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Bayesian analysis of chiral effective field theory at leading order in a modified
Weinberg power counting approach

Oliver Thim ,* Eleanor May , Andreas Ekström, and Christian Forssén
Department of Physics, Chalmers University of Technology, SE-412 96 Göteborg, Sweden

(Received 9 March 2023; revised 14 September 2023; accepted 11 October 2023; published 14 November 2023)

We present a Bayesian analysis of renormalization-group invariant nucleon-nucleon interactions at leading
order in chiral effective field theory (χEFT) with momentum cutoffs in the range 400–4000 MeV. We use history
matching to identify relevant regions in the parameter space of low-energy constants (LECs) and subsequently
infer the posterior probability density of their values using Markov chain Monte Carlo. All posteriors are
conditioned on experimental data for neutron-proton scattering observables and we estimate the χEFT truncation
error in an uncorrelated limit. We do not detect any significant cutoff dependence in the posterior predictive
distributions for two-nucleon observables. For all cutoff values we find a multimodal LEC posterior with an
insignificant mode harboring a bound 1S0 state. The 3P0 and 3P2 phase shifts emerging from the Bayesian analysis
are less constrained and typically more repulsive compared to the results of a phase shift optimization. We expect
that our inference will impact predictions for nuclei. This work demonstrates how to perform inference in the
presence of limit-cycle-like behavior and spurious bound states, and lays the foundation for a Bayesian analysis
of renormalization-group invariant χEFT interactions beyond leading order.

DOI: 10.1103/PhysRevC.108.054002

I. INTRODUCTION

The foundational principles of chiral effective field theory
(χEFT) [1–3] promise a systematically improvable descrip-
tion of the strong force between nucleons that is consistent
with quantum chromodynamics (QCD). However, establish-
ing a power counting of chiral nuclear interactions that
fulfills renormalization requirements presents several chal-
lenges; see, e.g., van Kolck [4] for an overview. Recently,
Yang et al. [5] analyzed nuclear ground-state energies using
renormalization-group (RG) invariant formulations of χEFT
up to (perturbative) next-to-leading order (NLO) corrections.
Apparently, the essential mechanism for nuclear binding tends
to fail already at leading order (LO) for selected A > 4 nuclei
when using available RG-invariant power counting schemes.
In fact, similar results had already been found using χEFT
[6] based on the canonical Weinberg power counting (WPC)
[7–10], and pionless EFT [11–13]. Yang et al. [5] put for-
ward three possible reasons for these shortcomings at LO
in χEFT: (i) One (or more) scales critical to the physical
description of finite nuclei might not be correctly captured
by the contact terms at LO [14]. (ii) The LO nucleon-nucleon
(NN) interaction should possibly be complemented with other
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interaction terms such as subleading pion exchange [15] and
many-nucleon interactions [16–19]. (iii) The description of
the nuclear interaction might be finely tuned and therefore re-
quire careful calibration of the low-energy constants (LECs).
Indeed, Yang et al. [5] renormalized the relevant LECs by
demanding exact reproduction of selected phase shifts at a
single scattering energy. This procedure resulted in point esti-
mates of the LECs without the possibility to analyze possible
fine-tuning effects.

In this work we tackle overfitting and expose possible
fine tuning using Bayesian methods. Specifically, we infer a
posterior probability density function (pdf) for the values of
the LECs conditioned on neutron-proton (np) scattering data.
The advantages of a Bayesian approach are several. First,
we obtain a probabilistic measure of our uncertainty about
the values of the LECs and subsequent predictions, some-
thing that is not obtained when doing maximum likelihood
estimation [6]. Second, with the Bayesian approach we can
utilize the expected systematicity of χEFT as prior knowledge
about the truncation error [20]. There exist several Bayesian
studies of χEFT interactions [21–25] and quantified posterior
predictive distributions (ppds) of nuclear properties [26–28].
However, so far all such studies are grounded in χEFT based
on WPC.

In EFTs that are perturbative at all orders, power count-
ing usually follows the momentum scaling of the different
Feynman diagrams. This is known as naive dimensional anal-
ysis (NDA) [29]. However, in χEFT we must account for
bound multinucleon states and therefore face nonperturba-
tive physics with the consequence of infrared enhancement
of purely nucleonic intermediate states. To deal with this,
Weinberg [2,3] suggested to apply NDA to the potential
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which is then iterated to all orders by solving, e.g., the
Lippmann-Schwinger equation. This prescription assumes
that the iteration to infinite order does not introduce additional
divergences with the need for higher-order counterterms—an
assumption that did not hold upon closer inspection. Indeed,
taking the momentum cutoff � of the regulator very large,
i.e., far beyond the anticipated breakdown scale of χEFT,
Nogga et al. [30] found that WPC does not yield RG-invariant
amplitudes in attractive spin-triplet partial waves. By now
there exist several proposals on how to modify WPC; see, e.g.,
Refs. [5,18,31–37]. We refer to all such proposals as modified
Weinberg power counting (MWPC). One can argue that WPC
provides a consistent EFT framework as long as � is kept
in the vicinity of the breakdown scale �χ [38–41]. In that
scheme, all orders are typically summed up nonperturbatively
and, starting at third order, it can provide realistic predictions
for selected nuclei [42] and nuclear matter [43]. However, this
achievement does not imply that WPC provides the founda-
tion for an EFT of QCD.

This paper is organized as follows: In Sec. II the LO po-
tential and nonrelativistic np scattering are addressed along
with relevant background regarding power counting and the
renormalization of singular potentials. In Sec. III we discuss
our Bayesian approach and in Sec. IV we review the numerical
sampling of the posterior pdf for the LECs. Finally, in Sec. V
ppds are presented and analyzed for some np-scattering ob-
servables and the deuteron ground-state energy. A conclusion
and outlook is presented in Sec. VI.

II. THEORY

To keep this work self-contained we first discuss how coun-
terterms (and associated LECs) are introduced to renormalize
the singular nature of the one-pion exchange (OPE) poten-
tial at LO in χEFT. We also study limit-cycle-like behavior
in some detail since it plays an important role during the
Bayesian inference.

A. Effective field theory expansion

The EFT approach promises an order-by-order improv-
able description of a nuclear observable y residing in the
low-energy domain below the relevant breakdown scale. In
general, up to some finite order n we can expect an expansion
of the form [10,44]

y(n)
th = yref

n∑
k=0

bk

(
Q

�χ

)k

+ yref

(
Q

�χ

)n+1

Dn+1(�), (1)

and we specialize to χEFT assuming a breakdown scale
�χ = 600 MeV as per previous analyses [21,45] and denote
the momentum cutoff by �. We also assume a soft scale
Q = max(p, mπ ) with p denoting the external momentum and
mπ denoting the pion mass. The unspecified function Dn+1

depends on ratios of the relevant low energy scales and, im-
portantly, absorbs the residual cutoff dependence. In this work
we set the reference scale yref to the corresponding experi-
mental value yexp of y. Pulling out yref leads to dimensionless
expansion coefficients bk , and, if the theory is renormalized
order-by-order, these should not exhibit any cutoff depen-

dence although they do depend on ratios of relevant scales.
Also, along the lines of naturalness [46], we expect the bk

values to be of order unity.
For a perturbative EFT—where NDA applied to the Feyn-

man diagrams carries over to the amplitudes and hence to
observables—the power counting in Eq. (1) follows straight-
forwardly from the Lagrangian. The relation between the
Lagrangian and observables in a nonperturbative theory like
χEFT is less direct. The nonperturbative effects in combi-
nation with the need to treat the problem numerically pose
challenges to finding a consistent power counting. When the
amplitudes cannot be obtained perturbatively, the LO T matrix
must scale as T ∼ Q−1 [44,47,48]. The summation in Eq. (1)
can still start at k = 0, since the Q−1 dependence can be
absorbed into yref . Terms with k = 1, 2, . . . then correspond
to higher-order corrections with respect to LO. We employ
MWPC where amplitudes of the LO potential are computed
nonperturbatively and sub-leading corrections should be ac-
counted for using perturbation theory [4,33,49–51].

B. Two-nucleon potential and scattering amplitudes

The momentum-space and isospin-symmetric LO potential
considered in this work is adopted from Ref. [5], and using our
conventions it reads

V (p′, p) = 1

(2π )3

[
− g2

A

4 f 2
π

(σ1 · q)(σ2 · q)

q2 + m2
π

(τ1 · τ2)

+ C̃1S0
+ C̃3S1

+ (C3P0
+ C3P2

)p′ p

]
. (2)

The first term is the OPE potential, where τ i and σ i, for i =
1, 2, are the isospin and spin operators for the respective nu-
cleon, p (p′) are the ingoing (outgoing) relative momenta with
normalization 〈p′|p〉 = δ3(p′ − p), q = p′ − p is the momen-
tum transfer, and we have p ≡ |p| and p′ ≡ |p′|. The contact
LECs C̃1S0

, C̃3S1
,C3P0

,C3P2
carry implicit projection operators

such that they act in the indicated partial waves, (2s+1)l j , where
s, l, j denote the quantum numbers of the NN spin, orbital an-
gular momentum, and total angular momentum, respectively.
We use the Particle Data Group (PDG) [52] values for the
axial coupling constant gA = 1.275, the pion decay constant
fπ = 92.1 MeV, and averaged pion mass mπ = 138.039 MeV.
Finally, for the partial-wave decomposed [53] potential, and
operators, we use the notation V s j

l ′l (p′, p) ≡ 〈l ′s j; p′|V |ls j; p〉.
As discussed in Sec. II C and Ref. [5], this LO potential is
restricted to low partial waves: 1S0, 3S1-3D1, 1P1, 3P0, 3P1,
3P2-3F2. Consequently, it is set to zero for all partial waves
with l > 1 that have no coupling to l � 1.

To render the integrals of the Lippmann-Schwinger equa-
tion finite, the relative momenta of incoming and outgoing
nucleons are regulated using the function,

f�(p) = exp

[
− p4

�4

]
× θ (� + (300 MeV) − p), (3)
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TABLE I. Total and differential np scattering observables used
to condition the Bayesian inference in this work. The total number
of data points is 1043. This is a subset of the data in the Granada
database [65,66], where the normalizations determined from the
Granada analysis are included. The uncertainties in the normal-
izations are not taken into account. The definitions of the various
scattering observables can be found in Ref. [56].

Observable Tlab (MeV) No. of data points

σ 10−6–99.0 324
dσ/d� 2.72–99.0 698
σT 3.65–17.1 13
σL 4.98–66.0 8

which was also used by Yang et al. [5],1 where

θ (x) =
{

1, x > 0,

0, x � 0.
(4)

We straightforwardly account for the small effects of relativis-
tic kinematics using the minimal relativity prescription [9,54].
Combined with the momentum regulators f�, the LO potential
in Eq. (2) is thus modified according to

V (p′, p) → f�(p′)
√

mN

E (p′)
V (p′, p)

√
mN

E (p)
f�(p), (5)

where E (p) =
√

m2
N + p2 and mN = 2mpmn

mp+mn
is the nucleon

mass with proton and neutron masses mp = 938.272 MeV and
mn = 939.918 MeV, respectively [52].

We condition all inferences on np scattering data and must
therefore solve the corresponding Lippmann-Schwinger equa-
tion for the T matrix,

T s j
l ′l (p′, p) =V s j

l ′l (p′, p) +
∑

l ′′

∫ ∞

0
dk k2 V s j

l ′l ′′ (p′, k)

× mN

p2 − k2 + iε
T s j

l ′′l (k, p). (6)

We solve this numerically in momentum space using a stan-
dard matrix-inversion method by first converting to a real
equation for the reaction matrix [55]. Furthermore, we sum
the partial-wave amplitudes to construct the spin scattering
matrix, Ms

m′
sms

(p, θc.m.); see Appendix A. Here, ms (m′
s) is

the incoming (outgoing) total spin projection and θc.m. is the
center-of-mass scattering angle. All scattering observables
can be computed from this spin scattering matrix [56]. The
types of observables that we condition our inferences on are
listed in Table I and discussed in Sec. III A.

C. Singular potentials and limit-cycle-like behavior

An attractive potential is singular near the origin if it be-
haves as −λ/rn with n > 2 (or n = 2 with sufficiently large
λ > 0) [57,58]. Two particles interacting only via a singu-
lar potential will collapse towards the origin with increasing

1The exact form of the regulator was not given in Ref [5]. Thus, we
define it here.

FIG. 1. LECs renormalized to reproduce the phase shift from the
Nijmegen partial-wave analysis [62] at Tlab = 50 MeV as a function
of the cutoff �. The limit-cycle-like behavior in C̃3S1

is seen at � =
1150 MeV and in C3P0

at � = 780 MeV.

velocity. Akin to the infinities in quantum field theory, the
singularity at the origin is cured via renormalization. The OPE
potential is singular in attractive spin-triplet partial waves,
e.g., 3P0, 3S1-3D1, 3D2, and 3P2-3F2 [30]. From an EFT
perspective, the singular character of the OPE becomes phys-
ically meaningful only with the addition of counterterms that
parametrize, and cure, these short-range pathologies [59,60].

To avoid the introduction of infinitely many counterterms,
the OPE potential in Eq. (2) is truncated to act only in partial
waves with orbital angular momentum l < lc. It is not obvi-
ous, however, where the limit lc should be set. Higher-order
terms can be included using the distorted-wave Born approxi-
mation and there is evidence that this does not necessitate the
introduction of additional counterterms; see Refs. [37,41] for
contrasting views. According to previous studies, OPE contri-
butions to the NN scattering amplitude in partial waves with
orbital angular momentum l > 1 can be treated perturbatively
up to at least p ≈ 300 MeV [4,35,61]. We therefore truncate
the OPE potential such that it is nonzero only for channels that
contain a partial-wave component with l � lc = 1.

LECs associated with counterterms that renormalize a sin-
gular potential with n > 2 usually exhibit a limit-cycle-like
behavior [30,59,60], i.e., provided that there is only one coun-
terterm per partial wave, the corresponding LEC will exhibit
periodic discontinuities as a function of the regulator value.
This was extensively investigated for one-pion exchange in
Ref. [30]. We can reproduce those results exactly, but we also
observe a slight shift in the location of the limit-cycle-like
behavior when including the minimal relativity correction in
Eq. (5). In Fig. 1 we show how the LECs in the 1S0, 3S1,
3P0, and 3P2 partial waves run with � when renormalized
to reproduce the Nijmegen partial-wave phase shifts [62] for
the laboratory kinetic energy Tlab = 50 MeV of the projectile
nucleon. There is no limit-cycle-like behavior observed in the
3P2 wave for the cutoff region studied here.

When this renormalization procedure is used, spurious
and deeply bound states appear in the singular and attractive
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FIG. 2. Bound-state energies in selected channels with the LECs
renormalized to reproduce the phase shift from the Nijmegen partial-
wave analysis [62] at Tlab = 50 MeV. There are two bound states
in the 3S1-3D1 channel, where the upper one (orange dots) is the
physical deuteron state while the lower one (blue dots) is spurious.
The latter, deeply bound state appears at � � 1140 MeV. In the 3P0

channel there is a spurious, deeply bound state for � � 770 MeV.

partial waves as the cutoff � is increased. This is not a
problem if the states are deeply bound and thus outside the
applicable domain of the EFT. In practice, one can project
these states out of the spectrum in a phase-equivalent fashion
[30]. In Fig. 2 we show how the spurious states in 3P0 and
3S1-3D1 appear at the threshold value of � corresponding to
where the limit-cycle-like behavior is observed in Fig. 1.

In this work we infer the LEC posteriors at fixed values
of the cutoff �. There exist threshold LEC values for which
the total potential becomes sufficiently attractive such that a
spurious bound state appears. The (�-dependent) LEC values
for which this happens are tabulated in Appendix B for the
respective channels. Note that a spurious state is not deeply
bound in the immediate vicinity of these threshold values and
we stress that the behavior depicted in Fig. 2 is obtained when
requiring the exact reproduction of a specific phase shift.

As the bound state pole moves near the threshold when the
corresponding LEC is varied, the phase shift will change dra-
matically by Levinson’s theorem [63]. Rapidly varying phase
shifts lead to particular challenges in the inference process
since scattering observables that are included in the likeli-
hood, and that depend sensitively on partial-wave amplitudes,
might then constrain the LEC values to very narrow regions
of parameter space. In Fig. 3 we exemplify this by showing
phase shifts at Tlab = 50 MeV as a function of the LEC in
the partial waves 3P0 and 3P2 for different cutoff values. The

FIG. 3. The phase shifts δ3P0
and δ3P2

as a function of the respec-
tive LEC, for four different cutoff values � = 450, 550, 700, 1000
MeV at Tlab = 50 MeV. The horizontal (red solid) line is the empiri-
cal value of the phase shift [62].

red, horizontal line indicates the empirical value of the phase
shift according to the Nijmegen analysis [62]. Figure 3 also
shows that for certain cutoffs we can obtain a wide range
of LEC values that reproduce the empirical phase shift with
reasonable precision.

Figures 1 and 3 provide complementary views on limit-
cycle-like behavior. For example, in Fig. 1 we see that C3P0

changes from a large positive value to a large negative one
as we approach � ≈ 780 MeV from below. The same infor-
mation is contained in Fig. 3 where the LO 3P0 phase shift
intersects with the Nijmegen result for a positive (negative)
value of C3P0

for � = 700 (1000) MeV. Enforcing the ex-
act reproduction of a phase shift therefore implies that the
spurious bound state will be deeply bound exactly when
the limit-cycle-like behavior appears as shown in Fig. 1. For
the 3P2 wave, the phase shift only intersects with the Nijmegen
result on one side of the discontinuity, at least for the low
values of � shown here. Consequently, there is no spurious
bound state, or limit-cycle-like behavior appearing.

III. BAYESIAN PARAMETER ESTIMATION

Bayes’ theorem expresses the posterior pdf, pr(θ|D, I ), for
the relevant model parameters, θ, conditioned on experimental
data, D, and other pertinent information, I , in terms of quanti-
ties that we can evaluate:

pr (θ|D, I ) = pr (D|θ, I ) × pr (θ|I )

pr (D|I )
. (7)

Here, pr(θ|I ) is the prior, pr(D|θ, I ) is the likelihood, and
pr(D|I ) is the model evidence. The latter is independent of θ

and can be omitted for parameter estimation purposes leaving
us with the simpler expression

pr (θ|D, I ) ∝ pr (D|θ, I ) × pr (θ|I ). (8)

The set of model parameters in this study is collected in a
vector,

θ = (α, c̄), (9)

where α denotes the LECs of χEFT at LO and c̄ governs the
magnitude of the EFT truncation error, as described below in
Eq. (17). The elements of the vector α at LO are

α = (
C̃1S0

, C̃3S1
,C3P0

,C3P2

)
(10)

in units of 104 GeV−2 and 104 GeV−4 for the S- and P-wave
LECs, respectively.

A. Likelihood

When relating theory y(n)
th and experiment yexp for some

observable y we must account for both the theoretical and
experimental uncertainties. This can be achieved with a sta-
tistical model,

yexp = y(n)
th + δyth + δyexp, (11)

in which the uncertainties are modeled by random variables
δyth and δyexp, respectively, and where we suppressed all pa-
rameter dependencies for simplicity. One of the great benefits
of working with EFTs is the expected systematicity of the
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truncation error. Assuming that QCD accounts for all relevant
physics, and that our EFT is sound, i.e., it systematically
approximates QCD in the low-energy regime, then we can
express the value of some nuclear observable y as

y = yref

∞∑
k=0

bk

(
Q

�χ

)k

, (12)

in the notation of Eq. (1). Thus, the LO theoretical prediction
can be expressed as

y(0)
th = yref

[
b0 +

(
Q

�χ

)
D1

]
, (13)

where the second term contains the residual cutoff dependence
through D1. For the present case we assume that b1 = 0 by
time-reversal and parity invariance [8–10]. With this, Eq. (12)
can be written as

y = y(0)
th + yref

∞∑
k=2

ck

(
Q

�χ

)k

. (14)

The coefficients ck are related to bk and the power series
expansion of D1. Since b1 = 0, it implies that c1 = 0 if the
first term in the power-series expansion of D1 vanishes, which
we assume it does by the same symmetry argument as for b1.
The coefficients ck , like bk , are also assumed to be of natural
size, i.e., of order one. Finally, we note that ck might have a
residual cutoff dependence inherited from D1.

We can now express the LO truncation error as

δyth ≡ yref

∞∑
k=2

ck

(
Q

�χ

)k

. (15)

Quantitatively, this is unknown to us since we have not com-
puted anything beyond LO. However, we can evaluate the
probability distribution of the random variable δyth if we as-
sume a distribution for the expansion coefficients ck guided
by domain knowledge included in I . In this work we follow
Ref. [20] and assume that

pr(ck|I ) = N (0, c̄2), (16)

where N (μ, σ 2) denotes a normal distribution with mean
μ and variance σ 2. Assuming independent and identically
distributed ck coefficients, the distribution for δyth at each
kinematical point is given by [64]

pr (δyth|I ) = N (
0, σ 2

th

)
,

with σ 2
th =

y2
ref c̄

2
( Q

�χ

)4

1 − ( Q
�χ

)2 . (17)

Hence, the variance of the truncation error is governed by
c̄2, which is unknown a priori. However, operating with an
EFT we expect c̄ to be of order one. We will quantify this in
Sec. III B.

The experimental error for each datum is assumed to follow
a normal distribution with variance σ 2

exp, i.e.,

pr
(
δyexp|I

) = N (
0, σ 2

exp

)
. (18)

FIG. 4. The prior pdf for c̄, pr(c̄|I ).

Assuming that the EFT truncation error and the exper-
imental errors are independent, the likelihood for a single
observation reads

pr
(
yexp|θ, σexp, I

) = N (
y(0)

th (α), σ 2
th(c̄) + σ 2

exp

)
, (19)

by Eq. (11), where we now explicitly indicate the relevant
parameter dependencies. Following Refs. [24,45] we further
assume that EFT errors of scattering observables at different
energies and angles are independent.

The experimental data set, D = {yexp,i}N
i=1, on which we

condition the Markov chain Monte Carlo (MCMC) inference
is listed in Table I and contains N = 1043 scattering observ-
ables. This is not all the data in the Granada database [65,66].
We attempted an inference using all np observables with
Tlab < 100 MeV, but a model check revealed that most calibra-
tion data were poorly reproduced. For example, low-energy
total cross sections deviated significantly from experimental
values, which in turn yielded significantly overbound deuteron
states for most cutoffs. This is probably due to a misspecified
EFT truncation error, leading to unnaturally large values for
c̄ and thus overestimated EFT errors for low-energy cross
sections (that are expected to be reproduced relatively well at
LO). There are several suggestions [22] for how to construct
more sophisticated EFT error models that would accommo-
date the incorporation of more data in the likelihood. We
postpone such developments until we have incorporated sub-
leading orders in MWPC.

B. Priors

We treat α and c̄ as random variables and must therefore
place priors on them. For the LECs we employ independent
and normally distributed priors with a standard deviation of
four times their naturalness estimates: 4π

f 2
π

≈ 0.1 × 104 GeV−2

and 4π
f 2
π �2

χ
≈ 0.4 × 104 GeV−4 for the S- and P-wave LECs,

respectively [9,10,39]. Similarly, we expect c̄ to be of natural
size and always positive. As shown in Fig. 4, we employ an
inverse gamma distribution,

pr (c̄|I ) = βα

(α)
(1/c̄)α+1 exp (−β/c̄), (20)

with parameters α = 3 and β = 4.2. This distribution has a
mode around one, but also a heavy tail that allows for a
significant variation.
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IV. SAMPLING THE POSTERIOR AT DIFFERENT
CUTOFF VALUES

The parameter inference proceeds in two steps. First, we
employ a Bayes linear approach known as history matching
[28,67–69] to identify relevant domains for the LECs. Second,
we employ an affine invariant MCMC algorithm called EMCEE

[70] to numerically draw samples from the posterior pdf.
The history-matching domains identified in the first step are
used to initialize the MCMC sampling. Furthermore, to avoid
detrimental influence of the limit-cycle-like behavior during
sampling we select momentum cutoffs based on the analysis
in Sec. II C.

A. History matching

History matching is an iterative scheme that can be em-
ployed to identify and exclude regions of parameter space that
produce model outputs inconsistent with observational data,
taking relevant uncertainties into account. See, e.g., Ref. [28]
for details of the algorithm and an application in nuclear
physics. At the end, history matching returns the region(s)
of parameter space that could not be ruled out, the so-called
nonimplausible domain.

In this work, however, we employ history matching as a
precursor to a full Bayesian analysis. A similar use of history
matching can be found in Ref. [71]. Our aim is then to identify
regions of parameter space where we expect to find large
contributions to the posterior probability mass. We will be
less concerned with the observational property of the data
that we utilize in this step (we will employ scattering phase
shifts), or with the rigour of our uncertainty estimates, as
the sole purpose is to pick promising starting points for the
MCMC algorithm. For this reason we refer to excluded sam-
ples as inefficient starting points, whereas the final domain is
at least noninefficient. These designations replace the standard
implausible and nonimplausible labels that are found in the
history-matching literature.

We employ an “inefficiency” measure IM (α) that gauges
the performance of the theoretical predictions for a selected
subset of data given values for the LECs:

IM (α) ≡ max
i

√√√√∣∣y(0)
th,i(α) − yexp,i

∣∣2

σ 2
exp,i + σ 2

th,i

. (21)

The index i enumerates the set of experimental observations
that is included in the history matching. The measure IM (α)
is defined as the maximum over the observations {yexp,i} and
is therefore governed by the datum that is reproduced the
worst. The experimental and theoretical errors are incorpo-
rated via the variances σ 2

exp,i and σ 2
th,i, respectively. A second

measure, I2M (α), is sometimes used to construct an additional
constraint. It is analogously defined as the second maximum
over the observations and obviously fulfills I2M (α) � IM (α).

We perform two waves of history matching. In the first
wave, the scattering phase shifts listed in Table II are con-
sidered as observational data. Since all LECs act in distinct
partial waves, each LEC could be constrained independently
within one-dimensional subwaves. We estimate conservative

TABLE II. np scattering phase shifts in degrees, used as observa-
tional data within the first wave of history matching. Values for Tlab

are given in MeV. The phase shift at Tlab = 40 MeV was obtained
through spline interpolation. All other phase shifts were taken from
Refs. [65,66]. The standard deviation for the theoretical error in
Eq. (21) is presented in the last column as a relative error.

Tlab δ1S0
δ3S1

δ3P0
δ3P2

σth/δ

1 62.1 147.6 0.181 0.022 0.3
5 63.7 118.0 1.66 0.258 0.3
10 60.0 102.3 3.75 0.727 0.3
25 51.1 80.2 8.48 2.63 0.3
40 44.8 67.6 10.7 4.70 0.3
100 27.2 42.7 9.14 11.06 0.8

phase-shift errors σth from Eq. (17) using fixed c̄ ≈ 6. This
choice implies a 30% error for Tlab < 40.6 MeV (i.e., p < mπ )
and 80% for phase shifts with Tlab ≈ 100 MeV. For each sub-
wave we use 104 different LEC values in a space-filling Latin
hypercube design [72] across a rather wide interval informed
by the phase-shift analysis in Sec. II C and corresponding to
the ranges shown on the y axes in Fig. 5. Samples for which

FIG. 5. The ranges of relevant starting points for each LEC,
resulting from two waves of history matching for several cutoff
values. The units used for the LECs are defined below Eq. (10).
Noninefficient ranges are separated and color coded according to if
the channel contains spurious bound states. The range of each LEC
axis indicates the region that was searched in the first wave of history
matching.
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TABLE III. np scattering observables used within the second
wave of history matching. Note that σ , without any subscripts, is
denoting the total np cross section, while σth/yexp is the (relative)
model error for each observable.

Observable Tlab (MeV) θc.m. (deg) yexp σth/yexp

σ 0.12 12050.0 mb 0.3
σ 3.186 2206.0 mb 0.3
σ 12.995 749.0 mb 0.3
σ 28.0 321.5 mb 0.3
σ 40.0 217.8 mb 0.3
σ 97.2 76.0 mb 0.8
dσ/d� 99.0 21.0 8.01 mb/sr 0.8
dσ/d� 99.0 78.0 2.14 mb/sr 0.8
dσ/d� 99.0 149.0 9.50 mb/sr 0.8
Pb 25.0 33.1 0.047 0.3
Pb 25.0 90.3 0.053 0.3
Pb 95.0 29.8 0.170 0.8
Pb 95.0 88.5 0.291 0.8

the inefficiency measures are larger than some cutoff values
are deemed as poor candidates for initializing the MCMC
algorithm. In this analysis we use a sequence of cutoffs, IM >

3.0 combined with I2M > 2.5, which is similar to Ref. [69]
(therein based on Pukelsheim’s three sigma rule [73]). In the
end, the relevant parameter volume is reduced by a large
fraction. The ratio of the noninefficient volume over initial
volume was found to be as small as 10−5, although this ratio
depends rather strongly on the value of the cutoff.

In the second wave, a set of 13 np scattering observables
is used to construct the inefficiency measures. In this wave
all four LECs are active simultaneously. Here we employ 105

samples, using the same space-filling design, in the nonineffi-
cient domain resulting from the first wave. The larger number
of samples and the much reduced volume helps to provide
sufficient resolution for detecting narrow domains. The set of
observables and corresponding model uncertainties, estimated
using the same prescription as in the first wave, can be found
in Table III.

The resulting, relevant ranges for each of the LECs are
shown in Fig. 5. The domains are classified, and color coded,
according to if the LEC gives rise to a spurious (unphysical)
bound state in the respective channel. The rapid variation
of the phase shift by 180◦ where a bound state appears—
discussed and illustrated in connection to Fig. 3—gives rise
to disjoint domains. Therefore, we can anticipate multimodal
structures of the LEC posterior pdf.

Depending on the cutoff, we find spurious states in all
channels. In the 1S0 channel there is always a region with
an unphysical bound state, but it becomes more narrow for
increasing values of the cutoff. The physical deuteron state is
always present in 3S1-3D1, and we observe additional (spuri-
ous) states in disjoint domains for several cutoffs. For � �
3000 MeV there are two disjoint domains that contain at least
one spurious bound state each.

While there are no spurious bound states in 3P0 for � �
500 MeV, a second domain with lower values of the LEC
contains a spurious bound state for � = 550, 600, 700 MeV.

For larger cutoffs, � � 2000 MeV, there is only one narrow
domain and it gives rise to a spurious bound state. In 3P2

we observe larger domains and spurious bound states for
� � 2000 MeV.

We can understand the � dependence of the P-wave do-
mains by studying Fig. 3 in light of the errors going into
the inefficiency measure (Eq. (21)). In doing so we see that
for 3P0 and � = 550–700 MeV the theoretical and empirical
phase shifts match across wide regions of LEC values that
qualitatively agree with the non-inefficient domains observed
in Fig. 5. A similar argument holds for 3P2 and greater values
of �.

Unfortunately, history matching fails to reduce the initial
domain of C3P0

and C3P2
for some momentum cutoffs and thus

provides limited information in these cases. In the following
we perform a Bayesian analysis. The LEC posteriors pre-
sented in Sec. IV B are conditioned on observational data (see
Table I) and a more reliable error model. They provide more
informative and credible inference compared to the domains
shown in Fig. 5.

B. Markov chain Monte Carlo sampling

We sample the posterior pdf in Eq. (8) using the affine-
invariant ensemble sampler from the Python package EMCEE

[70] conditioned on the experimental data in Table I. As noted
in Sec. IV A, there are disconnected noninefficient regions
for some LECs at several values of the cutoff. These regions
might correspond to multimodal structures of the posteriors.
In infinite time, the MCMC walkers will explore all parameter
space, but in finite time they are likely trapped in local modes.
To handle such convergence challenges we initiate sampling
in several of the regions identified using history matching.
Ideally, all combinations of such regions should be explored
in order to locate the dominant posterior mode(s) with some
certainty.

We initialize 50 MCMC walkers using a random subset
of points from the noninefficient domains for each cutoff
and let them take 5000 steps each after a burn-in period of
1000 steps. This is typically sufficient for obtaining a good
representation of each posterior mode of our five-dimensional
posterior pdf. The initialization of walkers in the P-waves
is chosen in the region of the domain without bound states,
shown in orange in Fig. 5, except for the higher cutoffs in 3P0.
The same principle is applied in the 3S1 partial wave, where
we initialize in the region containing the least amount of
spurious states. The posterior turns out to be relatively flat in
the direction of P-wave LECs. Thus, the MCMC sampling is
less sensitive to where the walkers are initialized in the rather
large start domains. Moving forward, we focus on the possible
multimodalities originating from the 1S0 channel where we
always found a parameter region giving rise to a shallow and
unphysical bound state. The initialization of MCMC walkers
in the 1S0 channel is chosen either in the unbound (orange) or
bound (blue) region. Proceeding like this for selected cutoff
values between 400 and 4000 MeV we indeed find multimodal
structures in the posterior pdf, as summarized in Table VI in
Appendix C.
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TABLE IV. The model evidences and maximum a posteriori
(MAP) estimates (θ∗) of the LECs for all cutoffs � (in MeV). A
posterior bimodality with comparable probability mass per mode
exists for both � = 700 and � = 4000 MeV.

� ln(ZK ) MAP (θ∗)

400 −3280 (−0.1186, −0.1167, 5.386, 0.5962, 2.716)
450 −3312 (−0.1128, −0.09640, 5.115, 0.5118, 2.813)
500 −3325 (−0.1084, −0.07815, 4.713, 0.4560, 2.859)
550 −3305 (−0.1048, −0.06069, −1.534, 0.7440, 2.808)
600 −3296 (−0.1018, −0.04352, −0.8692, 0.9547, 2.790)
700 −3282 (−0.09706, −0.006363, −0.3682, −2.848, 2.776)
700 −3280 (−0.09707, −0.006305, −0.3803, 1.910, 2.761)
2000 −3278 (−0.07831, −0.1267, 0.01847, −0.02938, 2.745)
3000 −3286 (−0.07482, −0.03519, 0.02497, −0.01020, 2.763)
4000 −3283 (−0.07210, 0.09648, −1.140, −0.005023, 2.773)
4000 −3282 (−0.07210, 0.09641, 0.2060, −0.005050, 2.773)

To analyze the probability mass gathered in each mode we
calculate the model evidence ZK for all domains K enclosing
a mode. We do this using the Laplace approximation, which is
accurate if the probability distribution can be locally approxi-
mated with a multivariate Gaussian, i.e.,

ZK = pr (D|I )K ≡
∫

K
dθ pr (θ|D, I )

≈ pr (θ∗|D, I )
(2π )N/2

√
det �−1

, (22)

where �−1 is the Hessian matrix of pr(θ|D, I ) evaluated at
the mode θ∗. Each mode listed in Table VI in Appendix C
is indeed found to be well approximated with a Gaussian.
The numerical evaluation of Eq. (22) might be sensitive to
the convergence of the MCMC chains. However, this sensi-
tivity mainly impacts the evaluation of the determinant of the
inverse Hessian, which turns out to be a less significant con-
tribution to the evidence compared to the density at the MAP
point [74]. The ln(ZK ) values for all investigated modes are
summarized in Table VI of Appendix C. Fortunately, a well-
defined “best” mode with highest evidence can be identified at
all cutoffs except for � = 700 and � = 4000 MeV for which
there are two P-wave modes with very similar evidences. All
the significant modes identified in the evidence analysis are
retained, and none of them contain an unphysical bound state
in the 1S0 channel.

To ensure that we obtain a high-quality representation of
the relevant posteriors we perform the final sampling using 50
walkers taking 5000 steps each initialized in the vicinity of the
largest ln(ZK ) mode for each cutoff. This lays the foundation
for accurate inferences of the ppds presented in Sec. V. We
use an autocorrelation analysis [24] and visual inspection of
the traces to confirm MCMC convergence. At the cutoffs � =
700 MeV and � = 4000 MeV the two P-wave modes with
similar evidences remain. The resulting values for the model
evidences and MAP locations at several cutoffs are shown in
Table IV. The model evidences are of similar magnitude for
all cutoffs. In fact, the biggest difference, on a logarithmic

scale, is about 40, i.e., the maximal ratio of evidences is e40.
The same difference can, for example, be obtained by shifting
all predictions by about 5%, which is quite small compared to
the EFT truncation error.

In Figs. 6(a) and 6(b), we show the marginal posterior pdfs
for the cutoff values � = 450 MeV and � = 700 MeV. The
posterior pdfs for the remaining cutoff values are shown in
Appendix C. The posteriors are consistent with our natural-
ness assumptions for both the LECs and the scale of the EFT
truncation error as no tensions with our priors are observed.

The running of the inferred LECs can now be monitored.
The cutoff dependence of the marginal posteriors for the LECs
is shown in Fig. 7. We conclude that C̃1S0

(�) and C̃3S1
(�)

have a behavior similar to the running of those couplings
determined from the phase shift fits in Sec. II C and Fig. 1.
This finding can likely be attributed to the fact that these LECs
are quite well constrained by the employed low-energy np
scattering cross sections. However, the P-wave LECs C3P0

and
C3P2

are not that well constrained by the np data used in the
inference and run differently with � in the Bayesian analysis.

The inference of c̄ is quite interesting in its own right. In
Fig. 7 we show its marginal posterior and see that it is rather
insensitive to cutoff variation, in particular for � > 700. The
breakdown scale �χ , c̄, and the low-energy scale Q are con-
nected through Eq. (17), and their posteriors have previously
been investigated in WPC in Refs. [21,23].

V. POSTERIOR PREDICTIVE DISTRIBUTIONS

In this section we present ppds for scattering phase shifts as
well as selected np observables. The ppd for an observable y is
a marginalization of the model predictions over the posterior
of the relevant parameters

pr (y|D, I ) =
∫

dθ pr (y|θ, D, I ) pr (θ|D, I ). (23)

When sampling the model prediction, pr(y|θ, D, I ), we can
choose to include the EFT truncation error, in which case it
takes the form

pr (y|θ, D, I ) = N (
y(0)

th (α), σ 2
th(c̄)

)
, (24)

or we can exclude it, which corresponds to just propagating
the parametric LEC uncertainty, by using a delta distribution:

pr (y|θ, D, I ) = δ
(
y − y(0)

th (α)
)
. (25)

The integral in Eq. (23) can be straightforwardly evaluated
using the samples from the MCMC chains obtained in Sec. IV.
In the following, ppds including (excluding) the EFT error are
colored blue (purple).

A. Phase shifts

The Bayesian inference in this work differs from the
point estimates obtained from a standard phase shift opti-
mization. In Fig. 8 we compare the ppds from the present
analysis with the optimized phase shifts from Yang et al.
[5] for � = 450 MeV and the Nijmegen partial-wave anal-
ysis [62]. The EFT error is not included in the ppd. One
finds that the parametric uncertainty of the phase shifts,

054002-8



BAYESIAN ANALYSIS OF CHIRAL EFFECTIVE FIELD … PHYSICAL REVIEW C 108, 054002 (2023)

FIG. 6. Posterior pdfs for the parameters θ = (α, c̄) using cutoffs � = 450 MeV and � = 700 MeV. The units of the LECs are 104 GeV−2

and 104 GeV−4 for the S and P waves respectively. The median and the 68% equal-tailed credible interval are indicated for the univariate
marginal pdfs.

stemming from the LEC posterior, is rather small, and the
95% credible intervals shown in the figure are mostly vis-
ible in the 3P2 partial wave. We find good agreement with
the results by Yang et al. [5] except for the P-wave phase
shifts which are more repulsive in the Bayesian analysis.
Apparently, the P-wave LECs receive significant contribu-

FIG. 7. The marginal posterior pdfs for the parameters θ for
cutoffs, �, in the range 400 to 4000 MeV. The units of the LECs
are 104 GeV−2 and 104 GeV−4 for the S and P waves, respectively.

tions when conditioning on scattering data. At � = 450 MeV,
the P-wave phase shifts 1P1 and 3P1, which are not part
of the contact potential, are more attractive than the ones
from the Nijmegen analysis; see Fig. 9. Note that the LO
potential only includes low partial waves, for which the OPE
is not perturbative. To prevent overfitting to higher order ef-
fects, which are better described by high partial waves, either
the LO potential or the model for the LO EFT error likely
needs to be revisited. We also foresee that the LO LECs will
receive corrections at higher orders, and this could signifi-
cantly change the scattering amplitudes and the pole structure
in a given channel. The np phase shifts for the MAP estimate
of the LECs for � = 450 MeV are tabulated in Table VII in
Appendix D.

B. Observables in the np sector

In Fig. 10 we compare experimental data for several np
scattering observables and the corresponding ppds, including
the EFT truncation error, at LO and using the cutoff � = 450
MeV. Total cross sections, σ , and differential cross sections,
dσ/d�, are reproduced quite well, although the ppd error
bands are rather wide. Using Eq. (17) and c̄ ≈ 2.8 from
Fig. 6(a) we estimate that the EFT truncation error for p � mπ

is about 15%. The ppd for the spin-polarization observable Pb,
which was not included in the MCMC sampling, reproduces
experimental data rather poorly. This result is particularly
striking in the ppd at Tlab = 25.0 MeV. The situation improves
at higher energies, which is somewhat surprising for a low-
energy EFT. As such, conditioning on low-energy Pb data
could improve the model. However, expanding the dataset in
Table I requires an improved model for the EFT truncation
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FIG. 8. Predicted phase shifts (in degrees) with � = 450 MeV
represented by the median of the ppd (solid purple line) and the 95%
equal-tailed credible interval (purple band). Note that the EFT error
is not included. Our results are compared to the phase shifts of Yang
et al. [5] and the Nijmegen partial-wave analysis [62]. The labels Y40
and Y200 indicate the two types of fits that were done by Yang et al.
[5] in the 3P2-3F2 channel: renormalizing the corresponding LECs to
reproduce the 3P2 phase shifts at Tlab = 40 MeV and Tlab = 200 MeV,
respectively.

FIG. 9. Predicted phase shifts (in degrees) in the P waves not part
of the contact potential using the cutoff � = 450 MeV. Our results
are compared to the results from the Nijmegen partial-wave analysis
[62].

FIG. 10. Median (solid blue line) of the ppds for selected np scat-
tering observables using MWPC at LO with a cutoff � = 450 MeV.
The EFT error is included. Shaded dark and light blue bands rep-
resent 68% and 95% equal-tailed credible intervals, respectively.
Experimental data (exp) are from Refs. [65,66].

error [22] and likely access to order-by-order calculations
beyond LO to guide the inference of c̄.

In Fig. 11 we show the ppds for σ and Pb as a function
of �, including the EFT error, for a handful of values of Tlab

and θc.m.. Except for a slight variation of Pb for � < 700, no
significant cutoff variation is observed. It can also be seen that
the experimental value is well reproduced for σ and more
poorly for Pb. The LO EFT error for σ appears to be on the
conservative side and might shrink as we learn it better.

The ppd, without the EFT error, for the deuteron ground-
state energy is shown in Fig. 12 and reveals an approximate
0.5 MeV underbinding, but no significant cutoff dependence.
For some of the higher cutoffs additional spurious and deeply
bound states appear at E ≈ −1 GeV. Employing the same
error model as for the scattering observables, one can attempt
to make an uncertainty estimate for the deuteron ground-state
energy. Using the binding momentum pgs = √

mN (−Egs) ≈
50 MeV < mπ as a proxy for the relevant soft scale, we arrive
at an estimated EFT error of around 15% of the predicted
value. Including this error makes the lower end of the ppds
touch the experimental value.

The ppds for the energies of the unphysical bound states
in the channels 3P0 and 3P2-3F2 are shown in Fig. 13, except
for a very deep (E ≈ −1 TeV) state in 3P0 for � = 4000 MeV.
Some of the energies are around 25 MeV, which is well within
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FIG. 11. The ppds for the scattering observables σ and Pb at
two different laboratory energies as a function of the cutoff, �, and
including the EFT error. The red horizontal line and band represent
the experimental value and error, respectively [65,66].

the validity of the EFT. Note also that the ppds in Fig. 13
show a strong dependence on the cutoff, which is generally the
case for spurious states, which was also seen in Sec. II C. In
the 3P2-3F2 channel for the cutoff � = 700 the deeply bound
state at E ≈ −1 GeV is produced by the very small tail of
negative C3P2

values shown in the marginal pdf in Fig. 7. We
see spurious states in all singular channels for � � 2000 MeV.

VI. CONCLUSIONS AND OUTLOOK

In this work we have presented a detailed Bayesian study
of a LO χEFT potential in MWPC. We have performed robust
inferences of the LECs and the scale c̄ of the EFT truncation
error using history matching and MCMC sampling for several

FIG. 12. The ppds for the energy of the deuteron (3S1-3D1) chan-
nel as a function of the cutoff, �, and excluding the EFT error. The
red horizontal line indicates the experimental binding energy [52].

FIG. 13. The ppds for the energy of selected bound states in the
3P0 (upper row) and 3P2-3F2 (lower row) channels as a function of the
cutoff, �, and excluding the EFT error. Note the different scales on
the y axes. The red horizontal line indicates the binding threshold.

values of the momentum cutoff in the range from 400 to
4000 MeV. Below, we summarize the main takeaways.

(i) Multimodal LEC posteriors are induced via the exis-
tence of bound states, virtual states, and resonances
that move around near threshold for varying values of
the LECs and cutoff �. This makes inference chal-
lenging. In particular, we could always find modes
where the 1S0 state was bound at an energy of approx-
imately 1 MeV.

(ii) We computed the model evidence for each mode in
the Laplace approximation. At each cutoff we initial-
ized a final round of MCMC sampling around the
mode(s) with the largest evidence (see Table IV).
Modes harboring a bound 1S0 state were always found
to be insignificant. However, pairs of modes in the
3P2-3F2 channel for � = 700 MeV and in the 3P0

channel for � = 4000 MeV had similar evidences
and could not be discerned. We expect that the poor
constraints on the LECs might be improved with a
better error model and with the inclusion of more
types of scattering observables in the calibration data.

(iii) Our inference shows that c̄ ≈ 2.8 across all cutoffs
investigated. Since the main posterior modes have
similar evidences (see Table IV) this implies that the
description of the low-energy scattering data is essen-
tially equivalent for the different momentum cutoffs
in the range 400 to 4000 MeV.

(iv) Conditioning the LEC inference on scattering data
leads to excessive repulsion in the 3P0 and 3P2 partial
waves compared to the Nijmegen analysis [62] and to
the phase-shift optimization performed by Yang et al.
[5]. Despite the poor accuracy of P-wave phase shifts
(see Fig. 8), we find that scattering observables are
reproduced surprisingly well (see Figs. 10 to 12) for a
LO potential. We conclude that it might be problem-
atic to use phase shifts for calibration of LO potentials
in MWPC. These potentials, acting in the first few
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FIG. 14. The geometry of NN scattering in relative coordinates.
An incoming nucleon with relative momentum p and spin (s, ms )
scatters an angle θc.m. to a relative momentum p′ and spin (s, m′

s ).
The azimuthal angle φ is conventionally set to zero.

partial waves only, need to compensate for excluded
higher-order contributions to reproduce observables.
Consequently, the inference becomes crucially depen-
dent on the specification of the EFT error model, of
which we have limited information. This highlights
the need for further studies at higher orders.

(v) We conclude that the ppds for various bound-state
and scattering observables in the np sector exhibit no
significant cutoff dependence.

It remains to be seen what happens as subleading orders
are included perturbatively and when the model for the EFT
truncation error is refined. The inferred LO potentials, with
broad distributions for the P-wave LECs, will likely lead to
significant predictive uncertainties in nuclei. Therefore, the
ppds for ground-state energies and radii should also be quan-
tified to assess the quality and physical relevance of existing
RG-invariant χEFT formulations.
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APPENDIX A: NEUTRON-PROTON SCATTERING

The scattering geometry in relative-momentum coordi-
nates is illustrated in Fig. 14. For a stationary proton and an
incoming neutron with kinetic energy Tlab in the laboratory
frame of reference, the modulus of the relative momentum, p,
is given by

p2 = m2
pTlab(2mn + Tlab)

(mn + mp)2 + 2mpTlab
. (A1)

We partial-wave decompose the potential V in Eq. (2) using
the helicity formalism introduced in Ref. [53], and employ
partial-wave states |lml , p〉 with the normalization

〈p′|lml , p〉 = δ(p′ − p)

p2
Y l

ml
( p̂′), (A2)

where Y l
ml

( p̂) is the spherical harmonics, including the
Condon-Shortley phase, normalized as∫

d p̂ Y ∗l ′
m′

l
( p̂)Y l

ml
( p̂) = δl ′lδm′

l ml . (A3)

We are interested in elastic scattering and express the T
matrix as a real-valued R matrix defined as

R = T + iπRδ(E − H0)T . (A4)

where H0 is the free Hamiltonian and E = p2/mN [75].
Consequently, we solve the Lippmann-Schwinger equation
given by

Rs j
l ′l (p′, p) =V s j

l ′l (p′, p)

+ P
∑

l ′′

∫ ∞

0
dk k2 V s j

l ′l ′′ (p′, k)
mN

p2 − k2
Rs j

l ′′l (k, p),

(A5)

where P denotes the principal value. The momentum-space
integral is discretized as described in Refs. [55,76] using
a Gauss-Legendre grid with Np = 60 points in the interval
[0,� + 300] MeV, i.e., on the interval where the potential,
and hence the part of the integral containing the potential, is
nonzero. The advantage of using a grid that does not extend
to infinity is that the part of the integral that implements the
principal value, and is outside the support of the potential, can
be treated analytically, see, e.g., Ref. [77].

Following Refs. [75,78] we obtain scattering phase shifts
in the Blatt and Bidenharn convention from on-shell R-matrix
elements in uncoupled channels via

tan δ
s j
l (p) = −π

2
p mN Rs j

ll (p, p), (A6)

and for coupled channels via

tan δ̃
s j
∓ (p) = −π

4
p mN

[
Rs j

−− + Rs j
++ ± Rs j

−− − Rs j
++

cos(2ε̃)

]
,

tan[2ε̃s j (p)] = 2R+−
R−− − R++

, (A7)

where Rs j
±± ≡ Rs j

l ′= j±1,l= j±1(p, p). The more commonly em-
ployed Stapp (bar) phase shifts, which we use in this work,
are given by the solution to the following equations [75]:

δ̃
s j
+ + δ̃

s j
− = δ̄

s j
+ + δ̄

s j
− ,

sin(δ̄s j
− − δ̄

s j
+ ) = tan(2ε̄s j )

tan(2ε̃s j )
, (A8)

sin(δ̃s j
− − δ̃

s j
+ ) = sin(2ε̄s j )

sin(2ε̃s j )
.

Note that numerical instabilities can occur when the mixing
angle (ε̄s j) in the Stapp convention changes sign.
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TABLE V. Threshold LEC values for which a bound state appears in the partial waves relevant for the contact potential at LO. For the
3S1-3D1 channel and � � 2000 MeV it is the second bound state that appears at the tabulated value, and the first appears for C̃3S1

> 0.4. For
the 3P0 channel and � = 4000 MeV it is the second bound state that appears at the tabulated value, and the first appears for C3P0

> 1.

� (MeV) C̃1S0
(104 GeV−2) C̃3S1

(104 GeV−2) C3P0
(104 GeV−4) C3P2

(104 GeV−4)

400 −0.1279 −0.0825 −1.6735 −2.3178
450 −0.1207 −0.0636 −1.1076 −1.6375
500 −0.1151 −0.0449 −0.7578 −1.2016
550 −0.1106 −0.0254 −0.5316 −0.9095
600 −0.1067 −0.0037 −0.3802 −0.7063
700 −0.1010 0.0515 −0.2015 −0.4528
2000 −0.0794 −0.0983 0.0268 −0.0263
3000 −0.0755 0.0010 0.0449 −0.0096
4000 −0.0735 0.3229 −0.0310 −0.0048

The spin-scattering matrix, M, is given by [75,79,80]

Ms
m′

sms
(p, θc.m., φ) =

√
4π

2ip

∑
j,l,l ′

il−l ′ (2 j + 1)
√

2l + 1

×Y l ′
ms−m′

s
(θc.m., φ)

(
l ′ s j

ms − m′
s m′

s −ms

)

×
(

l s j
0 ms −ms

)

× (
Ss j

l ′l (p, p) − δl ′l
)
. (A9)

The angles θc.m. ∈ [0, π ] and φ ∈ [0, 2π ] are the polar and
azimuthal scattering angles, respectively. We set φ = 0 by
cylindrical symmetry. Numerical instabilities in Eq. (A9) can
occur at θc.m. = 90◦, but can be avoided by adding a small
nugget.

Equipped with M, spin-scattering observables can be com-
puted from traces in spin space. The spin averaged differential
cross section is obtained as

dσ

d�
= 1

4
Tr{M†M}. (A10)

Other observables can be calculated in a similar fashion, or
by decomposing the M matrix into, e.g., Saclay amplitudes as
described in Ref. [56].

APPENDIX B: APPEARANCE OF BOUND STATES

Table V lists the threshold LEC values for which np bound
states appear at different cutoff values, �, for the potential
discussed in Eq. (5).

APPENDIX C: MARGINAL POSTERIOR DISTRIBUTIONS

Table VI lists the MAP LEC values for the modes found
during the initial MCMC. Figures 15 and 16 show the
marginal posterior pdfs for the parameters θ at cutoff values
� = 400, 500, 550, 600, 2000, 3000, 4000 MeV.

APPENDIX D: PHASE SHIFT BENCHMARK

Table VII lists selected phase shifts for the LO
EFT potential defined in Sec. II with � = 450 MeV

and the MAP LEC values (C̃1S0
, C̃3S1

,C3P0
,C3P2

) =
(−0.1128, −0.0964, 5.1151, 0.5118) in the units defined
below Eq. (10).

TABLE VI. Modes found in the initial MCMC sampling of the
posterior pdfs. For each cutoff there are two starting regions (s),
indicated in the second column: one where 1S0 contains a bound state
(b) and one where it does not (u).

� (MeV) s ln(ZK ) MAP (θ∗)

400 u −3280 (−0.1186,−0.1168, 5.3536, 0.5890, 2.7193)
400 b −3887 (−0.1594,−0.1214, 3.1047, 0.4464, 4.9501)
450 u −3312 (−0.1129,−0.0964, 5.0422, 0.5193, 2.8031)
450 b −3879 (−0.1448,−0.1000, 3.6050, 0.4650, 4.9108)
450 b −3893 (−0.1445,−0.0995,−6.2068, 0.5853, 4.9336)
500 u −3325 (−0.1084,−0.0781, 4.9732, 0.4489, 2.8520)
500 b −3861 (−0.1340,−0.0807,−3.9206, 0.6015, 4.8125)
500 b −3862 (−0.1341,−0.0809, 4.0452, 0.5022, 4.8321)
550 u −3305 (−0.1048,−0.0607,−1.5204, 0.7656, 2.8144)
550 u −3328 (−0.1048,−0.0607, 4.4330, 0.3724, 2.8492)
550 b −3832 (−0.1259,−0.0629,−2.3130, 0.7294, 4.6720)
550 b −3843 (−0.1260,−0.0633, 4.1715, 0.5688, 4.7062)
600 u −3296 (−0.1018,−0.0436,−0.8677, 1.0069, 2.7920)
600 u −3326 (−0.1017,−0.0438, 4.2580, 0.3304, 2.8839)
600 b −3822 (−0.1196,−0.0453,−1.2360,−4.8906, 4.5958)
600 b −3841 (−0.1197,−0.0455, 4.2284,−4.7557, 4.6951)
600 b −3828 (−0.1196,−0.0455,−1.2646, 0.8954, 4.5454)
600 b −3824 (−0.1197,−0.0456, 4.2902, 0.6672, 4.6155)
700 u −3279 (−0.0971,−0.0063,−0.3798, 1.9723, 2.7659)
700 u −3282 (−0.0971,−0.0064,−0.3771,−2.9677, 2.7711)
700 u −3323 (−0.0970,−0.0066, 3.7883, 0.2950, 2.8984)
700 b −3766 (−0.1105,−0.0078,−0.4676,−2.5175, 4.3600)
700 b −3795 (−0.1105,−0.0086, 3.8219, 1.1784, 4.5288)
700 b −3764 (−0.1105,−0.0080,−0.4887, 1.9523, 4.3593)
2000 u −3278 (−0.0783,−0.1267, 0.0184,−0.0293, 2.7490)
2000 b −3688 (−0.0812,−0.1266, 0.0165,−0.0285, 3.9715)
3000 u −3286 (−0.0748,−0.0352, 0.0248,−0.0102, 2.7581)
3000 b −3688 (−0.0767,−0.0350, 0.0222,−0.0100, 3.9804)
4000 u −3279 (−0.0730, 0.0967,−1.0424,−0.0050, 2.7585)
4000 u −3282 (−0.0730, 0.0964, 0.2322,−0.0050, 2.7627)
4000 b −3683 (−0.0744, 0.0966, 0.0819,−0.0050, 3.9644)
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FIG. 15. Posterior pdfs for the parameters θ = (α, c̄) at different cutoffs. The units of the LECs are 104 GeV−2 and 104 GeV−4 for the S
and P waves respectively. The median and the 68% equal-tailed credible interval are indicated for the univariate marginal pdfs.

TABLE VII. Phase shifts and mixing angles in degrees for relevant partial waves.

Tlab (MeV) δ1S0
δ3S1

δ3D1
δε1 δ3P0

δ3P2
δ3F2

δε2

1 48.11269 144.56170 −0.00641 0.17917 0.13249 −0.01180 0.00001 −0.00154
50 55.43553 67.70410 −7.98257 4.45167 −2.94614 −3.27873 0.31327 −1.63134
100 47.35263 51.13999 −16.12281 6.19131 −18.21728 −9.11571 0.70523 −2.73674
200 32.27681 31.20600 −26.46882 8.71350 −51.24600 −21.64237 1.00719 −3.46681
300 19.60329 17.43370 −26.71548 9.20362 −82.25737 −29.45361 0.80583 −3.12625
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FIG. 16. Posterior pdfs for the parameters θ = (α, c̄) at different cutoffs. The units of the LECs are 104 GeV−2 and 104 GeV−4 for the S
and P waves respectively. The median and the 68% equal-tailed credible interval are indicated for the univariate marginal pdfs.
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