving
solutions is motivated by scenarios where the original path is vital for success-
ful task execution, such as when obstacle avoidance is addressed within the
DS framework.

Question Q2 explores the extension of the range of practical scenarios where
goal convergence can be achieved for DS methods designed to operate within
DSWs. Moreover, an answer to Q2 includes an approach for achieving this in
an online fashion.

Finally, question Q3 seeks to find a method for integrating a more general
set of robot constraints, e.g., non-holonomic constraints, in a reactive motion
planning and control approach. In contrast to Q1, the primary focus is not
to maintain path integrity but to preserve the convergence properties of the
applied DS method.

8



1.4 Contributions

1.4 Contributions
The main contributions of this thesis are:

• A continuous-time method for temporal scaling of DSs to keep the veloc-
ity within specified limits while ensuring path shape invariance (Chapter
2 and Paper A).

• A discrete-time method for temporal scaling of DSs to keep the veloc-
ity and acceleration within specified limits while ensuring path shape
invariance (Chapter 2 and Paper B, C).

• Theoretical analysis of the starshaped hull with introduction of related
concepts (Chapter 3 and Paper D).

• An algorithm to reshape the obstacles perceived by the robot to improve
convergence properties of DS methods operating in DSWs (Chapter 3
and Paper D, F).

• An MPC-based setpoint stabilization control scheme that utilizes the
reactivity, collision avoidance, and convergence characteristics of a DS,
along with the derivation of necessary conditions to guarantee conver-
gence (Chapter 3 and Paper E, F).

• An MPC-based path-following control scheme that utilizes the reactivity,
collision avoidance, and convergence characteristics of a DS (Chapter 3
and Paper F).

1.5 Thesis Outline
This thesis is divided into two parts. Part I consists of five chapters, and
serves as an introduction to Part II. Chapter 1 introduces the motivation and
scope of this thesis. In Chapter 2, a unified summary of the work for tempo-
ral scaling of DSs is presented, with particular attention to challenges arising
when incorporating acceleration constraints. In Chapter 3, essential concepts
for establishing a DSW are introduced, accompanied by an algorithm dedi-
cated to this objective. The chapter also outlines a control scheme, covering
both setpoint stabilization and path-following tasks. Chapter 4 provides a
summary of the included papers from Part II. Finally, Chapter 5 concludes
Part I with final remarks and outlines future research directions.

9





CHAPTER 2

Temporal Scaling of Dynamical Systems under
Constraints for Path Preservation

In this chapter, we explore a scenario in which a DS is employed to generate
a target trajectory in an online fashion for a closed-loop system, as depicted
in Fig. 2.1. In this context, the DS could, for instance, encode a desired
robot motion taught in a PbD fashion. In Section 2.1, temporal scaling is
introduced in the context of DSs, and a continuous-time approach is proposed
in Section 2.2 to impose velocity constraints on DSs. Finally, issues that may
arise when considering both velocity and acceleration constraints in such a
reactive motion planning setup are discussed in Section 2.3, and a discrete-
time temporal scaling method to cope with these is presented.

To enable imposing constraints on both velocity and acceleration, the DS
formulation is designed to be in a general second-order form

ζ̇ =
[
q̇

v̇

]
=
[

hq(ζ)
hv(ζ, η, t)

]
= h(ζ, η, t), ζ(0) = ζ0, (2.1)

where ζ ∈ R2n is the DS state with q ∈ Rn being the reference position,
hq(ζ) is a differentiable function, η is any external measurable input, and t

is time. The notation ζ̇(t) = dζ(t)
dt is used for the time derivative and the

11



Chapter 2 Temporal Scaling of Dynamical Systems under Constraints for
Path Preservation

time argument is omitted for convenience. The external input can be used
for sensor-based adjustment of the dynamics to allow for obstacle avoidance
[51], adapt motion to moving goal points [63], and adjusting the DS attractor
landscape by reinforcement learning to improve the task performance accord-
ing to a given metric [64]. We will refer to the DS (2.1) as the nominal DS
with corresponding nominal velocity and acceleration

q̇ = hq(ζ), (2.2)

q̈ = ∂hq(ζ)
∂ζ

h(ζ, η, t). (2.3)

It is clear from (2.3) that the structure in (2.1), with the effect from external
input acting only on acceleration level, is instrumental to avoid introduction
of sensory derivative in the target acceleration.

DS Motion
Controller Robot

ηq, q̇, q̈ u

Figure 2.1: A DS generates the target for trajectory tracking by a motion con-
troller. The sensor measurements, η, can be used both for feedback
action in the controller and adapting the desired motion by online ad-
justments of the DS motion landscape.

Dynamical Movement Primitives

The DS formulation (2.1) admits direct use of trajectory descriptors at accel-
eration level such as artificial potentials [65] and SE-SODS [66]. This holds
true also for DMP [57], which is the DS structure considered in both [67] and
[68] (Paper A and B). For reference, we explicitly provide the formulation of
DMP in terms of (2.1). The DMP dynamics are formed by a linear globally
stable part with an added nonlinear virtual force acting at acceleration level
as

hq(ζ) = 1
τ
v,

hv(ζ, η, t) = 1
τ

(K(qg − q)−Dv + F (ξ)) ,
(2.4)
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with K and D being positive constants, and where the goal qg and desired
timing τ are considered as part of the external input η. The virtual force, F ,
is formed using weighted Gaussian basis functions and depends on a phase
variable, ξ, which is an extended state of the system. With the added non-
linearity, the DMP can, with increasing precision as the number of kernels
grows, encode any trajectory along a sufficiently smooth path by learning of
the weight parameters. The phase variable dynamics are typically defined
as an autonomous system, with ξ̇ = − 1

τ ξ, ξ(0) = 1, although variations ex-
ists, e.g., to obtain periodic motions. The time-dependent solution for ξ(t)
can then be used in (2.4) to evaluate the virtual force as a time-dependent
function F (t), i.e., F (e− 1

τ t). In cases when the phase variable dynamics are
dependent on external factors, ξ can be seen as part of η.

Adopting DS formulations on velocity level

Trajectories defined in the velocity level, such as SEDS [54], ELM [69] and
ProMP [55], with dynamics described as q̇ = fv(q, η, t), may be directly trans-
ferred to the second-order system as

hq(ζ) = v,

hv(ζ, η, t) = ∂fv
∂q

v + ∂fv
∂η

η̇ + ∂fv
∂t

,
(2.5)

where the function arguments of fv are omitted for brevity. This assumes
that fv is partially differentiable and that the derivative of the external input
η̇ is measurable. To avoid the need for sensory derivatives, the corresponding
term can be replaced by a feedback term

hv(ζ, η, t) = ∂fv
∂q

v + ∂fv
∂t

+K(fv − v) (2.6)

where K is a positive constant. Assuming the dynamics (2.5) are not domi-
nated by fast changes in the external input, (2.6) closely captures the given
dynamics. Alternatively, all partial derivatives can be omitted such that the
acceleration dynamics are completely described in a feedback control manner
hv(ζ, η, t) = K(fv − v).

13
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2.1 Accommodating System Constraints
All real-world systems are subject to limitations in the realizable motion.
Here, we will consider a system with velocity and acceleration constraints

|q̇| ≤ q̇max, (2.7)
|q̈| ≤ q̈max, (2.8)

where the inequalities are defined elementwise. For close reference tracking,
the target trajectory should obey the system constraints (2.7)-(2.8). The
target trajectory can be adjusted to respect the constraints by introducing
reference governors [70], [71] or by direct saturation in the controller. An in-
herent feature of such methods is however that constraint satisfaction comes
at the expense of path deviation. An alternative approach to consider the con-
straints (2.7)-(2.8) while preserving the original path is by means of temporal
scaling. In temporal scaling, a path coordinate, s, is introduced which spec-
ifies the target state along the original target path. The progression of this
path coordinate in time is regulated by a timing law. Adopting this technique,
the DS (2.1) can be expressed as

ζ̇ = h(ζ, η, s)ṡ, ζ(0) = ζ0,

s̈ = w, ṡ(0) = 1, s(0) = 0,
(2.9)

where w is determined by the timing law. The path speed, ṡ, can be viewed
as a temporal scaling factor of the DS. When ṡ > 1, the trajectory speed is
increased compared to the nominal trajectory, and when ṡ < 1, the speed is
decreased. The nominal DS is obtained with the trivial timing law w(t) =
0,∀t. Since all dimensions of ζ̇ are scaled with the same factor, ṡ, only the
magnitude is modified while the direction is preserved. This results in path
preservation, provided that the external impact remains unchanged. Contrary
to most approaches in the temporal scaling literature where a static nominal
trajectory is considered [72]–[75], the introduction of a path coordinate does
not result in the classical path-velocity decomposition [76] since the path may
be modified online due to the external input, η. That is, the resulting path is
a priori unknown and cannot be computed in an offline fashion.

Remark 1: In the DMP literature a more common notation for temporal
scaling is based on the inversed path speed τ = 1

ṡ . This notation is used in [67]
and [68] (Paper A and B). A major advantage by defining the temporal scaling
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2.2 Velocity Constraints

in terms of the path speed ṡ, as in [77] (Paper C), is that this allows for easily
performing a full stop by letting ṡ = 0. This is not practically achievable in
terms of τ which would need to reach infinity to accomplish a full stop.

The velocity and acceleration for the temporally scaled DS (2.9) is given by

q̇ = hq(ζ)ṡ, (2.10)

q̈ = ∂hq(ζ)
∂ζ

h(ζ, η, s)ṡ2 + hq(ζ)w. (2.11)

It is clear that the magnitude of velocity and acceleration are affected by the
path coordinate, with velocity being influenced by ṡ, and acceleration by both
ṡ and w. To a great extent, it is hence possible to comply with the system
constraints without altering the underlying motion by appropriate selection of
the timing law. However, it is important to note that instances of conflicting
constraints, such that constraint violations are inevitable, cannot be entirely
eliminated, as will be discussed later.

Typically, in scenarios when temporal scaling is used, it is desired to follow
the path speed of the nominal trajectory whenever allowed by the constraints.
In terms of the temporally scaled DS (2.9) this means that ṡ = 1 is desired.
This will however lead to a delay with respect to the nominal task due to
the target trajectory being slowed down during some time intervals. In some
scenarios, it is of interest to recover not only the path speed but also the
original path coordinate timing, i.e., s = t is desired. We will consider both
scenarios, and the problem can be stated as follows.

Problem 1. Given the DS (2.9) and constraints (2.7)-(2.8), construct a tim-
ing law for w which scales the DS such that the constraints are satisfied and
recover the delay introduced by previous scaling by returning to, and follow,
(a) the nominal path speed, ṡ = 1, or (b) the nominal path coordinate, s = t.

2.2 Velocity Constraints
In this section we consider a system with velocity constraints only and ignore
the acceleration bounds (2.8). By introducing the normalized velocity

¯̇q = (Iq̇max)−1hq(ζ)ṡ, (2.12)

where I is the identity matrix with proper dimension, the constraints (2.7)
can equivalently be described as ¯̇q ∈ [−1, 1]. As proposed in [67] (Paper A)
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Figure 2.2: The barrier term γ1 ¯̇qσ(¯̇q) for three values of γ1.

the normalized velocity can be utilized in the formulation of the timing law
as

w = γ0ṡ(1− ṡ)− γ1ṡ¯̇qTσ(¯̇q). (2.13)

Here, σ(¯̇q) = [σ1(¯̇q1), ..., σn(¯̇qn)]T is a vector function with σi(¯̇qi) being barrier
functions such that

σi : (−1, 1)→ (−∞,∞), (2.14a)
σi(0) = 0, (2.14b)
dσi
d¯̇qi
≥ 0, ¯̇qi ∈ (−1, 1), (2.14c)

and where ¯̇qi indicates the ith element of the vector ¯̇q. A possible selection for
σ is

σi(¯̇qi) =
¯̇qi

(1− ¯̇qi)(1 + ¯̇qi)
, (2.15)

with resulting barrier term for the one-dimensional case illustrated in Fig.
2.2. The timing law (2.13) consists of two terms: one driving ṡ towards the
nominal value of 1 and one acting as a barrier function decreasing ṡ towards 0
as the velocity limits are approached. As stated by Theorem 1 in [67] (Paper
A), applying the timing law (2.13) ensures the satisfaction of velocity con-
straints (2.7) by maintaining a bounded σ(¯̇q). Moreover, from [67] (Paper A),
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Property 1 and step 4 in the proof of Theorem 1 gives

0 < ṡ ≤ 1. (2.16)

Hence, the timing law (2.13) ensures a constant forward path traversal, tries
to track but not exceed the nominal path speed, and guarantees that the
velocity stays within the bounds (2.7).

2.3 Combined Velocity and Acceleration
Constraints

When implementing (2.9) with timing law (2.13) in practical (discrete) set-
tings, care must be taken when selecting the sampling period, ∆t, and the gain
parameters, γ0 and γ1. Specifically, ¯̇q may exit the region (−1, 1) between two
sampling instances such that σ(¯̇q) is not well-defined. To address this issue, a
discrete implementation is formalized. The discrete formulation additionally
simplifies considering velocity and acceleration constraints simultaneously. In
particular, the constraints can be directly transformed into bounds on wk.
Here, the subscript k denotes quantities evaluated at the kth time instant,
i.e., wk = w(k∆t). The velocity constraint yields an upper bound, wmax,q̇

k ,
while the acceleration constraint yields both a lower and an upper bound,
wmin,q̈
k and wmax,q̈

k , respectively. Apart from the robot constraints, additional
constraints are also included to avoid motion inversion (ṡ ≥ 0), to prevent
the generated trajectory being ahead of the nominal trajectory (s ≤ t), and
to allow for specifying a maximum path traversal speed (ṡ ≤ ṡmax), where
ṡmax ≥ 1 is a tuning parameter. In all, the bounds for wk are derived to

wmin
k = max(wmin,q̈

k , wmin,ṡ
k ), (2.17)

wmax
k = min(wmax,q̈

k , wmax,q̇
k , wmax,ṡ

k , wmax,s
k ). (2.18)

Whenever wk ∈ [wmin
k , wmax

k ], all velocity and acceleration constraints as well
as the constraints related to the path coordinate are satisfied. For full deriva-
tion of the bounds, see [77] (Paper C).

Consider a saturated timing law as

wk =
{

sat(ŵk, wmin
k , wmax

k ), wmin
k ≤ wmax

k ,

w′
k wmin

k > wmax
k ,

(2.19)
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where ŵk is a base timing law and w′
k is a fallback timing law. The function

sat(·, a, b) = min(max(·, a), b) is the saturation function, with a, b being the
lower and upper bound, respectively. A timing law in the form (2.19) ensures
constraint satisfaction whenever possible. A possible choice for fallback timing
law is w′

k = wmin,ṡ
k as in [77] (Paper C). This will ensure feasibility, i.e.,

wmin
k ≤ wmax

k , at next time step and the velocity limits are guaranteed to be
satisfied at all times. Implicitly, this means that an acceleration bound will
be neglected and some acceleration limit will be exceeded at this time instant.
The following sections focus on the impact and design of the base timing law.

2.3.1 Reactive vs Proactive Temporal Scaling

One approach for the base timing law is a maximization approach, similar to
[73], by setting ŵk = wmax

k such that the trajectory follow the nominal tra-
jectory whenever no constraints are violated and slow down otherwise. This
can lead to abrupt variations in wk that in turn result in drastic alterations in
acceleration. An alternative strategy is to include a filtered action towards the
nominal path speed whenever delay has been introduced, similar to [72]. The
base timing law can for this purpose be ŵk = γ0(1− ṡ). The filter smoothens
the return to nominal path speed after saturation. These methods exhibit a
reactive nature by adapting the temporal scaling when the limits are reached.
We will refer to such approaches as reactive temporal scaling. This can be
compared with the timing law (2.13) which adjust the temporal scaling as the
velocity limits are approached. We refer to such an approach as proactive tem-
poral scaling. Predictive techniques, such as [78], [79], provide an alternative
means for proactive temporal scaling by computation of a scale factor which
makes the trajectory feasible within a receding horizon. These are however
formulated considering a predefined path. For the DS-based trajectory for-
mulation (2.9) such methods would involve predictions of the external input,
as well as possibly solving high-dimensional nonlinear constraints, making it
impractical for real-time implementation. As will be discussed in the follow-
ing, reactive temporal scaling may be prone to reaching states where no path
acceleration, wk, satisfying all system constraints exists.
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2.3.2 States of Infeasibility
At some system states, the bounds (2.17)-(2.18) yield wmin

k > wmax
k such that

no path acceleration, wk, exists that simultaneously satisfies all constraints.
Such states are here referred to as states of infeasibility. Reaching such states
typically occur when the system operates close to the acceleration limits. This
can be understood by analysing the statically evaluated acceleration which is
an important quantity in the timing law design in [68] and [77] (Paper B, C)
and is defined as follows.

Definition 1: The statically evaluated acceleration (SEA), denoted by ψ, is
the resulting acceleration when assuming maintained path speed, i.e., assuming
w = 0. That is, ψ = ∂hq

∂ζ hṡ
2.

Using the SEA and the temporally scaled acceleration (2.11), the accelera-
tion bounds (2.8) can be written as

|ψk + hqkwk| ≤ q̈
max
k . (2.20)

If the SEA for some index i exceeds the acceleration bounds, |ψk,i| > q̈max
i ,

the acceleration needs to be compensated appropriately through wk to satisfy
the constraints. Specifically, the following equivalences can be stated:

|ψk| < q̈max ⇔ wmin,q̈
k < 0 < wmax,q̈

k , (2.21)
∃i |ψk,i| > q̈max

i , ψk,ih
q
k,i > 0 ⇔ wmax,q̈

k < 0, (2.22)

∃i |ψk,i| > q̈max
i , ψk,ih

q
k,i < 0 ⇔ wmin,q̈

k > 0. (2.23)

Moreover, for the cases (2.22) and (2.23), larger values of |ψk,i| yields larger
magnitude of wmax,q̈

k and wmin,q̈
k , respectively. When using reactive temporal

scaling in a scenario where the acceleration limit is approached, the path speed
is not adjusted until the SEA is exceeding the acceleration limits. Depending
on the current velocity, the path acceleration may need to be positive to satisfy
the acceleration constraints, i.e., in case (2.23). This counterintuitive practice
- to increase the path speed and thereby narrowing the feasible region at future
time steps - is in fact the cause that drives the system to a state of infeasibility
in many cases as illustrated by the following example.

Example 1. A filter ŵk = 1 − ṡ is used as base timing law for reactive
temporal scaling of a DS with resulting trajectory depicted in Fig. 2.3. There
are 2 time intervals where the SEA exceeds the acceleration bound while the
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velocity is of opposite sign, such that wmin,q̈
k > 0 in accordance with (2.23).

The acceleration is hence saturated by increasing the path speed. Since ψk
is proportional to ṡ2

k, the magnitude of the SEA increases as well such that
wmin,q̈
k+1 > wmin,q̈

k . At some point, wmin,q̈
k > wmax

k and the DS has reached a
state of infeasibility.

(a) (b)

(c) (d)

Figure 2.3: Illustration of Example 1. In the intervals where wk > 0 to accommo-
date acceleration constraints, shown as yellow shaded regions, the DS
eventually reach a state of infeasibility.

Rather than applying reactive temporal scaling when the limits are reached,
a timing law aiming to slow down the trajectory in a proactive manner as the
acceleration limits are approached is presented next.
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2.3.3 Timing Law with Proactive Scaling
The aim of the base timing law presented in this section is to prevent ever
reaching states of infeasibility. Motivated by the previous example and ac-
companying analysis, the base timing law will depend on the SEA. To this
end, consider the ∞-norm of the normalized SEA

ψ̄k = ∥(q̈maxI)−1ψk∥∞. (2.24)

The value of ψ̄k gives an indication of how close to the acceleration bounds
the most critical dimension of the trajectory is at the current path speed.
More specifically, ψ̄k is approaching one as the SEA of any dimension is
approaching the acceleration bound. It follows directly from (2.21) that
wmin,q̈
k < 0 < wmax,q̈

k if ψ̄k < 1 and from (2.23)-(2.22) that the accelera-
tion must be compensated through wk to satisfy the acceleration constraints
whenever ψ̄k > 1. The idea with the proactive scaling is to keep ψ̄k < 1 at
all times, and thereby maintaining the SEA within the acceleration bounds,
for improved feasibility over time. Similar to the velocity, the magnitude of
the SEA is decreasing with decreasing values of ṡk. With this in mind and
inspired by the timing law (2.13) for bounded velocity, the base timing law in
[68] (Paper B) is set to1

ŵk = γ0(1− ṡk)− γ1σ̂(ψ̄k). (2.25)

Here γ0 and γ1 are positive tuning parameters, and σ̂ is defined as

σ̂(ψ̄) = ψ̄

max(1− ψ̄, ϵ)
, (2.26)

with ϵ being a small positive constant. Similar to (2.13), the base timing law
(2.25) consists of two terms: one driving ṡk towards the nominal value of 1,
and one acting to maintain ψ̄k below the limit 1. The base timing law (2.25) is
depicted in Fig. 2.4a. Contrary to the function σ used in (2.13), the function
σ̂ is not a proper barrier function, but is well-defined for all ψ̄ ∈ R. In this
way, ŵ is well-defined also when the SEA exceeds the acceleration bounds.
The filter (2.25) aims at tracking the nominal path speed as delay recovery.
For nominal path coordinate tracking, the term γ0(1− ṡk) could be replaced
by a saturated gain of (tk − sk).

1A direct derivation of the timing law (B.28) would in fact include a factor ṡk, yielding
ŵk = ṡk

(
γ0(1− ṡk)− γ1σ̂(ψ̄k)

)
. Since ṡk = 0 would then lead to wk = 0, this would

however prevent delay recovery when the trajectory has reached a full stop.
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(a) ŵ given by (2.25) for three values of γ1
when ṡ = 0.

(b) ŵ given by (2.27) for two values of ψ̄∗

when t− s > 1.

Figure 2.4: Two proposed candidates for base timing law ŵ.

An alternative base timing law is presented in [77] (Paper C) as

ŵk =


ψ̄∗−ψ̄k

ψ̄∗ γ0 min(tk − sk, 1), ψ̄k ≤ ψ̄∗,
ψ̄∗−ψ̄k

1−ψ̄k
, ψ̄∗ < ψ̄k < 1,

wmin
k , ψ̄k ≥ 1,

(2.27)

where γ0 > 0 and ψ̄∗ ∈ (0, 1) are tuning parameters. The parameters can
be interpreted from Fig. 2.4b where (2.27) is depicted for all cases when
tk − sk ≥ 1, i.e., when the trajectory delay is at least one second. For other
cases, the linear region ψ̄k ≤ ψ̄∗ is simply scaled with the delay tk − sk.
In this region, ŵk is positive leading to delay recovery. Outside the linear
region, the path speed is reduced to relax the constraints at future time steps
for improved feasibility. The behavior of ŵk in the region ψ̄∗ < ψ̄k < 1
is logarithmic-like and goes towards negative infinity as ψ̄k approaches one.
The tuning parameter ψ̄∗, which specifies the switching point between reduced
path speed and delay recovery, can be interpreted as the target for ψ̄k and thus
determines how cautious the temporal scaling should be about approaching
the acceleration limits. The parameter γ0, being the feedback gain of the time
delay, determines how aggressive the delay recovery should be.

The effect of including the proactive scaling is illustrated in Fig. 2.5. In this
scenario, a DMP has been encoded using a 2D “omega”-shaped trajectory as
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(a) (b)

(c)

Figure 2.5: Comparison of including and excluding proactive scaling in (2.25).

shown in Fig. 3a in [67] (Paper A), and the nominal trajectory has a maximal
acceleration of 3. A bound is set to half the nominal acceleration peak, i.e.,
q̈max = [1.5 1.5]T . In Fig. 2.5 the resulting acceleration and path speed for
the trajectory when using temporal scaling (2.25) for two cases are shown,
both having the same gain for delay recovery, γ0 = 1. The two differ in
that one use proactive scaling with γ1 = 0.4, while the other excludes the
proactive scaling term, i.e., γ1 = 0. It is clear that by reducing the path speed
as the acceleration bounds are approached, the proactive scaling can prevent
reaching states of infeasibility.

Remark 2: As γ1 → 0 for (2.25) or ψ̄∗ → 1 for (2.27), the proposed
timing law exhibits a more reactive rather than proactive nature.
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2.3.4 Smoothing by Constraint Neglect
The proactive scaling is introduced to relax the acceleration related bounds
in a preventing manner as these are approached. This reduces the occasions
when wmin,q̈

k is positive, i.e., when the path speed is increased to accommodate
the acceleration constraints. It does however not completely remove this phe-
nomenon. A method presented in [77] (Paper C) to completely avoid improper
increase of path speed at the acceleration bounds is to ignore the constraint
for the dimensions where the SEA exceeds the acceleration bound in the cal-
culation of wmin,q̈

k . Since ψ̄k > 1 for such cases, the base timing law (2.27)
result in ŵk = wmin

k and the timing law (2.19) leads to a maximal reduction
of path speed such that no other bound is exceeded. Also for the filter-based
base timing law (2.25) the result will in practice lead to wk = wmin

k . This is
realized by the upper bound ŵk = γ0(1 − ṡk) − γ1

¯̈q
ϵ ≤ γ0 − γ1

ϵ which takes a
large negative value (for reasonable tuning parameters where ϵ≪ γ1). If the
path speed is sufficiently reduced, the SEA will at next time step no longer
exceed the acceleration bounds and the bound will again be considered in
wmin,q̈
k .
The effect of including constraint neglect is illustrated using the same ex-

ample as for Fig. 2.5, but the acceleration bound is reduced to q̈max =
[0.75 0.75]T . In Fig. 2.6 the resulting acceleration and path speed for the
trajectory when using temporal scaling (2.27) for two cases is shown, both
having the same tuning parameters, γ0 = 1 and ψ̄∗ = 0.7. The two differ in
that one use constraint neglect while the other does not. For the case without
constraint neglect, the path speed is increased at two intervals (around s = 1.5
and s = 2.5) although the trajectory is close to/at the acceleration bounds.
As for the scenario in Example 1 this drives the system to states of infea-
sibility. Although the acceleration bounds are exceeded to some extent for
these intervals when constraint neglect is used, the acceleration is soon again
below the bound as the path speed is continuously reduced. This results in a
smoother trajectory.
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2.3 Combined Velocity and Acceleration Constraints

(a) (b)

(c)

Figure 2.6: Comparison of using constraint neglect or not.
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CHAPTER 3

Dynamical Systems for Navigating Star Worlds

This chapter addresses the problem of planning and executing robot motion
to reach a goal position in a dynamic setting. The proposed method is built
upon a DS approach suitable for navigation in DSWs. Given the foundational
significance of starshaped sets in this chapter, an introduction to this con-
cept is outlined in Section 3.1. Section 3.2 describes the featured DS, and
in Section 3.3, a method is proposed to modify the robot environment into a
DSW which enriches the applicability for the considered DS. Next, in Section
3.4, an MPC scheme for setpoint stabilization is outlined building on the DS
and the environment modification. Finally, the control scheme is extended to
apply for path-following control in Section 3.5.

This chapter considers a robot with a first-order differential kinematics
model

ẋ(t) = f(x(t), u(t)),
p(t) = ℓ(x(t)),

(3.1)

where x ∈ X ⊂ Rnx is the robot state, u ∈ U ⊂ Rnu is the control signal and
p ∈ Rn is the robot position with n = 2 or n = 3. To stress the fact that the
robot is kinematically modelled, we state the following assumption.
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Assumption 1. At any feasible state, there exists a control input such that
the robot does not move, i.e., ∀x ∈ X ,∃u′ ∈ U s.t. ∂ℓ(x)

∂x f(x, u′) = 0.

The robot operates in a workspaceW(t) ⊂ Rn which is strictly starshaped1

or the full Euclidean space. The workspace is populated by a set of obstacles
O(t) = {O1(t),O2(t), ...}, where each obstacle Oi(t) ⊂ Rn is either a simple
polygon or convex. The obstacles are not restricted to be disjoint, but inter-
sections may exist. The workspace and obstacles are jointly called the robot
environment, denoted by E(t) = {W(t),O(t)}, and the environment has the
corresponding free space F(t) =W(t)\O∪(t), with notation O∪ =

⋃
Oi∈OOi.

The robot body is modelled as a point, assuming that any robot radius is
taken into account by the environment model. For sound motion planning,
some restrictions on the allowed workspace changes is considered, stated by
the following assumption.

Assumption 2. The workspace does not change such that the current robot
position becomes an exterior point of the workspace.

The objective is to find a control policy that enforces the robot to stay in the
free space at all times while driving the robot to a specified goal position, as
stated by Problem 2. In the following sections, we will omit the time notation
for convenience unless some ambiguity exists.

Problem 2. Given the robot dynamics (3.1), the environment E(t), and a
goal position pg ∈ Rn, design a control scheme that computes u(t) ∈ U such
that robot stays in the free space at all times and converges to the goal. That
is, p(t) ∈ F(t)∀t, and limt→∞ p(t) = pg.

Remark 3: Although O(t) formally contains only polygons and convex
shapes, the formulation admit for more general complex obstacles as intersec-
tions are allowed. In particular, any shape can be described as a combination
of several polygon and/or convex regions.

Remark 4: Including time-varying workspace description allows for sce-
narios with non-starshaped workspaces. One approach to achieve this involves
partitioning the workspace into intersecting starshaped subregions, sequentially
activated by a high-level planner, as in Fig. 7 of [80] (Paper F).

Remark 5: Since the robot radius is included in the environment descrip-
tion, two obstacles that physically do not intersect may do so in E(t).

1See definition in Section 3.1.
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3.1 Starshaped Sets and Star Worlds

3.1 Starshaped Sets and Star Worlds
A set A is starshaped with respect to (w.r.t.) x if for every point y ∈ A

the line segment l[x, y] is contained by A, i.e., l[x, y] ⊂ A,∀y ∈ A. The set
A is said to be starshaped if it is starshaped w.r.t. some point. The set
of all such points is called the kernel of A and is denoted by ker(A), i.e.,
ker(A) = {x ∈ A : l[x, y] ⊂ A,∀y ∈ A}. Any convex set A is starshaped with
kernel ker(A) = A. The set A is strictly starshaped w.r.t. x if it is starshaped
w.r.t. x and any ray emanating from x crosses the boundary at a single point.
We say that A is strictly starshaped if it is strictly starshaped w.r.t. some
point. The starshaped hull of A w.r.t. x, denoted by SHx(A), is the smallest
starshaped set w.r.t. x containing A.

The robot environment is said to be a star world if all obstacles are strictly
starshaped and the workspace is strictly starshaped or the full Euclidean
space. Note that we do not restrict the obstacles to be mutually disjoint
in a star world in contrast to the original notation in [53]. A disjoint star
world (DSW) refers to a star world where all obstacles are mutually disjoint
and where any obstacle which is not fully contained in the workspace has a
kernel point in the exterior of the workspace, as exemplified in Fig. 3.1. For
more information on starshaped sets and star worlds the reader is referred to
[81] and [82] (Paper D).

Figure 3.1: Example of a DSW. The kernels of all concave obstacles are shown as
dotted regions.
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3.2 Modulation of Dynamical Systems for
Obstacle Avoidance in Star Worlds

An obstacle avoidance approach based on modulation of DSs was presented in
[52] and extended in [83]. It assumes a holonomic robot where the kinematic
model (3.1) gives f(x, u) = u, ℓ(x) = x, and thus ṗ = ẋ = u. Moreover, no
control bounds are considered, i.e., U = Rn. For convenience, and in the ab-
sence of better notation, we will refer to the method as Starshaped Obstacle
Avoidance through Dynamical Systems (SOADS), as it is designed for oper-
ating in star worlds. In contrast to navigation functions which also allow for
operation in star worlds, SOADS is not restricted to static environments with
smooth surface obstacles. Rather, it allows for moving and deforming obsta-
cles with boundaries that may include sharp edges. SOADS is based on online
adjustments of an autonomous linear first-order DS with global convergence
to pg. For simplicity, we consider the nominal dynamics to be ṗ = pg − p.
The method relies on the assignment of a center point to each obstacle which
must lie in the kernel interior so that a single boundary point exists in each
direction from the center point. Given one obstacle Oi, the modified DS is
defined as

ṗ = M(p,Oi)(pg − p), (3.2)

where the modulation matrix M(·) = T (·)D(·)T (·)−1 is decomposed into a
basis matrix T and an associated diagonal eigenvalue matrix D. The basis
matrix T = [c t1 .. tn−1] depends on the center direction, c, – the direction
from center point to current robot position – as well as the obstacle tangent
space. By appropriate selection of the eigenvalues in D, the dynamics can be
scaled along the directions in T such that collision avoidance can be obtained,
as illustrated in Fig. 3.2. Specifically, by designing the scaling such that
the velocity along the center direction vanishes at the obstacle boundary it
is guaranteed that no obstacle region will be penetrated. In case of multiple
obstacles, the velocity ṗ is obtained by evaluating (3.2) individually for each
obstacle and taking a weighted mean depending on obstacle proximity. For
later reference, we denote the resulting dynamics for this procedure given a
star world E as

ṗ = ν(p, pg, E). (3.3)

The free space for any star world is positively invariant for the dynamics (3.3)
such that collision avoidance is guaranteed for a trajectory following (3.3) from
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any initial position p(0) ∈ F(0). Convergence conditions can also be derived
under the following environment convergence assumption.

Assumption 3. There exists a time instance after which the environment is
static, i.e., ∃ts ∈ R s.t. E(t) = E(ts),∀t ≥ ts.

(a) Using original attractor dynamics ṗ =
pg − p. The center direction, c, and ob-
stacle tangent direction, t1, are also de-
picted.

(b) Using SOADS dynamics ṗ =
M(p,O)(pg − p).

Figure 3.2: The velocity vector ṗ and the vectors ṗc and ṗt defined as the decom-
position along the center direction c and the obstacle tangent direction
t1, respectively.

Assumption 3 is needed since finite convergence guarantees cannot be stated
for generic scenarios with dynamic obstacles (consider the case where two sep-
arated gaps in a room are iteratively opening and closing). With Assumption
3, convergence to pg is guaranteed if E(ts) is a DSW and no obstacle center
point in O(ts) is contained by the line segment l[p(ts), pg]. For more details
on the formulation and theory of SOADS, the reader is referred to [52] and
[83].
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3.3 Enhancing Convergence through Environment
Modification

As stated above, the obstacles must be disjoint for guaranteed convergence
of the SOADS dynamics (3.3). Closely positioned obstacles are however fre-
quently conceived as intersecting, breaking this condition and jeopardizing
convergence to the desired goal. This occurs for instance when inflation of
the obstacle region is used to account for robot radius or safety margins, or in
case of perception uncertainties. To apply SOADS in practice with preserved
convergence properties, online modification of the environment to obtain a
DSW is thus needed. The obstacles in this DSW should fully cover the orig-
inal obstacles to ensure collision avoidance. In addition, the center point for
each obstacle should not be contained by l[p, pg]. Since the center point is
chosen from the kernel interior, the convergence center point set defined as
CCP (Oi, p, pg) = int ker(Oi) \ l[p, pg] must be nonempty to allow for select-
ing such center points. Finally, neither the robot nor goal position should be
included in the extended obstacle regions. To this end, the following problem
is stated.

Problem 3. Given the environment E with corresponding free space F , the
robot position p, and the goal position pg, create a DSW E⋆ = {W,O⋆} with
corresponding free space F⋆ that satisfies

i. F⋆ ⊂ F ,

ii. p ∈ F⋆,

iii. pg ∈ F⋆,

iv. CCP (O⋆i , p, pg) ̸= ∅, ∀O⋆i ∈ O⋆.

It is further desired that the resulting free space is as large as possible.
In other words, the starshaped enclosing of the original obstacles should not
be too conservative. A reasonable approach to ensure starshaped obstacles
with minimal extended regions is to employ the starshaped hull. Directly
applying the starshaped hull to represent obstacle regions is impractical for
two reasons: 1) the starshaped hull does not account for excluding points from
the expanded obstacle, potentially leading to the robot or goal position being
an interior point of the resulting obstacles, and 2) the starshaped hull is not
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inherently strictly starshaped, such that a direct utilization does not result
in a star world in general. To address these issues, two new concepts have
been defined in [82] (Paper D) which enable construction of strictly starshaped
obstacles that exclude both the robot and the goal position. The introduced
concepts are instrumental in the algorithm ModEnv⋆ which is designed to
solve Problem 3 and to be applied online along with SOADS as illustrated in
Fig 3.3.

ModEnv⋆ SOADS
E, p, pg E⋆, p, pg u

Figure 3.3: ModEnv⋆ generates the star world E⋆ which is used by SOADS to
compute control input. If E⋆ is successfully constructed as a DSW,
convergence from the robot position p to the goal position pg is guar-
anteed.

3.3.1 Excluding Points from the Starshaped Hull
The starshaped hull of the set A w.r.t. x, SHx(A), provides a starshaped
enclosing of A, but it does not inherently provide any way to exclude specific
points of interest, X̄. The shape of SHx(A) depends on the point x and as a
consequence we may have that SHx(A) is disjoint from X̄ for some x, while
it is not for another x. To enable an informed construction of the starshaped
hull which is guaranteed to exclude X̄, we introduce the admissible kernel
defined as follows.

Definition 2: Let A ⊂ Rn and X̄ ⊂ Rn. The admissible kernel for A
excluding X̄, denoted by ad ker(A, X̄), is the set such that the starshaped hull
of A w.r.t. any x ∈ ad ker(A, X̄) does not contain any point in X̄. That is,

ad ker(A, X̄) = {x ∈ Rn : SHx(A) ∩ X̄ = ∅}. (3.4)

Given the admissible kernel for an obstacle Oi with excluding set {p, pg},
any point x ∈ ad ker(Oi, {p, pg}) can be used to generate a starshaped obstacle
O⋆i = SHx(Oi) which contains Oi and excludes both the robot and the goal
position. Several properties and expressions for computing the admissible
kernel are found in [82] (Paper D). An illustration of how the admissible
kernel can be used to generate a starshaped set that excludes some points is
provided in Fig. 3.4.
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Figure 3.4: Example of a non-starshaped polygon A in grey, with two points to
exclude, {x̄1, x̄2}, shown as a red triangles, and the resulting admissible
kernel ad ker(A, {x̄1, x̄2}) depicted in yellow. The hull extended region,
SHx(A) \A, is shown in green for a point x ∈ ad ker(A, X̄), shown as
black dot. Clearly, x̄1 ̸∈ SHx(A) and x̄2 ̸∈ SHx(A) as desired.

3.3.2 Starshaped Hull for Strictly Starshaped Sets
Depending on the set A and the point x used for generating SHx(A), the kernel
of the starshaped hull can be the singleton ker(SHx(A)) = {x}. Furthermore,
from the manner that the starshaped hull is constructed, there may exist more
than one boundary point along some direction from all (or the only) kernel
point(s). In other words, it may not be strictly starshaped. An example of
this is illustrated in Fig. 3.5a, where the starshaped hull is generated w.r.t. a
point x, depicted as a black circle, and several boundary points of the hull are
located along the four directions shown as red dashed lines from the singleton
kernel x. For this reason, the starshaped hull in its original definition is not
appropriate to apply when strictly starshaped sets are needed. Hence, it is not
appropriate for constructing star worlds. To address this issue, we introduce
the starshaped hull with specified kernel.

Definition 3: Let A ⊂ Rn and K ⊂ Rn. The starshaped hull of A with
specified kernel K, denoted by SHkerK(A), is defined as the smallest starshaped
set such that A ⊂ SHkerK(A) and K ⊂ ker (SHkerK(A)).

A useful property of the starshaped hull with specified kernel is that CH(K)
belongs to the kernel of SHkerK(A), where CH(K) is the convex hull of K.
This can be used to guarantee the generation of a strictly starshaped set
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by appropriate selection of the kernel points K, as stated by the following
Proposition.

Proposition 1: Let A ⊂ Rn and K ⊂ Rn. The starshaped hull of A
with specified kernel K, SHkerK(A), is strictly starshaped if K contains n+ 1
affinely independent points.

Proof. See proof in [82] (Paper D).

In Fig. 3.5b, the starshaped hull with specified kernel given by three affinely
independent points, i.e., a triangle, is depicted for a polygon, P . In contrast
to the starshaped hull w.r.t. a single point, shown in Fig. 3.5a, SHkerK(P ) is
strictly starshaped in accordance with Proposition 1 and therefore only one
boundary point exists in each direction from any interior point of CH(K).

(a) There exists several boundary points of
SHx(A) along the red dashed lines in
four directions from x.

(b) There exists only one boundary point
of SHkerK(A) along each direction from
x ∈ int kerSHkerK(A) when K con-
tains three affinely independent points.
CH(K) is shown in blue.

Figure 3.5: A non-starshaped polygon, A, shown in grey with hull extended region
shown in green.

While the admissible kernel is defined based on the starshaped hull w.r.t. a
single point, it can be used to formulate a condition for kernel point selection
to exclude points also from the starshaped hull with specified kernel.

Proposition 2: Let A ⊂ Rn, K ⊂ Rn and X̄ ⊂ Rn. If CH(K) is con-
tained in ad ker(A, X̄), no point x̄ ∈ X̄ is included in SHkerK(A).

Proof. See proof in [82] (Paper D).
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Combining Proposition 1 and 2, we can conclude that SHkerK(Oi) is a
strictly starshaped set with both robot and goal positions as exterior points
if K is chosen as n + 1 affinely independent points such that CH(K) ⊂
ad ker(Oi, {p, pg}). Several properties and derivations for computing the star-
shaped hull with specified kernel are found in [82] (Paper D).

3.3.3 ModEnv⋆: Forming a DSW
To construct a DSW that satisfies the conditions of Problem 3, the algorithm
ModEnv⋆, outlined in Algorithm 1, was developed in [82] (Paper D) and
refined in [80] (Paper F). The fundamental idea of ModEnv⋆ is to create
clusters of intersecting obstacles, followed by a starshaped enclosing of each
cluster. To ensure that a strictly starshaped obstacle is obtained, starshaped
hull with specified kernel is used, and to ensure that neither the robot nor the
goal position is made an interior point of the generated obstacle, the kernel
points are extracted from the admissible kernel of the cluster. These steps
are illustrated in Fig. 3.6. In case intersections exist in the newly created
obstacle set, the process is reiterated. If at some stage the admissible kernel
is the empty set for a cluster, no DSW is found and ModEnv⋆ terminates by
returning the star world generated by convex decomposition of each obstacle.
The core steps of ModEnv⋆ do not account for the workspace boundary; they
solely focus on reshaping the obstacles. Nonetheless, the modification into a
DSW is achievable also for confined workspaces by employing a suitable kernel
point selection, as detailed in Algorithm 4 in [80] (Paper F). In particular,
the specified kernel for any obstacle cluster intersecting with the workspace
boundary is selected in the workspace exterior, when feasible.

To state a sufficient condition for E⋆ being a DSW, the concept DSW
equivalent is introduced, defined as follows.

Definition 4: A star world E = {W,O} is DSW equivalent if the set cl,
formed by partitioning O into mutually disjoint clusters of obstacles, satisfies

i) the obstacles in each cluster have intersecting kernels,

ker∩(cli) ̸= ∅, ∀cli ∈ cl, (3.5)

ii) any cluster which intersects with the workspace exterior has an inter-
secting kernel region that to some extent lies in the workspace exterior,

cli,∪ ∩ extW ≠ ∅ ⇒ ker∩(cli) ∩ extW ̸= ∅, ∀cli ∈ cl. (3.6)
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Algorithm 1: ModEnv⋆

Input : The environment E = {W,O}, the robot position p and
the goal position pg.

Output : A (disjoint) star world E⋆

Init : Initialize the cluster set cl← {{Oi} : Oi ∈ O}
1 Compute ad ker(cli, {p, pg}) for each cluster, cli;
2 For each cli, select n+ 1 affinely independent points, Ki, such that

CH(Ki) ⊂ ad ker(cli, {p, pg});
3 For each cli, generate a starshaped obstacle O⋆i = SHkerKi

(cli);
4 Identify all intersections in O⋆. If no intersection exists, return O⋆;
5 Compute new clusters by combining obstacles in O corresponding to

intersecting obstacles in O⋆. Go to step 1;

(a) Clusters of intersecting
obstacles illustrated by
different colors.

(b) Admissible kernel for
the non-starshaped
polygon shown in
yellow.

(c) Starshaped obstacles gen-
erated using starshaped
hull. Extended regions
are shown as dashed area
and specified kernels in
blue.

Figure 3.6: Illustration of the three main steps of ModEnv⋆.

Here ker∩(cli) =
⋂

Oj∈cli ker(Oj) is the kernel intersection of all individual
obstacles in cli. An example of a DSW equivalent scene is shown in Fig. 3.7a.
ModEnv⋆ successfully generates a DSW for any DSW equivalent environment
as stated by the following theorem and illustrated in Fig. 3.7b.

Theorem 1 (Guaranteed DSW generation): Given a DSW equivalent en-
vironment E with free space F , a robot position p ∈ F , and a goal position
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pg ∈ F , the resulting environment E⋆ from ModEnv⋆ is a DSW with free space
F⋆ = F .

Proof. See proof in [80] (Paper F).

(a) (b)

Figure 3.7: (a) A DSW equivalent environment and (b) the corresponding DSW
environment generated by ModEnv⋆. The kernels for all non-convex
obstacles are shown as dotted regions.

As discussed in [82] (Paper D), all obstacles generated by ModEnv⋆ have
nonempty sets CCP (O⋆i , p, pg) and any DSW returned by ModEnv⋆ satisfies
all conditions in Problem 3.

3.4 MPC Framework to Adopt System Constraints
SOADS can be directly applied in combination with ModEnv⋆, as in Fig.
3.3, to ensure obstacle avoidance for a holonomic robot with no control input
bounds. Convergence to the goal is guaranteed if a DSW is succesfully gener-
ated by ModEnv⋆. To enable more general robot models, an MPC framework
was derived in [84] (Paper E) and refined in [80] (Paper F). The target direc-
tion for robot motion is still determined by SOADS, but the MPC formulation
allows to consider non-holonomic as well as input constraints. Moreover, the
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Environment
modification

Receding horizon
reference path MPC

E, pg, r+ E⋆, r0, rg P z∗

x

ρ

Figure 3.8: Embedding SOADS in an MPC framework.

receding horizon optimization approach allows for formulating desired robot
behavior, such as smooth movement and control input changes.

3.4.1 Control Scheme
The general idea of the control scheme can be formulated in three steps as de-
picted in Fig. 3.8. First a DSW is constructed where any free point has
an appropriately selected minimum clearance, ρ, to the original obstacles
and workspace boundary. Next, a receding horizon reference path (RHRP)
is generated by evaluating the SOADS dynamics over a defined distance in
the constructed DSW. Consequently, any point along the RHRP maintains a
minimum distance of ρ from the obstacles and workspace boundary. Finally,
an MPC is formulated to induce motion along the RHRP while imposing con-
straints on path deviation to ensure adherence to the specified clearance. The
control scheme is evaluated with a sampling interval ∆t, such that the MPC
solution z∗ is constant over each period t ∈ [tk, tk + 1) with tk = k∆t, k ∈ N.
The steps are illustrated in Fig. 3.9 and elaborated more in the following.

Environment modification

The framework relies on generating the RHRP with a (time-varying) mini-
mum clearance, ρ, to the workspace boundary and all obstacles using SOADS.
Hence, the environment considered when generating the RHRP should be a
DSW, in addition to the minimum distance requirement. This ensures the uti-
lization of collision avoidance and convergence properties inherent to SOADS.
Ideally, the RHRP is a curve from the current robot position, p, to the goal, pg
(or an initial subset of this curve). However, the minimum clearance condition
is violated if the robot or goal position is located closer than a distance ρ to
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(a) A clearance (red) is added to all obsta-
cles and the workspace boundary.

(b) Utilizing ModEnv⋆, the obstacle re-
gions are enlarged (blue) such that the
environment is a DSW.

(c) The RHRP (green line) is obtained by
following the vector field of (3.9) (yellow
arrows).

(d) A control sequence yielding a robot tra-
jectory (dashed black) that stays within
a ρ-neighborhood of the RHRP is com-
puted using an MPC.

Figure 3.9: Illustration of the main steps in the MPC framework.

an obstacle. To account for these situations, the initial reference position, r0,
and goal reference position, rg, are also defined. The procedure for the envi-
ronment modification is depicted in Figs. 3.9a-3.9b. Initially, the clearance
environment Eρ = {Wρ,Oρ}, with corresponding free space Fρ, is defined,
where Wρ =W ⊖ B[0, ρ] and Oρ = {Oi ⊕ B[0, ρ] : Oi ∈ O}. The initial refer-
ence position is chosen as the point closest to a candidate r+ within an initial
reference set P0 = Fρ ∩ B[p, ρ], and the reference goal is chosen as the point
in Fρ closest to pg. The candidate r+ can for simplicity be chosen as the cur-
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rent robot position, but a more strategic selection can be made for improved
convergence properties, as will be discussed in Section 3.4.3. The clearance
ρ is set such that P0 ̸= ∅. Since Eρ may include both intersecting and non-
starshaped obstacles, a new environment E⋆ is constructed using ModEnv⋆
which is guaranteed to be a star world with corresponding free space F⋆ ⊂ Fρ
such that r0 ∈ F⋆ and rg ∈ F⋆.

Receding horizon reference path

The RHRP is given as a parametrized regular curve

P = {r ∈ Rn : s ∈ [0, L]→ r(s)} (3.7)

with L = Twmax. Here, T = N∆t is determined by the MPC horizon N ∈ N+

and wmax = maxu∈U,x∈X ∥ ∂ℓ∂x (x)f(x, u)∥2 is the maximum linear speed which
can be achieved by the robot. Given the normalized SOADS dynamics (3.3)

ν̄(·) =
{

ν(·)
∥ν(·)∥2

, ∥ν(·)∥2 > 0
0, ∥ν(·)∥2 = 0

, (3.8)

the mapping r is determined by solving the ODE

dr(s)
ds

= ν̄(r(s), rg, E⋆), r(0) = r0. (3.9)

As the path is initialized in the star world F⋆ and the dynamics are positively
invariant in any star world, we have P ⊂ F⋆ ⊂ Fρ. Thus, the tunnel region
Pρ = P ⊕B[0, ρ] is in the free space F . The vector field of the dynamics (3.9)
is illustrated in Fig. 3.9c and the RHRP is obtained by following the vector
field from r0 until an arc length of L is obtained or it reaches to rg.

MPC

To find a control input which drives the robot along the RHRP, a nonlinear
MPC is formulated. The objective is to find a solution which results in a
fast movement while staying close enough to the RHRP such that collision
avoidance is ensured. Adopting the path-following MPC framework [28], the
system state is augmented with a path coordinate s, similar to the tempo-
ral scaling approach in Chapter 2, and the path speed w is introduced as a
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decision variable. In this way, the mapping from reference path to reference
trajectory is embedded as part of the optimization problem. Note that due
to the normalized dynamics in (3.9), the reference speed coincides with the
path speed, ∥ṙ∥2 = ∥dr(s)

ds w∥2 = |w|. For collision avoidance, a constraint is
imposed on the tracking error, ε(τ) = ∥r(s(τ))− ℓ(x̄(τ))∥2, to guarantee that
the robot stays in the tunnel region Pρ, as illustrated in Fig. 3.9d. To mo-
tivate a solution where the robot moves in a forward direction of P, the cost
function is designed to favor high reference speed while penalizing tracking
error. The optimization problem for the MPC to find the control sequence,
z = {ūi, wi : i ∈ [0, 1, .., N − 1]}, at time tk is given as

min
z

∫ T

0
−cww(τ) + cεε(τ)dτ + J(z) (3.10a)

subject to
τ ∈ [0, T ] : ˙̄x(τ) = f(x̄(τ), ū(τ)), x̄(0) = x(tk) (3.10b)

x̄(τ) ∈ X , ū(τ) ∈ U , (3.10c)
ṡ(τ) = w, s(0) = 0, (3.10d)
s(τ) ∈ [0, L], w(τ) ∈ [0, wmax], (3.10e)

ū(τ) = ūi, w(τ) = wi, i =
⌊ τ

∆t

⌋
, (3.10f)

ε(τ) ≤ ρ, (3.10g)

w0 ≥
λρ

∆t . (3.10h)

Here, ⌊·⌋ is the floor function, and the notation x̄ and ū is used to denote
the internal variables of the controller and distinguish them from the real
system variables. The scalars cw and cε are positive tuning parameters, and
J(z) is a regularization term for the control input which can be tailored for
the robot at hand, if desired. Constraint (3.10b) initializes the predicted
robot states to the current robot position and imposes the predicted states to
satisfy the system dynamics (3.1), (3.10c) enforces the predicted states and
control inputs to be admissible, and (3.10f) defines the control variables as
piecewise constant over a sampling interval. Constraint (3.10d) specifies the
path coordinate dynamics, while (3.10e) restricts s to provide a valid mapping
r(s) and ensures that the reference moves in forward direction along P with
a reference speed less or equal to the maximum linear speed of the robot,
wmax. The final constraint (3.10h) is introduced to enforce initial movement
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of the reference position, where the level of enforced movement depends on
the tuning parameter λ ∈ [0, 1).

3.4.2 Control Law
If no enforced initial movement of the reference is applied, i.e., setting λ = 0,
problem (3.10) is feasible at all times. In particular, the trivial solution z′, with
wi = 0, ūi = u′ ∀i ∈ [0, 1, .., N − 1], is always a feasible solution. Here u′ ∈ U
is a control input such that the robot does not move, ∂ℓ(x̄(0))

∂x f(x̄(0), u′) = 0.
While constraints (3.10b)-(3.10f) and (3.10h) trivially hold, the error con-
straint (3.10g) is ensured by the tailored selection of initial reference position
r(0) ∈ P0 ⊂ B[ℓ(x), ρ], such that ε(τ) = ε(0) ≤ ρ ∀τ ∈ [0, T ]. Since a solution
to (3.10) exists at all times, it is valid to directly apply the optimal solution
by defining the control law

u(t) = ū∗
0(tk), t ∈ [tk, tk+1), (3.11)

where ū∗
0(tk) is extracted from the optimal solution z∗(tk). To derive collision

avoidance guarantees, the following two assumptions are made.

Assumption 4. The obstacles move slow compared to the sampling frequency
such that the obstacle positions are constant over a sampling period, i.e.,
F(t) = F(tk), ∀t ∈ [tk, tk+1).

Assumption 5. The obstacles do not actively move into a region occupied by
the robot, such that the implication p(tk) ∈ F(tk−1)⇒ p(tk) ∈ F(tk) holds.

Assumption 4 suggests that the movements of obstacles can be accurately
represented using discrete motion models, which is a common approach in
development of sample-based control laws. Assumption 5 implies that the
obstacles are aware of the robot’s position and are not hostile, thereby pre-
venting any collisions while the robot remains stationary. Note that this does
not by itself imply collision avoidance when the robot is in motion. The fol-
lowing theorem provides guarantees of collision avoidance also when the robot
is moving.

Theorem 2: The trajectory for a robot with dynamics (3.1) and initial
position p(t0) ∈ F(t0) under control law (3.11) is collision-free with respect to
the environment E(t), i.e., p(t) ∈ F(t),∀t ≥ t0.
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Proof. Since the trivial solution z′ is always feasible, a solution exists for
(3.10) at all times. Any solution, z, to (3.10) satisfies ε(τ) < ρ(t),∀τ ∈ [0, T ].
The trajectory x̄(τ) given by the solution to (3.10) at time instance tk thus
satisfies ℓ(x̄(τ)) ∈ Pρ(tk) ⊂ F(tk),∀τ ∈ [0, T ]. Applying control law (3.11)
leads to x(tk + τ) = x̄(τ), ∀τ ∈ [0,∆t] from (3.10b) and (3.10f). Hence,
p(tk + τ) = ℓ(x̄(τ)) ∈ F(tk), ∀τ ∈ [0,∆t]. It follows from Assumption 4 that
p(t) ∈ F(t),∀t ∈ [tk, tk+1) and from Assumption 5 that p(tk+1) ∈ F(tk+1).
Together this gives p(t) ∈ F(t),∀t ∈ [tk, tk+1], which holds for any sampling
instance tk.

3.4.3 Control Law Scheduler for Convergence Guarantees
Whereas collision avoidance is achieved with control law (3.11), local attrac-
tors away from the goal may arise in the workspace depending on control
horizon and robot constraints. To improve attracting behavior towards the
goal and derive convergence conditions, the enforced initial movement can be
utilized. With λ > 0, the trivial solution z′ is not longer a feasible solution
and there is no longer a guarantee for existence of solution to (3.10). Con-
sider for instance the example with a non-holonomic robot in Fig. 3.10 where
the robot position is outside the region B[r(λρ), ρ]. Depending on robot con-
straints, forcing an initial displacement such that s(∆t) = λρ may lead to
ε(∆t) > ρ, violating constraint (3.10g). To handle these cases, the concept of
stabilizing backup controller (SBC) is defined.

Definition 5: An SBC is a control law κ : X × Rn → U which, when
applying u(·) = κ(·, r0) in (3.1) given r0,

i) renders the closed-loop error dynamics ė asymptotically stable in the
origin for the error e(t) = p(t)− r0,

ii) does not allow the error to exceed its initial value, i.e.,
∥e(t)∥2 ≤ ∥e(t0)∥2, ∀t ≥ t0.

The SBC must be designed for the robot at hand, but an example of an
SBC for a unicycle robot is given in [80] (Paper F). It is here assumed that
an SBC exists and has been designed.

To improve attracting behavior towards the goal, the control scheme from
Fig. 3.8 is extended with a control law scheduler as depicted in Fig. 3.11.
The control law scheduler determines the control law, µ, to be used over the
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Figure 3.10: The initial part of P (green line) is depicted alongside r0 (blue square)
and r(λρ) (red square) with corresponding regions B[r0, ρ] (blue) and
B[r(λρ), ρ] (red). If the robot constraints prohibits movement to
achieve p(∆t) ∈ B[r(λρ), ρ], no solution to (3.10) exists.

next sampling period and the next initial reference position candidate, r+,
according to the logic

µ(·) =
{
ū∗

0, MPC MODE,
κ(·, r0), SBC MODE,

(3.12)

r+ =
{
r(w∗

0∆t), MPC MODE,
r0, SBC MODE,

(3.13)

where the two modes are

MPC MODE : r0 ̸= rg and (3.10) is feasible,
SBC MODE : otherwise.

(3.14)

The control law (3.11) is hence applied when a solution to (3.10) is found
and the RHRP is not the singleton set2 P = {rg}. Otherwise, the feedback
controller κ is applied with r0 as setpoint. When in MPC MODE, a solution
to the MPC problem exists and r+ is chosen as the 1-step predicted reference
position of the MPC solution. This encourages forward shift of the RHRP
at the next sampling instance, while ensuring r+ to stay in a ρ-neighborhood

2r0 = rg implies that the RHRP dynamics (3.9) are dr
ds

= 0.
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Control scheme
(Fig. 3.8)

Control law
scheduler

Robot Controller

E, pg µ

u = µ(x)

r+

x

z∗,P

Figure 3.11: Control architecture for improved convergence.

of the robot due to (3.10g). When in SBC MODE, the control target is to
realign the robot configuration to enable MPC feasibility at future sampling
instances and the next initial reference candidate is chosen as the current
initial reference, suggesting no forward shift of the RHRP.

While the trivial solution z′ as defined in Section 3.4.2 no longer is a feasible
solution to (3.10) when λ > 0, similar reasoning as for the proof of Theorem 2
can be made to state the following theorem for guaranteed collision avoidance
using the modified control architecture.

Theorem 3: The trajectory for a robot with dynamics (3.1) and initial
position p(t0) ∈ F(t0) under control law (3.12) is collision-free with respect to
the environment E(t), i.e., p(t) ∈ F(t),∀t ≥ t0.

Proof. See proof in [80] (Paper F).

Convergence conditions

The combination of enforcing initial reference movement (λ > 0), stimulat-
ing forward shift of the RHRP when (3.10) is feasible (r+ = r(w∗

0∆t)), and
realigning the robot at instances of infeasibility (SBC MODE) enables the
derivation of conditions for guaranteed convergence. Specifically, convergence
properties can be derived from the set

Cρ̄ = F ρ̄ ⊕ B[0, ρ̄]. (3.15)

The set Cρ̄ can be interpreted as the free space obtained after an expansion
by ρ̄ of each obstacle, followed by a contraction of ρ̄ of the resulting obstacle
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regions. As a consequence, the positions from where guaranteed convergence
cannot be derived, F\Cρ̄, appear in the neighborhood of obstacle intersections,
narrow passages, and in the neighborhood of concave obstacle vertices, as seen
in Fig. 3.12. Hence, Cρ̄ coincides with the original free space in an environment
with convex obstacles where each obstacle maintains a minimum clearance of
ρ̄ from all others. To provide convergence properties to pg, and not only to a
ρ̄-neighborhood of it, the following assumption is made.

Assumption 6. There exists a time instance t′ after which the workspace
boundary and all obstacles stay at least at a distance ρ̄ from the goal, i.e.,
∥pg − pδ∥2 ≥ ρ̄, ∀pδ ∈ δF(t),∀t ≥ t′.

A convergence condition can now be derived dependent on a successful
environment modification at time ts, where ts is the time instance from where
the environment is static, as given by Assumption 3.

Proposition 3: The trajectory for a robot with dynamics (3.1) following
the control law (3.12) converges to pg from any position p(ts) ∈ Cρ̄(ts) if
E⋆(ts) is a DSW.

Proof. See proof in [80] (Paper F).

While the convergence in Proposition 3 is dependent on a successful envi-
ronment modification, it directly follows from Theorem 1 that convergence
to pg from any position p ∈ Cρ̄ is guaranteed if the clearance environment
Eρ̄(ts) = {W ρ̄(ts),Oρ̄(ts)} is DSW equivalent, as stated by the following the-
orem.

Theorem 4: The trajectory for a robot with dynamics (3.1) following the
control law (3.12) converges to pg from any position p(ts) ∈ Cρ̄(ts) if Eρ̄(ts)
is DSW equivalent.

Proof. See proof in [80] (Paper F).

The convergence properties are illustrated in Fig. 3.12 where the results
from simulations using a unicycle robot are shown for two static scenes.

Remark 6: Assumptions 2-5 trivially hold for a static environment while
Assumption 6 can easily be attained by adjustment of ρ̄.

Remark 7: While the derived MPC scheme is using a specific DS for
the RHRP generation, namely SOADS, the approach can be applied also with
other DS methods. Of course, the convergence conditions would need to be
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adjusted accordingly to fit the DS at hand. For instance, by replacing the use
of ModEnv⋆ by a circular approximation of the obstacles, the approach in [50]
can be used with guaranteed convergence conditioned on all circular obstacles
having a minimum distance ρ̄.

(a) Eρ̄ is DSW equivalent and convergence
to pg from initial positions p(t0) ∈ Cρ̄

can be concluded.

(b) E⋆(t0) is a DSW for all given initial po-
sitions and convergence to pg from any
p(t0) ∈ Cρ̄ can be concluded.

Figure 3.12: A static set of obstacles O (grey), and the set F \Cρ̄ (red) from where
convergence cannot be stated. Travelled path (dashed black lines) to
a goal position pg (green star) is shown from different initial positions
p(t0) (black dots).

3.5 Extension to Path-following MPC
The control scheme described in Section 3.4 considers the task of setpoint
stabilization. In some applications, the robot should follow a predefined path
rather than moving to a single point. The predefined, or global path, is here
assumed to be given as a parametrized regular curve

Γ = {p ∈ Rn : θ ∈ [0, θg]→ p = γ(θ)}, (3.16)

where γ : R → Rn is a natural parametrization of Γ. The scalar variable θ
denotes the global path coordinate and is included in the control scheme as
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an internal variable to specify the current global reference position, γ(θ). The
considered robot task is to track Γ from start to end, assuming the path is
obstacle-free. In the presence of obstacles obstructing the route, local path
deviation should be performed to circumvent the obstacle before returning to,
and continue following, the global path.

Compared to the setpoint control scheme, where a single point pg specifies
the target behavior, the global path Γ needs to be included in the control
scheme for path-following. To this end, the generation of the RHRP is ad-
justed. Specifically, the computation of ρ and P carried out by the two left-
most blocks in Fig. 3.8 is substituted with the process outlined in Algorithm
2. This procedure is illustrated in Fig. 3.13. Instead of purely relying on the
dynamics (3.9) to compute the RHRP, an alternative path, Pnom, referred
to as nominal RHRP, is computed which follows the global reference path
Γ. The nominal RHRP is constructed to initially travel along the line from
the initial reference candidate, r+, to the current global reference, γ(θ), after
which it follows Γ from γ(θ) until Pnom has an arc length of Lnom, where
Lnom ∈ [L,∞) is a user-defined parameter. Should the nominal RHRP satisfy
the clearance condition, i.e., Pnom ⊂ F ρ̄, it can safely be used as reference
path in the MPC formulation for a collision-free trajectory generation. If the
nominal RHRP does not achieve the desired clearance, the RHRP is obtained
according to the setpoint strategy from Section 3.4.1 with the current global
reference as setpoint. To ensure that the setpoint is collision-free and at an
appropriate distance from the robot along Γ, the global path coordinate is
first updated such that it maps to the first collision-free position along Γ after
the endpoint of Pnom.
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Algorithm 2: RHRP for path-following
1 Pnom ← l[r+, γ(θ)] and follow Γ from γ(θ) until Pnom has an arc

length of Lnom;
2 if Pnom ⊂ F ρ̄ then
3 P ← Pnom, ρ← ρ̄;
4 else
5 Update θ such that γ(θ) is the first collision-free position (w.r.t.

F ρ̄) along Γ after the endpoint of Pnom;
6 Compute P and ρ as in Section 3.4.1 with pg = γ(θ) as setpoint;
7 if MPC MODE and r+ ∈ B[γ(θ), ρ] then
8 θ ← θ + w∗

0∆t;

(a) The nominal RHRP is collision-free
with respect to the inflated obstacle
(red) and is used as RHRP.

(b) The nominal RHRP intersects the in-
flated obstacle (red) and the RHRP
(green line) is generated using the set-
point stabilization approach with goal
position (green star) set as next collision-
free position after the nominal RHRP.

Figure 3.13: The nominal RHRP (dashed black line) at two time instances where
the global path (yellow line) is obstructed by an obstacle (grey).
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CHAPTER 4

Summary of Included Papers

This chapter provides a summary of the included papers.

4.1 Paper A
Albin Dahlin, Yiannis Karayiannidis
Adaptive Trajectory Generation under Velocity Constraints using Dy-
namical Movement Primitives
Published in IEEE Control Systems Letters,
vol. 4, no. 2, pp. 438–443, Apr. 2020.
©2020 IEEE DOI: 10.1109/LCSYS.2019.2946761 .

This paper presents a method for online temporal scaling of DMPs to en-
force velocity constraints. The formulation of the timing law is derived using
a barrier function which ensures that the trajectory velocity stays within spec-
ified limits while the resulting path shape is preserved. The performance and
stability of the proposed method are proven by Lyapunov-like arguments, and
simulations are presented to verify the result.

The thesis author contributed with the problem formulation, control design,
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theoretical derivation, simulation implementation, and writing of the paper.

4.2 Paper B
Albin Dahlin, Yiannis Karayiannidis
Temporal Coupling of Dynamical Movement Primitives for Constrained
Velocities and Accelerations
Published in IEEE Robotics and Automation Letters,
vol. 6, no. 2, pp. 2233–2239, Apr. 2021.
©2021 IEEE DOI: 10.1109/LRA.2021.3058874 .

This paper presents a discrete-time online temporal scaling of DMPs to si-
multaneously address velocity and acceleration constraints. Direct lower and
upper bounds of the scaling factor corresponding to the trajectory constraints
are derived, and a saturated timing law is introduced, ensuring constraint sat-
isfaction whenever feasible. Proactive scaling with respect to the acceleration
constraints is introduced to decrease occasions of infeasibility. The method is
evaluated by means of simulation and experiments on a 6-degrees of freedom
robotic manipulator.

The thesis author contributed with the problem formulation, control design,
simulation and experimental implementation, and writing of the paper.

4.3 Paper C
Albin Dahlin, Yiannis Karayiannidis
Trajectory Scaling for Reactive Motion Planning
Published in 2022 International Conference on Robotics and Automation
(ICRA),
pp. 5242-5248, May 2022.
©2022 IEEE DOI: 10.1109/ICRA46639.2022.9811657 .

This paper extends the method presented in [68] (Paper B) to apply for a
more general class of DSs, such that the temporal scaling is not specifically
designed for DMPs. Moreover, the timing law is reformulated, offering sev-
eral advantageous characteristics. It provides a simpler interpretation of the
scaling variable, allows for performing full stop of trajectories, enables de-
lay recovery to regain the original trajectory timing, and results in smoother
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4.4 Paper D

trajectories through the introduction of constraint neglect. The method is
evaluated by means of simulation and experiments on a 6-degrees of freedom
robotic manipulator.

The thesis author contributed with the problem formulation, control design,
simulation and experimental implementation, and writing of the paper.

4.4 Paper D
Albin Dahlin, Yiannis Karayiannidis
Creating Star Worlds: Reshaping the Robot Workspace for Online Mo-
tion Planning
Published in IEEE Transactions on Robotics,
vol. 39, no. 5, pp. 3655–3670, Oct. 2023.
©2023 IEEE DOI: 10.1109/TRO.2023.3279029 .

This paper presents an algorithm, ModEnv⋆, which modifies the robot en-
vironment by merging and reshaping the obstacles to obtain a DSW. Several
properties of the starshaped hull are established which are instrumental in the
algorithm design. In particular, two novel concepts related to the starshaped
hull are presented, admissible kernel and starshaped hull with specified kernel,
which are both core components in ModEnv⋆.

The thesis author contributed with the problem formulation, theoretical
derivation, algorithm design, simulation implementation, and writing of the
paper.

4.5 Paper E
Albin Dahlin, Yiannis Karayiannidis
Obstacle Avoidance in Dynamic Environments via Tunnel-following MPC
with Adaptive Guiding Vector Fields
Accepted for publication in 62nd IEEE Conference on Decision and Con-
trol (CDC 2023) .

This paper introduces a control scheme which ensures collision avoidance in
dynamic environments. The method relies on generating a receding horizon
path through a DS motion planning approach in combination with ModEnv⋆,
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developed in [82] (Paper D). By formulating an MPC with path tracking con-
straints, an attractive behavior towards the goal while ensuring collision avoid-
ance is achieved, even though explicit obstacle constraints are not included in
the optimization problem formulation. The effectiveness of the control scheme
is shown by means of simulation.

The thesis author contributed with the problem formulation, control design,
theoretical derivation, simulation implementation, and writing of the paper.

4.6 Paper F
Albin Dahlin, Yiannis Karayiannidis
Autonomous Navigation with Convergence Guarantees in Complex Dy-
namic Environments
To be submitted [ journal article] .

This paper extends the control scheme introduced in [84] (Paper E) to
enhance convergence properties and enable implementation within confined
workspaces. To achieve this, ModEnv⋆, introduced in [82] (Paper D), is
adjusted, and necessary conditions for successful generation of a DSW are
derived. Convergence conditions are also established for the complete set-
point control scheme. Moreover, a path-following control scheme with colli-
sion avoidance is developed as an extension of the setpoint controller. Various
simulations are provided for both the setpoint and the path-following control
scheme to illustrate the efficacy of the methods.

The thesis author contributed with the problem formulation, control design,
theoretical derivation, simulation implementation, and writing of the paper.
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Concluding Remarks and Future Work

A method has been introduced for real-time adjustments of a DS through
temporal scaling, accommodating velocity and acceleration constraints while
preserving preserving path integrity (Question Q1). Although infeasibility
may arise, this approach mitigates such risks by cautiously addressing accel-
eration constraints. Additionally, an approach to online rationally reshape the
robot environment into a DSW has been developed (Question Q2) through
analysis of the starshaped hull and introduction of related concepts. Here,
“rationally” indicates that both robot and goal position remain in the free
space. Finally, it has been shown that convergence properties of a DS method,
namely SOADS [52], can be maintained for a substantial portion of the free
space when adopted in an MPC framework (Question Q3). While the set from
where convergence is guaranteed is slightly reduced compared to a direct use
of SOADS, the method effectively expands the range of environments with
assured convergence, including those not adhering to the DSW criteria.

In summary, this thesis has introduced techniques for integrating robot
constraints into reactive motion planning and control through the utilization
of DS methods, all while maintaining a primary emphasis on preserving desired
characteristics of the DS.

55



Chapter 5 Concluding Remarks and Future Work

5.1 Future Work
The temporal scaling techniques from [67], [68], [77] (Paper A, B, C) address
velocity and acceleration bounds on the DS trajectory. Expanding this method
to accommodate more general constraints is a natural extension. For instance,
including the closed-loop control law within the constraint definition, similar
to [72], would enable imposing joint-level constraints while the DS describes
task space motion, or to impose force/torque constraints.

The theory on starshaped sets derived in [82] (Paper D) is focused on the
starshaped hull. To analyze if similar concepts can be derived for Forest of
Stars and explore feasibility for online derivation of such environments could
lead to a less conservative reduction of the free space. While Theorem 1
provides conditions for guaranteed DSW generation by use of ModEnv⋆, the
conditions are relatively strict. Thus, it is of interest to investigate method
adjustments that broaden the range of environment configurations where suc-
cessful DSW generation can be ensured. Additionally, further research to-
wards reducing computational complexity is essential for compatibility with
high-frequency controllers in 3D environments.

The control scheme for setpoint stabilization and path-following derived in
[80], [84] (Paper E, F) relies on momentary observations of the environment.
In scenarios where predictions of obstacle movements are available, it would
be valuable to adapt the predictive controller to leverage these. Although di-
rectly including obstacle areas as forbidden regions in the MPC would break
the convergence guarantees provided by Theorem 4, such an approach might
prove advantageous in some scenarios. Another development direction in-
volves incorporating dynamics and disturbances in the robot model, allowing
for a robust control law, e.g., using tube-based MPC [85] or corridor MPC
[86]. The current MPC formulation employs a conservative tracking error
constraint based on a known minimum distance to the nearest obstacle. This
could be relaxed by evaluating the actual distance to the obstacles after gen-
erating the RHRP to adapt the error bound dynamically along the RHRP,
similar to [87]. Finally, to ensure the practical applicability of the MPC con-
trol scheme, performance should be assessed in a real-world scenario.
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