



# Model to Full Scale Numerical Considerations in the Context of Cavitation

Qais Khraisat, PhD student

Main supervisor: Rickard Bensow

KM supervisors: Marko Vikström, Martin Persson



# **Introduction: Scaling Dilemma**





# **Introduction: Scaling Dilemma**



#### **O** Scaling effects

✓ Scaling procedures have been developed (ex: ITTC 78 method)



# **Motivation & Objective**

#### **Need for Full Scale Numerical Exploration:**

- ✓ Efforts to reduce radiated noise from a cavitating propeller.
- $\checkmark$  A lack of insight on cavitation dynamics at full scale conditions.



Evaluate numerical considerations to properly resolve cavitation dynamics at full scale condition.

KONGSBERG



The Beginning of a Journey on model to full scale cavitation modeling



11 December 2023



#### **Numerical Considerations for Full Scale Simulations**

- ✓ Boundary layer treatment
- ✓ Roughness Effects
- ✓ Domain Size
- ✓ Grid Resolution
- ✓ Time-step level
- ✓ Gravity effects



#### Full vs Model Scale: Test Case

| Chemical Tanker                     |         |  |
|-------------------------------------|---------|--|
| Length between perpendiculars [Lpp] | 144.3 m |  |
| Ship draught [T]                    | 8.7 m   |  |
| Propeller diameter                  | 5.7 m   |  |
| Number of propellers                | 1       |  |
| Number of blades                    | 4       |  |
| Model Scale                         |         |  |
| Scaling ratio                       | 27.143  |  |

**KONGSBERG** 



#### Full vs Model Scale: Domain





#### Full vs Model Scale: Grid





|                               | Model Scale | Full Scale        |
|-------------------------------|-------------|-------------------|
| Cell count (10 <sup>6</sup> ) | 55.0        | 27.8              |
| Mean Y+ (Hull)                | 0.56        | <mark>84.2</mark> |
| Mean Y+ (Propeller)           | 0.39        | 0.28              |



# **Full vs Model Scale: Numerical Methods**

- ✓ Software: STARCCM+.
- ✓ RANS k- $\omega$  SST, 2<sup>nd</sup> order schemes
- ✓ Solution initialized steady state with MRF approach before switching to transient sliding mesh.
- $\checkmark$  Time step: 1024 time-steps per revolution.
- ✓ At model scale experiments, KQ similarity was achieved by adjusting the inlet velocity.
- ✓ Schnerr-Sauer Cavitation model



# **Experiments: Dummy Hull Cavitation Test**

**Kongsberg Cavitation Tunnel** 







## **Predicted Wake & Cavitation**



#### Model vs Full Scale: Wake

Model Scale



Full Scale (smooth wall)





# **Results: Wall Function**

• Wall function does not resolve the re-entrant jet.





#### **Results: Predicted Cavitation Pattern**





# **Results: Cavitation Pattern [0 deg]**





## **Results: Cavitation Pattern [10 deg]**





# **Results: Cavitation Pattern [20 deg]**





# **Results: Cavitation Pattern [40 deg]**







# **Predicted Pressure Pulses**



#### **Results: Pressure Pulses (Transducers Location)**





11 December 2023



#### **Results: Pressure Pulses From Cavitation**



11 December 2023



#### 1<sup>st</sup> Order Blade Pass Frequency (BPF)







#### 2<sup>nd</sup> Order Blade Pass Frequency (BPF)







#### **3<sup>rd</sup> Order Blade Pass Frequency (BPF)**



11 December 2023



#### 4<sup>th</sup> Order Blade Pass Frequency (BPF)





# **Conclusions & Future Work**

- Wall function is unable resolve the re-entrant jet.
- Wake in full scale condition has a narrow window which changes extent and dynamics the cavity.
- Predicted pressure pulse levels are observed to be higher in model scale.
- Future work will include (but not limited to) grid study, time-step level study, noise levels.



#### **Acknowledgements**

- The research is co-funded by Kongsberg and Lighthouse Swedish maritime competence centre as part of the IP\_C\_2022 PUB Prediction models for radiated ship noise project.
- Special thanks to Chalmers centre for Computational Science and Engineering for providing the computational resources.









#### CHALMERS UNIVERSITY OF TECHNOLOGY