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Abstract—The optimal antenna array excitation vector is
derived that maximizes the (realized) array gain in a particular
direction while preventing the coupled input power to the low-
noise amplifiers on the receive side to exceed a certain maximum
threshold level. This is very useful for in-band full-duplex systems
where the hardware complexity for self-interference cancellation
must be minimized. In this approach, the perfect nulling of
interference on the RX side is not required, sparing degrees of
freedom for the TX beamformer. We evaluate the performance of
the proposed TX beamforming algorithm by showing numerical
results of the 25 x-polarized TX and 25 RX with 0.5λ element
spacing and λ gap distance between the TX and RX sub-array.

Index Terms—In-band full-duplex, Self-Interference Mitiga-
tion, Transmit Beamforming

I. INTRODUCTION

In-band full-duplex (IBFD) is a type of network architecture

that allows for simultaneous transmission and reception of

signals at the same frequency band and offers the potential

to increase the spectrum efficiency and data rate of wireless

communication systems as well as improved sensitivity in

e.g., radar and Electronic Warfare applications [1]. However,

implementing IBFD systems presents a significant challenge

due to self-interference (SI) — the transmission of the signal

from the transmitter (TX) leaking into the receiver (RX),

which needs to be properly mitigated in order to receive the

desired signal with maximum spurious free dynamic range. SI

can be mitigated consecutively over three domains, namely, the

analog-circuit domain, the digital domain, and the propagation

domain. The survey in [2] offers a comprehensive collection

of these techniques and discusses typical implementation so-

lutions for each of these domains. The analog-circuit domain

Fig. 1. Block diagram of a typical full-duplex system with three stages of SI
cancellation (see the original Fig. 4 in [1]).

approaches intend to generate a copy of the transmit signal in

order to cancel the SI at the receiver input. The digital domain

cancellation exploits the known transmitted data symbols and

the estimated SI channel to cancel the residual SI in the digital

baseband. The propagation domain methods aim to isolate

the transmitter and receiver to reduce the SI arriving at the

receiver. These techniques can be categorized into passive

and active SI cancellation. Passive SIC techniques are used

to electromagnetically isolate the transmitter and receiver.

Active SI cancellation techniques are usually applied in the

digital and analog domains to exploit the knowledge of its

own transmitted signal to cancel the SI, i.e., to generate a

cancellation signal in the receive signal path to null the SI.

Fig. 1 demonstrates that the IBFD terminal accepts a coded
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and modulated transmit bitstream in the digital domain, which

generates a digital baseband signal for each TX antenna.

These digital signals are transformed into analog signals using

a digital-to-analog converter (DAC) and are then amplified

through a high-power amplifier (HPA) and radiated using a

TX antenna. However, this process can introduce some non-

idealities into the TX signal, like DAC quantization noise,

oscillator phase noise, and amplifier distortion, which result

in slight discrepancies between the actual and intended to TX

signals.

At the same time, the IBFD terminal functions as an RX

over the same frequency band. Each RX antenna receives a

signal that is processed through a hardware chain consisting

of a low-noise amplifier (LNA), downconverter, and analog-

to-digital converter (ADC). The resulting digital baseband

signals are jointly processed in the digital domain (which

involves demodulation, interference cancellation, and bit

decoding) to produce the received bitstream.

In multiple-input multiple-output architectures, digital do-

main approaches can be used to mitigate the SI on the RX

side [3]. With enough isolation between separate and closely

positioned TX and RX antenna arrays, an IBFD system could

simultaneously transmit and receive in-band. SoftNull [3]

is proposed to use TX digital beamforming to reduce self-

interference between TX and RX. However, this study does

not involve the analysis of the coupling path characteristics

between different elements or different sub-array. For large

array systems, after using this method, there may still be high

SI remaining on some receiver units. The maximum input

power for preventing nonlinear gain compression of low noise

amplifiers connected to RX antenna elements is generally not

considered. Simply relying on nulling the interferer signal at

the receiver inputs is a too stringent constraint; Aiming for

perfect nulling is undesired as additional hardware cancellation

circuitry and/or larger TX antenna arrays increase the hardware

complexity and overall cost. Joint TX and RX beamforming

aims to minimize the interference below the receiver noise

floor, often achieved through an iterative BF approach, which

is slow when performed in real-time [2].

To overcome these problems, we propose a novel TX

beamforming method that

• Prevents the RF input power to low-noise amplifiers on

the RX side to exceed a certain threshold level. To this

end, we identify and utilize a subset of TX excitation

vectors to achieve this goal

• Performs maximum (realized) gain beamforming using

this down-selected set of excitation vectors

This two-stage beamforming method is systematic and non-

iterative in nature and is thus believed to have minimal

impact on system latency. In fact, the TX-RX communication

overhead is comparable with standard channel estimation

techniques where knowledge of the TX-RX coupling matrix

needs to be obtained. Furthermore, achieving isolation through

beamforming relaxes the requirements on the remaining SI

aTX

Prefl Pcoup

Pav

1 2 N

SRX,RX

aRXbTX bRX

STX,TX

· · · STX,RX

SRX,TX

· · ·

N+1 N+MN+2

Prad

Fig. 2. S-parameter model of full-duplex TX-RX array.

cancellation techniques, thereby reducing the overall hardware

complexity.

This paper is organized as follows. In Sec. II the problem is

formulated and the solution strategy is described. The numer-

ical results are described in Sec. III, after which conclusions

are drawn in Sec. IV.

II. ARRAY MODEL AND DEFINITIONS

Consider the N -element transmit (TX) antenna array and

the M -element receive (RX) antenna array in Fig. 2.

Antenna element i ∈ {1, 2, . . . , N + M} is assumed to

be terminated by Zi. The antenna port voltage is Vi and the

antenna input current Ii. Using the power wave definitions

in [4], the incident ai and reflected bi power wave amplitudes

are defined as

ai =
Vi + ZiIi

2
√|Re{Zi}|

; bi =
Vi − Z∗

i Ii

2
√|Re{Zi}|

(1)

Accordingly, the vector of TX incident power waves can be

expressed as aTX = [aTX
1 , aTX

1 , . . . , aTX
N ]T , where T denotes the

transposition operator. Likewise, we can introduce the N × 1
vector of TX reflected power waves as bTX, the M × 1 vector

of RX incident power waves as aRX and the M × 1 vector

of RX reflected power waves as bRX. These power waves are

related through the antenna S-parameters as[
bTX

bRX

]
︸ ︷︷ ︸

b

=

[
STX,TX STX,RX

SRX,TX SRX,RX

]
︸ ︷︷ ︸

S

[
aTX

aRX

]
︸ ︷︷ ︸

a

(2)

When the TX array is transmitting, and aRX = 0 (matched

terminated RX elements), we can define the following powers

(cf. also Fig. 2):

Pav =
1

2

N∑
n=1

∣∣aTX
n

∣∣2 =
1

2

(
aTX

)H
aTX (3a)

Pcoup =
1

2

M∑
m=1

∣∣bRX
m

∣∣2 =
1

2

(
bRX

)H
bRX (3b)

where H denotes the Hermitian (conjugate-transpose).
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A. Maximum Gain Beamformer

In this section, our objective is to find the optimal excitation

vector aTX that maximizes the (realized) antenna array gain

GTX(r̂) in a specific direction r̂. The realized antenna array

gain is defined as

GTX(r̂) = 4π

1
2η |GTX(r̂)|2

Pav

(4)

where the far-field function GTX = rE(r)ejkr is related to

the radiated E-field E(r) at the far-field observation point r,

where r = |r| is the distance from the origin to the far-field

observation point. The antenna array far-field function is a

linear combination of N antenna embedded element far-field

functions {GTX
n }Nn=1, i.e.,

GTX =
N∑

n=1

aTX
n GTX

n = GTXaTX (5)

where the column-augmented matrix

GTX =
[
GTX

1 ,GTX
2 , . . . ,GTX

N

]
(6)

and where GTX
n is obtained by exciting element n by an

incident wave with unit amplitude while all other elements

are terminated in their characteristic impedance. Using (5),

the realized array gain in (4) along with (3a) can then be

expressed as

GTX =
4π

η

(
aTX

)H (
GTX

)H
GTXaTX

(aTX)
H
aTX

(7)

Clearly, the realized array gain depends on the excitation

vector aTX. The maximum of GTX is found by setting

∇(aTX)HGTX = 0 (8)

leading to the generalized eigenvalue equation

(
GTX

)H
GTXaTX =

[(
aTX

)H (
GTX

)H
GTXaTX

]
[
(aTX)

H
aTX

] aTX (9)

or simply,

(
GTX

)H
GTXaTX = GTXaTX (10)

The optimal array excitation that leads to the maximum

realized array gain GTX is found by finding the eigenvector of(
GTX

)H
GTX with the largest eigenvalue. Maximizing the gain

in this way is well known, see for instance [5, Sec. 10.3].

B. Minimum TX-RX Isolation Constraint

With the power definitions given above, the total TX-RX

isolation can be expressed as

ISO =
Pav

Pcoup

=

(
aTX

)H
aTX(

bRX
)H

bRX
(11)

where bRX = SRX,TXaTX, hence,

ISO =

(
aTX

)H
aTX

(aTX)
H (

SRX,TX
)H

SRX,TXaTX
(12)

Eq. (12) can be maximized by requiring that

∇(aTX)H ISO = 0 (13)

leading to

aTX =

[(
aTX

)H
aTX

]
[
(aTX)

H (
SRX,TX

)H
SRX,TXaTX

]
(
SRX,TX

)H
SRX,TXaTX (14)

where one recognizes the isolation function (12), so that

aTX = ISO
(
SRX,TX

)H
SRX,TXaTX (15)

which is a generalized eigenvalue problem of the form

Avn = λnBvn (16)

where the real-valued non-negative eigenvalue λn of the n-th

eigenvector vn is given as

λn = ISO (17)

and A = I is the identity matrix, and B =
(
SRX,TX

)H
SRX,TX.

Hence, maximizing ISO in Eq. (12) is done by finding the

largest eigenvalue of (16). If the eigenvalues are ordered as

λ1 ≥ λ2 ≥ . . . ≥ λP , where P = min({N,M}), then the

principal eigenvector aTX = v1 maximizes ISO. Likewise,

the eigenvector aTX = vP corresponding to the smallest

eigenvalue λP that minimizes ISO. In conclusion,

max ISO = ISO(v1) or min ISO = ISO(vP ) (18)

Besides finding the maximum (or minimum) TX-RX isola-

tion level, we can require that

ISO(aTX) ≥ κ (19)

where κ defines the minimum TX-RX isolation level. To find

the subspace of excitation vectors aTX that satisfies (19), κ
is used as a threshold on the singular value spectrum. In

other words, if {λn}Kn=1 ≥ κ are the K eigenvalues equal

or exceeding the threshold κ, then aTX can be found in the

subspace defined by

aTX ∈ span({vTX
1 ,vTX

1 , . . . ,vTX
K }) (20)

That is, aTX can be expressed as a linear combination of the

first K eigenvectors:

aTX =

K∑
n=1

αTX
n vTX

n = VTXαTX (21)

where the column-augmented matrix

VTX =
[
vTX
1 ,vTX

2 , . . . ,vTX
K

]
(22)

and where the weights {αTX
n } can be chosen freely, for

example, to maximize the array gain (see Sec. II-A).
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Fig. 3. TX-RX array antenna configuration

C. Min. TX-RX Isolation + Max. TX Gain Constraints

The goal is to maximize the realized TX array antenna gain

in a particular direction while attaining the total coupled TX-

to-RX power below a maximum threshold level, i.e.,

maximize GTX(aTX)
subject to ISO(aTX) ≥ κ

(23)

This problem can be solved by first satisfying the isolation

constraint, as done in Sec. II-B. That is, we find the subspace

of excitation vectors that provides this minimum isolation

level κ. In (20), this subspace is spanned by the eigenvectors

{vTX
n }, so the final excitation vector is a linear combination

of eigenvectors using the weights {αTX
n }. These weights are

chosen to e.g. achieve maximum array gain. We know that,

irrespective of these weights, the isolation constraint will

be automatically satisfied. To maximize the array gain, we

substitute (21) in (10), to yield(
GTX

)H
GTXVTXαTX = GTXVTXαTX (24)

Once again, the largest gain GTX is found by finding the largest

eigenvalue of (24) and the corresponding eigenvector is the

optimal excitation vector αTX = αTX
opt . Once αTX

opt is known,

then the optimal array excitation is found to be

aTX
opt = VTXαTX

opt (25)

which is the solution to the problem defined in (23).

III. PERFORMANCE EVALUATION

The TX beamforming algorithm is evaluated by considering

25 TX and 25 RX 0.49λ-long x-polarized dipole antenna

elements with 0.5λ element spacing and λ gap between

sub-arrays, see Fig. 3. The antenna arrays are located λ/4
above an infinitely large perfect electrically conducting ground

plane which is placed on the xy-plane. The H- and E-plane

Fig. 4. The eigenvalue spectrum of the isolation matrix.

are defined as the yz- and xz-planes, respectively. An in-

house MoM code (CAESAR [6]) is used in combination with

MATLAB for beamforming.

For demonstration purposes, an arbitrary minimum isola-

tion level is considered 50 dB. The eigenvalue spectrum of

[(SRX,TX)HSRX,TX]-1 is presented in Fig. 4. A linear combi-

nation of the 16 eigenvectors whose eigenvalue magnitudes

exceed the 50 dB specified threshold level can now be used

as excitation vectors for further TX beamforming. Fig. 5 shows

the element and total TX-RX realized isolation in the H-plane.

It can be mathematically proven that the element isolation is

always higher than the intrinsic array isolation. This means

that the minimum requirement on the total isolation can be

set equal to the minimum element isolation. If the actual

element isolation turns out higher, the total isolation level can

be reduced until one of the element isolations drop below the

specified element isolation threshold. However, in this paper

we restrict our analysis to a non-iterative approach for the total

isolation.

As shown in Fig. 5, the total TX-RX realized isolation is

about 20–40 dB without any isolation constraint (=intrinsic

isolation). Furthermore, the isolation exceeds the 50 dB thresh-

old value when the minimum TX-RX isolation constraint is

enforced. The element isolation is seen to be always higher

than that.

Fig. 6 presents the eigenvector far-field patterns for both

the largest and smallest eigenvalues which are illustrated in

Fig. 4. As can be seen, small power is seen to radiate towards

the RX array [top of Fig. 6(a)], which is to be expected when

exciting the TX array by the principal eigenvector. However,

the eigenvector pattern for the smallest eigenvalue couples

more power to the RX array as can be seen by the ‘hot spot’

at the top of Fig. 6(b).

Fig. 7 shows the maximum realized TX antenna gain as a

function of scan angle; the red curve is calculated from an

optimal linear combination of the eigenvectors that give at
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Fig. 5. TX-RX array realized isolation (H-plane)

(a)

(b)

Fig. 6. (a) The eigenvector pattern for maximum isolation; (b) The eigenvector
pattern for minimum isolation

least 50 dB of isolation. The realized TX array antenna gain

pattern becomes worse at large angles due to fewer usable

excitation vectors. For example, there is a 5 dB loss at 45◦.

The map of excitation magnitudes in Fig. 8 illustrates that

attaining broadside maximum gain does not imply a uniform

Fig. 7. Maximized realized TX array antenna gain in the H-plane

(a)

(b)

Fig. 8. The amplitude of the port excitation map for the broadside scan (a)
without isolation constraint; (b) with isolation constraint

excitation of the array elements. This is because the embedded

element patterns in the matrix GTX in Eq. (5) are different

due to mutual coupling effects. Furthermore, we sacrifice

the elements which are close to the RX array to achieve a

minimum isolation level, which is an intuitive result.
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IV. CONCLUSION

The proposed TX beamforming approach is based on

finding the TX excitation vector that maximizes the realized

array antenna gain in a particular direction subject to keeping

the total coupled TX-to-RX self-interference power below

a maximum threshold level. In this approach, the perfect

nulling of interference on the RX side is not required, sparing

degrees of freedom for the TX beamformer.

This approach: (i) ensures that the total power coupled to

the RX elements remains below a predetermined threshold to

prevent nonlinear gain compression of the LNAs; (ii) retains

adequate degrees of freedom for useful TX beamforming

without having to rely on increasing array sizes or complex

self-interference cancellation networks; (iii) is systematic and

achieves optimal excitation and beamformer weight vectors

without requiring any iterations once the TX-RX coupling

matrix and propagation channels are estimated, which can be

done using standard channel estimation techniques commonly

used in the wireless communication community.

The final isolation level that can be reached depends on the

knowledge on the TX-RX array coupling matrix as well as

the dynamic range of DACs and ADCs, which are topics for

future research.
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