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The spectrum of self-adjoint extensions associated with
exceptional Laguerre differential expressions

Dale Frymark and Jessica Stewart Kelly

Abstract. Exceptional Laguerre-type differential expressions form an infinite class of Schrö-
dinger operators having rational potentials and one limit-circle endpoint. In this manuscript,
the spectrum of all self-adjoint extensions for a general exceptional Laguerre-type differential
expression is given in terms of the Darboux transformations which relate the expression to
the classical Laguerre differential expression. The spectrum is extracted from an explicit Weyl
m-function, up to a sign.

The construction relies primarily on two tools: boundary triples, which parameterize the
self-adjoint extensions and produce the Weylm-functions, and manipulations of Maya diagrams
and partitions, which classify the seed functions defining the relevant Darboux transforms. Sev-
eral examples are presented.
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1. Introduction

Introduced in [33, 34] in 2009, exceptional orthogonal polynomials (XOPs) describe
a class of Sturm–Liouville polynomial families where some (exceptional) degrees
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of polynomials are missing. These XOPs form eigenfunctions of rational Sturm–
Liouville equations, but fall outside of the restrictions of the classical Böchner the-
orem [4] that characterizes the classical orthogonal polynomial (COP) systems of
Hermite, Laguerre and Jacobi. The properties of XOPs have been widely studied over
the past 13 years [18,20,22,29] as this area has brought forth interesting connections
between XOP families and their COP relatives as well as surprising observations such
as the fact that although a finite number of degrees are omitted from the sequence of
XOP solutions, each family is complete in the associated natural Hilbert space setting.

The motivation of [18] to study these families was twofold—first, in response
to a generalized Böchner problem posed in [35] and second, an interest in quantum
mechanics. As such, there are numerous applications to mathematical physics. Per-
haps most significantly, XOPs are, up to a gauge factor, eigenfunctions of exactly
solvable potentials obtained by taking Darboux transforms of potentials, called ratio-
nal extensions, from quantum mechanics [23, 30, 36]. In particular, the harmonic
oscillator, isotonic oscillator and trigonometric Darboux–Pösch–Teller potential have
rational extensions defined by Hermite, Laguerre and Jacobi polynomials, respec-
tively. Many of these rational extensions are translationally shape invariant [16], and
their corresponding Darboux transforms are usually called supersymmetric quantum
mechanical (SUSY QM) partnerships.

Specific types of XOPs were initially introduced individually; well-known XOPs
include Hermite XOPs [17], Type I-III Laguerre XOPs [26] and Type I and II Jacobi
XOPs [25]. The spectral properties of the operators in each case have also been deter-
mined [2, 17, 25–27]. However, it was shown in [14] that there are an infinite number
of distinct XOP classes. Although all XOP families are derived from a COP fam-
ily, most of them do not fit into the finite pre-existing “type” classifications. In this
manuscript, the focus will be on Laguerre-type XOP families and in particular, the
associated spectral analysis.

Generally speaking, every XOP family is related to a COP family by a sequence
of Darboux transformations [19, 21, 24, 37]. When a suitable Darboux transformation
is applied to a COP, the result is an XOP that is an eigenfunction for an excep-
tional eigenvalue problem. Darboux transformations are often called “state-deleting”
because when applied to an operator with a set of eigenfunctions (i.e. an operator with
COP solutions) they remove one or more of the eigenfunctions from this set. With
regard to the spectrum, which consists only of eigenvalues, the term “state-deleting” is
misleading as the set may remain the same or even include new points after a Darboux
transform is performed. Also, it is not immediately clear how the Darboux transfor-
mation impacts different self-adjoint extensions of the same symmetric differential
expression; this is the effect of the Darboux transformation on the spectrum that we
aim to study. For instance, we can ask whether another extension compensates for
these removed eigenfunctions in some way? Perturbation theory gives two immediate
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restrictions. First, because the spectrum of one self-adjoint extension is discrete, the
spectrum of all self-adjoint extensions must be discrete, see e.g. [38, 39]. Second, the
eigenvalues of extensions must change continuously with the parameterization of the
self-adjoint extension.

To study the effect of the Darboux transformation on self-adjoint expressions,
we exploit the intertwining nature of the COP and XOP expressions. If the classi-
cal Laguerre expression is given in Schrödinger form, Darboux transforms can be
classified via their changes to the potential thanks to the well-known Darboux–Crum
formulas [8]. These changes are given by a Wronskian whose entries are eigenfunc-
tions of the COP expression. The process of determining the effect of the Darboux
transformation on the spectrum requires manipulating general Wronskians into a stan-
dard form from which information can be extracted. Fortunately, this study may utilize
shape invariance where many multi-step Darboux transformations can be shown to be
equivalent up to a constant. The manuscripts [6] and [16] both give equivalence rela-
tions for Wronskians, and the methods used therein can be adapted for our purposes.

To exploit spectral information from the manipulated Wronskians, we use the
framework of boundary triples. This perspective is unique as compared to other spec-
tral analyses of XOP families. The theory of boundary triples provides a natural
parameterization of all self-adjoint extensions in order to produce a Weylm-function.
The Weyl m-function associated with an operator provides all of the relevant spec-
tral data. Here we are primarily focused on only the location of eigenvalues, but is
possible to extract the spectral measure and even eigenfunctions [7]. The challenge
of applying the theory in this context is that solutions to the general XOP must be
normalized. This normalization simplifies to evaluating the transformed solution at
x D 0, which is achievable thanks to a standard form resulting from manipulation
of the general Wronskians. Crucially, boundary triples for general XOP expressions
are very easy to obtain, as they will carry the same structure as in the COP Laguerre
expression with adjusted parameters.

Structure of the paper

The contents of this paper are as follows. Section 2 reviews some essential facts about
the formulation of XOP families via Darboux transforms as well as the basics of
boundary triples and Weyl m-functions as they pertain to XOP expressions. Maya
diagrams are introduced as they are important to organizing information about the
Wronskians associated with a Darboux transformation. Section 3 contains a relatively
simple example, the Type I Laguerre XOP differential equation. Boundary triples are
used to complete the spectral analysis of the Type I Laguerre XOP family of operators.
This serves as a motivating example for the construction of the general methods in
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later sections. Note that some of the results in this example overlap with those of
[2, 26].

A number of assumptions are made throughout the text as their need arises, but
for the convenience of the reader we collect them here: Assumptions 4.2, 4.5, 5.1, 5.2
and 7.2. Section 4 introduces the general notation and concepts necessary to discuss
the seed functions and Wronskians that will define solutions of the XOP family. The
Wronskians are defined by two Maya diagrams of seed functions: M1 and M2. This
section also sets the parameters for the underlying Hilbert space of the XOP family in
terms of these Maya diagrams.

Section 5 begins with the Frobenius analysis showing that the XOP expression
has the limit-circle endpoint x D 0 for similar parameter choices as the COP expres-
sion. Then we prove two central results: Theorems 5.3 and 5.5. These theorems detail
the shifting of the Maya diagrams from a general position into canonical and conju-
gate canonical positions, tracking constants and parameters along the way. The result
of this shifting process is two solutions in standard form. Section 6 takes the Wron-
skians, which represent solutions of the XOP family, in these standard forms, and
evaluates them at x D 0. Effectively, dividing the solutions by these constants nor-
malizes them with respect to the sesquilinear form. The resulting constants depend
on many parameters, including M1, M2, ˛ and the total number of seed functions in
each position. Section 7 combines the results of the previous two sections to prop-
erly augment the solutions of the XOP family in order to build a boundary triple.
Construction of a general deficiency element then yields Weyl m-functions for each
self-adjoint extension in the family, as shown in Corollary 7.7. A number of other
observations and remarks are made in order to properly interpret the resulting expres-
sions. Section 8 illustrates the results of the manuscript by explicitly applying them
to a previously unknown XOP family. The spectral properties of this family are sur-
prising and, although any inverse spectral theory remains elusive, encourages future
investigation. Lastly, a general summary of the work and closing remarks are made in
Section 9.

2. Preliminaries

Generally, a XOP sequence ¹pnºN0nA, where pn is a polynomial of degree n and
A � N0 is a non-empty finite set, satisfies the following properties:

(i) each y D pn is a solution to the associated second-order eigenvalue prob-
lem;

(ii) the associated eigenvalue problem admits no polynomial eigenfunctions
having degree n 2 A;
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(iii) the sequence ¹pnºN0nA is orthogonal on an open interval with respect to a
positive measure w; and

(iv) all moments ¹�nº1nD0 of w exist and are finite.

Each XOP expression may be written as the composition of first-order operators or
Darboux transformations; these first-order operators are derived from COP expres-
sions. We outline the process below.

Suppose ` is a second-order expression of the form

`Œy�.x/ D p.x/y00.x/C q.x/y0.x/C r.x/ (2.1)

whose associated eigenvalue equation is

`Œy� D �y; (2.2)

where � 2 C. Define rational functions

P.x/ D exp
� xZ

q.z/

p.z/
dz

�
; W.x/ D

P.x/

p.x/
; R.x/ D r.x/W.x/:

Multiplying (2.2) by W.x/ yields the associated symmetric Sturm–Liouville form
of (2.1)

.Py0/0 CRy D �Wy:

It follows that W.x/ is the weight function associated with the expression `.
Two second-order expressions ` and Ò are gauge-equivalent if there exists a ratio-

nal function � such that
Ò D �`��1:

In order to derive the XOP operator from its COP counterpart, we first need to
rewrite ` as a composition of two first-order operators. A quasi-rational function � is a
quasi-rational eigenfunction for the expression ` if `Œ��D �� for �2C. For example,
in the case of the Laguerre COP, the quasi-rational eigenfunctions that, under certain
admissibility conditions, produce XOP systems are

�1.x/ D L
˛
m.x/; (2.3)

�2.x/ D e
xL˛m.�x/; (2.4)

�3.x/ D x
�˛L�˛m .x/; (2.5)

�4.x/ D e
xx�˛L˛m.�x/: (2.6)

The quasi-rational eigenfunction (2.5) produces the Type I Laguerre XOP family. The
reader is directed to Section 8 for more details into the decomposition of the COP
Laguerre expression and formulation of the Type I expression.



D. Frymark and J. Stewart Kelly 996

Proposition 2.1 ([14, Proposition 3.5]). For a second-order differential operator `Œy�
having rational coefficients, let � be a quasi-rational eigenfunction of ` with eigen-
value �, and let b.x/ be an arbitrary, non-zero rational function. Define rational
functions

w D
�0

�
; Ob D

p

b
; Ow D �w �

q

p
C

Ob

b

and first-order operators A and B by

AŒy� D b.y0 � wy/ and BŒy� D Ob.y0 � Owy/: (2.7)

Then the operators A and B of (2.7) are used to form a rational factorization

` D BAC �;

of `.

Given a rational factorization, the partner operator Ò is defined via

Ò D AB C �:

The operator Ò will be a second–order operator of the form

ÒŒy�.x/ D p.x/y00.x/CQ.x/y0 CR.x/y.x/ (2.8)

where Q and R are rational functions defined by

Q D q C p0 �
2pb0

b
;

R D �p. Ow0 C Ow2/ �Q Ow

D r C q0 C wp0 �
b0

b
.q C p0/C

�
2
�b0
b

�2
�
b00

b
C 2w0

�
p;

W D
pW

b2
D
P

b2
:

When b and � are suitably chosen and ` is a COP expression, the partner operator
Ò produces an XOP operator having weight function W . The reader is directed to [14,
Proposition 3.6] for the suitable conditions on b. The polynomial part of b is important
for future calculations and is a generalized Laguerre polynomial in the context of
Laguerre XOP families, see (4.9).

The transformation A WD `! Ò is a (rational) Darboux transformation. In fact,
with appropriate assumptions, this process may be iterated n 2 N times to produce
a factorization chain or a Darboux transformation of size n. These complex Darboux
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transformations are used to generate XOP systems. We emphasize that factorizations
of a COP are not unique; and herein provides the opportunity for many XOP families.

One crucial property that arises from this construction is the following.

Lemma 2.2 (Intertwining property [14, Proposition 3.2]). If ` and Ò are related via a
rational Darboux transformation, then the following intertwining relations hold:

A` D ÒA; `B D B Ò:

In particular, if y� is an eigenfunction of `Œy� D �y, then Qy� WD AŒy�� satisfies
ÒŒ Qy�� D � Qy�.

To simplify our discussion, we will refer to all self-adjoint extensions of a sym-
metric operator as a “family.” XOP and COP families thus refer to families that
contain one extension which possesses a set of XOPs or COPs. The notation ` and
Ò will often be used to denote the classical and exceptional symmetric differential
expressions, respectively, that generate families. The general Laguerre COP expres-
sion is dependent upon a parameter ˛ and it follows that both ` and Ò also have
dependency upon this parameter. When emphasis on the parameter is needed, we
will use `˛ and Ò˛ for ` and Ò, but for ease of notation, the parameter will often be
suppressed. Additionally, when relevant, a superscript of I, II or III may be included
to indicate the XOP Laugerre type.

Of course, when the differential expressions ` or Ò are associated with a specific
domain they are operators—and whether they are self-adjoint or not depends on this
domain. Two important symmetric (and not self-adjoint) operators associated with a
general differential expression are the maximal and minimal operators. The following
setup is centered around the XOP expression Ò, as this is the most common setting we
will use, but analogous definitions for ` hold.

Definition 2.3 ([31, Section 17.2]). The maximal domain of ÒŒ � � is given by

Dmax D Dmax. Ò/ WD ¹f W .0;1/! C j f; Pf 0 2 ACloc.0;1/I

f; ÒŒf � 2 L2Œ.0;1/;W �º:

The associated maximal operator

LmaxWDmax ! L2Œ.0;1/IW �

is defined to be

LmaxŒf � D ÒŒf �; f 2 Dmax:

The designation of “maximal” is appropriate in this case because Dmax is the
largest possible subspace that Òmaps back into L2Œ.0;1/;W �.
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The sesquilinear form associated to the expression Ò can be explicitly calculated
by integration by parts for f; g 2 Dmax as

Œf; g� Ò.x/ D P.x/Œf .x/g
0.x/ � f 0.x/g.x/�: (2.9)

Theorem 2.4 ([31, Section 17.2]). The two limits Œf; g� Ò.1/ WD limx!1� Œf; g� Ò.x/

and Œf; g� Ò.0/ WD limx!0C Œf; g� Ò.x/ exist and are finite for f; g 2 Dmax.

Definition 2.5 ([31, Section 17.2]). The minimal domain of ÒŒ � � is given by

Dmin D Dmin. Ò/ WD ¹f 2 DmaxW Œf; g� Òj
1
0 D 0 8g 2 Dmaxº:

The associated minimal operator

LminWDmin ! L2Œ.0;1/IW �

is defined to be

LminŒf � D ÒŒf �; f 2 Dmin:

The maximal and minimal operators Lmax and Lmin are defined as the symmetric
operators acting via Ò on the domains Dmax. Ò/ and Dmin. Ò/, respectively. By [31,
Section 17.2], these operators are adjoints of one another, i.e. .Lmin/

� D Lmax and
.Lmax/

� D Lmin. Self-adjoint operators associated with Ò are defined via the theory
of boundary triples in the next subsection.

2.1. Boundary triples

The principal tools for extracting spectral information from self-adjoint extensions of
symmetric differential operators in this manuscript are the Weyl m-functions that are
generated by boundary triples and the parameterization of all self-adjoint extensions.
For completeness, some basics from the theory of boundary triples are included here.
The content of this subsection is also found in [3, 7], which the interested reader
may consult for more details. For the purposes of this paper, we restrict ourselves to
the simplified case of Sturm–Liouville differential operators rather than more general
linear relations. Additionally, we further narrow the scope of discussion as the XOP
Laguerre differential expressions will have deficiency indices .1; 1/, see Section 4.

Let Lmax and Lmin denote the symmetric (and not self-adjoint) XOP Laguerre
operators defined by the expression Ò acting on the domains given in Definitions 2.3
and 2.5, as above, with H D L2Œ.0;1/; W.x/dx�, with W.x/ > 0 a.e. in .0;1/ and
W.x/ 2 L1locŒ.0;1/; dx�.
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Definition 2.6 ([3, Definition 2.1.1]). A boundary triple for Lmax, denoted ¹C; �0;
�1º, is composed of the boundary space C and two surjective linear maps

�0; �1WDmax ! C

for which the Green’s identity

hLmaxf; giH � hf;LmaxgiH D h�1f; �0giC � h�0f; �1giC; (2.10)

holds for all f; g 2 Dmax.

Notice that the left-hand side of (2.10) is simply Œ � ; � � Ò.

Definition 2.7 ([3, Definition 1.4.9]). Let � 2 C. The space

N� .Lmax/ WD ker.Lmax � �/;

is called the defect subspace of Lmin at the point � 2 C.

Elements of these defect subspaces are referred to as deficiency elements. The
usual positive and negative defect spaces are then simply Ni .Lmax/ and N�i .Lmax/,
respectively. It should be clear that boundary triples are not typically unique. Indeed,
given a self-adjoint extension H of Lmin, Lmax can be decomposed into a direct sum
of dom.H/ and a defect space. This allows maps �0 and �1 to be defined so that
dom.H/ D ker.�0/ and ¹C; �0; �1º form a boundary triple, see [3, Theorem 2.4.1].

In our context, the boundary triples for Lmax will be formed via quasi-derivatives.

Definition 2.8. Let u and v be linearly independent real solutions of the equation
.Lmax � �0/y D 0 for some �0 2 R and assume that the solutions are normalized by
Œu; v� Ò D 1. For f 2 Dmax, the quasi-derivatives of f are induced by the normalized
solutions u, v and defined as complex functions on .0;1/ given by

f Œ0� WD Œf; v� Ò and f Œ1� WD �Œf; u� Ò:

Note, that in practice, the minus sign outside the sesquilinear form in the second
quasi-derivative is absorbed into the definition of u. These quasi-derivatives naturally
define two maps and self-adjoint extensions for exceptional Laguerre operators:

�0f WD f
Œ0�.0/; D1 WD ¹f 2 DmaxWf 2 ker.�0/º; (2.11a)

�1f WD f
Œ1�.0/; D0 WD ¹f 2 DmaxWf 2 ker.�1/º: (2.11b)

Recall that for all f 2Dmax the quasi-derivatives f Œ0�.0/ and f Œ1�.0/ are well defined
due to Theorem 2.4. All self-adjoint extensions of Lmin are in one-to-one correspon-
dence with

D� WD ¹f 2 DmaxW ��0f D �1f º; (2.12)
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where � 2 R [ ¹1º. The case � D 1 is interpreted as representing the operator
L1; this case technically represents the linear relation ¹0;Rº. The only other one-
dimensional linear relation that is not an operator, ¹R; 0º, clearly corresponds to L0.
The definitions can be made rigorous by appealing to the corresponding semi-bounded
forms of the operators; interested readers should consult [7, Remark 3.7]. The above
definitions are adequate for our purposes.

Also note that the extension L0 is identified as the Friedrichs extension when
u is the principal solution by [28]: the extension whose semi-bounded form has the
greatest lower bound. On the other hand, if Lmax is positive and v is a non-principal
solution, L1 is the Krein–von Neumann extension, see [3, Definition 5.4.2]. This
structure immediately allows for the definition of a Weyl m-function.

Definition 2.9 ([3, Definition 2.3.1, 2.3.4]). Let ¹C; �0; �1º be a boundary triple for
Lmax and � 2 C. Then

�.L1/ 3 � 7!M1.�/ D �1.�0 � N�.Lmax//
�1;

where � denotes the restriction, is called the Weyl m-function associated with the
boundary triple ¹C; �0; �1º.

In this context, the spectrum of L1 is discrete and the difference of the resolvents
of L1 and L� is an operator of rank one. Thus, the spectrum of the self-adjoint
operator L� is also discrete. The following proposition can be found in various forms
in [9, Proposition 1], [13, Proposition 3.5], or [3, Theorem 2.6.5], but in our context
has a slightly altered notation.

Proposition 2.10. Let ¹C; �0; �1º be the boundary triple for Lmax, � 2R[ ¹1º and
� 2 �.L1/. Then

� 2 �p.L� / () 0 2 �p.� �M1.�//:

Moreover, we have dim ker.L� � �/ D dim ker.� �M1.�//.

For � 2 �.L0/\ �.L1/, the spectral properties of L� can thus be described with
the help of the function

M� .�/ D .� �M1.�//
�1; (2.13)

see [3, (3.8.7)].
The relationship M0 D �M

�1
1 is immediately apparent. Note that M0.�/ can be

obtained without exploiting (2.13) by simply switching the definitions of the maps
�0 and �1. A similar construction that the reader may find useful for more general
Sturm–Liouville operators is available in [7, 12].
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Now, fix a fundamental system .u1. � ; �/I u2. � ; �// for the equation

.Lmax � �/f D 0

by the initial conditions�
u
Œ0�
1 .0; �/ u

Œ0�
2 .0; �/

u
Œ1�
1 .0; �/ u

Œ1�
2 .0; �/

�
D

�
1 0

0 1

�
: (2.14)

Linear combinations of these solutions then define general elements of N�.Lmax/ in
a standard way.

Proposition 2.11 ([3, Proposition 6.4.9]). Let �0 and �1 be defined as in (2.11).
Then ¹C; �0; �1º is a boundary triple for Lmax. Moreover, if � 2 CnR and �.x; �/
is a nontrivial element in N�.Lmax/, then �Œ0�.0; �/ ¤ 0 and the Weyl m-function is
given by

M1.�/ D
�Œ1�.0; �/

�Œ0�.0; �/
:

It is then possible to transform the boundary triple so thatM� .�/ naturally emerges
from Proposition 2.11 by using [3, (6.4.8)]:

M� .�/ D
1C �M1.�/

� �M1.�/
; � 2 CnR: (2.15)

This means that a corresponding Weyl m-function can be accessed for each self-
adjoint extension in the XOP family, and a spectral analysis can be completed by
finding the poles of these m-functions.

2.2. Maya diagrams

Maya diagrams will be used to indicate the indices of seed functions within the Wron-
skians that define Darboux transformations. These Maya diagrams are vitally impor-
tant to the construction of XOPs and will be manipulated throughout the manuscript.
We include a brief overview here that mostly follows [6]. More information on Maya
diagrams, their history, Young diagrams, and partitions relating to XOP families may
be found in [6, 16, 32].

A Maya diagram M is an infinite subset of integers that contains finitely many
non-negative integers and excludes finitely many negative integers. Visually, imagine
an infinite row of boxes with a fixed origin. These boxes are either filled (the integer
belongs to M ) or empty (the integer does not belong to M ). Thus, M is character-
ized by two finite sequences of integers: the positive integers included in M and the
negative integers excluded by M .
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Each of the non-negative integers ni in M are labeled to create a decreasing
sequence by

n1 > n2 > � � � > nr1 � 0;

where r1 is the number of filled boxes to the right of the origin. If no boxes are filled
to the right of the origin, the sequence is empty and r1 D 0. Likewise, the number
of empty boxes to the left of the origin can be denoted as r4, the negative integers k
corresponding to these boxes assigned values via n0 D �k � 1 and

n01 > n
0
2 > � � � > n

0
r4
� 0:

The Maya diagram can then be succinctly described by these two sequences as

M D .n01; n
0
2; : : : ; n

0
r4
j n1; n2; : : : ; nr1/:

This notation comes from the Frobenius symbol of an integer partition and agrees
with the classical notation when r1 D r4.

As an example, letM be the Maya diagramM D .5;2;1 j 4;3;1/, whose graphical
representation may be seen in Figure 1.

�1 0

M D .5; 2; 1 j 4; 3; 1/

Figure 1. Maya diagram.

All boxes to the left of those shown in Figure 1 are filled, while those to the
right are empty. The origin of a Maya diagram may be shifted to the left or right by
adding or subtracting, respectively. The Maya diagram zM DM C 3 is represented by
Figure 2.

�1 0

zM D .2 j 7; 6; 4; 2/

Figure 2. Shifted Maya diagram.
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In particular, the length of the two subsequences, r1C r4, is not necessarily stable
under such translations: M has 6 indices and zM has 5.

A Maya diagram is in canonical form if there are no empty boxes to the left of
the origin, but the first box to the right is empty. This form is useful for comparing
diagrams and can always be obtained in the current context by applying a shift. If
M C t puts a Maya diagram M into canonical form for some t 2 Z, we denote this
shift as t D t .M/. In the context of the above example, t .M/ D 6 D n01 C 1.

Alternatively, the conjugate canonical form of a Maya diagram is the position
when there are no filled boxes to the right of the origin, but the first box to the left is
filled. The required shift to put M into conjugate canonical form is denoted by t 0 D
t 0.M/. In the above example, t 0.M/ D �.n1 C 1/ D �5 and we have the associated
representation in Figure 3.

�1 0

M � 5 D .10; 7; 6; 4; 2 j ;/

Figure 3. Conjugate canonical form Maya diagram.

One of the goals of Section 5 will be to manipulate the Maya diagramsM1 andM2

of (4.5) and (4.6) so that they are either in canonical or conjugate canonical position
and can therefore each be described by a single finite decreasing sequence of non-
negative integers. Naturally, such sequences describe a partition, see (4.12) and (4.13).
Hence, any given Maya diagram gives rise to a partition, when shifted into canonical
form, and a conjugate partition, when shifted into conjugate canonical form.

3. Motivating example

We begin with an example: the Type I Laguerre exceptional family. The spectral prop-
erties of the extension L0 are already known from [26], where explicit knowledge of
the XOP system and the respective polynomials were used. However, the authors find
it instructive to present the construction of the boundary triple andm-functions in this
specific context before moving on to the general setting.

The classical Laguerre differential expression `˛ acts via

`˛Œy�.x/ WD �xy00.x/C .x � ˛ � 1/y0.x/: (3.1)
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For fixed m 2 N, `˛Œy�.x/ has the rational factorization

�`˛ D BI;˛m ı AI;˛m C ˛ CmC 1; (3.2)

where

AI;˛m Œy� WD L˛m.�x/y
0.x/ � L˛C1m .�x/y.x/; (3.3)

BI;˛m Œy� WD
xy0.x/C .1C ˛/y.x/

L˛m.�x/
; (3.4)

whereL˛m is the classical Laguerre polynomial of degreem. The rational factorization
in (3.2) is used to define the differential expression ÒI;˛m for the Type I Laguerre XOP
family

ÒI;˛
m Œy�.x/ D �.AI;˛�1m ı BI;˛�1m Œy�.x/C ˛ Cm/

D �xy00.x/C
�
x � ˛ � 1C 2x

.L˛�1m .�x//0

L˛�1m .�x/

�
y0.x/

C

�2˛.L˛�1m .�x//0

L˛�1m .�x/
�m

�
y.x/:

Observe that, as opposed to the classical Laguerre differential expression `˛ , the
exceptional expression ÒI;˛m has rational coefficients. As a result, in the exceptional
case, ÒI;˛m Œy� D �y contains no polynomial solutions of degrees 0; 1; : : : ; m � 1. The
weight function associated with the XOP family is

WI;˛
m WD

x˛e�x

ŒL˛�1m .�x/�2
:

In the Type I Laguerre XOP case, ˛ � 1 > �1 to ensure that L˛�1m .�x/ has no roots
in Œ0;1/ and all moments of W

I;˛
m exist and are finite. For the remainder of this

motivating example, ˛ > 0. The associated maximal operator Lmax acts via ÒI;˛m on
the maximal domain

Dmax WD ¹f W .0;1/! C j f; x˛C1e�xf 0 2 ACloc.0;1/I

f; ÒI;˛m Œf � 2 L2Œ.0;1/;W I;˛
m �º:

For f; g 2 Dmax and x 2 .0;1/, the sesquilinear form is given by

Œf; g� Ò.x/ WD
x˛C1e�x

ŒL˛�1m .�x/�2
Œf .x/g0.x/ � f 0.x/g.x/�:

Frobenius analysis shows the endpoint x D 0 is limit-circle for ÒI;˛m when ˛ 2 .0; 1/;
and the endpoint x D1 is limit-point for ˛ > 0 [26, Theorem 3.3]. Observe that the
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functions

Qy1 WD �
ŒL˛�1m .0/�2

˛
and Qy2 WD x

�˛;

are both in L2Œ.0;1/;WI;˛
m � and that Qy2 is a particular solution to ÒI;˛m Œy� D 0.

Remark 3.1. The other particular solution to ÒI;˛m Œy�D 0 is actuallyL˛�1m .x/, not Qy1.
However, Qy1 does capture the correct asymptotic behavior of the solution near 0.
Indeed, when defining maps using quasi-derivatives with solutions that are written
as power series, it is easy to see that only the lowest-order term plays any role, see,
i.e., [12, Section 3.1]. The use of Qy1, as opposed to L˛�1m .x/, therefore makes all
calculations much simpler.

Together, these two functions define maps using the quasi-derivatives:

�0f WD f
Œ0�.0/ D Œf; Qy2� Ò.0/ D lim

x!0C
�
f̨ .x/C xf 0.x/

ŒL˛�1m .0/�2

and

�1f WD f
Œ1�.0/ D Œf; Qy1� Ò.0/ D lim

x!0C

x˛C1

˛
f 0.x/:

Using results of Subsection 2.1, it is easy to show that ¹C; �0; �1º is a boundary
triple for Lmax. Note that the choice of Qy1 immediately yields Œ Qy1; Qy2� Ò.0/ D 1. The
boundary triple naturally defines two self-adjoint extensions L0 and L1 (suppressing
the dependence on m and ˛) that act via ÒI;˛m on the domains

dom.L0/ D ¹f 2 DmaxW�1.f / D 0º;

dom.L1/ D ¹f 2 DmaxW�0.f / D 0º;

respectively.
The two linearly independent solutions of the Laguerre differential equation `˛�1

are given by confluent hypergeometric functions:

M.��; ˛; x/ D 1F1.��; ˛; x/ .for ˛ … �N0/; (3.5)

x�˛C1M.1 � � � ˛; 2 � ˛; x/ .for ˛ … N > 1/: (3.6)

As a consequence of Lemma 2.2, the Type I Laguerre XOP expression is therefore
intertwined with the classical Laguerre expression `˛�1. Therefore, a fundamental
system for the equation .Lmax � �/f D 0 can be found by plugging the solutions
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of (3.5) and (3.6) into the Darboux transformation �AI;˛�1 of (3.3). Thus

�˛1;m.x; �/ WD � A
I;˛�1ŒM.��; ˛; x/�

D
�.mC ˛/

�.mC 1/�.˛/

h˛ Cm
˛

M.�m; ˛ C 1;�x/M.��; ˛; x/

C
�

˛
M.�m; ˛;�x/M.��C 1; ˛ C 1; x/

i
;

and

�˛2;m.x; �/ WD � A
I;˛�1Œx�˛C1M.1 � � � ˛; 2 � ˛; x/�

D
�.mC ˛ C 1/

�.mC 1/�.˛ C 1/
x�˛

�

h˛.1 � ˛/
mC ˛

M.�m; ˛;�x/M.1 � � � ˛; 1 � ˛; x/

C xM.�m; ˛ C 1;�x/M.1 � � � ˛; 2 � ˛; x/
i

are two linearly independent solutions of .Lmax � �/f D 0. Furthermore, a straight-
forward calculation shows�

.�˛1;m/
Œ0�.0; �/ .�˛2;m/

Œ0�.0; �/

.�˛1;m/
Œ1�.0; �/ .�˛2;m/

Œ1�.0; �/

�
D

�
1=C ˛m 0

0 1=D˛
m

�
; (3.7)

where

C ˛m.�/ WD �
�.mC ˛/

.�CmC ˛/�.˛/�.mC 1/
and D˛

m.�/ WD �
�.mC 1/�.˛/

.1 � ˛/�.mC ˛/
:

The fundamental system composed of u1.x; �/ and u2.x; �/ must satisfy both
.Lmax � �/f D 0 and the initial conditions�

u
Œ0�
1 .0; �/ u

Œ0�
2 .0; �/

u
Œ1�
1 .0; �/ u

Œ1�
2 .0; �/

�
D

�
1 0

0 1

�
:

If we suppress dependence on ˛ and m, this can be accomplished by setting

u1.x; �/ WD C
˛
m.�/�

˛
1;m.x; �/;

u2.x; �/ WD D
˛
m.�/�

˛
2;m.x; �/:

It remains only to compute the explicit Weylm-function and extract spectral infor-
mation for each self-adjoint extension. A general deficiency element associated with
the subspace N�.`

˛�1/, see Definition 2.7, satisfying .`˛�1 � �/f D 0 and denoted
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by �.x; �/ may be written via the Tricomi confluent hypergeometric function [5,
(13.2.42)] as

U.��; ˛; x/ D
�.1 � ˛/

�.1 � ˛ � �/
M.��; ˛; x/

C
�.˛ � 1/

�.��/
x�˛C1M.1 � � � ˛; 2 � ˛; x/:

The intertwining property in Lemma 2.2 implies that a general deficiency element � Ò
of .Lmax � �/f D 0 can be written as

� Ò.x; �/ D � A
I;˛�1ŒU.��; ˛; x/�

D
�.1 � ˛/

�.1 � ˛ � �/
.�AI;˛�1ŒM.��; ˛; x/�/

C
�.˛ � 1/

�.��/
.�AI;˛�1Œx�˛C1M.1 � � � ˛; 2 � ˛; x/�/

D
�.1 � ˛/

�.1 � ˛ � �/
�˛1;m.x; �/C

�.˛ � 1/

�.��/
�˛2;m.x; �/

D
�.1 � ˛/

C ˛m.�/�.1 � ˛ � �/
u1.x; �/C

�.˛ � 1/

D˛
m�.��/

u2.x; �/:

Hence, the initial conditions mean

�
Œ0�

Ò
.0; �/ D

�.1 � ˛/

C ˛m.�/�.1 � ˛ � �/
and �

Œ1�

Ò
.0; �/ D

�.˛ � 1/

D˛
m�.��/

:

Proposition 2.11 implies that if � 2 �.L1/ the Weyl m-function for the extension
L1 is given by

M1.�/ D
�
Œ1�

Ò
.0; �/

�
Œ0�

Ò
.0; �/

D

� �.mC ˛/

�.mC 1/�.˛/

�2 .1 � ˛/�.˛ � 1/�.1 � ˛ � �/
.�CmC ˛/�.��/�.1 � ˛/

D �ŒL˛�1m .0/�2
�.˛/�.1 � ˛ � �/

.�CmC ˛/�.��/�.1 � ˛/
:

The spectrum of the self-adjoint operator L1 are those points which are poles of
M1.�/. Recall that the Gamma function has no zeros, but does have simple poles at
zero and the negative integers. Therefore, M1 has poles at �.L1/ D .�m � ˛/ [
¹nC 1 � ˛ºn2N0 and �.L1/ is the spectrum of the self-adjoint operator L1. The
corresponding self-adjoint extension of the COP expression has the same spectrum
with the point �m � ˛ replaced by �˛.

Likewise, the m-function of L0, denoted M0, can be found by computing the
value of �1=M1.�/ for � 2 �.L1/ [ �.L0/. This extension contains the Type I
Laguerre XOP polynomials and is easily seen to have eigenvalues � D ¹nºn2N0 .
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The m-function for any self-adjoint extension can also be written down in a stan-
dard way. Let � 2 R [ ¹1º and L� refer to the self-adjoint operator acting via ÒI;˛m
on

dom.L� / WD ¹f 2 DmaxWf 2 ker.�1 � ��0/º D ¹f 2 Dmaxjf
Œ1�.0/ D �f Œ0�.0/º:

The corresponding Weyl m-function for � 2 �.L1/ [ �.L� /, as in (2.15), is

M� .�/ D
1C �M1.�/

� �M1.�/

D
.�CmC ˛/�.��/�.1 � ˛/ � �ŒL˛�1m .0/�2�.˛/�.1 � ˛ � �/

�.�CmC ˛/�.��/�.1 � ˛/C ŒL˛�1m .0/�2�.˛/�.1 � ˛ � �/
:

Hence, if � … ¹0º [ ¹1º, L� will have eigenvalues precisely when

�.�CmC ˛/�.��/�.1 � ˛/ D �ŒL˛�1m .0/�2�.˛/�.1 � ˛ � �/:

Solving for � shows that eigenvalues of L� are just the level curves whereM1.�/D� .
Our example is now complete.

There are two main obstacles to generalizing the example that the reader should
keep in mind. The first is the manipulation of the general solutions to the XOP expres-
sion so that they are in a practical format. This step is not necessary in the above
example as all calculations are explicit. The second is the determination of the nor-
malizations for initial conditions; this is found by a simple calculation in the example
and stated in (3.7). In the general case, these challenges are the main subject of Sec-
tions 5 and 6, respectively.

4. Exceptional Laguerre operators

In order to determine the spectrum of an XOP operator associated with Ò, it is first nec-
essary to determine the general solutions to the formal eigenvalue problem
. Ò � �/f D 0. These solutions can be found through the intertwining property of
Lemma 2.2. By [16, Section 3] the solutions may be written as the Wronskian of a
sequence of seed functions along with a solution to the eigenvalue problem of the
COP operator.

Seed functions are the quasi-rational eigenfunctions of the Laguerre COP differ-
ential expression in (2.3)–(2.6) and will be indexed via

fj .x/ D L
˛
nj
.x/; j D 1; : : : ; r1; (4.1)

fr1Cj .x/ D e
xL˛mj .�x/; j D 1; : : : ; r2; (4.2)

fr1Cr2Cj .x/ D x
�˛L�˛

m0
j

.x/; j D 1; : : : ; r3; (4.3)

fr1Cr2Cr3Cj .x/ D e
xx�˛L�˛

n0
j

.�x/; j D 1; : : : ; r4; (4.4)
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with r1C r2C r3C r4D r , n1> � � �>nr1 � 0,m1> � � �>mr2 � 0, n01> � � �>n
0
r1
� 0

and m01 > � � � > m
0
r4
� 0. The degrees of seed functions appearing in the Wronskian

can be better described via two Maya diagrams, see Subsection 2.2. Denote these
Maya diagrams by

M1 D .n
0
1; : : : ; n

0
r4
j n1; : : : ; nr1/; (4.5)

and
M2 D .m

0
1; : : : ; m

0
r3
j m1; : : : ; mr2/: (4.6)

The two general solutions of the classical Laguerre differential expression `˛

given by (3.1) are denoted

h˛.x; �/ WDM.��; ˛ C 1; x/ D 1F1.��; ˛ C 1; x/ for ˛ C 1 … �N0; (4.7)

and
Qh˛.x; �/ WD x�˛M.�� � ˛; 1 � ˛; x/ for ˛ C 1 … N > 1: (4.8)

A generalized Laguerre polynomial, �˛M1;M2 , is a Wronskian of seed functions
with the same parameter ˛ and distinct degrees. A prefactor is required to make it a
polynomial. Let �˛M1;M2 be defined by

�˛M1;M2.x/ D e
�.r2Cr4/xx.˛Cr1Cr2/.r3Cr4/ WrŒf1; : : : ; fr �; (4.9)

where f1; : : : ; fr are as in (4.1)-(4.4). If both Maya diagrams are trivial or the associ-
ated partitions are empty, the generalized Laguerre polynomial is a constant function.

Not every set of seed functions will produce a valid XOP expression. The fol-
lowing notion will determine admissibility; ensuring that the generalized Laguerre
polynomial corresponds to a valid factorization chain as in Subsection 2. The Maya
diagramsM1 andM2 of (4.5) and (4.6) can be presented as partitions, denoted respec-
tively by � and � in canonical position or �0 and �0 in conjugate canonical position.
The lengths of these partitions, denoted r.�/ and r.�/ or r.�0/ and r.�0/, are deter-
mined by using the values t1, t2 and t 01, t 02 that needed to shift M1 and M2 into their
canonical and conjugate canonical positions. In particular,

r.�/ D

8̂̂<̂
:̂
r1 C n

0
1 C 1 � r4; t1 > 0;

r1; t1 D 0;

r1 �min¹k 2 N0W k … ¹niº
r1
iD1º; t1 < 0;

(4.10)

and

r.�/ D

8̂̂<̂
:̂
r2 Cm

0
1 C 1 � r3; t2 > 0;

r2; t2 D 0;

r2 �min¹k 2 N0W k … ¹miº
r2
iD1º; t2 < 0:

(4.11)
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The lengths of the conjugate partitions, r.�0/ and r.�0/, can be determined similarly
but will not play an important role in our calculations.

In canonical position, the Maya diagram can thus be relabeled and written as a
partition defined by

� D .�1; : : : ; �r.�//; �j D nj � r.�/C j; j D 1; : : : ; r.�/; (4.12)

and

� D .�1; : : : ; �r.�//; �j D mj � r.�/C j; j D 1; : : : ; r.�/; (4.13)

where r.�/C r.�/D r . Conjugate partitions are relabeled so that r.�0/C r.�0/D r 0

and defined analogously. These values of nj and mj should not be confused with the
entries of general Maya diagrams; they correspond only to those diagrams that are in
canonical position. Partitions also define Young diagrams, where the number of boxes
in each row corresponds to the entry of the partition. Conjugate partitions are then
obtained by reflection over the main diagonal of the corresponding Young diagram.

Definition 4.1. A partition � D .�1; : : : ; �r/ with �r � 1 is even if r is even and
�2j�1 D �2j for every j D 1; : : : ; r=2.

In order for a Maya diagram to represent a valid Laugerre XOP expression, we
make the following assumption.

Assumption 4.2. The partition � is even.

It follows from [10, 11] that the polynomial �˛�;� has no zeros on Œ0;1/ if and
only if � is an even partition. It is for this reason that we require an even partition
for admissibility. Convention states that the empty partition (when r D 0) is even.
For the remainder of the manuscript, it is assumed that all Maya diagrams will satisfy
Assumption 4.2.

In order to apply the Darboux transform to the COP solutions of (4.7) and (4.8),
it is necessary to add another entry to the corresponding Wronskian and adjust the
prefactor. In particular, denote

�M1;M2 Œh
˛.x; �/� D e�.r2Cr4/xx.˛Cr1Cr2C1/.r3Cr4/ WrŒf1; : : : ; fr ; h˛.x; �/�;

(4.14)

and

�M1;M2 Œ
Qh˛.x; �/� D e�.r2Cr4/xx.˛Cr1Cr2/.r3Cr4C1/ WrŒf1; : : : ; fr ; Qh˛.x; �/�:

(4.15)

For the sake of convenience, we will often refer to (4.14) as a solution of the first
kind and (4.15) as a solution of the second kind. The parameter ˛ is written only for
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the solution, but it should be understood that this is also the parameter for all seed
functions in the Wronskian.

Remark 4.3. It is clear that adding a column with a solution h˛.x; �/ or Qh˛.x; �/ to
the Wronskian changes the expression from a polynomial to an infinite series. How-
ever, consider the case � D n in (4.14) where n 2 N�;� , the natural numbers without
a subset that is determined by � and �, see [6, Definition 2.9] for details. Then the
series terminates, and if multiplied by a normalizing constant will yield an exceptional
Laguerre polynomial L˛�;�;n. These polynomials can emerge from either solution, and
will be discussed further in Assumption 7.2 and Remark 7.3.

We now direct our attention to the behavior of solutions near the singular end-
points x D 0 and x D 1 for the XOP Laguerre expression found in (2.8). Note that
r.�/C r.�/ D r here corresponds to the number of elements in the two partitions �
and �, not in the original Maya diagrams.

Theorem 4.4. For ˛ C r > �1, let Ò˛Cr be the XOP differential expression on the
interval .0;1/.

(a.) Ò˛Cr is in the limit-circle case at x D 0 for �1 < ˛ C r < 1 and is in the
limit-point case at x D 0 when ˛ C r � 1.

(b.) Ò˛Cr is in the limit-point case at x D1 for any ˛ C r > �1.

Proof. The point xD 0 is, in the sense of Frobenius, a regular singular endpoint of the
XOP expression . Ò˛Cr � �/f D 0 for any value � 2 C. Using the classical Laguerre
expression (3.1) to derive Ò˛Cr associated with (2.8) yields an indicial equation of

k.k C ˛ C r/ D 0:

This indicial equation holds for any admissible choice of � and b. Meanwhile, the
point x D 1 is an irregular singular point and a reduction of order method must be
used to find two linearly independent solutions. The result may be shown using the
techniques within the proof of [26, Theorem 3.3].

Since Ò˛Cr is in the limit-circle case at x D 0 for �1 < ˛ C r < 1, Glazman–
Krein–Naimark theory requires that one appropriate boundary condition be imposed
in order to generate a self-adjoint extension of the minimal operator. Thus, if �1 <
˛ C r < 1, the deficiency index of Lmin is .1; 1/. Meanwhile, if ˛ C r � 1, the defi-
ciency index is .0; 0/.

Assumption 4.5. The XOP Laguerre expression Ò˛Cr is assumed to have parameter
˛ C r > �1. Furthermore, ˛ … Z.
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The assumption on ˛ follows from the definitions of the confluent hypergeometric
solutions in equations (4.7) and (4.8).

Under our Assumptions 4.2 and 4.5, these Laguerre XOPs form a complete set of
orthogonal polynomials on the positive real line [10, 11].

Lemma 4.6. Suppose ˛ C r > �1 and � is an even partition. Then the polynomials
L˛�;�;n for n 2 N�;� are orthogonal on Œ0;1/ with respect to the positive weight
function associated with Ò˛Cr :

W ˛
�;�.x/ D

x˛Cre�x

Œ�˛�;�.x/�
2
; x > 0:

That is, if n;m 2 N�;� with n ¤ m, then

1Z
0

L˛�;�;n.x/L
˛
�;�;m.x/W

˛
�;�.x/dx D 0:

Moreover, they form a complete orthogonal set in L2.Œ0;1/;W ˛
�;�.x/dx/.

Note that the assumptions of Lemma 4.6 are not the best possible conditions,
but they are convenient and straightforward to apply. More specific conditions for
admissibility can be found in [10, 11].

Also, the solution of the second kind defined by (4.15) does not currently possess
the correct asymptotic behavior near 0; it should have asymptotic behavior of order
x�˛�r to fit the Frobenius analysis of the corresponding exceptional Laguerre expres-
sion in Theorem 4.4. The current formulation of this solution of the second kind as a
polynomial is simply more convenient to work with and avoids further complicating
notation. This discrepancy will be rectified in Section 6, where other behavior near
x D 0 is needed to ensure the solution is in the proper Hilbert space.

Finally, the construction of a general exceptional Laguerre expression requires
beginning with the classical Laguerre expression, which has a parameter ˛, and apply-
ing Darboux transforms. In this process, ˛ may be shifted. Therefore, the parameter
˛ in Lemma 4.6 should not be thought of as simply the same ˛ from the original COP
expression. One of the main goals of Section 5 is to track the necessary changes to
the classical ˛ as operations are performed.

5. Manipulation of Maya diagrams

Information must be extracted from the two solutions of the XOP Laguerre expression
given in (4.14) and (4.15) in order to build the Weylm-function. The results follow the
general methods of [6, Theorem 4.2, Lemma 4.4], which may be consulted for addi-
tional insight. The presentation here involves significant additions. Most importantly,
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it is necessary to track changes of the spectral parameter through the shifts as well
as any constants produced by the spectral parameter. The format of these solutions
can vary significantly based on how the Maya diagrams are shifted. In this section,
the Maya diagrams are translated into standard positions where the necessary infor-
mation can be extracted. Solutions of the first kind have their Maya diagrams shifted
into canonical position, while solutions of the second kind are shifted into conjugate
canonical position. A few additional assumptions are necessary.

Assumption 5.1. Without loss of generality, we assume that any shifts necessary to
bring M1 to canonical form are taken prior to any shifts that may be necessary for
M2. Indeed, the steps of the shifting process outlined in Theorems 5.3 and 5.5 may be
applied toM1 andM2 in a variety of orders, but this assumption minimizes notational
complexity.

Assumption 5.2. Factors of .�1/d for some d 2 N that arise in calculations are
omitted throughout the remainder of the manuscript. Tracking this factor requires
substantial notation and does not meaningfully contribute to results. Such a factor
appears in the equations of Theorems 5.3, 5.5, 6.1, Corollaries 5.7, 6.2, 6.3, and the
m-functions of Section 7. Therefore, all equalities in these results are correct up to a
change of sign. The cumulative effect of these factors throughout the construction of
the Weyl m-function can still be determined by enforcing the property that this func-
tion is a so-called Nevanlinna–Herglotz function: an analytic self-map of the upper
half-plane. See i.e. [15, Section 6] for examples where this property is utilized in a
similar context.

We begin by shifting the Maya diagrams defining a solution of the first kind into
canonical position. The notation

x.n/ D x.x C 1/ � � � .x C n � 1/

and

x.n/ D x.x � 1/ � � � .x � nC 1/

is used to denote the rising and falling factorials, respectively.

Theorem 5.3. Let f1; : : : ; fr be as in (4.1)-(4.4),M1 andM2 be as in (4.5) and (4.6),
and � and � be their associated partitions after shifts t1 and t2 to canonical position,
respectively. Then for � ¤ ni with i D 1; : : : ; r1,

�M1;M2 Œh
˛.x; �/� D

C1.˛; �;M1/C2.˛; �;M2/C3.˛;M1;M2/��;� Œh
˛�t1�t2.x; �C t1/�;
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where

C1.˛; �;M1/ D

8̂̂<̂
:̂

.��/.jt1j/

.˛C1/.jt1j/
for t1 < 0;

1 for t1 D 0;
.˛/.t1/Q

k1
.���k1�1/

for t1 > 0;

(5.1)

for k1 2 ¹0; : : : ; t1 � 1º such that k1 … ¹n0j º
r4
jD1;

C2.˛; �;M2/ D

8̂̂<̂
:̂
.˛C1C�/.jt2j/

.˛�t1C1/
.jt2j/

for t2 < 0;

1 for t2 D 0;
.˛�t1/.t2/Q
k2
.�C˛�k2/

for t2 > 0;

(5.2)

for k2 2 ¹0; : : : ; t2 � 1º such that k2 … ¹m0j º
r3
jD1; and

C3.˛;M1;M2/ D

r1Y
jD1

r3Y
kD1

.m0k � ˛ � nj /

r2Y
jD1

r4Y
kD1

.n0k � ˛ �mj /

�

r1Y
jD1

r4Y
kD1

.nj C n
0
k C 1/

r2Y
jD1

r3Y
kD1

.mj Cm
0
k C 1/: (5.3)

The constants from Theorem 5.3 will be collectively denoted as

C WD C1.˛; �;M1/C2.˛; �;M2/C3.˛;M1;M2/: (5.4)

The proof of Theorem 5.3 requires several intermediate steps. Recall the following
derivative identities:

d

dx
.L˛n.x// D �L

˛C1
n�1 .x/; (5.5a)

d

dx
.exL˛n.�x// D e

xL˛C1n .�x/; (5.5b)

d

dx
.x�˛L�˛n .x// D .n � ˛/x�˛�1L�˛�1n .x/; (5.5c)

d

dx
.x�˛exL�˛n .�x// D .nC 1/x�˛�1exL�˛�1nC1 .�x/: (5.5d)

The derivatives of (5.5) involve normalizing constants, which result in significant can-
cellations, but otherwise are special cases of the following derivative identities for
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confluent hypergeometric functions

d

dx
.M.a; b; x// D

a

b
M.aC 1; b C 1; x/; (5.6a)

d

dx
.exM.a; b;�x// D

b � a

b
exM.a; b C 1;�x/; (5.6b)

d

dx
.xb�1M.a; b; x// D .b � 1/xb�2M.a; b � 1; x/; (5.6c)

d

dx
.xb�1exM.a; b;�x// D �.b � 1/xb�2exM.a � 1; b � 1;�x/: (5.6d)

The results of (5.6) will be used to take derivatives of h and Qh.
Additionally, the following elementary Wronskian identities that will be useful

for calculations. Assume that the functions f1; : : : ; fr ; g; and h are all sufficiently
differentiable. Then

WrŒgf1; : : : ; gfr � D .g.x//r WrŒf1; : : : ; fr �; (5.7)

WrŒf1 ı h; : : : ; fr ı h� D .h0.x//
r.r�1/
2 WrŒf1; : : : ; fr � ı h.x/:

To prove Theorem 5.3, we begin with a lemma that involves simplifications when
0 appears in the encoding of one of the Maya diagramsM1 orM2. This is an alteration
of [6, Lemma 4.4].

Lemma 5.4. Let M1 and M2 be given by (4.5) and (4.6).

(a) If nr1 D 0, then

�M1;M2 Œh
˛.x; �/�

D

�
��

˛ C 1

r3Y
iD1

.m0i � ˛/

r4Y
iD1

.n0i C 1/
�
�M1�1;M2 Œh

˛C1.x; � � 1/�: (5.8)

(b) If n0r4 D 0, then

�M1;M2 Œh
˛.x; �/�

D

�
˛

r1Y
iD1

.ni C 1/

r2Y
iD1

.mi C ˛/
�
�M1C1;M2 Œh

˛�1.x; �C 1/�: (5.9)

(c) If mr2 D 0, then

�M1;M2 Œh
˛.x; �/�

D

�˛ C 1C �
˛ C 1

r3Y
iD1

.m0i C 1/

r4Y
iD1

.n0i � ˛/
�
�M1;M2�1Œh

˛C1.x; �/�:

(5.10)
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(d) If m0r3 D 0, then

�M1;M2 Œh
˛.x; �/� D

�
˛

r1Y
iD1

.ni C ˛/

r2Y
iD1

.mi C 1/
�
�M1;M2C1Œh

˛�1.x; �/�:

(5.11)

Proof. We give only the proof of (b) as the other claims follow from using the same
procedure. Let n0r4 D 0. Then fr D exx�˛ . Removing a factor of exx�˛ from each
column via (5.7) and expanding about the second to last column yields

�M1;M2 Œh
˛.x; �/�

D .exx�˛/.rC1/e�.r2Cr4/xx.˛Cr1Cr2C1/.r3Cr4/

�WrŒe�xx˛f1; : : : ; e�xx˛fr�1; 1; e�xx˛h˛.x; �/�

D .�1/r�1.exx�˛/.rC1/e�.r2Cr4/xx.˛Cr1Cr2C1/.r3Cr4/

�Wr
h d
dx
.e�xx˛f1/; : : : ;

d

dx
.e�xx˛fr�1/;

d

dx
.e�xx˛h˛.x; �//

i
:

Let zM1 D M1 C 1 and let Qf1; : : : ; QfQr be the functions associated with the Maya
diagram zM1 and parameter Q̨ D ˛ � 1. Also let Qr1 D r1, Qr2 D r2, Qr3 D r3, Qr4 D r4 � 1
and Qr D r � 1. Equations (5.5) and (5.6) imply that

d

dx
.e�xx˛fj / D cj e

�xx˛�1 Qfj for j D 1; : : : ; r � 1;

and

d

dx
.e�xx˛M.��; ˛ C 1; x// D ˛e�xx˛�1M.�� � 1; ˛; x/

D ˛e�xx˛�1h˛�1.x; �C 1/;

where cj D nj C 1 for j D 1; : : : ; r1; cr1Cj Dmj C ˛ for j D 1; : : : ; r2; cr1Cr2Cj D
�1 for j D 1; : : : ; r3; and cr1Cr2Cr3Cj D 1 for j D 1; : : : ; r4 � 1. Each column of
the Wronskian has a corresponding constant removed, and then the common factor
e�xx˛�1 is removed by (5.7), yielding

�M1;M2 Œh
˛.x; �/�

D Qc1.e
xx�˛/.rC1/.e�xx˛�1/.r/e�.r2Cr4/xx.˛Cr1Cr2C1/.r3Cr4/

�WrŒ Qf1; : : : ; Qfr�1; h˛�1.x; �C 1/�

D Qc1e
�.r2Cr4�1/xx.˛Cr1Cr2C1/.r3Cr4/�˛�r

�WrŒ Qf1; : : : ; Qfr�1; h˛�1.x; �C 1/�;
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where

Qc1 D ˛.�1/
r�1

r4�1Y
jD1

cj D ˛.�1/
r1Cr2Cr4�1

r1Y
jD1

.nj C 1/

r2Y
jD1

.mj C ˛/:

Note the analogous step in the proof of [6, Lemma 4.4] omits a �˛ term from the
exponent of x but the end result is unchanged. Claim (b) follows because

.˛ C r1 C r2 C 1/.r3 C r4/ � ˛ � r D .˛ C r1 C r2/.r3 C r4 � 1/

D . Q̨ C Qr1 C Qr2 C 1/. Qr3 C Qr4/:

Collectively, (a)–(d) of Lemma 5.4 describe how the spectral parameter � and ˛
change along with the constants produced with any shift of M1 or M2 one unit left
or right. We will continue to track of these changes while iterating the shifts until
the Maya diagrams are in canonical or conjugate canonical form. Note that we will
appeal to [6, Section 4.4] to show the exact form of the products in the statement of
Theorem 5.3, as there are no alterations to that argument, we simply keep track of
additional parameters.

Proof of Theorem 5.3. To begin, we verify (5.1) and (5.2). These results only consider
contributions of non-product coefficient factors found in (5.8)-(5.11). These product
terms are collected and addressed in the verification of (5.3).

We begin by shifting M1 into canonical form. If t1 D 0, the Maya diagram M1

is already in canonical form and no shift is required. If t1 < 0, then jt1j boxes to the
immediate right of the origin are filled; that is, nr1�j D j for j D 0; : : : ; jt1j � 1.
Hence, (5.8) will be applied jt1j times to M1. Therefore, jt1j applications of (5.8)
yield coefficient factor

.��/.jt1j/

.˛ C 1/.jt1j/
:

Note that for t1 < 0, the parameters of h are now ˛ � t1 and �C t1.
If t1 > 0, denote

zM1 DM1 C 1W . Qn
0
1; : : : ; Qn

0
Qr4
j Qn1; : : : ; QnQr1/:

Determining the appropriate equation of Lemma 5.4 to apply depends upon whether
the box immediately to the left of the origin of M1 is or is not filled. There are two
cases.

(i) If the box to the left of the origin is empty, then n0r4 D 0, Qr4 D r4 � 1,
Qr1 D r1, and

zM1W .n
0
1 � 1; : : : ; n

0
r4�1
� 1 j n1 C 1; : : : ; nr1 C 1/:
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(ii) If the box to the left of the origin is filled, then Qnr1C1 D 0, Qr4 D r4,
Qr1 D r1 C 1, and

zM1W .n
0
1 � 1; : : : ; n

0
r4�1
� 1 j n1 C 1; : : : ; nr1 C 1; 0/:

In total, M1 requires t1 shifts in order to be in canonical form. There will be r4 boxes
to the left of the origin that are empty; hence we are in case (i) of above and (5.9)
will be applied r4 times. As a result, each application of (5.9) lowers ˛ by one and
increases � by one. Additionally, for each i 2 ¹1; : : : ; r4º, a factor of .˛ � n0i / will be
contributed to the coefficient. Case (ii) occurs t1 � r4 times and (5.8) will be applied.
As M1 needs to be shifted to the right, (5.8) must be restated as

�M1;M2 Œh
˛.x; �/�

D

h�
�� � 1

˛

� r3Y
iD1

.m0i � ˛ C 1/

r4Y
iD1

n0i

i�1
�M1C1;M2 Œh

˛�1.x; �C 1/�:

Each application of (5.8) also lowers ˛ by one and increases � by one. A factor of
.˛ � k1/=.��� k1 � 1/ for each k1 2 ¹0; : : : ; t1 � 1º such that k1 … ¹n0j º

r4
jD1 will be

collected by the coefficient.
Together contributions from all case (i) and case (ii) shifts produce a coefficient

of

.˛/.t1/Q
k1
.�� � k1 � 1/

;

and the parameters of h are now ˛ � t1 and �C t1. Equation (5.1) has been verified.
Now, we consider the adjustments required to shift M2 into canonical form. As

M1 is first put into canonical form, the parameters for h are now ˛ � t1 and �C t1 for
t1 2 Z. If t2 D 0, the Maya diagram M2 is already in canonical form and no shift is
required. If t2 < 0, then jt2j boxes to the immediate right of the origin are filled; that
is, mr2�j D j for j D 0; : : : ; jt2j � 1. Hence, (5.10) will be applied jt2j times to M2.
Therefore, jt2j applications of (5.10) yields additional coefficient factors

.˛ C 1C �/.jt2j/

.˛ � t1 C 1/jt2j
:

For t2 > 0, verification follows in a similar fashion as the M1 case except it relies
on the reductions, and therefore the constants, from (5.10) and its restatement:

�M1;M2 Œh
˛.x; �/� D

h�˛ C �
˛

� r3Y
iD1

m0i

r4Y
iD1

.n0i � ˛ C 1/
i�1

�M1;M2C1Œh
˛�1.x; �/�:

The contribution of the products found in (5.8)–(5.11) is contained in C3 and the
proof is identical to [6, Section 4.4].
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The method of proof of Theorem 5.3 may be repeated with a solution of the second
kind, but there are a few changes. First, it is necessary to state the result with conjugate
partitions; shifting the Maya diagrams to the conjugate canonical position so that the
partitions are determined by the eigenfunctions in (4.3) and (4.4). This is due to the
fact that the solution Qh has the same format and similar derivative formula as the seed
function (4.3)—a shift to canonical position would not change this fact. The conjugate
canonical position, on the other hand, still allows the use of partitions. Second, there
is no formula giving the product of constants from the shifting functions (stated as C3
in Theorem 5.3) in the literature. It is therefore necessary to prove such a formula.

Theorem 5.5. Let f1; : : : ;fr be as in (4.1)–(4.4),M1 andM2 be as in (4.5) and (4.6),
and �0; �0 be their associated conjugate partitions after shifts t 01 and t 02 to conjugate
canonical position, respectively. Then for � ¤ m0i with i D 1; : : : ; r3,

�M1;M2 Œ
Qh˛.x; �/�

D D1.˛; �;M1/D2.˛; �;M2/D3.˛;M1;M2/��0;�0 Œ Qh
˛�t 0

1
�t 0
2.x; �C t 01/�;

where

D1.˛; �;M1/ D

8̂̂̂̂
<̂
ˆ̂̂:

.�˛/
.jt0
1
j/Q

k0
1
.��k0

1
/

for t 01 < 0;

1 for t 01 D 0;
.�C1/

.t0
1
/

.1�˛/
.t0
1
/

for t 01 > 0;

(5.12)

for k01 2 ¹0; : : : ; jt
0
1j � 1º such that k01 … ¹nj º

r1
jD1;

D2.˛; �;M2/ D

8̂̂̂̂
<̂
ˆ̂̂:

.�˛Ct 0
1
/
.jt0
2
j/Q

k0
2
.���˛�1�k0

2
/

for t 02 < 0;

1 for t 02 D 0;
.���˛/

.t0
2
/

.1�˛Ct 0
1
/
.t0
2
/

for t 02 > 0;

(5.13)

for k02 2 ¹0; : : : ; jt
0
2j � 1º such that k02 … ¹mj º

r2
jD1;

D3.˛;M1;M2/ D

r1Y
jD1

r3Y
kD1

.nj C ˛ �m
0
k/

r2Y
jD1

r4Y
kD1

.mj C ˛ � n
0
k/

�

r1Y
jD1

r4Y
kD1

.nj C n
0
k C 1/

r2Y
jD1

r3Y
kD1

.mj Cm
0
k C 1/: (5.14)
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The constants from Theorem 5.5 are collectively denoted as

D WD D1.˛; �;M1/D2.˛; �;M2/D3.˛;M1;M2/; (5.15)

and will be used in Section 7.
The change in parameters and constants is now tracked for a shift of one unit in

either direction for the Maya diagrams. These are similar to those in Lemma 5.4 but
with extra contributions emerging from Qh.

Lemma 5.6. Let M1 and M2 be given by (4.5) and (4.6).

(a) If nr1 D 0, then

�M1;M2 Œ
Qh˛.x; �/�

D

�
.�˛/

r3Y
iD1

.m0i � ˛/

r4Y
iD1

.n0i C 1/
�
�M1�1;M2 Œ

Qh˛C1.x; � � 1/�:

(b) If n0r4 D 0, then

�M1;M2 Œ
Qh˛.x; �/�

D

��C 1
1 � ˛

r1Y
iD1

.ni C 1/

r2Y
iD1

.mi C ˛/
�
�M1C1;M2 Œ

Qh˛�1.x; �C 1/�:

(5.16)

(c) If mr2 D 0, then

�M1;M2 Œ
Qh˛.x; �/�

D

�
.�˛/

r3Y
iD1

.m0i C 1/

r4Y
iD1

.n0i � ˛/
�
�M1;M2�1Œ

Qh˛C1.x; �/�:

(d) If m0r3 D 0, then

�M1;M2 Œ
Qh˛.x; �/�

D

�
�� � ˛

1 � ˛

r1Y
iD1

.ni C ˛/

r2Y
iD1

.mi C 1/
�
�M1;M2C1Œ

Qh˛�1.x; �/�: (5.17)

Proof. It is sufficient to use the derivative formulas in (5.6) to calculate the changed
parameters and constants in each of the situations. Otherwise, the proof is completely
analogous to that of Lemma 5.4.

Verifying (5.12) and (5.13), the formulas for D1 and D2, follow the same proce-
dure as the proof of Theorem 5.3, but relies on the equations found within Lemma 5.6
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and so proofs of these formulas are omitted here. The method also differs slightly
from that of Theorem 5.3 as the Maya diagrams are to be shifted into the conjugate
canonical form. However, as no existing result addresses the formulation of (5.14),
the proof is included below. The method closely follows the result of [6, Section 4.4].

Proof of Theorem 5.5. We note that the shifting procedure for t1 < 0 depends on the
Maya diagram for M1 and whether the box of immediately to the right of the origin
is or is not filled. Then, for zM1 DM1 � 1, there are two cases to consider.

(i) If the box to the right of the origin is filled then nr1 D 0, Qr1 D r1 � 1,
Qr4 D r4, and

zM1W .n
0
1 C 1; : : : ; n

0
r4
C 1 j nr1�1 � 1; : : : ; nr1 � 1/: (5.18)

(ii) If the box to the right of the origin is empty then Qn0r4C1 D 0, Qr4 D r4 C 1,
Qr1 D r1, and

zM1W .n
0
1 C 1; : : : ; n

0
r4
C 1; 0 j n1 � 1; : : : ; nr1 � 1/: (5.19)

In case (ii), (5.16) is rewritten as

�M1;M2 Œ
Qh˛.x; �/�

D

h� �
�˛

� r1Y
iD1

ni

r2Y
iD1

.mi C ˛ C 1/
i�1

�M1�1;M2 Œ
Qh˛C1.x; � � 1/�; (5.20)

before application.
Equation (5.14) will be shown using induction on the value of T 0 D jt 01j C jt

0
2j.

For T 0 D 0, no shift of either M1 or M2 is required. As a result of r1 D r2 D 0, all
products are empty and equal to 1. Therefore,D3 D 1 and the base case is shown. Let
T 0 > 0 and assume that (5.14) holds whenever jt 01j C jt

0
2j D T

0 � 1. Considering now
jt 01j C jt

0
2j D T

0, there are a number of cases that may occur. When both t 01; t
0
2 > 0, as

in the case when T 0 D 0, r1 D r2 D 0 and all products are equal to 1. Therefore, we
assume that either t 01 < 0 or t 02 < 0. Without loss of generality, consider t 01 < 0. The
following cases can happen:

(i) t 01 < 0 and zM1 is given by (5.18) and

(ii) t 01 < 0 and zM1 is given by (5.19).

The treatment of each case is similar, so we will prove only case (ii). In this situation,
(5.20) holds and

D3.˛;M1;M2/ D D3.˛ C 1;M1 � 1;M2/
� r1Y
iD1

ni

r2Y
iD1

.mi C ˛ C 1/
��1

: (5.21)
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The induction hypothesis states

D3.˛ C 1;M1 � 1;M2/

D

Qr1Y
jD1

r3Y
kD1

. Qnj C .˛ C 1/ �m
0
k/

r2Y
jD1

Qr4Y
kD1

.mj C .˛ C 1/ � Qn
0
k/

�

Qr1Y
jD1

Qr4Y
kD1

. Qnj C Qn
0
k C 1/

r2Y
jD1

r3Y
kD1

.mj Cm
0
k C 1/:

The first three double products can be rewritten as

Qr1Y
jD1

r3Y
kD1

. Qnj C .˛ C 1/ �m
0
k/ D

r1Y
jD1

r3Y
kD1

.nj C ˛ �m
0
k/;

r2Y
jD1

Qr4Y
kD1

.mj C .˛ C 1/ � Qn
0
k/ D

r2Y
jD1

r4Y
kD1

.mj C ˛ � n
0
k/

r2Y
jD1

.mj C ˛ C 1/;

Qr1Y
jD1

Qr4Y
kD1

. Qnj C Qn
0
k C 1/ D

r1Y
jD1

r4Y
kD1

.nj C n
0
k C 1/

r1Y
jD1

nj :

The extra products now cancel in (5.21) and the formula for D3 in (5.14) holds.

Theorems 5.3 and 5.5 can both be simplified in the case where only the generalized
Laguerre polynomial given by (4.9) is considered, i.e. there is no general solution to `˛

in the last column of the Wronskian. This is precisely (4.9). The constants generated
by shifting this generalized Laguerre polynomial appear in Section 7 but will not
affect any spectral properties of the exceptional operators; they are identified here for
convenience. Note that the first half of the result was shown in [6, Theorem 4.2].

Corollary 5.7. Let f1; : : : ; fr be as in (4.1)–(4.4), M1 and M2 be as in (4.5) and
(4.6),� and � be their associated partitions after shifts t1 and t2 to canonical position,
and �0, �0 be their associated partitions after shifts t 01 and t 02 to conjugate canonical
position. Recall that C3 and D3 are defined by (5.3) and (5.14), respectively. Then,

�˛M1;M2.x/ D C3.˛;M1;M2/�
˛�t1�t2
�;� .x/ D D3.˛;M1;M2/�

˛�t 0
1
�t 0
2

�0;�0 .x/:

Proof. The terms C1 and C2 from Theorem 5.3 are clearly produced solely by the
solution h˛.x; �/ in the last column of the Wronskian when the shifts to canonical
position are performed. When this last column is removed, the cumulative effect is
only determined by C3. Analogously,D3 is the cumulative effect of shifting the Maya
diagrams to conjugate canonical position.
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6. Initial condition normalizations

Theorems 5.3 and 5.5 allow for solutions of the first and second kind to be written
in terms of Wronskians indexed by partitions. This section will extract information
from these simplified Wronskians to determine how to form a fundamental system of
solutions (u1.x; �/ and u2.x; �/) for .Lmax � �/f D 0 that is properly normalized
according to (2.14). We leave the exact definitions of this system of solutions and the
relevant quasi-derivatives to Section 7; now it is enough to calculate the value of these
solutions at 0.

It is necessary to recall some notation and identities. Classical Laguerre polyno-
mials satisfy

L˛n.0/ D
.˛ C 1/.n/

nŠ
D
.˛ C 1/.˛ C 2/ � � � .˛ C n/

nŠ
;

for all n 2 ZC. Additionally, L˛0.0/ D 1 and we set L˛n.0/ D 0 when n 2 Z�. The
Vandermonde determinant will be denoted as

�.a1; a2; : : : ; ar/ D
Y
i<j

.aj � ai /: (6.1)

Partitions will be defined via (4.12) and (4.13) and corresponding indices, e.g. n0i ,
used here do not correspond to the starting general Maya diagram for solutions of the
first kind, but to the indices of the associated canonical position Maya diagram (or
conjugate canonical position when solutions of the second kind are discussed). Note
that in canonical form, r3D r4D 0 so there are no n0 orm0-terms in the Maya diagram;
and in the conjugate canonical form, r1 D r2 D 0 so there are no n or m-terms in the
Maya diagram.

Solutions of the first kind, after canceling some terms with the prefactor and using
the derivative rules in (5.5) and (5.6), can be written as

��;� Œh
˛.x; �/�

D

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌

L˛n1.x/ : : : L˛mr2
.�x/ M.��; ˛ C 1; x/

.�1/L˛C1n1�1
.x/ : : : L˛C1mr2

.�x/ ��
˛C1

M.��C 1; ˛ C 2; x/

:::
: : :

:::
:::

.�1/rL˛Crn1�r
.x/ : : : L˛Crmr2

.�x/ .��/.r/

.˛C1/.r/
M.��C r � 1; ˛ C r; x/

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌ :

Recall that r D r.�/C r.�/. It may occur that ni < r for some i , which would mean
that some of the entries in the column are 0. For this reason, let s > 0 denote the
smallest natural number such that ni < r for all i � s and ni � r for all i < s. Recall
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that the sequence ¹niº
r.�/
iD1 is associated with a Maya diagram and thus is assumed to

be strictly decreasing so the Wronskian has distinct entries. Likewise, we let s0 > 0 be
the smallest natural number such thatmj < r for all j � s0 andmj � r for all j < s0.

The following result can be viewed as a generalization of [10, Lemma 5.1]. Recall
that Assumptions 4.2 and 5.2 hold.

Theorem 6.1. Given partitions� and � defined via (4.12) and (4.13) and s, s0 defined
above, then, ��;� Œh˛.0; �/� is equal to

rC1Q
kD1

.˛ C k/.rC1�k/
s�1Q
iD1

.˛ C r C 1/.ni�r/
s0�1Q
jD1

.˛ C r C 1/.mj�r/�.n�; m� ;��/

.˛ C 1/.r/
r.�/Q
iDs

.˛ C 1C ni /.r�ni /
r.�/Q
jDs0

.˛ C 1Cmj /
.r�mj /

r.�/Q
iD1

ni Š
r.�/Q
jD1

mj Š

;

where

�.n�;m� ; �/ D

�.�nr.�/; : : : ;�n2;�n1; ˛ C 1Cm1; ˛ C 1Cm2; : : : ; ˛ C 1Cmr.�/;��/:

Proof. Separate the Wronskian ��;� Œh˛.0; �/� into two submatrices, one containing
columns given by seed functions indexed by � and the solution h˛.0; �/; the other
with columns given by seed functions indexed by �. Each submatrix has r C 1 rows.
Splitting the Wronskian matrix ��;;Œh˛.0; �/� into these submatrices allows us to
conveniently perform necessary column operations to each submatrix and then recom-
bine the two submatrices before performing row operations. The resulting Wronskian
will be a Vandermonde determinant and allow for ��;� Œh˛.0; �/� to be evaluated.

Begin by fixing s > 0 as above and considering the submatrix of the Wronskian
with columns given by seed functions indexed by � and the solution h˛.0; �/. This
matrix has r.�/ columns and r C 1 rows. By pulling out factors of .�1/, rearrange
the columns so that the indices of the ni are in ascending order. We find that this
submatrix is equal to0BBBBBBBBBBBBBBBBB@

.˛C1/
.nr.�//

nr.�/Š
: : : .˛C1/.ns/

nsŠ
: : : .˛C1/.n1/

n1Š
1

:::

.�1/nr.�/C1
:::

0
: : :

:::
:::

.�1/nsC1

::: 0
: : :

:::

0 : : : 0 : : : .�1/r .˛CrC1/
.n1�r/

.n1�r/Š
.�1/r .��/

.r/

.˛C1/.r/

1CCCCCCCCCCCCCCCCCA
:
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Using column operations, we can remove a factor of 1=.˛ C 1/.r/ from the last
column, a factor .˛ C r C 1/.ni�r/=.ni /Š from columns where i < s and a factor
1=..˛ C 1C ni /

.r�ni /.ni /Š/ from columns where i � s. This leaves the submatrix as0BBBBBBBBBBBB@

.˛C1/.r/ ::: .˛C1/.r/ ::: .˛C1/.r/ .˛C1/.r/

:::

.˛C1Cnr.�//
.r�nr.�//.�nr.�//Š

:::

0
:::

:::
:::

.˛C1Cns/
.r�ns/.�ns/Š

::: 0
:::

:::
0 ::: 0 ::: .�n1/

.r/ .��/.r/

1CCCCCCCCCCCCA
:

Of course, the factorial .�nj /Š D .�1/nj ..nj /Š/ and Assumption 5.2 should be kept
in mind here.

We now perform row operations that we will also apply to the other submatrix
of the Wronskian. We remove a factor of .˛ C k/.rC1�k/ from each row k where
k D 1; : : : ; r C 1. Collecting the terms removed from this submatrix yields

rC1Q
kD1

.˛ C k/.rC1�k/
s�1Q
iD1

.˛ C r C 1/.ni�r/

.˛ C 1/.r/
r.�/Q
iDs

.˛ C 1C ni /.r�ni /
r.�/Q
iD1

ni Š

�

0BBBBBBBBBB@

1 : : : 1 1
:::

.nr.�//Š

0
: : :

:::
:::

:::

0 : : : .�n1/
.r/ .��/.r/

1CCCCCCCCCCA
:

Now, consider the second submatrix of the Wronskian with columns given by seed
functions indexed by � and r C 1 rows. Set s0 > 0 as above. Fortunately, there will
be no zeros in the matrix, but the value s0 will still play a role in removing terms.
Calculations show that the evaluation of this submatrix at 0 is equal to0BBBBBB@

.˛C1/.m1/

m1Š
.˛C1/.m2/

m2Š
: : : .˛C1/

.mr.�//

mr.�/Š

.˛C2/.m1/

m1Š
.˛C2/.m2/

m2Š
: : : .˛C2/

.mr.�//

mr.�/Š

:::
:::

: : :
:::

.˛CrC1/.m1/

m1Š
.˛CrC1/.m2/

m2Š
: : : .˛CrC1/

.mr.�//

.mr.�//Š

1CCCCCCA :
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Using column operations, we can remove a factor of .˛C r C 1/.mj�r/=mj Š from all
columns where j < s0 and a factor of 1=..˛ C 1Cmj /.r�mj /.mj /Š/ from remaining
columns. The submatrix is then0BBB@

.˛ C 1/.r/ � 1 : : : .˛ C 1/.r/ � 1

.˛ C 2/.r�1/.˛ C 1Cm1/ : : : .˛ C 2/.r�1/.˛ C 1Cmr.�//
:::

: : :
:::

1 � .˛ C 1Cm1/
.r/ : : : 1 � .˛ C 1Cmr.�//

.r/

1CCCA :
We now apply the same row operations as we did for the other submatrix and remove
a factor of .˛ C k/.rC1�k/ from each row k D 1; : : : ; r C 1. Altogether, the second
submatrix simplifies to

rC1Q
kD1

.˛ C k/.rC1�k/
s0�1Q
jD1

.˛ C r C 1/.mj�r/

r.�/Q
jDs0

.˛ C 1Cmj /
.r�mj /

r.�/Q
jD1

mj Š

�

0BBB@
1 : : : 1

.˛ C 1Cm1/ : : : .˛ C 1Cmr.�//
:::

: : :
:::

.˛ C 1Cm1/
.r.�/�1/ : : : .˛ C 1Cmr.�//

.r.�/�1/

1CCCA :
The solution of the first kind ��;� Œh˛.0; �/� now merges the two submatrices

analyzed above, with some columns rearranged. The result is a power of .�1/ as
an additional factor. Applying elementary row operations, the remaining determinant
equals a partially simplified Vandermonde determinant with zeros in the bottom left
corner.

A standard proof of the Vandermonde determinant formula in (6.1) begins with
the last row and subtracts the previous row multiplied by �nr.�/. Expanding about
the first column and removing common factors yields a smaller Vandermonde matrix.
The zeros in the bottom left corner of our Wronskian do not change this process and
thus will not affect (6.1). Collecting all of the above terms thus yields the result.

The solution of the second kind can similarly be evaluated at 0 using the methods
of Theorem 6.1. We define s to be the analog of s for the sequence ¹n0iº

r.�0/
iD1 and s0

the analog for the sequence ¹m0j º
r.�0/
jD1 .

Corollary 6.2. Given partitions �0 and �0 defined via (4.12) and (4.13) and s, s0

defined above, then, ��0;�0 Œ Qh˛.0; �/� is equal to

N1

D2

;
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where

N1 WD

rC1Y
iD1

.�˛ C k/.rC1�k/
s0�1Y
jD1

.�˛ C r C 1/
.m0
j
�r/

s�1Y
iD1

.�˛ C r C 1/.n
0
i
�r/

��.m0�0 ; n
0
�0 ;�� � ˛/

and

D2 WD .1 � ˛/
.r/

r.�0/Y
jDs0

.�˛ C 1Cm0j /
.r�m0

j
/
r.�0/Y
iDs

.�˛ C 1C n0i /
.r�n0

i
/

�

r.�0/Y
jD1

m0j Š

r.�0/Y
iD1

n0i Š;

and where

�.m0�0 ; n
0
�0 ;�� � ˛/ D �. �m

0
r.�/0 ; : : : ;�m

0
2;�m

0
1;�˛ C 1C n

0
1;

� ˛ C 1C n02; : : : ;�˛ C 1C n
0
r.�0/;�� � ˛/:

Proof. The solution of the second kind ��0;�0 Œ Qh˛.x; �/� by definition has a prefactor
of x˛.r

0C1/. Removing a factor of x�˛ from each column cancels with this prefactor
and yields a Wronskian with only functions of the types given in (4.1), indexed by
¹m0j º

r.�0/
jD1 , and (4.2), indexed by ¹n0iº

r.�0/
iD1 , with the function M.�� � ˛; 1 � ˛; x/

as the input for the last column. The partition indices have thus been changed to
.�0; �0/. It is then possible to apply Theorem 6.1 to evaluate this Wronskian. Note the
parameter for the seed functions is now �˛, as opposed to ˛ from Theorem 6.1. The
result follows.

The proof of Theorem 6.1 can be modified to fit the simplified case where the
generalized Laguerre polynomial is considered. This is essentially [10, Lemma 5.1]
in the notation of this manuscript. Here, s and its analog must be slightly altered as
there are r � 1 instead of r derivatives taken. Let s > 0 be the smallest natural number
such that ni < r � 1 for all i � s and ni � r � 1 for all i < s. If such an s does not
exist, set s D r.�/C 1. Define s0, s and s0 analogously.

Corollary 6.3. Given partitions � and � defined via (4.12) and (4.13) and s, s0

defined above, then

�˛�;�.0/

D

rQ
kD1

.˛ C k/.r�k/
s�1Q
iD1

.˛ C r/.ni�rC1/
s0�1Q
jD1

.˛ C r/.mj�rC1/�.n�; m�/

r.�/Q
iDs

.˛ C 1C ni /.r�1�ni /
r.�/Q
jDs0

.˛ C 1Cmj /
.r�1�mj /

r.�/Q
iD1

ni Š
r.�/Q
jD1

mj Š

:
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Proof. It is necessary to slightly alter the column operations of Theorem 6.1 in order
to account for the fact that the Wronskian only has r rows and columns. Hence, there
are r � 1 derivatives taken and this is reflected in the altered rising factorials and terms
in the numerators of the expressions. The results follow after these alterations.

7. Weylm-functions

Sections 5 and 6 have provided the tools necessary to obtain spectral information
about self-adjoint extensions of exceptional Laguerre expressions given by two gen-
eral Maya diagrams.

Let Ò be a general Laguerre-type differential expression acting on the weighted
space L2Œ.0;1/;W.x/dx� having maximal domain Dmax. Given fixed M1 and M2,
the partitions �, � are determined by (4.12) and (4.13) after shifts to canonical and
conjugate canonical forms, respectively. The values r.�/, r.�/ are then determined
by (4.10) and (4.11). The weight function possesses a factor of e�xx˛, where ˛ D
˛0 C r.�/ C r.�/ D ˛0 C r is fixed due to Lemma 4.6. It is assumed that ˛ > �1
so Ò is in the limit-circle case at x D 0. The value ˛0 D ˛ � t1 � t2 is determined by
the shifts t1 and t2 of the partitions from Theorem 5.3. The weight function W.x/

depends on a generalized Laguerre polynomial�˛M1;M2.x/, which we identify with a
valid factorization chain from Section 2.

Remark 7.1. The attentive reader may question why ˛0 is used in the definition of ˛
for the order of the underlying Hilbert space instead of ˛ � t 01 � t

0
2, which appears in

Theorem 5.5. Is the order ˛ � t 01 � t
0
2 even useful? Indeed, Theorem 5.3 shows that

multiplication of the Wronskian by a certain factor can change the order of the param-
eter ˛ within the Wronskian, causing some ambiguity. The solution of the second
kind in Theorem 5.5 could be shifted to canonical position, also yielding a parameter
˛ � t1 � t2. However, it is not possible to perform the evaluation in Corollary 6.2 with
this setup. Hence, the order ˛ � t 01 � t

0
2 is still necessary but not used here.

The Frobenius analysis of Section 4 for general Laguerre XOP expressions indi-
cates that there are two linearly independent solutions at the regular singular point
x D 0: y1.x/ D 1 and y2.x/ D x�˛. These two functions are in the maximal domain
Dmax as they both belong to L2Œ.0;1/;W.x/� and are solutions to the equation
.Lmax � �/f D 0. For the sake of normalization, we will use the functions

Qy1.x/ WD �
�˛M1;M2.0/

˛
and Qy2.x/ WD �

˛
M1;M2

.0/x�˛

instead of the particular solutions y1.x/ D 1 and y2.x/ D x�˛, see also Remark 3.1.
Note that �˛M1;M2.x/ is a polynomial with real coefficients so �˛M1;M2.0/ exists, and
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it was already assumed that �˛M1;M2.0/ ¤ 0. Hence, Qy1 and Qy2 are well defined and
non-zero but slightly different from the formulations found in Section 3.

The sesquilinear form associated to the expression Ò is defined via (2.9). Let f;g 2
Dmax and define

�0f D f
Œ0�.0/ WD Œf; Qy2� Ò.0/ D lim

x!0C
�
˛f .x/C xf 0.x/

�˛M1;M2.0/
;

�1f D f
Œ1�.0/ WD Œf; Qy1� Ò.0/ D lim

x!0C

x˛C1

˛�˛M1;M2.0/
f 0.x/:

The choice of the functions Qy1 and Qy2 immediately imply that Œ Qy1; Qy2� Ò.0/ D 1. The
functions Qy1 and Qy2 adhere to Definition 2.8. Therefore, Proposition 2.11 implies that
¹C; �0; �1º is a boundary triple for Dmax. Explicitly, it is easy to calculate that

h�1f; �0gi � h�0f; �1gi D Œf; g� Ò.0/:

As in (2.11), this boundary triple naturally defines two self-adjoint extensions of the
exceptional Laguerre operator Lmin: L1 and L0.

The solutions of the first and second kind can be modified to form a fundamental
system for the equation .Lmax � �/f D 0. Define

u1.x; �/ WD �
�˛M1;M2.0/�M1;M2 Œh

˛.x; �/�

˛�M1;M2 Œh
˛.0; �/�

D �
�˛M1;M2.0/��;� Œh

˛0.x; �C t1/�

˛��;� Œh˛
0
.0; �C t1/�

; (7.1)

and

u2.x; �/ WD �
�˛M1;M2.0/x

�˛�M1;M2 Œ
Qh˛.x; �/�

�M1;M2 Œ
Qh˛.0; �/�

D �
�˛M1;M2.0/x

�˛��0;�0 Œ Qh
˛�t 0

1
�t 0
2.x; �C t 01/�

��0;�0 Œ Qh
˛�t 0

1
�t 0
2.0; �C t 01/�

; (7.2)

where each equality follows from shifting the Maya diagrams in both the numerator
and denominator, with the constants from Theorems 5.3 and 5.5 canceling out. Notice
that if the prefactor of �M1;M2 Œ Qh

˛.x; �/� is ignored, then the result is guaranteed to
be in L2Œ.0;1/;W.x/dx� by the intertwining property of the Darboux transform.
The multiplication by x�˛ above ensures this remains the same as the case where the
standard prefactor is included.

Assumption 7.2. We assume that the x�˛ term is multiplied to the solution of the
second kind and therefore defines the behavior of u2.x; �/ near x D 0.
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Remark 7.3. Multiplication by the x�˛ term discussed in Assumption 7.2 may
instead be applied to the solution of the first kind, but this would change our nota-
tion significantly. In particular, this alternative convention can be translated into what
we use here by changing the Maya diagrams and treating the function of the second
kind as the principal solution, which can be written as a power series by the nota-
tion of Section 4. The alternate convention has been used to state examples like the
Type III Laguerre XOPs described in [26], where the eigenvalues generated by the
polynomials can all be of the form n � ˛ for n 2 N0.

Corollary 7.4. The fundamental system .u1.x; �/; u2.x; �// for the equation

.Lmax � �/f D 0;

given in (7.1) and (7.2), satisfies the initial conditions�
u
Œ0�
1 .0; �/ u

Œ0�
2 .0; �/

u
Œ1�
1 .0; �/ u

Œ1�
2 .0; �/

�
D

�
1 0

0 1

�
:

Proof. Recall that both �M1;M2 Œh
˛.x; �/� and �M1;M2 Œ Qh

˛.x; �/� are given by power
series and only the lowest order terms make an impact on the quasi-derivatives. The
identities are straightforward to verify by plugging u1.x; �/ and u2.x; �/ into the
quasi-derivatives.

Let �.x;�/ be a general deficiency element formally satisfying .`��/�.x;�/D0.
Then, � can be written as a linear combination of the solutions which compose the
fundamental system. In the case of the classical Laguerre operator, � is the Tricomi
confluent hypergeometric function which can be expressed via [5, (13.2.42)] as

U.��; ˛ C 1; x/

D
�.�˛/

�.�� � ˛/
M.��; ˛ C 1; x/C

�.˛/

�.��/
x�˛M.�� � ˛; 1 � ˛; x/: (7.3)

The intertwining property of the Darboux transform then allows us to define a general
deficiency element of the exceptional differential expression.

Proposition 7.5. Let � Ò.x; �/ be a general deficiency element of Lmax such that

.Lmax � �/� Ò.x; �/ D 0:

Then, � Ò.x; �/ can be written as

� Ò.x; �/ D Cu1.x; �/CDu2.x; �/;
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where

C D �
˛C�.�˛/��;� Œh

˛0.0; �C t1/�

�.�� � ˛/�˛M1;M2.0/
;

D D �
D�.˛/��0;�0 Œ Qh

˛�t 0
1
�t 0
2.0; �C t 01/�

�.��/�˛M1;M2.0/
:

In particular, we have that �Œ0�
Ò
.x; �/ D C and �Œ1�

Ò
.x; �/ DD.

Proof. Let AM1;M2 denote the multi-step Darboux transform having seed functions
indexed by M1 and M2. The Wronskian is linear within its entries because differenti-
ation and multiplication are. Applying AM1;M2 to (7.3) then yields

� Ò.x; �/ D AM1;M2 Œ�.x; �/�

D AM1;M2

h �.�˛/

�.�� � ˛/
h˛.x; �/C

�.˛/

�.��/
Qh˛.x; �/

i
D

�.�˛/

�.�� � ˛/
�M1;M2 Œh

˛.x; �/�C
�.˛/

�.��/
x�˛�M1;M2 Œ

Qh˛.x; �/�:

Recall the constants stemming from Theorems 5.3 and 5.5, and stated in (5.4) and
(5.15), are denoted by C and D. Then,

� Ò.x; �/ D C
�.�˛/

�.�� � ˛/
��;� Œh

˛0.x; �C t1/�

CD
�.˛/

�.��/
x�˛��0;�0 Œ Qh

˛�t 0
1
�t 0
2.x; �C t 01/�:

The formulation of � Ò.x; �/ from the statement of the proposition follows. The initial
conditions of Corollary 7.4 yield the values of the quasi-derivatives of this deficiency
element and the result follows.

The quasi-derivatives of all functions f 2 Dmax are guaranteed to exist and be
finite by Theorem 2.4. However, when these quasi-derivatives are applied to � Ò in
Proposition 7.5 there are many terms in the denominator which may seem to cause
singularities for certain values of �. These singularities may cause eigenvalues of
self-adjoint extensions, so it is worth investigating the quasi-derivatives from Propo-
sition 7.5 further.

Proposition 7.6. The quasi-derivatives �Œ0�
Ò
.x; �/ D C and �Œ1�

Ò
.x; �/ D D from

Proposition 7.5 are well defined and finite for all values of x and �.

Proof. We prove the proposition for �Œ0�
Ò
.x;�/D C; the proof for �Œ1�

Ò
.x;�/DD fol-

lows analogously. Note that some care should be taken to distinguish a Maya diagram
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entry to the left of the origin while in conjugate canonical form, k, with its associated
partition entry, �k � 1.

Begin by noticing the terms in the denominator of C; �.�� � ˛/ is analytic and
�˛M1;M2.0/ has no zeros in the interval Œ0;1/ by definition. Additionally, the terms
from ��;� Œh

˛0.0; � C t1/� that involve � are all in the numerator. Hence, the only
singularities possible in C are terms that may come from the denominator of C .

Theorem 5.3 says that terms involving � may appear in the denominator of C
only if t1 > 0 and t2 > 0. Terms arising from Theorem 5.3 when t1 > 0 areQ
k1
.��� k1 � 1/ for k1 2 ¹0; : : : ; t1 � 1º such that k1 … ¹n0j º

r4
jD1. Let k be a general

index that meets the criteria for k1 so a term �� � k � 1 is included in C1.
The partition entry associated with the index k in� afterM1 is shifted to canonical

position is �k � 1C t1. The Vandermonde determinant in ��;� Œh˛
0

.0; �C t1/� will
produce a term associated with this partition index which is

�� � t1 � .�.�k � 1C t1// D �� � k � 1:

Hence, this factor in the numerator cancels the contribution from the denominator
of C1.

Now, consider terms that may come from the denominator of C2 when t2 > 0:Q
k2
.�C ˛ � k2/ for k2 2 ¹0; : : : ; t2 � 1º such that k2 … ¹m0j º

r3
jD1. Let Qk be a general

index that meets the criteria for k2 so that a term �C ˛ � Qk is included in C2.
The partition entry associated with the index Qk in � afterM2 is shifted to canonical

position is � Qk � 1C t2. The Vandermonde determinant, however, again produces a
term associated with this partition index:

�� � t1 � .˛ � t1 � t2 C 1 � Qk � 1C t2/ D �� � ˛ � Qk:

This numerator factor also cancels the contribution from the denominator of C2. We
conclude that there can be no terms in the denominator of C which include � and are
not canceled out by identical terms from ��;� Œh

˛0.0; �C t1/�. The quasi-derivative
�
Œ0�

Ò
.x; �/ is thus well defined and finite.

Let � 2 R [ ¹1º and L� refer to the self-adjoint operator acting via (2.12). The
values of the quasi-derivatives of a general deficiency element allows for the definition
of a Weyl m-function for every self-adjoint extension L� .

Corollary 7.7. For � 2 �.L1/,

M1.�/ D
�
Œ1�

Ò
.0; �/

�
Œ0�

Ò
.0; �/

D
D

C

D
D�.�� � ˛/�.˛/��0;�0 Œ Qh

˛�t 0
1
�t 0
2.0; �C t 01/�

˛C�.��/�.�˛/��;� Œh˛
0
.0; �C t1/�

:

(7.4)
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For � 2 �.L1/ [ �.L0/,

M0.�/ D �
�
Œ0�

Ò
.0; �/

�
Œ1�

Ò
.0; �/

D �
C

D

D �
˛C�.��/�.�˛/��;� Œh

˛0.0; �C t1/�

D�.�� � ˛/�.˛/��0;�0 Œ Qh
˛�t 0

1
�t 0
2.0; �C t 01/�

:

(7.5)

For � 2 �.L1/ [ �.L� /,

M� .�/ D
1C �M1.�/

� �M1.�/
D

N2

D2

; (7.6)

where

N2 WD ˛C�.��/�.�˛/��;� Œh
˛0.0; ˛ C t1/�

C �D�.�� � ˛/�.˛/��0;�0 Œ Qh
˛�t 0

1
�t 0
2.0; ˛ C t 01/�

and

D2 WD �˛C�.��/�.�˛/��;� Œh
˛0.0; ˛ C t1/�

�D�.�� � ˛/�.˛/��0;�0 Œ Qh
˛�t 0

1
�t 0
2.0; ˛ C t 01/�

Proof. An application of Proposition 2.11 to the boundary triple ¹C; �0; �1º and the
deficiency element � Ò.x; �/ yields (7.4). Likewise, the identity

M0.�/ D �1nM1.�/

yields (7.5). The m-function of L� is obtained from (2.15).

The spectrum of the self-adjoint operator L1 consists of the points that are poles
of M1. The function �.�� � ˛/ is responsible for the eigenvalues � D n � ˛, for
n 2 N0. These are exactly the eigenvalues of the extension L1 for the classical
Laguerre operator. In that case, both partitions are empty so C , D and the two evalu-
ations at 0 are all equal to 1.

The self-adjoint extension L0 will possess the exceptional solution of the first kind
and therefore have the family of exceptional polynomial eigenfunctions in its domain
by Lemma 4.6. Eigenvalues of L0 are simply the poles of M0. The corresponding
extension of the classical Laguerre expression contains the Laguerre polynomials and
has eigenvalues �D n for n 2N0. The function �.��/ is responsible for these eigen-
values in (7.5).

Comparing these expressions to the classical Laguerre operator, we conclude that
eigenvalues � not stemming from �.��/ or �.�� � ˛/ are manufactured by the
Darboux transform. The evaluations

��;� Œh
˛0.0; �C t1/� and ��0;�0 Œ Qh

˛�t 0
1
�t 0
2.0; �C t 01/�
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do not depend on � except for the Vandermonde determinants �.n�; m� ;��/ and
�.m0�0 ; n

0
�0 ;�� � ˛/, respectively in the numerators. The values C and D can also

have factors of � in their numerators or denominators depending on whether the shifts
are positive or negative.

The only true knowledge about how these terms combine to create eigenvalues in
the Weyl m-functions from Corollary 7.7 thus comes from Proposition 7.6: terms in
the denominators ofC andD actually cancel with contributions from the numerator of
Vandermonde determinants. The similar question of whether terms in the numerators
of C and D can cancel with terms coming from the opposite Vandermonde determi-
nant cannot be answered so easily. Technically this is possible, but the terms involved
are not directly related in any way. For example, if t1 < 0, then C1 will include terms
from .��/.jt1j/ which, in some cases, may cancel with terms �� � t 01 � 1 � n

0
j from

��0;�0 Œ Qh
˛�t 0

1
�t 0
2.0; ˛ C t 01/�, where n0j is from a general Maya diagram and not asso-

ciated with the partition after the shift to conjugate canonical form.
Fortunately, because the Weyl m-functions of Corollary 7.7 and all the included

formulas are explicit, it is always possible to directly calculate the eigenvalues and
such an analysis is not necessary.

Remark 7.8. The Friedrichs extension of Lmin is identified as the self-adjoint exten-
sion whose boundary condition is given by Œf; u� Ò.0/ D 0 for a principal solution u
by [28]. The two linearly independent ‘particular solutions’ (near 0) of Ò used in our
boundary triple were Qy1 and Qy2. In practice, which solution is principal thus depends
on the parameter ˛. Hence, one of L0 and L1 will be the Friedrichs extension and,
if Ò > 0, the other will be the Krein–von Neumann extension, see e.g. [3, (5.4.26)],
but identifying which is not always straightforward.

The easiest way to distinguish these important extensions is to observe that the
Friedrichs extension will have the greatest first eigenvalue because it has the greatest
lower bound among all extensions, see, e.g., [3, Proposition 5.3.6]. Any dependence
of the lowest eigenvalues on ˛ may then result in the Friedrichs extension switching
from L0 to L1, or vice versa.

Remark 7.9. Section 3 analyzes the Type I Laguerre exceptional expression ÒI;˛m
and finds that �.L0/ D n and �.L1/ D .�m � ˛/ [ .nC 1 � ˛/ for n 2 N0 and
fixed m 2 N. These eigenvalues can also be recovered from (7.4) and (7.5). Note it is
possible to match the m-functions from these two methods, but we focus only on the
spectra here for the sake of simplicity.

The Darboux transform in this case is identified by [6, Section 5.2] to consist of
seed functions indexed by �D ;, � D .m/ and starting parameter ˛ � 1. Hence, t1 D
t2 D t

0
1 D 0, t 02 D �m� 1 and ˛ D .˛ � 1/C 1 D ˛. Theorem 5.5 sets C1 D C2 D 0

and Theorem 6.1 finds that��;� Œh˛�1.0; �/� has a factor of ��� .˛ � 1/� 1�mD
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�1 0

M1

�1 0

M2

Figure 4. Original Maya diagrams.

��� ˛�m in the numerator stemming from the Vandermonde determinant. The only
dependence on � in C is therefore a factor of .�� � ˛ �m/�.��/.

After shifting to conjugate canonical position,M2 D .m� 1; : : : ; 0/. Theorem 5.5
setsD1D 0 andD2 has a factor of

Q
k0.��� .˛� 1/� 1� k

0/with k0D 0; : : : ;m� 1
in the denominator. Corollary 6.2 also generates a factor, for k D 1; : : : ; m,Y

k

.�� � Œ.˛ � 1/ � .�m � 1/�C k/ D
Y
k

.�� � ˛ �mC k/;

in the numerator of��0;�0 Œ Qh˛�1.0;�/�. These contributions cancel and the only depen-
dence on � in D is therefore a factor of �.�� � ˛ C 1/.

Generating the expressions for M0 and M1 via (7.4) and (7.5) allows for easy
identification of the eigenvalues, which agree with the conclusions of Section 3.

Remark 7.10. Perturbation theory says that the spectrum of L0 will smoothly shift
to the spectrum of L1 as the parameter � increases and eigenvalues of all self-adjoint
extensions will be simple, see, e.g., [7, 38, 39].

8. Example

To illustrate the results of Theorem 5.3, we present the following example. Consider
Maya diagrams M1 D .; j 3; 2/ and M2 D .1; 0 j ;/, illustrated in Figure 4.

From M1 and M2, it follows that n D .3; 2/, m D ;, n0 D ;, and m0 D .1; 0/

as well as r1 D r3 D 2 and r2 D r4 D 0. Observe that M1 is already in canonical
form; thus t1 D 0. To put M2 into canonical form, a shift of t2 D 2 is required. Thus,
t1.M1/D .; j 3; 2/ and t2.M2/D .; j ;/. The visual representation for the canonical
form ofM1 andM2 may be seen in Figure 5, where all boxes to the left of the pictured
subdiagram are filled and those to the right are empty.
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�1 0

t1.M1/ � �

�1 0

t2.M2/ � �

Figure 5. Canonical Maya diagrams.

Using (4.1) and (4.2) in (4.14) yields

�M1;M2 Œh
˛.x; �/�

D x2.˛C3/ WrŒL˛3.x/; L
˛
2.x/; x

�˛L�˛1 .x/; x�˛L�˛0 .x/;M.��; ˛ C 1; x/�:

(8.1)

Following the procedure outlined in the proof of Theorem 5.3, equation (5.11) of
Lemma 5.4 will be applied twice to shiftM1 andM2 into t1.M1/D� and t2.M2/D�.
To demonstrate how Theorem 5.3 works, we illustrate the first application of the shift
on M2.

Beginning with (8.1), we first factor out x�˛ from each column

�M1;M2 Œh
˛.x; �/�

D x2.˛C3/x�5˛ WrŒx˛L˛3.x/; x
˛L˛2.x/; L

�˛
1 .x/; 1; x˛M.��; ˛ C 1; x/�:

To compute the Wronskian, we expand along the first row, fourth column entry, using
appropriate derivative rules

�M1;M2 Œh
˛.x; �/� D x2.˛C3/x�5˛ WrŒ.3C ˛/x˛�1L˛�13 .x/; .2C ˛/x˛�1L˛�12 .x/;

� L�˛C10 .x/; ˛x˛�1M.��; ˛; x/�:

Factoring out constants and x˛�1 from each factor in the Wronskian yields

�M1;M2 Œh
˛.x; �/� D � ˛.˛ C 2/.˛ C 3/x˛C2

�WrŒL˛�13 .x/; L˛�12 .x/; x�˛C1L�˛C10 .x/;M.��; ˛; x/�

D � ˛.˛ C 2/.˛ C 3/� zM1; zM2 Œh
˛�1.x; �/�;

where zM1 DM1 D .; j 3; 2/ and zM2 DM2C 1D .0 j ;/. Observe that just as (5.11)
states, the parameter ˛ has been shifted down by one while � does not change. One
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additional application of (5.11) gives

�M1;M2 Œh
˛.x; �/� D � ˛.˛ C 2/.˛ C 3/x�3˛C6

�WrŒx˛�1L˛�13 .x/; x˛�1L˛�12 .x/; 1; x˛�1M.��; ˛; x/�

D � .˛ � 1/˛.˛ C 1/.˛ C 2/2.˛ C 3/

�WrŒL˛�23 .x/; L˛�22 .x/; 1; x˛�1M.��; ˛ � 1; x/�

D C1C2C3�
˛�2
�;� .x; �/;

where C1 D 1, C2 D ˛.˛ � 1/, and C3 D .˛C 1/.˛C 2/2.˛C 3/. Keep in mind that
the signs of coefficients C1, C2, and C3 are suppressed. This result is consistent with
that guaranteed by Theorem 5.3.

Now, we aim to adjust M1 and M2 into conjugate canonical form, see Figure 6
below. Observe that M1 must be shifted left by four units; thus t 01 D �4. To put M2

into conjugate canonical form, a shift of t 02 D 2 is required. Note that in this exam-
ple,M2 has the same canonical and conjugate canonical form. Thus, t 01.M1/D .3; 2 j

;/ and t 02.M2/ D .; j ;/. Following the procedure outlined in Theorem 5.5, equa-
tion (5.17) of Lemma 5.6 is applied twice to shift M2 into conjugate canonical form,
and the inverse of (5.16) is applied twice toM1, followed by two applications of (5.16)
to shift M1 into conjugate canonical form. Note that there is some freedom as to how
the shifts are applied. For example, M1 may be put into canonical form before M2;
however, the order of the shifts applied to M1 must be done in the prescribed order.

�1 0

t 0
1
.M1/ � �

0

�1 0

t 0
2
.M2/ � �

0

Figure 6. Conjugate canonical Maya diagrams.

Consequently, (4.15) may be written, up to a change of sign, as

�M1;M2 Œ
Qh˛.x; �/� D D1D2D3��0;�0 Œ Qh

˛C2.x; � � 4/�;
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where

D1 D
˛.˛ C 1/.˛ C 2/.˛ C 3/

�.� � 1/
; D2 D

.�C ˛/.�C ˛ C 1/

.˛ C 2/.˛ C 3/
;

and D3 D .˛ C 1/.˛ C 2/2.˛ C 3/:
Now, we turn our attention to calculating the value of �M1;M2 Œh

˛.0; �/� and
�M1;M2 Œ

Qh˛.0; �/�, which requires the use of Theorem 6.1 and Corollary 6.2 respec-
tively. For the shift to canonical position,�D .2;2/ and �D;; r.�/D 2 and r.�/D 0;
and s D 3 and s0 D 1. Note that � is even, satisfying Assumption 4.2. Applying The-
orem 6.1 gives

��;� Œh
˛�2.0; �/� D

˛.˛ C 1/.3 � �/.2 � �/

12
:

For the shift to conjugate canonical position, �0 D .2; 2/ and �0 D ;; r.�0/ D 2 and
r.�0/ D 0; and s D 3 and s0 D 1. Applying Corollary 6.2 gives

��0;�0 Œ Qh
˛C2.0; � � 4/� D

.˛ � 1/˛.� � 1/�

12
:

The value ˛ D ˛ � 0 � 2 C 2 C 0 D ˛ satisfies the requirement that ˛ > �1
because ˛ > �1. Hence, the exceptional Laguerre differential expression Ò is limit-
circle at x D 0 and limit-point at x D1. Now, it is possible to explicitly write out C

and D as

C D
.˛ � 1/˛3.˛ C 1/2.˛ C 2/2.˛ C 3/.3 � �/.2 � �/�.�˛/

12�.�� � ˛/Œ�˛M1;M2.0/�
2

and

D D
.˛ � 1/˛2.˛ C 1/2.˛ C 2/2.˛ C 3/.�C ˛/.�C ˛ C 1/�.˛/

12�.��/Œ�˛M1;M2.0/�
2

:

The quotient of D and C yields

M1.�/ D
.�C ˛/.�C ˛ C 1/�.˛/�.�� � ˛/

˛.3 � �/.2 � �/�.�˛/�.��/
: (8.2)

To find the spectrum of the self-adjoint operator L1, consider where (8.2) has poles.
The poles occur for eigenvalues � D n � ˛ for n 2 N0 as well as � D 2 and � D 3.
However, the pole at � D �˛ is canceled by the factor of � C ˛ in the numerator.
Thus, �.L1/ D ¹n � ˛ºn2N [ ¹2; 3º.

Considering the reciprocal of M1, we get

M0.�/ D
˛.3 � �/.2 � �/�.�˛/�.��/

.�C ˛/.�C ˛ C 1/�.˛/�.�� � ˛/
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which has poles at �D n for all n 2N0 as well as �D�˛ and �D�˛ � 1. The poles
at � D 2; 3 are canceled by factors in the numerator. Thus, �.L0/ D ¹nºn2N0=¹2;3º [

¹�˛;�˛ � 1º.

Remark 8.1. The removal of the eigenvalues � D 2; 3 from �.L0/ and � D �˛
from �.L1/ is crucial, otherwise �.L0/ \ �.L1/ is nontrivial. Assume some �0 2
R belongs to �.L0/ \ �.L1/. Then the spectral measures of the two extensions
are not mutually singular, violating the Aronszajn–Donoghue theorem for rank-one
perturbations, see e.g. [1, 38]

Furthermore, Remark 7.8 identifies that L1 is the Friedrichs extension for all
values of ˛ > �1, as comparing the first eigenvalues shows 1 � ˛ > �1 � ˛.

9. Conclusions

Exceptional Laguerre-type symmetric expressions Ò, which have XOPs as eigen-
functions for a self-adjoint extension, may be derived from the classical Laguerre
symmetric operator with parameter ˛ by applying Darboux transforms. These are
written as Wronskians of seed functions that meet Assumption 4.2 and the seed func-
tions are described via the Maya diagrams M1 and M2 or, in special situations, as
partitions �, �, �0 or �0.

The expression Ò acts on functions in the Hilbert space L2Œ.0;1/;W.x/� that
satisfy standard differentiability criteria. The weight function

W.x/ D
x˛e�x

Œ�˛
0

�;�.x/�
2

for x > 0;

where ˛0D ˛ � t1 � t2, ˛D ˛0C r , and�˛�;�.x/ is defined by (4.9). The expression Ò

is limit-circle at x D 0 and limit-point at x D1when ˛ is chosen so that�1 < ˛< 1.
Laguerre-type XOPs of order n 2 N�;� are written as L˛

�;�;n and the sequence
forms a complete orthogonal set in L2Œ.0;1/;W � by Lemma 4.6, see Remark 4.3
for more details. These polynomials all belong to a family of eigenfunctions given by
�M1;M2 Œh

˛.x; �/� and are in a self-adjoint extension of Lmin denoted L0.
Eigenvalues of self-adjoint extensions of Lmin, denoted L� in general, can be

extracted from an explicit Weyl m-function given by (7.6) generated by a boundary
triple. The resulting m-function can be compared to the m-function of self-adjoint
extensions of the classical Laguerre symmetric operator. Differences stem from two
important processes: shifting Maya diagrams into canonical/conjugate canonical posi-
tion, and evaluating Wronskians with these shifted diagrams at x D 0. Other spectral
information, such as the strength of the point masses in the spectral measure, can also
be obtained from the m-function, see e.g., [7].
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The examples presented in Sections 3 and 8 provide insight into how eigenval-
ues are changed by different types of Maya diagrams. Inverse spectral theory, where
a set of eigenvalues is given and a corresponding set of seed functions within the
Wronskian is determined (thereby fixing the differential equation and self-adjoint
extension), however, remains unknown in general and warrants further investigation.
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