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A B S T R A C T

Scattering of elastic waves by an anisotropic sphere with orthorhombic symmetry inside an isotropic medium
is studied and applied to characterization of polycrystalline materials with anisotropic grains. For a single
sphere the waves in the isotropic surrounding are expanded in the spherical vector wave functions. Inside the
sphere, the elastodynamic equations are first transformed to spherical coordinates and the displacement field
is expanded in terms of the vector spherical harmonics in the angular directions and power series in the radial
direction. The governing equations inside the sphere give recursion relations among the expansion coefficients
in the power series. The boundary conditions on the sphere then determine the relation among the scattered
wave expansion coefficients and those of the incident wave, expressed as the transition (𝐓) matrix. For low
frequencies the elements of the 𝐓 matrix are obtained in explicit form. According to the theory of Foldy the 𝐓
matrix elements of a single sphere are used to study attenuation and phase velocity of polycrystalline materials,
explicitly for low frequencies. Comparisons of the present method with previously published results and recent
FEM results show a good correspondence for low frequencies. The present approach shows a better agreement
with FEM for strongly anisotropic materials in comparison with other published methods.

1. Introduction

The study of wave propagation and scattering in inhomogeneous media have received extensive attention due to the need for the characterization
of such media. The scattering of elastic waves by anisotropic grains in polycrystals is a classical problem that has important practical applications
in various fields, such as seismology and non-destructive evaluation. Polycrystalline materials consist of numerous small crystals, also known as
grains, which are typically anisotropic. Although the elastic constants are identical for all grains within a single phase polycrystalline material,
the orientation is different for each grain. If the grains are randomly oriented and equiaxed, the overall properties of the material become
isotropic. However, the presence of these grains leads to wave scattering and hence attenuation. To estimate the attenuation and effective phase
velocity in polycrystals, different models such as individual particles, a regular array of particles, or a stochastic process can be used [1]. In
their work Stanke and Kino [1] address different aspects of each geometrical model and utilize a stochastic process to estimate the attenuation
and phase velocity of polycrystalline materials with equiaxed anisotropic grains of cubic symmetry. In this approach, the micro-inhomogeneous
elastic polycrystal is commonly simplified by replacing it with a mean isotropic medium, usually through a Voigt average of the properties of the
crystal, and a continuous random fluctuation to account for the inhomogeneity of the medium. This approximation is referred to as the second
order approximation (SOA), because it assumes that the second order degree of inhomogeneity is small. This methodology is further developed to
compare attenuation in two and three dimensional polycrystals [2] and investigates the effect of various geometrical properties [3–7] as well as the
anisotropy symmetries [6,8–10] of the crystals. These advancements in the SOA method have recently been employed for non-destructive ultrasonic
characterization of polycrystals [11,12]. Another method is the self-consistent approach (SCA), proposed by Kube and Turner [13], where the mean
elastic medium is determined through a self-consistent average instead of the Voigt average. The experimental wave velocity data evaluated against
the SOA and SCA reveal a better agreement when the Voigt reference is used in second order models [14]. A more extensive evaluation of the SOA
method and its development are presented in the literature [6,15].

Development of the finite element method for investigation of phase velocity and attenuation in polycrystalline materials [15–19] suggests
that the SOA models are not accurate when the grains are highly anisotropic and the degree of inhomogeneity increases, particularly in the low
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Fig. 1. The orthorhombic sphere with radius 𝑎 and the incident wave 𝒖𝑖𝑛.

frequency limit [15,19,20]. To address this issue, Huang et al. [15,19] develop approximation methods that consider the quadratic order of the
degree of inhomogeneity in the SOA method. While these approximation methods are effective in estimating phase velocities accurately, there is
still room for improvement in the estimation of attenuation [15].

Polycrystals can also be regarded as a special case of a medium with a distribution of inclusions. The attenuation and effective phase velocity
in polycrystals can then be estimated by examining how waves scatter from individual grains. Foldy [21] develops a methodology to estimate
the effective wave number of a medium with a distribution of inclusions (regarded as point scatterers) for scalar waves. This approach is further
developed regarding correlations among scatterers positions, [22] elastic waves scattering and volume scatterers [23,24]. Kanaun and Levin [25]
referred to this neglection as the one particle solution. Based on the definition of the surrounding medium of the particle and the field acting on
it, they provided a comprehensive overview of different approaches, including Foldy theory, for studying the dynamic response of inhomogeneous
mediums with bounded inhomogeneities. In the case of polycrystalline materials, where grains possess anisotropic properties, it is necessary to
consider the one particle solution of an anisotropic grain. For this purpose, Kanaun and Levin [25] assumed that the surrounding medium of the
single particle is equivalent to the effective medium of the polycrystal. By using an integral representation method, the solution of the one particle
problem is related to the Green function of the surrounding medium and the average of the elasticity tensor of the anisotropic particle over all
orientations.

Boström [26] further investigated the one particle problem with orthorhombic symmetry of a spherical particle using series expansions
of the fields inside and outside of the particle and evaluated effective wave numbers of polycrystals with anisotropic grains in 2D [27].
Similarly, Jafarzadeh et al. [28,29] extend this study to 3D problems by calculating the transition (𝐓) matrix of a single transversely anisotropic or
cubic sphere, respectively, and estimate wave numbers in polycrystals with these crystal symmetries. Although these studies are limited to low and
intermediate frequencies, they show good correspondence with FEM in estimating wave numbers in polycrystals with strongly anisotropic crystals.

The aim of this work is to characterize polycrystalline materials by finding the 𝐓 matrix elements for a spherical obstacle with orthorhombic
symmetry in an isotropic surrounding. The same approach as for a spherical obstacle with transverse isotropy [28] or cubic anisotropy [29]
is taken. Expressing the constitutive equations for a material with orthorhombic symmetry in spherical coordinates reveals the complexity of
the governing equations, involving explicit trigonometric functions in both the polar and azimuthal coordinates. By using expansions in vector
spherical harmonics and power series in the angular and radial coordinates, respectively, the equations of motion result in recursion relations for
the coefficients in the power series. The boundary conditions are applied and the 𝐓 matrix elements for a single spherical obstacle are derived.
These elements are employed along with Foldy theory to calculate the attenuation and phase velocity of polycrystalline materials explicitly for low
frequencies. In addition to the explicit expression, a numerical calculation is performed to evaluate the attenuation and phase velocities for both
low and intermediate frequencies. Overall, the paper contributes to a better understanding of wave propagation in polycrystalline materials with
orthorhombic anisotropy.

2. Statement of the problem

Consider the scattering by a single spherical inclusion with radius 𝑎 and orthorhombic material properties inside an isotropic full space, see
Fig. 1. A known wave is incident on the inclusion and is assumed to be monochromatic with a fixed angular frequency 𝜔 (the time factor exp(−𝑖𝜔𝑡)
is suppressed). In this section wave propagation in the isotropic surrounding with density 𝜌 and Lamé parameters 𝜆 and 𝜇 is reviewed, and in the
following section the material properties and waves inside the anisotropic sphere are studied.

The wave numbers in the isotropic medium are 𝑘2𝑝 = 𝜌𝜔2∕(𝜆 + 2𝜇) and 𝑘2𝑠 = 𝜌𝜔2∕𝜇 for longitudinal and transverse waves, respectively. For the
spherical inclusion it is of course natural to use spherical coordinates (𝑟, 𝜃, 𝜑). It is then convenient to use spherical vector wave functions 𝝍𝜏𝜎𝑚𝑙
to express field quantities in the isotropic medium. These functions are defined as [30]

𝝍0
1𝜎𝑚𝑙(𝑟, 𝜃, 𝜑) =

1
√

𝑙(𝑙 + 1)
∇ ×

(

𝑗𝑙(𝑘𝑠𝑟)𝑌𝜎𝑚𝑙(𝜃, 𝜑)
)

, (1)

𝝍0
2𝜎𝑚𝑙(𝑟, 𝜃, 𝜑) =

1
√

𝑙(𝑙 + 1)
1
𝑘𝑠

∇ × ∇ ×
(

𝑗𝑙(𝑘𝑠𝑟)𝑌𝜎𝑚𝑙(𝜃, 𝜑)
)

, (2)

𝝍0
3𝜎𝑚𝑙(𝑟, 𝜃, 𝜑) =

(𝑘𝑝
)3∕2

1 ∇
(

𝑗𝑙(𝑘𝑝𝑟)𝑌𝜎𝑚𝑙(𝜃, 𝜑)
)

. (3)
2

𝑘𝑠 𝑘𝑝
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The spherical vector wave functions are constructed from the derivatives of the spherical scalar wave functions, which are a product of a spherical
Bessel function in the radial coordinate and a spherical harmonic in the polar and azimuthal coordinates. The spherical harmonics are defined as

𝑌𝜎𝑚𝑙(𝜃, 𝜑) =

√

𝜖𝑚(2𝑙 + 1)(𝑙 − 𝑚)!
4𝜋(𝑙 + 𝑚)!

𝑃𝑚
𝑙 (cos 𝜃)

{

cos𝑚𝜑
sin𝑚𝜑

}

, (4)

where, 𝑃𝑚
𝑙 (cos 𝜃) is an associated Legendre function of order 𝑚 and degree 𝑙. The Neumann factor is 𝜖𝑚 with 𝜖0 = 1 and 𝜖𝑚 = 2 for 𝑚 = 1, 2,…. Also,

= 𝑒 is for the upper row which is even with respect to 𝜑 and 𝜎 = 𝑜 is for the lower row which is odd with respect to 𝜑. It is then convenient to
efine vector spherical harmonics from the derivative of the spherical harmonics as

𝑨1𝜎𝑚𝑙(𝜃, 𝜑) =
1

√

𝑙(𝑙 + 1)
∇ × (𝒓𝑌𝜎𝑚𝑙(𝜃, 𝜑))

= 1
√

𝑙(𝑙 + 1)

(

𝒆𝜃
1

sin 𝜃
𝜕
𝜕𝜑

𝑌𝜎𝑚𝑙(𝜃, 𝜑) − 𝒆𝜑
𝜕
𝜕𝜃

𝑌𝜎𝑚𝑙(𝜃, 𝜑)
)

,

𝑨2𝜎𝑚𝑙(𝜃, 𝜑) =
1

√

𝑙(𝑙 + 1)
𝑟∇𝑌𝜎𝑚𝑙(𝜃, 𝜑)

= 1
√

𝑙(𝑙 + 1)

(

𝒆𝜃
𝜕
𝜕𝜃

𝑌𝜎𝑚𝑙(𝜃, 𝜑) + 𝒆𝜑
1

sin 𝜃
𝜕
𝜕𝜑

𝑌𝜎𝑚𝑙(𝜃, 𝜑)
)

,

𝑨3𝜎𝑚𝑙(𝜃, 𝜑) = 𝒆𝑟𝑌𝜎𝑚𝑙(𝜃, 𝜑).

(5)

he vector spherical harmonics constitute a complete orthonormal vector basis system on the unit sphere for vector valued functions. The spherical
ector wave functions can then be expressed as

𝝍0
1𝜎𝑚𝑙(𝑟, 𝜃, 𝜑) = 𝑗𝑙(𝑘𝑠𝑟)𝑨1𝜎𝑚𝑙(𝜃, 𝜑), (6)

𝝍0
2𝜎𝑚𝑙(𝑟, 𝜃, 𝜑) =

(

𝑗′𝑙 (𝑘𝑠𝑟) +
𝑗𝑙(𝑘𝑠𝑟)
𝑘𝑠𝑟

)

𝑨2𝜎𝑚𝑙(𝜃, 𝜑) +
√

𝑙(𝑙 + 1)
𝑗𝑙(𝑘𝑠𝑟)
𝑘𝑠𝑟

𝑨3𝜎𝑚𝑙(𝜃, 𝜑), (7)

𝝍0
3𝜎𝑚𝑙(𝑟, 𝜃, 𝜑) =

(𝑘𝑝
𝑘𝑠

)3∕2(

𝑗′𝑙 (𝑘𝑝𝑟)𝑨3𝜎𝑚𝑙(𝜃, 𝜑) +
√

𝑙(𝑙 + 1)
𝑗𝑙(𝑘𝑝𝑟)
𝑘𝑝𝑟

𝑨2𝜎𝑚𝑙(𝜃, 𝜑)
)

. (8)

The first index 𝜏 = 1, 2, 3 specifies the type of the partial wave according to SH, SV, and P waves, respectively. The index 𝜎 = 𝑒 (even) and 𝑜 (odd)
indicates the parity of the wave with respect to the azimuthal coordinate, and the order is 𝑚 = 0, 1,… and the degree is 𝑙 = 𝑚,𝑚 + 1,… (𝑙 = 0 is
only relevant for the P wave functions and is not defined for the others). The upper index ‘‘0’’ denotes the regular wave functions which contain
spherical Bessel functions. The corresponding outgoing wave functions are denoted by the upper index ‘‘+’’ and contain spherical Hankel functions
of the first kind to fulfill the radiation condition.

In the boundary conditions the radial traction is needed. This traction can be written

𝒕(𝑟) = 𝒆𝑟𝜆∇ ⋅ 𝒖 + 𝜇
(

2 𝜕𝒖
𝜕𝑟

+ 𝒆𝑟 × (∇ × 𝒖)
)

, (9)

The corresponding traction for each of the vector wave functions becomes

𝒕(𝑟)
(

𝝍0
1𝜎𝑚𝑙 (𝒓)

)

= 𝜇𝑟 𝑑
𝑑𝑟

(

𝑗𝑙
(

𝑘𝑠𝑟
)

𝑟

)

𝑨1𝜎𝑚𝑙 (𝜃, 𝜑) , (10)

𝒕(𝑟)
(

𝝍0
2𝜎𝑚𝑙 (𝒓)

)

= 𝜇

[ (

2𝑘𝑠𝑗′′𝑙
(

𝑘𝑠𝑟
)

+
2𝑗′𝑙

(

𝑘𝑠𝑟
)

𝑟
−

2𝑗𝑙
(

𝑘𝑠𝑟
)

𝑘𝑠𝑟2
+ 𝑘𝑠𝑗𝑙

(

𝑘𝑠𝑟
)

)

𝑨2𝜎𝑚𝑙 (𝜃, 𝜑)

+ 2
√

𝑙 (𝑙 + 1) 𝑑
𝑑𝑟

(

𝑗𝑙
(

𝑘𝑠𝑟
)

𝑘𝑠𝑟

)

𝑨3𝜎𝑚𝑙 (𝜃, 𝜑)

]

,

(11)

𝒕(𝑟)
(

𝝍0
3𝜎𝑚𝑙 (𝒓)

)

= 𝜇
(𝑘𝑝
𝑘𝑠

)3∕2 [ (

2𝑘𝑝𝑗′′𝑙
(

𝑘𝑝𝑟
)

+
2𝑘2𝑝 − 𝑘2𝑠

𝑘𝑝
𝑗𝑙
(

𝑘𝑝𝑟
)

)

𝑨3𝜎𝑚𝑙 (𝜃, 𝜑)

+ 2
√

𝑙 (𝑙 + 1) 𝑑
𝑑𝑟

(

𝑗𝑙
(

𝑘𝑝𝑟
)

𝑘𝑝𝑟

)

𝑨2𝜎𝑚𝑙 (𝜃, 𝜑)

]

,

(12)

The total wave outside the sphere is a sum of the incident and scattered waves 𝒖(𝒓) = 𝒖0(𝒓) + 𝒖+(𝒓). Since the source of the incident wave is
assumed outside the sphere the incident wave can be expanded in terms of the regular wave functions and as the scattered wave must fulfill the
radiation condition it can be expanded in the outgoing wave functions

𝒖0(𝒓) =
∑

𝜏𝜎𝑚𝑙
𝑏𝜏𝜎𝑚𝑙𝝍0

𝜏𝜎𝑚𝑙(𝒓),

𝒖+(𝒓) =
∑

𝜏𝜎𝑚𝑙
ℎ𝜏𝜎𝑚𝑙𝝍+

𝜏𝜎𝑚𝑙(𝒓).
(13)

where the sums run through 𝜏 = 1, 2, 3, 𝜎 = 𝑒, 𝑜, 𝑚 = 0, 1, .., 𝑙 = 𝑚,𝑚 + 1,…. The expansion coefficients of the incident wave 𝑏𝜏𝜎𝑚𝑙 are in principle
known and the ones of the scattered wave ℎ𝜏𝜎𝑚𝑙 are to be determined. A general way to represent the scattering by an obstacle is to determine the
transition matrix (𝐓 matrix) which gives the linear relation between the expansion coefficients of the incident and scattered waves

ℎ𝜏𝜎𝑚𝑙 =
∑

𝜏′𝜎′𝑚′𝑙′
𝑇𝜏𝜎𝑚𝑙,𝜏′𝜎′𝑚′𝑙′𝑏𝜏′𝜎′𝑚′𝑙′ . (14)

This completes the necessary information in the surrounding medium to solve the scattering problem. In the following sections the anisotropic
sphere is analyzed and the transition matrix is derived.
3
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3. The orthorhombic sphere

In this section the material properties and governing equations of the orthorhombic sphere are described, then the waves are expanded using
appropriate series. Starting with the material properties, the sphere has density 𝜌1 and material properties of orthorhombic symmetry in Cartesian
coordinates. The constitutive relations can be expressed using reduced notation as

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑧𝑧
𝜎𝑦𝑧
𝜎𝑧𝑥
𝜎𝑥𝑦

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐶11 𝐶12 𝐶13 0 0 0
𝐶12 𝐶22 𝐶23 0 0 0
𝐶13 𝐶23 𝐶33 0 0 0
0 0 0 2𝐶44 0 0
0 0 0 0 2𝐶55 0
0 0 0 0 0 2𝐶66

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜖𝑥𝑥
𝜖𝑦𝑦
𝜖𝑧𝑧
𝜖𝑦𝑧
𝜖𝑧𝑥
𝜖𝑥𝑦

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

. (15)

where 𝐶11, 𝐶12, 𝐶13, 𝐶22, 𝐶23, 𝐶33, 𝐶44, 𝐶55, and 𝐶66 are nine independent stiffness constants.

The governing elastodynamic equations are expressed in spherical coordinates

𝜕𝜎𝑟𝑟
𝜕𝑟

+ 1
𝑟
𝜕𝜎𝑟𝜃
𝜕𝜃

+ 1
𝑟 sin 𝜃

𝜕𝜎𝜑𝑟
𝜕𝜑

+ 1
𝑟
(

2𝜎𝑟𝑟 − 𝜎𝜃𝜃 − 𝜎𝜑𝑟 + cot 𝜃𝜎𝑟𝜃
)

− 𝜌1
𝜕2𝑢𝑟
𝜕𝑡2

= 0, (16)

𝜕𝜎𝑟𝜃
𝜕𝑟

+ 1
𝑟
𝜕𝜎𝜃𝜃
𝜕𝜃

+ 1
𝑟 sin 𝜃

𝜕𝜎𝜃𝜑
𝜕𝜑

+ 1
𝑟
(

cot 𝜃
(

𝜎𝜃𝜃 − 𝜎𝜑𝜑
)

+ 3𝜎𝑟𝜃
)

− 𝜌1
𝜕2𝑢𝜃
𝜕𝑡2

= 0, (17)

𝜕𝜎𝜑𝑟
𝜕𝑟

+ 1
𝑟
𝜕𝜎𝜃𝜑
𝜕𝜃

+ 1
𝑟 sin 𝜃

𝜕𝜎𝜑𝜑
𝜕𝜑

+ 1
𝑟
(

3𝜎𝜑𝑟 + 2 cot 𝜃𝜎𝜃𝜑
)

− 𝜌1
𝜕2𝑢𝜑
𝜕𝑡2

= 0. (18)

For the present problem it is convenient to transform the constitutive relations in Eq. (15) from Cartesian to spherical coordinates (see Jafarzadeh
t al. [28]). In spherical coordinates the stress–strain relations for a material with orthorhombic properties become

𝜎𝑟𝑟 =
(

𝛼1 + 2𝛼2
)

𝜖𝑟𝑟 + 𝛼1𝜖𝜃𝜃 +
(

𝛼1 − 𝛽2 + 𝛽3
)

𝜖𝜑𝜑 −
(

2𝛽1𝜖𝑟𝑟 + 𝛽3𝜖𝜑𝜑
)

cos 2𝜃 + 𝛽2
(

𝜖𝑟𝑟 − 𝜖𝜃𝜃
)

cos 4𝜃

+ 2𝛽1𝜖𝑟𝜃 sin 2𝜃 − 2𝛽2𝜖𝑟𝜃 sin 4𝜃 + cos 2𝜑
[

2𝛽5
(

𝜖𝑟𝑟 + 3𝜖𝜃𝜃 − 2𝜖𝜑𝜑
)

+ 4𝛽6
(

𝜖𝑟𝑟 − 𝜖𝜃𝜃
)

+ 𝛽7
(

3𝜖𝑟𝑟 + 𝜖𝜃𝜃
)

− 4
(

𝛽5𝜖𝜑𝜑 + 𝛽7𝜖𝑟𝑟
)

cos 2𝜃 −
(

2𝛽5 + 4𝛽6 − 𝛽7
) (

𝜖𝑟𝑟 − 𝜖𝜃𝜃
)

cos 4𝜃 + 4𝛽7𝜖𝑟𝜃 sin 2𝜃

+ 2
(

2𝛽5 + 4𝛽6 − 𝛽7
)

𝜖𝑟𝜃 sin 4𝜃
]

+𝛽4 cos 4𝜑
[

3𝜖𝑟𝑟 + 𝜖𝜃𝜃 − 4𝜖𝜑𝜑 + 4
(

𝜖𝜑𝜑 − 𝜖𝑟𝑟
)

cos 2𝜃 + 4𝜖𝑟𝜃 sin 2𝜃

+
(

𝜖𝑟𝑟 − 𝜖𝜃𝜃
)

cos 4𝜃 − 2𝜖𝑟𝜃 sin 4𝜃
]

+ sin 2𝜑
[

−2
(

2𝛽5 + 4𝛽6 − 𝛽7
) (

𝜖𝜃𝜑 cos 3𝜃 + 𝜖𝜑𝑟 sin 3𝜃
)

− 2
(

6𝛽5 − 4𝛽6 + 𝛽7
)

𝜖𝜃𝜑 cos 𝜃 − 2
(

2𝛽5 + 4𝛽6 + 3𝛽7
)

𝜖𝜑𝑟 sin 𝜃
]

+4𝛽4 sin 4𝜑
[

𝜖𝜃𝜑(cos 3𝜃 − cos 𝜃)

+ 𝜖𝜑𝑟(sin 3𝜃 − 3 sin 𝜃)
]

,

(19)

𝜎𝜃𝜃 = 𝛼1𝜖𝑟𝑟 +
(

𝛼1 + 2𝛼2
)

𝜖𝜃𝜃 +
(

𝛼1 − 𝛽2 + 𝛽3
)

𝜖𝜑𝜑 +
(

2𝛽1𝜖𝜃𝜃 + 𝛽3𝜖𝜑𝜑
)

cos 2𝜃 + 𝛽2
(

𝜖𝜃𝜃 − 𝜖𝑟𝑟
)

cos 4𝜃

+ 2𝛽1𝜖𝑟𝜃 sin 2𝜃 + 2𝛽2𝜖𝑟𝜃 sin 4𝜃 + cos 2𝜑
[

2𝛽5
(

3𝜖𝑟𝑟 + 𝜖𝜃𝜃 − 2𝜖𝜑𝜑
)

− 4𝛽6
(

𝜖𝑟𝑟 − 𝜖𝜃𝜃
)

+ 𝛽7
(

𝜖𝑟𝑟 + 3𝜖𝜃𝜃
)

+ 4
(

𝛽7𝜖𝜃𝜃 + 𝛽5𝜖𝜑𝜑
)

cos 2𝜃 +
(

2𝛽5 + 4𝛽6 − 𝛽7
) (

𝜖𝑟𝑟 − 𝜖𝜃𝜃
)

cos 4𝜃 + 4𝛽7𝜖𝑟𝜃 sin 2𝜃

− 2
(

2𝛽5 + 4𝛽6 − 𝛽7
)

𝜖𝑟𝜃 sin 4𝜃
]

+𝛽4 cos 4𝜑
[

𝜖𝑟𝑟 + 3𝜖𝜃𝜃 − 4𝜖𝜑𝜑 + 4
(

𝜖𝜃𝜃 − 𝜖𝜑𝜑
)

cos 2𝜃 + 4𝜖𝑟𝜃 sin 2𝜃

+
(

𝜖𝜃𝜃 − 𝜖𝑟𝑟
)

cos 4𝜃 + 2𝜖𝑟𝜃 sin 4𝜃
]

+ sin 2𝜑
[

2
(

2𝛽5 + 4𝛽6 − 𝛽7
) (

𝜖𝜃𝜑 cos 3𝜃 + 𝜖𝜑𝑟 sin 3𝜃
)

− 2
(

2𝛽5 + 4𝛽6 + 3𝛽7
)

𝜖𝜃𝜑 cos 𝜃 − 2
(

6𝛽5 − 4𝛽6 + 𝛽7
)

𝜖𝜑𝑟 sin 𝜃
]

−4𝛽4 sin 4𝜑
[

𝜖𝜃𝜑(3 cos 𝜃 + cos 3𝜃)

+ 𝜖𝜑𝑟(sin 𝜃 + sin 3𝜃)
]

,

(20)

𝜎𝜑𝜑 =
(

𝛼1 − 𝛽2 + 𝛽3
) (

𝜖𝑟𝑟 + 𝜖𝜃𝜃
)

+
(

𝛼1 + 2𝛼2 + 2𝛽1 + 𝛽2
)

𝜖𝜑𝜑 + 𝛽3
((

𝜖𝜃𝜃 − 𝜖𝑟𝑟
)

cos 2𝜃 + 2𝜖𝑟𝜃 sin 2𝜃
)

+ cos 2𝜑
[

−4𝛽5
(

𝜖𝑟𝑟 + 𝜖𝜃𝜃
)

− 8𝛽7𝜖𝜑𝜑 − 4𝛽5
((

𝜖𝑟𝑟 − 𝜖𝜃𝜃
)

cos 2𝜃 − 2𝜖𝑟𝜃 sin 2𝜃
)

]

+ 4𝛽4 cos 4𝜑
[

2𝜖𝜑𝜑 − 𝜖𝑟𝑟 − 𝜖𝜃𝜃 +
(

𝜖𝑟𝑟 − 𝜖𝜃𝜃
)

cos 2𝜃 − 2𝜖𝑟𝜃 sin 2𝜃
]

− 8𝛽7 sin 2𝜑
[

𝜖𝜃𝜑 cos 𝜃 + 𝜖𝜑𝑟 sin 𝜃
]

+ 16𝛽4 sin 4𝜑
[

𝜖𝜃𝜑 cos 𝜃 + 𝜖𝜑𝑟 sin 𝜃
]

,

(21)

𝜎𝑟𝜃 = 2𝛼2𝜖𝑟𝜃 +
(

𝛽3𝜖𝜑𝜑 + 𝛽1
(

𝜖𝑟𝑟 + 𝜖𝜃𝜃
))

sin 2𝜃 + 𝛽2
((

𝜖𝜃𝜃 − 𝜖𝑟𝑟
)

sin 4𝜃 − 2𝜖𝑟𝜃 cos 4𝜃
)

+ cos 2𝜑
[

2
(

−2𝛽5 + 4𝛽6 + 𝛽7
)

𝜖𝑟𝜃 + 2
(

2𝛽5𝜖𝜑𝜑 + 𝛽7
(

𝜖𝑟𝑟 + 𝜖𝜃𝜃
))

sin 2𝜃

+ 2
(

2𝛽5 + 4𝛽6 − 𝛽7
)

𝜖𝑟𝜃 cos 4𝜃 +
(

2𝛽5 + 4𝛽6 − 𝛽7
) (

𝜖𝑟𝑟 − 𝜖𝜃𝜃
)

sin 4𝜃
]

+ 2 sin 2𝜑
[

(

2𝛽5 − 4𝛽6 − 𝛽7
) (

𝜖𝜑𝑟 cos 𝜃 + 𝜖𝜃𝜑 sin 𝜃
)

+
(

2𝛽5 + 4𝛽6 − 𝛽7
) (

𝜖𝜃𝜑 sin 3𝜃 − 𝜖𝜑𝑟 cos 3𝜃
)

]

− 4𝛽 sin 4𝜑
[

𝜖 (cos 𝜃 − cos 3𝜃) + 𝜖 (sin 𝜃 + sin 3𝜃)
]

,

(22)
4

4 𝜑𝑟 𝜃𝜑
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w

𝜎𝜃𝜑 =
(

2𝛼2 + 𝛽1 − 𝛽3
)

𝜖𝜃𝜑 +
(

𝛽1 + 2𝛽2 − 𝛽3
) (

𝜖𝜃𝜑 cos 2𝜃 + 𝜖𝜑𝑟 sin 2𝜃
)

+ 8𝛽6 cos 2𝜑
[

−𝜖𝜃𝜑 + 𝜖𝜃𝜑 cos 2𝜃

+ 𝜖𝜑𝑟 sin 2𝜃
]

−8𝛽4 cos 4𝜑
[

𝜖𝜃𝜑 + 𝜖𝜃𝜑 cos 2𝜃 + 𝜖𝜑𝑟 sin 2𝜃
]

+ sin 2𝜑
[

2
(

2𝛽5 − 4𝛽6 − 𝛽7
)

𝜖𝑟𝜃 sin 𝜃

+
((

−2𝛽5 − 4𝛽6 − 3𝛽7
)

𝜖𝜃𝜃 − 4𝛽7𝜖𝜑𝜑 +
(

−6𝛽5 + 4𝛽6 − 𝛽7
)

𝜖𝑟𝑟
)

cos 𝜃 + 2
(

2𝛽5 + 4𝛽6 − 𝛽7
)

𝜖𝑟𝜃 sin 3𝜃

−
(

2𝛽5 + 4𝛽6 − 𝛽7
) (

𝜖𝑟𝑟 − 𝜖𝜃𝜃
)

cos 3𝜃
]

+2𝛽4 sin 4𝜑
[

(4𝜖𝜑𝜑 − 𝜖𝑟𝑟 − 𝜖𝜃𝜃) cos 𝜃 + (𝜖𝑟𝑟 − 3𝜖𝜃𝜃) cos 3𝜃

− 2𝜖𝑟𝜃(sin 𝜃 + sin 3𝜃)
]

,

(23)

𝜎𝜑𝑟 =
(

2𝛼2 + 𝛽1 − 𝛽3
)

𝜖𝜑𝑟 −
(

𝛽1 + 2𝛽2 − 𝛽3
) (

𝜖𝜑𝑟 cos 2𝜃 − 𝜖𝜃𝜑 sin 2𝜃
)

− 8𝛽6 cos 2𝜑
[

𝜖𝜑𝑟 + 𝜖𝜑𝑟 cos 2𝜃

− 𝜖𝜃𝜑 sin 2𝜃
]

−8𝛽4 cos 4𝜑
[

𝜖𝜑𝑟 − 𝜖𝜑𝑟 cos 2𝜃 + 𝜖𝜃𝜑 sin 2𝜃
]

+ sin 2𝜑
[

2
(

2𝛽5 − 4𝛽6 − 𝛽7
)

𝜖𝑟𝜃 cos 𝜃

− 2
(

2𝛽5 + 4𝛽6 − 𝛽7
)

𝜖𝜃𝑟 cos 3𝜃 −
((

−6𝛽5 + 4𝛽6 − 𝛽7
)

𝜖𝜃𝜃 − 4𝛽7𝜖𝜑𝜑 +
(

−2𝛽5 − 4𝛽6 − 3𝛽7
)

𝜖𝑟𝑟
)

sin 𝜃

−
(

2𝛽5 + 4𝛽6 − 𝛽7
) (

𝜖𝑟𝑟 − 𝜖𝜃𝜃
)

sin 3𝜃
]

−2𝛽4 sin 4𝜑
[

(

3𝜖𝑟𝑟 + 𝜖𝜃𝜃 − 4𝜖𝜑𝜑
)

sin 𝜃 −
(

𝜖𝑟𝑟 − 𝜖𝜃𝜃
)

sin 3𝜃

+ 2𝜖𝑟𝜃 (cos 𝜃 − cos 3𝜃)
]

,

(24)

here the strains in spherical coordinates are

𝜖𝑟𝑟 =
𝜕𝑢𝑟
𝜕𝑟

, 𝜖𝜑𝜑 = 1
𝑟 sin 𝜃

𝜕𝑢𝜑
𝜕𝜑

+ cot 𝜃
𝑟

𝑢𝜃 +
𝑢𝑟
𝑟
,

𝜖𝜃𝜃 = 1
𝑟
𝜕𝑢𝜃
𝜕𝜃

+
𝑢𝑟
𝑟
, 𝜖𝜃𝜑 = 1

2𝑟

( 𝜕𝑢𝜑
𝜕𝜃

− cot 𝜃𝑢𝜑 + 1
sin 𝜃

𝜕𝑢𝜃
𝜕𝜑

)

,

𝜖𝜑𝑟 =
1
2

(

1
𝑟 sin 𝜃

𝜕𝑢𝑟
𝜕𝜑

+
𝜕𝑢𝜑
𝜕𝑟

−
𝑢𝜑
𝑟

)

, 𝜖𝑟𝜃 = 1
2

(

𝜕𝑢𝜃
𝜕𝑟

−
𝑢𝜃
𝑟

+ 1
𝑟
𝜕𝑢𝑟
𝜕𝜃

)

.

(25)

Here, 𝛼1, 𝛼2, 𝛽1, 𝛽2, 𝛽3, 𝛽4, 𝛽5, 𝛽6 and 𝛽7 are new stiffness constants defined as

𝛼1 =
1
64

(

3𝐶11 + 2𝐶12 + 24𝐶13 + 3𝐶22 + 24𝐶23 + 8𝐶33 + 4𝐶66 − 16𝐶55 − 16𝐶44
)

,

𝛼2 =
1
64

(

3𝐶11 + 2𝐶12 − 8𝐶13 + 3𝐶22 − 8𝐶23 + 8𝐶33 + 4𝐶66 + 16𝐶55 + 16𝐶44
)

,

𝛽1 =
1
32

(

3𝐶11 + 2𝐶12 + 3𝐶22 − 8𝐶33 + 4𝐶66
)

,

𝛽2 =
1
64

(

3𝐶11 + 2𝐶12 − 8𝐶13 + 3𝐶22 − 8𝐶23 + 8𝐶33 + 4𝐶66 − 16𝐶55 − 16𝐶44
)

,

𝛽3 =
1
16

(

𝐶11 + 6𝐶12 − 4𝐶13 + 𝐶22 − 4𝐶23 − 4𝐶66
)

,

𝛽4 =
1
64

(

𝐶11 − 2𝐶12 + 𝐶22 − 4𝐶66
)

, 𝛽5 =
1
16

(

𝐶13 − 𝐶23
)

,

𝛽6 =
1
16

(

𝐶55 − 𝐶44
)

, 𝛽7 =
1
16

(

𝐶11 − 𝐶22
)

.

(26)

In the isotropic limit the first two become the Lamé constants 𝜆1 and 𝜇1 of the sphere whereas the other seven vanish. Substituting (19)–(25) into
(16)–(18), gives the governing equations of the displacement field; however, this leads to very large equations which are not given. Due to the
trigonometric functions in 𝜃 and 𝜑 there are extensive couplings between different orders and degrees when expansions in spherical harmonics are
later performed.

To solve the scattering problem the scattered wave outside the sphere and the interior wave inside the sphere are to be determined given the
incident wave. Of course, expanding the displacement field inside the sphere in terms of the spherical vector wave functions does not satisfy the
governing equations of an anisotropic medium. Instead, the vector spherical harmonics are appropriate for the expansion of the displacement inside
the sphere since the displacement and stress fields outside the sphere are also in terms of these functions and this facilitates the application of the
boundary conditions. Therefore, the displacement field inside the sphere is expanded as

𝒖1(𝑟, 𝜃, 𝜑) =
∑

𝜏𝜎𝑚𝑙
𝐹𝜏𝜎𝑚𝑙(𝑟)𝑨𝜏𝜎𝑚𝑙(𝜃, 𝜑). (27)

where 𝑙 = 1, 2,… for 𝜏 = 1, 2 and 𝑙 = 0, 1,… for 𝜏 = 3. The 𝑟 dependent coefficients 𝐹𝜏𝜎𝑚𝑙(𝑟) are expanded in power series in 𝑟. By considering the
regularity condition at the center of the sphere, these expansions are

𝐹1𝜎𝑚𝑙(𝑟) =
∞
∑

𝑗=𝑙,𝑙+2,…
𝑓1𝜎𝑚𝑙,𝑗𝑟

𝑗 , (28)

𝐹2𝜎𝑚𝑙(𝑟) =
∞
∑

𝑗=𝑙−1,𝑙+1,…
𝑓2𝜎𝑚𝑙,𝑗𝑟

𝑗 , (29)

𝐹3𝜎𝑚𝑙(𝑟) =
∞
∑

𝑗=𝑙−1,𝑙+1,…
𝑓3𝜎𝑚𝑙,𝑗𝑟

𝑗 , (30)

in which 𝑓3𝜎𝑚0,−1 = 0. Here, 𝑓𝜏𝜎𝑚𝑙,𝑗 are the unknown coefficients inside the sphere.
The governing equations Eqs. (16)–(18) provide recursion relations among these unknown coefficients inside the sphere. To derive these, the

three governing equations Eqs. (16)–(18) are considered as one vector valued function and are expanded in terms of the vector spherical harmonics

∑

𝐻𝜏𝜎𝑚𝑙(𝑟)𝑨𝜏𝜎𝑚𝑙(𝜃, 𝜑) = 𝟎. (31)
5

𝜏𝜎𝑚𝑙



Ultrasonics 138 (2024) 107199A. Jafarzadeh et al.

t

A
s
a
c

w
t
c

o
t
f

w
e
o
p
S
c
o
T
l

4

o
e
t
f

4

w

Table 1
Table of couplings among the partial waves in the Rayleigh limit.
P-SV Partial P waves Partial SV waves Partial SH waves Sec.
𝜎𝑚𝑙 𝜏 = 3 𝜏 = 2 𝜏 = 1

ooo 𝑨3𝑜11 , (𝑨3𝑜13 ,𝑨3𝑜33) 𝑨2𝑜11 , (𝑨2𝑜13 ,𝑨2𝑜33) (𝑨1𝑒12) 4.1
eoo 𝑨3𝑒11 , (𝑨3𝑒13 ,𝑨3𝑒33) 𝑨2𝑒11 , (𝑨2𝑒13 ,𝑨2𝑒33) (𝑨1𝑜12) 4.1
oeo (𝑨3𝑜23) (𝑨2𝑜23) (𝑨1𝑒02 ,𝑨1𝑒22) 4
eeo 𝑨3𝑒01 , (𝑨3𝑒03 ,𝑨3𝑒23) 𝑨2𝑒01 , (𝑨2𝑒03 ,𝑨2𝑒23) (𝑨1𝑜22) 4.1
ooe 𝑨3𝑜12 , (𝑨3𝑜14 ,𝑨3𝑜34) 𝑨2𝑜12 , (𝑨2𝑜14 ,𝑨2𝑜34) (𝑨1𝑒11 ,𝑨1𝑒13 ,𝑨1𝑒33) 4.2
eoe 𝑨3𝑒12 , (𝑨3𝑒14 ,𝑨3𝑒34) 𝑨2𝑒12 , (𝑨2𝑒14 ,𝑨2𝑒34) (𝑨1𝑜11 ,𝑨1𝑜13 ,𝑨1𝑜33) 4.3
oee 𝑨3𝑜22 , (𝑨3𝑜24 ,𝑨3𝑜44) 𝑨2𝑜22 , (𝑨2𝑜24 ,𝑨2𝑜44) (𝑨1𝑒01 ,𝑨1𝑒03 ,𝑨1𝑒23) 4.4

eee 𝑨3𝑒00 ,𝑨3𝑒02 ,𝑨3𝑒22 𝑨2𝑒02 ,𝑨2𝑒22 (𝑨1𝑜23) 4.5
(𝑨3𝑒04 ,𝑨3𝑒24 ,𝑨3𝑒44) (𝑨2𝑒04 ,𝑨2𝑒24 ,𝑨2𝑒44)

Here, 𝐻𝜏𝜎𝑚𝑙 is the scalar product of a vector spherical harmonic and the governing vector equation. The orthogonality of the vector spherical
harmonics means that all these coefficients, which are power series in 𝑟, must vanish so that

𝐻𝜏𝜎𝑚𝑙(𝑟) = 0 for all 𝜏, 𝜎, 𝑚, 𝑙. (32)

As the powers of 𝑟 are linearly independent, the coefficient in front of every power of 𝑟 must vanish, which provides the recursion relations among
the unknown coefficients inside the sphere and leaves only one unknown for each partial wave. The general explicit expression of these recursion
relations is complicated and is not given. The recursion relations also give couplings among the partial waves. Such coupling is discussed in detail
for a sphere with transversely isotropic [28] and cubic [29] material properties. For the orthorhombic sphere, there is a similar coupling among
the partial waves as for the cubic material, but with extra couplings of |𝑚 ± 2| partial waves with 𝑚 and |𝑚 ± 4|. This is expected as there are
rigonometric functions of order 2𝜑 in the strain–stress relations Eqs. (19)–(24) (which are absent in the cubic case).

To find all the unknown expansion coefficients inside and outside the sphere there remains to apply the boundary conditions on the sphere.
ssuming the sphere to be perfectly welded with the surrounding, the displacement and normal traction must be continuous at the surface of the
phere 𝑟 = 𝑎. The displacement field outside and inside of the sphere (Eqs. (13) and (27)) are expanded in terms of the vector spherical harmonics
nd using the orthonormality of the vector spherical harmonics application of the boundary conditions is straightforward. For the traction boundary
ondition, the radial traction just inside the sphere is expanded in terms of the vector spherical harmonics as

𝒕(𝑟)1 (𝑎, 𝜃, 𝜑) =
∑

𝜏𝜎𝑚𝑙
𝐺𝜏𝜎𝑚𝑙𝑨𝜏𝜎𝑚𝑙(𝜃, 𝜑), (33)

here 𝐺𝜏𝜎𝑚𝑙 is the scalar product of the radial traction vector and vector spherical harmonics of order 𝜏, 𝜎, 𝑚 and 𝑙. Such an expansion of the
raction inside the sphere together with the traction outside the sphere (Eqs. (9)–(12)) makes it straightforward to apply the traction boundary
ondition. It is noted that 𝐺𝜏𝜎𝑚𝑙 shows the same coupling among the coefficients 𝑓𝜏𝜎𝑚𝑙,𝑗 as in 𝐻𝜏𝜎𝑚𝑙(𝑟).

The boundary conditions and the recursion relations give all the equations needed to determine all expansion coefficients and thereby the fields
utside and inside the sphere. It is, in particular, possible to determine the 𝐓 matrix elements. Due to their complexity, explicit expressions for all
hese equations cannot be stated, but for low frequencies it is possible to obtain explicit expressions for the leading order 𝐓 matrix elements, and
or higher frequencies it is possible to solve the equations numerically.

In the low frequency limit it is sufficient to expand the displacement field to power 3 in 𝑟. With such a truncation in Eqs. (28)–(30), 64 partial
aves remain for the displacement field inside the sphere, which are listed in Table 1. The continuity condition of displacement and traction for
ach vector spherical harmonic leads to a large system of equations to be solved. However, materials with orthorhombic symmetry have three
rthogonal symmetry planes, which leads to a decoupling into eight independent subproblems. Table 1 presents the eight distinct sets of decoupled
artial waves at low frequencies. In the low frequency limit, it has been established for cubic materials that the leading order 𝐓 matrix elements for
H waves are of higher order than those for P and SV waves [28] and this is true also for orthorhombic materials. Therefore, it is adequate to only
onsider P and SV waves (𝜏 = 2 and 3). Additionally, only incident partial waves with orders 𝑙 = 0, 1, and 2 are needed for determining the leading
rder 𝐓 matrix elements at low frequencies. Thus all partial waves with 𝜏 = 1 and 𝑙 ≥ 3 inside the sphere (which are enclosed in parentheses in
able 1) are not of leading order at low frequencies. The subsequent section presents the leading order 𝐓 matrix elements in the low frequency

imit for each of the eight sets.

. Low frequency T matrix elements

In this section all the leading order 𝐓 matrix elements in the low frequency limit are explicitly stated. To keep the exposition brief, some details
f the calculations are only explained for the first case with odd–odd–odd P-SV waves, and for the other cases only the truncated displacement
xpansion and the 𝐓 matrix elements are presented. As shown in Table 1 for the odd–even–odd case there is no leading order 𝐓 matrix element in
he low frequency limit, so the other seven cases remain. For more calculational details see Jafarzadeh et al. [28,29] where the 𝐓 matrix elements
or a sphere with transversely isotropic and cubic material properties are derived, respectively.

.1. Odd–odd–odd P-SV waves

For the case with odd–odd–odd P-SV waves, 𝜎 = 𝑜, 𝑚 = 1, and 𝑙 = 1, the low frequency displacement field expansion is

𝒖1(𝑟, 𝜃, 𝜑) = 𝐹2𝑜11(𝑟)𝐀2𝑜11(𝜃, 𝜑) + 𝐹3𝑜11(𝑟)𝐀3𝑜11(𝜃, 𝜑), (34)

here
2 2 (35)
6

𝐹2𝑜11(𝑟) = 𝑓2𝑜11,0 + 𝑓2𝑜11,2𝑟 , 𝐹3𝑜11(𝑟) = 𝑓3𝑜11,0 + 𝑓3𝑜11,2𝑟 .
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As in Section 3, the equations of motion are projected onto 𝐀2𝑜11(𝜃, 𝜑) and 𝐀3𝑜11(𝜃, 𝜑) with only the two lowest order in 𝑟 retained. The resulting
two distinct equations are solved to give the two recursion relations

𝑓2𝑜11,0 =
√

2𝑓3𝑜11,0, 𝑓3𝑜11,2 =

√

2
(

2𝛼1 − 2𝛼2 − 𝛽1 − 2𝛽2 + 3𝛽3 − 8𝛽5 + 8𝛽6
)

𝑓2𝑜11,2 − 2𝜌1𝜔2𝑓3𝑜11,0
2
(

4𝛼1 + 6𝛼2 + 5𝛽1 + 𝛽3 − 8𝛽5 − 8𝛽6 − 16𝛽7
) . (36)

hus, two unknowns remain inside the sphere, and the unknowns outside the sphere are ℎ2𝑜01 and ℎ3𝑜01. These are found by using the continuity
f displacement and traction for 𝜏 = 2 and 𝜏 = 3 with 𝑙 = 1 (again projecting), and the 𝐓 matrix elements are calculated as

𝑇2𝑜11,2𝑜11 = −2
9
𝑖
(

𝑘𝑠𝑎
)3

(

1 −
𝜌1
𝜌

)

,

𝑇3𝑜11,2𝑜11 = 𝑇2𝑜01,3𝑜01 = −

√

2
9

𝑖
(√

𝑘𝑝𝑘𝑠𝑎
)3 (

1 −
𝜌1
𝜌

)

,

𝑇3𝑜11,3𝑜11 = −1
9
𝑖
(

𝑘𝑝𝑎
)3

(

1 −
𝜌1
𝜌

)

.

(37)

The 𝐓 matrix elements only depend on the density of the sphere, and are independent of its elasticity constants. Thus, these elements are the same
for any type of spherical inclusion. This is reasonable since the 𝑙 = 1 case for low frequencies is related to the rigid body translation of the sphere.

onsequently, all other 𝐓 matrix elements of order 𝑙 = 1 are the same regardless of their parity with respect to 𝜎 and 𝑚 and the following relations
hus follows for the even–odd–odd and even–even–odd cases

𝑇2𝑜11,2𝑜11 = 𝑇2𝑒11,2𝑒11 = 𝑇2𝑒01,2𝑒01,

𝑇3𝑜11,2𝑜11 = 𝑇2𝑜11,3𝑜11 = 𝑇3𝑒11,2𝑒11 = 𝑇2𝑒11,3𝑒11 = 𝑇3𝑒01,2𝑒01 = 𝑇2𝑒01,3𝑒01,

𝑇3𝑜11,3𝑜11 = 𝑇3𝑒11,3𝑒11 = 𝑇3𝑒01,3𝑒01.

(38)

In the following subsections only the suitably truncated displacement field and the 𝐓 matrix elements for the other cases are stated.

4.2. Odd–odd–even P-SV waves

This case has 𝜎 = 𝑜, 𝑚 = 1, and 𝑙 = 2 and the displacement expansion is

𝒖1(𝑟, 𝜃, 𝜑) = 𝐹2𝑜12(𝑟)𝐀2𝑜12(𝜃, 𝜑) + 𝐹3𝑜12(𝑟)𝐀3𝑜12(𝜃, 𝜑) (39)

The 𝐓 matrix elements become

𝑇2𝑜12,2𝑜12 = −2𝑖
(

𝑘𝑠𝑎
)3

(

𝐶55 − 𝜇
)

(𝜆 + 2𝜇)
2𝐶55(3𝜆 + 8𝜇) + 𝜇(9𝜆 + 14𝜇)

,

𝑇3𝑜12,2𝑜12 = 𝑇2𝑜12,3𝑜12 = −2
√

2
3
𝑖
(√

𝑘𝑝𝑘𝑠𝑎
)3

(

𝐶55 − 𝜇
)
√

𝜇(𝜆 + 2𝜇)
2𝐶55(3𝜆 + 8𝜇) + 𝜇(9𝜆 + 14𝜇)

,

𝑇3𝑜12,3𝑜12 = −4
3
𝑖
(

𝑘𝑝𝑎
)3 𝜇

(

𝐶55 − 𝜇
)

2𝐶55(3𝜆 + 8𝜇) + 𝜇(9𝜆 + 14𝜇)
.

(40)

4.3. Even–odd–even P-SV waves

This case has 𝜎 = 𝑒, 𝑚 = 1, and 𝑙 = 2 and the displacement expansion is

𝒖1(𝑟, 𝜃, 𝜑) = 𝐹2𝑒12(𝑟)𝐀2𝑒12(𝜃, 𝜑) + 𝐹3𝑒12(𝑟)𝐀3𝑒12(𝜃, 𝜑) (41)

The 𝐓 matrix elements become

𝑇2𝑒12,2𝑒12 = −2𝑖
(

𝑘𝑠𝑎
)3

(

𝐶44 − 𝜇
)

(𝜆 + 2𝜇)
2𝐶44(3𝜆 + 8𝜇) + 𝜇(9𝜆 + 14𝜇)

,

𝑇3𝑒12,2𝑒12 = 𝑇2𝑒12,3𝑒12 = −2
√

2
3
𝑖
(√

𝑘𝑝𝑘𝑠𝑎
)3

(

𝐶44 − 𝜇
)
√

𝜇(𝜆 + 2𝜇)
2𝐶44(3𝜆 + 8𝜇) + 𝜇(9𝜆 + 14𝜇)

,

𝑇3𝑒12,3𝑒12 = −4
3
𝑖
(

𝑘𝑝𝑎
)3 𝜇

(

𝐶44 − 𝜇
)

2𝐶44(3𝜆 + 8𝜇) + 𝜇(9𝜆 + 14𝜇)
.

(42)

4.4. Odd–even–even P-SV waves

This case has 𝜎 = 𝑜, 𝑚 = 2, and 𝑙 = 2 and the displacement expansion is

𝒖1(𝑟, 𝜃, 𝜑) = 𝐹2𝑜22(𝑟)𝐀2𝑜22(𝜃, 𝜑) + 𝐹3𝑜22(𝑟)𝐀3𝑜22(𝜃, 𝜑). (43)

The 𝐓 matrix elements become

𝑇2𝑜22,2𝑜22 = −2𝑖
(

𝑘𝑠𝑎
)3

(

𝐶66 − 𝜇
)

(𝜆 + 2𝜇)
2𝐶66(3𝜆 + 8𝜇) + 𝜇(9𝜆 + 14𝜇)

,

𝑇3𝑜22,2𝑜22 = 𝑇2𝑜22,3𝑜22 = −2
√

2
3
𝑖
(√

𝑘𝑝𝑘𝑠𝑎
)3

(

𝐶66 − 𝜇
)
√

𝜇(𝜆 + 2𝜇)
2𝐶66(3𝜆 + 8𝜇) + 𝜇(9𝜆 + 14𝜇)

,

𝑇3𝑜22,3𝑜22 = −4 𝑖
(

𝑘𝑝𝑎
)3 𝜇

(

𝐶66 − 𝜇
)

.

(44)
7

3 2𝐶66(3𝜆 + 8𝜇) + 𝜇(9𝜆 + 14𝜇)
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It is noticed that the three last cases, all with only 𝑙 = 2 (and with no coupling to 𝑙 = 0), are very similar, it is just to exchange the three shear
oduli 𝐶44, 𝐶55, 𝐶66. All these 𝐓 matrix elements are independent of all the other stiffness constants. In the cubic and transversely isotropic cases,
ith 𝐶44 = 𝐶55 = 𝐶66 and 𝐶44 = 𝐶55, 𝐶66 = (𝐶11 − 𝐶12)∕2, respectively, the same 𝐓 matrix elements are obtained by Jafarzadeh et al. [28,29].

.5. Even–even–even P-SV waves

This case has 𝜎 = 𝑒, 𝑚 = 0, 2, and 𝑙 = 0, 2, and is by far the most complicated and has the displacement expansion

𝒖1(𝑟, 𝜃, 𝜑) = 𝐹2𝑒02(𝑟)𝐀2𝑒02(𝜃, 𝜑) + 𝐹2𝑒22(𝑟)𝐀2𝑒22(𝜃, 𝜑) + 𝐹3𝑒00(𝑟)𝐀3𝑒00(𝜃, 𝜑) + 𝐹3𝑒02(𝑟)𝐀3𝑒02(𝜃, 𝜑)

+ 𝐹3𝑒22(𝑟)𝐀3𝑒22(𝜃, 𝜑).
(45)

After very long calculations the 𝐓 matrix elements become

𝑇3𝑒00,3𝑒00 = −1
3
𝑖
(

𝑘𝑝𝑎
)3

(

1 − (𝜆 + 2𝜇)
𝑁00,00

𝐷

)

,

𝑇2𝑒02,3𝑒00 = 𝑇3𝑒00,2𝑒02 =
√

5
6
𝑖
(√

𝑘𝑝𝑘𝑠𝑎
)3

(𝜆 + 2𝜇)
√

𝜇(𝜆 + 2𝜇)
𝑁00,02

𝐷
,

𝑇3𝑒02,3𝑒00 = 𝑇3𝑒00,3𝑒02 =

√

5
3

𝑖
(

𝑘𝑝𝑎
)3 𝜇(𝜆 + 2𝜇)

𝑁00,02

𝐷
,

𝑇2𝑒22,3𝑒00 = 𝑇3𝑒00,2𝑒22 =
√

5
2
𝑖
(√

𝑘𝑝𝑘𝑠𝑎
)3

(𝜆 + 2𝜇)
√

𝜇(𝜆 + 2𝜇)
𝑁02,02

𝐷
,

𝑇3𝑒22,3𝑒00 = 𝑇3𝑒00,3𝑒22 =
√

5
3
𝑖
(

𝑘𝑝𝑎
)3 𝜇(𝜆 + 2𝜇)

𝑁02,02

𝐷
,

𝑇2𝑒22,2𝑒02 = 𝑇2𝑒02,2𝑒22 =
5
√

3
2

𝑖
(

𝑘𝑠𝑎
)3 𝜇(𝜆 + 2𝜇)2

𝑁02,22

𝐷
,

𝑇3𝑒22,2𝑒02 = 𝑇2𝑒02,3𝑒22 = 𝑇2𝑒22,3𝑒02 = 𝑇3𝑒02,2𝑒22 =
5
√

2
𝑖
(√

𝑘𝑝𝑘𝑠𝑎
)3

𝜇(𝜆 + 2𝜇)
√

𝜇(𝜆 + 2𝜇)
𝑁02,22

𝐷
,

𝑇3𝑒22,3𝑒02 = 𝑇3𝑒02,3𝑒22 =
5
√

3
𝑖
(

𝑘𝑝𝑎
)3 𝜇2(𝜆 + 2𝜇)

𝑁02,22

𝐷
,

𝑇2𝑒02,2𝑒02 = −1
2
𝑖
(

𝑘𝑠𝑎
)3 (𝜆 + 2𝜇)

𝑁00,22

𝐷
,

𝑇3𝑒02,2𝑒02 = 𝑇2𝑒02,3𝑒02 = − 1
√

6
𝑖
(√

𝑘𝑝𝑘𝑠𝑎
)3 √

𝜇(𝜆 + 2𝜇)
𝑁00,22

𝐷
,

𝑇3𝑒02,3𝑒02 = −1
3
𝑖
(

𝑘𝑝𝑎
)3 𝜇

𝑁00,22

𝐷
,

𝑇2𝑒22,2𝑒22 = −1
2
𝑖
(

𝑘𝑠𝑎
)3 (𝜆 + 2𝜇)

𝑁22,22

𝐷
,

𝑇2𝑒22,3𝑒22 = 𝑇3𝑒22,2𝑒22 = − 1
√

6
𝑖
(√

𝑘𝑝𝑘𝑠𝑎
)3 √

𝜇(𝜆 + 2𝜇)
𝑁22,22

𝐷
,

𝑇3𝑒22,3𝑒22 = −1
3
𝑖
(

𝑘𝑝𝑎
)3 𝜇

𝑁22,22

𝐷
,

(46)

where 𝐷 is the denominator and 𝑁𝑚𝑚′ ,𝑙𝑙′ is the numerator for the 𝐓 matrix elements related to the scattered wave of order 𝑚′, 𝑙′ due to the incident
wave of order 𝑚, 𝑙, and vice versa. 𝑁𝑚𝑚′ ,𝑙𝑙′ and 𝐷 can be expressed in terms of the elasticity constants

𝑁00,00 = −2
(

𝐶11 − 𝐶12 − 𝐶13 + 𝐶22 − 𝐶23 + 𝐶33
)

𝜇(9𝜆 + 14𝜇)(3𝜆 + 8𝜇)+
(

𝐶2
12 − 2𝐶13𝐶12 − 2𝐶23𝐶12

+ 2𝐶33𝐶12 + 𝐶2
13 + 𝐶2

23 − 𝐶11𝐶22 + 2𝐶13𝐶22 + 2𝐶11𝐶23 − 2𝐶13𝐶23 − 𝐶11𝐶33 − 𝐶22𝐶33
)

(3𝜆 + 8𝜇)2

− 3𝜇2(9𝜆 + 14𝜇)2,

𝑁00,02 =
(

−2𝐶2
12 + 𝐶13𝐶12 + 𝐶23𝐶12 + 2𝐶33𝐶12 + 𝐶2

13 + 𝐶2
23 + 2𝐶11𝐶22 − 𝐶13𝐶22 − 𝐶11𝐶23

− 2𝐶13𝐶23 − 𝐶11𝐶33 − 𝐶22𝐶33
)

(3𝜆 + 8𝜇) +
(

𝐶11 + 2𝐶12 − 𝐶13 + 𝐶22 − 𝐶23 − 2𝐶33
)

𝜇(9𝜆 + 14𝜇),

𝑁02,02 =
(

𝐶2
13 − 𝐶12𝐶13 − 𝐶22𝐶13 − 𝐶2

23 + 𝐶11𝐶23 + 𝐶12𝐶23 − 𝐶11𝐶33 + 𝐶22𝐶33
)

(3𝜆 + 8𝜇)

−
(

𝐶11 + 𝐶13 − 𝐶22 − 𝐶23
)

𝜇(9𝜆 + 14𝜇),

𝑁02,22 = 𝐶2
13 + 2𝐶12𝐶13 + 2𝐶22𝐶13 − 𝐶2

23 − 2𝐶11𝐶23 − 2𝐶12𝐶23 − 𝐶11𝐶33 + 𝐶22𝐶33

+
(

−4𝐶11 + 8𝐶13 + 4𝐶22 − 8𝐶23
)

𝜇,

(47)

𝑁00,22 = −4𝜇2 (−2𝐶13 − 2𝐶23 + 𝐶33 − 4𝜇
)

(9𝜆 + 14𝜇) + 2(3𝜆 + 8𝜇)
(

𝐶33𝐶
2
12 − 2𝐶13𝐶23𝐶12 + 𝐶11𝐶

2
23

+ 𝐶2
13𝐶22 − 𝐶11𝐶22𝐶33 − 4𝜇

(

𝐶12𝐶13 − 𝐶22𝐶13 − 𝐶11𝐶23 + 𝐶12𝐶23
)

+ 4𝜇2 (𝐶11 − 2𝐶12 + 𝐶22
)

)

− 𝜇
(

2
(

𝐶 𝐶 − 𝐶 𝐶
)

(3𝜆 − 2𝜇) + 15
(

−𝐶2 − 𝐶2 + 𝐶 𝐶 + 𝐶 𝐶
)

(𝜆 + 2𝜇)
)

,

8

12 33 13 23 13 23 11 33 22 33
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𝑁22,22 = 𝑁00,22 + 10𝜇(𝜆 + 2𝜇)
( (

−4𝐶11 + 16𝐶12 − 8𝐶13 − 4𝐶22 − 8𝐶23 + 8𝐶33
)

𝜇 + 2𝐶2
12 + 2𝐶13𝐶12

+ 2𝐶23𝐶12 + 4𝐶33𝐶12 − 𝐶2
13 − 𝐶2

23 − 2𝐶11𝐶22 − 2𝐶13𝐶22 − 2𝐶11𝐶23 − 4𝐶13𝐶23 + 𝐶11𝐶33 + 𝐶22𝐶33
)

,

𝐷 = 𝜇2(9𝜆 + 14𝜇)
(

2
(

𝐶12 + 𝐶13 + 𝐶23
)

(𝜆 + 6𝜇) −
(

𝐶11 + 𝐶22 + 𝐶33
)

(11𝜆 + 26𝜇)
)

+ 2𝜇(3𝜆 + 8𝜇)
(

5
(

𝐶2
12 + 𝐶2

13 + 𝐶2
23 − 𝐶11𝐶22 − 𝐶11𝐶33 − 𝐶22𝐶33

)

(𝜆 + 2𝜇)

−
(

𝐶12𝐶13 − 𝐶22𝐶13 + 𝐶23𝐶13 − 𝐶11𝐶23 + 𝐶12𝐶23 − 𝐶12𝐶33
)

(𝜆 + 6𝜇)
)

+
(

𝐶33𝐶
2
12 − 2𝐶13𝐶23𝐶12 + 𝐶11𝐶

2
23 + 𝐶2

13𝐶22 − 𝐶11𝐶22𝐶33
)

(3𝜆 + 8𝜇)2 − 4𝜇3(9𝜆 + 14𝜇)2.
It is noticed that these 𝐓 matrix elements are all independent of the shear moduli 𝐶44, 𝐶55, and 𝐶66. In the isotropic limit where 𝐶11 = 𝐶22 =

𝐶33 = 𝜆1 + 2𝜇1, 𝐶12 = 𝐶13 = 𝐶23 = 𝜆1, 𝐶44 = 𝐶55 = 𝐶66 = 𝜇1 (𝜆1 and 𝜇1 being the Lamé constants of the isotropic sphere), the transversely isotropic
limit where 𝐶11 = 𝐶22, 𝐶12 = 𝐶13, 𝐶44 = 𝐶55, 𝐶66 = (𝐶11 − 𝐶22)∕2, and the cubic limit where 𝐶11 = 𝐶22 = 𝐶33, 𝐶12 = 𝐶13 = 𝐶23, 𝐶44 = 𝐶55 = 𝐶66, these
𝐓 matrix elements are the same as the ones given by Boström [31] and Jafarzadeh et al. [28,29], respectively. These 𝐓 matrix elements provide
complete information regarding low frequency scattering in a medium with a spherical inclusion of orthorhombic symmetry.

Looking at the 𝐓 matrix elements, the leading order ones in the low frequency limit are all imaginary. The leading order real parts of the 𝐓 matrix
elements are of higher order and require higher order expansion of the displacement field. Using the ‘‘hermitian’’ property of the 𝐓 matrix [32]

𝐓†𝐓 = −Re𝐓, (48)

the leading order real part of the 𝐓 matrix elements is obtained from the leading order imaginary parts of them.
The derived 𝐓 matrix elements are all that are of leading order at low frequencies. Low frequencies typically means 𝑘𝑠𝑎 < 0.5, but this of course

depends on the accuracy required. It must also be recognized that the wave numbers of the material inside the sphere play a role, so if one of the
wave numbers inside the sphere is larger this may limit the range of frequencies further. There is, on the other hand, no limit on the strength of
the anisotropy. This is in contrast with the perturbative Keller approximation [33] or the diagrammatic Bourret approximation [34], which are
typically used in methods like SOA, and are only valid for small anisotropy (but has no limit in frequency).

5. Polycrystalline materials

Polycrystalline materials are composed of a collection of crystals with anisotropic properties. Due to the grainy structure, propagating waves in
the medium scatter and attenuate. In the case of randomly oriented, equiaxed crystals, the macroscopic behavior of the polycrystals is isotropic and
homogeneous. The medium is then characterized by the effective wave numbers 𝐾𝑝 and 𝐾𝑠 for the longitudinal and transverse waves, respectively.
The effective wave numbers are complex numbers in which the real part gives the phase velocity and the imaginary part gives the attenuation of the
wave. Since the scattering depends on the frequency, the effective phase velocity and attenuation are, in general, frequency dependent. However,
for very low frequencies the state in the medium is quasi-static, attenuation is small, and the wave number provides a quasi-static velocity limit
of the medium. Considering that a polycrystalline material is filled with crystals, the propagating wave constantly experiences multiple events of
scattering. Modeling all these events of scattering is complicated, and different simplifying assumptions are considered in the literature to study
wave propagation in these materials.

Here an approach where the scattering by each crystal is regarded as taking place in the effective and isotropic medium (called the matrix) of
all the other grains is followed. Multiple scattering is neglected and it is assumed that each grain encounters the same incident wave throughout
the whole medium. The matrix is then a homogeneous medium with no attenuation and constant phase velocities, which can be calculated by
the Voigt average. Therefore, the method is called the Single Scattering Approximation in the Voigt homogenized medium (SSA-V). The matrix is
defined by the longitudinal 𝑘𝑝 =

√

𝜌∕(𝜆 + 2𝜇) and transverse 𝑘𝑠 =
√

𝜌∕𝜇 wave numbers. The density 𝜌 for a single-phase polycrystalline material is
the same as the single crystal density 𝜌1. The Lamé parameters are the Voigt averages of a single crystal, which have the following relation to the
stiffness constants of a material with orthorhombic symmetry [35]

𝜆 = 1
15

(

𝐶11 + 4𝐶12 + 4𝐶13 + 𝐶22 + 4𝐶23 + 𝐶33 − 2𝐶44 − 2𝐶55 − 2𝐶66
)

,

𝜇 = 1
15

(

𝐶11 − 𝐶12 − 𝐶13 + 𝐶22 − 𝐶23 + 𝐶33 + 3𝐶44 + 3𝐶55 + 3𝐶66
)

.
(49)

By substituting the surrounding medium of each crystal with a homogenized isotropic medium, each crystal contributes to a single scattering
event which can be addressed by the calculated 𝐓 matrix elements. With these assumptions, the theory of Foldy [21], neglecting correlations among
the individual scatterers [24], is used to study the effective wave numbers of the polycrystal as [28,29]

(𝐾𝑝

𝑘𝑝

)2

= 1 − 4𝜋𝑖𝑑
𝑉 𝑘3𝑝

∑

𝜎𝑚𝑙
𝑇3𝜎𝑚𝑙,3𝜎𝑚𝑙 ,

(

𝐾𝑠
𝑘𝑠

)2
= 1 − 2𝜋𝑖𝑑

𝑉 𝑘3𝑠

∑

𝜏𝜎𝑚𝑙
𝜏=1,2

𝑇𝜏𝜎𝑚𝑙,𝜏𝜎𝑚𝑙 ,
(50)

here 𝑘𝑝 and 𝑘𝑠 are the wave numbers of the matrix (which are the Voigt averages in the SSA-V method), and 𝐾𝑝 and 𝐾𝑠 are the polycrystalline
ffective wave numbers for longitudinal and transverse waves, respectively. 𝑉 = 4𝜋𝑎3∕3 is the volume of a single grain and 𝑑 is the relative density
f the grains which for a polycrystalline materials is set to be 𝑑 = 1 as the grains fill the volume. The grains in the polycrystalline material are
onsidered to be spheres with the same radius 𝑎 meaning that no distribution of grain size is considered. This is a reasonable approximation for
ow frequencies, for which the scattering is mainly a volume effect. The resulting complex effective wave number describes the attenuation and
hase velocity of the composite medium as

𝛼𝑖 = Im
𝐾𝑖 ,

𝐶𝑖 = Re
𝑘𝑖 , (51)
9

𝑘𝑖 𝑘𝑖 𝑐𝑖 𝐾𝑖
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where 𝑖 = 𝑝 and 𝑠 for longitudinal and transverse waves, respectively, 𝛼𝑖 is the attenuation, 𝑐𝑖 is the phase velocity in the matrix and 𝐶𝑖 is the
ffective phase velocity.

Collecting everything, the leading order of the real and imaginary parts of the effective wavenumbers 𝐾𝑖 becomes
(𝐾𝑝

𝑘𝑝

)2

= 1 + 𝐴𝑝 + 𝐵𝑝𝑖,
(

𝐾𝑠
𝑘𝑠

)2
= 1 + 𝐴𝑠 + 𝐵𝑠𝑖, (52)

where the coefficients are real and given by

𝐴𝑝 = −
4𝜇

(

𝐶44 − 𝜇
)

2𝐶44(3𝜆 + 8𝜇) + 𝜇(9𝜆 + 14𝜇)
−

4𝜇
(

𝐶55 − 𝜇
)

2𝐶55(3𝜆 + 8𝜇) + 𝜇(9𝜆 + 14𝜇)
−

4𝜇
(

𝐶66 − 𝜇
)

2𝐶66(3𝜆 + 8𝜇) + 𝜇(9𝜆 + 14𝜇)

+ 1
𝐷

(

(𝜆 + 2𝜇)𝑁00,00 − 𝜇(𝑁22,22 +𝑁00,22)
)

+
𝜌1 − 𝜌

𝜌
− 1,

𝐵𝑝 =
(𝑘𝑝𝑎)3

6

[ (

2 + 3
𝑘5𝑠
𝑘5𝑝

) ( (

4𝜇
(

𝐶44 − 𝜇
)

2𝐶44(3𝜆 + 8𝜇) + 𝜇(9𝜆 + 14𝜇)

)2

+

(

4𝜇
(

𝐶55 − 𝜇
)

2𝐶55(3𝜆 + 8𝜇) + 𝜇(9𝜆 + 14𝜇)

)2

+

(

4𝜇
(

𝐶66 − 𝜇
)

2𝐶66(3𝜆 + 8𝜇) + 𝜇(9𝜆 + 14𝜇)

)2

+
(𝜇𝑁22,22

𝐷

)2
+
(𝜇𝑁00,22

𝐷

)2
+ 6

(

5𝜇2(𝜆 + 2𝜇)𝑁02,22

𝐷

)2 )

+ 2
( (𝜆 + 2𝜇)𝑁00,00

𝐷
− 1

)2

+ 5

(

4 + 3
𝑘5𝑠
𝑘5𝑝

)(

(𝜇(𝜆 + 2𝜇)𝑁00,02

𝐷

)2

+ 3
(𝜇(𝜆 + 2𝜇)𝑁02,02

𝐷

)2)

+ 2
3

(

1 + 2
𝑘3𝑠
𝑘3𝑝

)

(

𝜌1 − 𝜌
𝜌

)2
]

,

(53)

𝐴𝑠 = −
3(𝜆 + 2𝜇)

(

𝐶44 − 𝜇
)

2𝐶44(3𝜆 + 8𝜇) + 𝜇(9𝜆 + 14𝜇)
−

3(𝜆 + 2𝜇)
(

𝐶55 − 𝜇
)

2𝐶55(3𝜆 + 8𝜇) + 𝜇(9𝜆 + 14𝜇)
−

3(𝜆 + 2𝜇)
(

𝐶66 − 𝜇
)

2𝐶66(3𝜆 + 8𝜇) + 𝜇(9𝜆 + 14𝜇)

−
3(𝜆 + 2𝜇)

4𝐷
(

𝑁22,22 +𝑁00,22
)

+
𝜌1 − 𝜌

𝜌
,

𝐵𝑠 =
2(𝑘𝑠𝑎)3

9

[ (

3 + 2
𝑘5𝑝
𝑘5𝑠

) ( (

3(𝜆 + 2𝜇)
(

𝐶44 − 𝜇
)

2𝐶44(3𝜆 + 8𝜇) + 𝜇(9𝜆 + 14𝜇)

)2

+

(

3(𝜆 + 2𝜇)
(

𝐶55 − 𝜇
)

2𝐶55(3𝜆 + 8𝜇) + 𝜇(9𝜆 + 14𝜇)

)2

+

(

3(𝜆 + 2𝜇)
(

𝐶66 − 𝜇
)

2𝐶66(3𝜆 + 8𝜇) + 𝜇(9𝜆 + 14𝜇)

)2

+
(3(𝜆 + 2𝜇)𝑁22,22

4𝐷

)2

+
(3(𝜆 + 2𝜇)𝑁00,22

4𝐷

)2

+ 6

(

15𝜇(𝜆 + 2𝜇)2𝑁02,22

4𝐷

)2 )

+10
𝑘5𝑝
𝑘5𝑠

⎛

⎜

⎜

⎝

(

3(𝜆 + 2𝜇)2𝑁00,02

4𝐷

)2

+ 3

(

3(𝜆 + 2𝜇)2𝑁02,02

4𝐷

)2
⎞

⎟

⎟

⎠

+ 1
2

(

2 +
𝑘3𝑝
𝑘3𝑠

)

(

𝜌1 − 𝜌
𝜌

)2
]

.

(54)

In the low frequency limit the parameters 𝐴𝑖 and 𝐵𝑖 are small and the normalized attenuation and phase velocity can be approximated with good
accuracy as

𝛼𝑖
𝑘𝑖

=
𝐵𝑖
2
,

𝑐𝑖
𝐶𝑖

= 1 +
𝐴𝑖
2
. (55)

These relations confirm the frequency dependence of attenuation and phase velocity at low frequencies, where the phase velocity is independent
of the frequency and the attenuation depends on the fourth power of the frequency (or wave number). As mentioned, the frequency independent
phase velocities at low frequencies provide macroscopic static properties of the polycrystal.

In the method just presented the matrix properties are determined by the Voigt average and this leads to a change in the phase velocities at low
frequencies determined by 𝐴𝑝 and 𝐴𝑠. Ideally this change should vanish (as it does in the case of isotropy), so nonzero 𝐴𝑝 and 𝐴𝑠 can be viewed
as a measure of the degree of anisotropy, and they are henceforth used for this purpose. This also leads to another way to determine the Lamé
parameters of the matrix by putting 𝐴𝑝 = 𝐴𝑠 = 0. These two equations can be rearranged to the following two nonlinear equations in 𝜆 and 𝜇

(

𝐶44 − 𝜇
)

2𝐶44(3𝜆 + 8𝜇) + 𝜇(9𝜆 + 14𝜇)
+

(

𝐶55 − 𝜇
)

2𝐶55(3𝜆 + 8𝜇) + 𝜇(9𝜆 + 14𝜇)
+

(

𝐶66 − 𝜇
)

2𝐶66(3𝜆 + 8𝜇) + 𝜇(9𝜆 + 14𝜇)

+
𝑁22,22 +𝑁00,22

4𝐷
= 0,

(𝜆 + 2𝜇)𝑁00,00 −𝐷 = 0.

(56)

It seems that this system only has a single solution where both 𝜆 and 𝜇 are positive and real (there are further solutions that are not physically
meaningful). The method to calculate the Lamé parameters 𝜆 and 𝜇 by Eq. (56) is here called the static-consistent (SC) average. The static-consistent
average shows an exact agreement with the self-consistent average calculated by the script provided by Kube and De Jong [35]. (This article also
give a comprehensive study of various anisotropy indices suggested in the literature and different averages and bounds of macroscopic homogenized
static properties of polycrystals.) A modification of the SSA-V method is thus to define the matrix with the static-consistent elastic properties and
this modified method is called the Single Scattering Approximation in the Static Consistent homogenized medium (SSA-SC). Such a consideration
for the matrix properties is also suggested by Kube and Turner [13]). This method could be further generalized by iterating Eqs. (53) and (54) at
finite frequencies, but this leads to attenuation and complex 𝜆 and 𝜇, so this is not further investigated. In summary the present approach makes
10

the following assumptions and approximations:



Ultrasonics 138 (2024) 107199A. Jafarzadeh et al.

h

V
e

n

w
n
s

6

c

Table 2
Table of material properties, anisotropy degrees and anisotropy indices [15].
Type Material Voigt (GPa) SC (GPa) Anisotropy degree Anistropy index

𝜆 𝜇 𝜆 𝜇 𝐴𝑝 𝐴𝑠 𝐴𝑈 𝐴𝐿

Co2Se4 68,87 55,87 69,27 55,25 4,6E−03 1,1E−02 0,11 0,05
Enstatite 55,87 79,20 55,43 78,50 8,5E−03 8,8E−03 0,12 0,05
Ni2SiO4 112,47 80,47 111,46 79,43 1,1E−02 1,3E−02 0,15 0,06
Fe2SiO3 68,07 53,07 66,77 52,30 1,6E−02 1,4E−02 0,2 0,08
Fe2SiO4 100,43 53,03 99,56 50,74 2,6E−02 4,3E−02 0,51 0,21
U 55,99 88,06 56,73 84,17 3,0E−02 4,4E−02 0,49 0,2
Ca2Ag4 39,20 16,20 37,73 15,38 4,4E−02 5,1E−02 0,58 0,23
Sn4Pd40 74,33 42,33 76,92 36,76 5,3E−02 1,3E−01 2,13 0,78
Mo4O10 91,80 42,47 84,21 38,65 8,7E−02 9,0E−02 1,28 0,47
Li4Nb4N8 75,80 66,13 71,76 58,43 9,3E−02 1,2E−01 1,71 0,62
Na2Cu1O2 46,87 30,53 50,47 22,97 1,1E−01 2,5E−01 4,1 1,33
Te8O16 13,87 19,20 11,63 16,83 1,3E−01 1,2E−01 1,85 0,66
Na2U1O4 39,73 35,40 37,19 28,28 1,5E−01 2,1E−01 2,5 0,86

O
rt

ho
rh

om
bi

c

Sr1Mg6Ga1 18,53 15,53 13,81 10,78 2,6E−01 2,8E−01 388 10,2

Mg1Al3 44,13 25,80 44,28 25,49 4,9E−03 1,2E−02 0,13 0,05
Sm4O2 56,47 43,13 55,98 42,97 5,7E−03 3,8E−03 0,05 0,02
Sn 47,37 19,87 48,27 18,52 2,0E−02 6,7E−02 1,34 0,53
PDP 40,63 14,40 41,36 13,28 2,2E−02 7,7E−02 1,12 0,45
K2N6 12,20 12,20 12,31 11,56 3,2E−02 5,2E−02 0,6 0,24
Zr1H2 109,73 33,73 110,48 29,23 4,6E−02 1,3E−01 2,09 0,77
Rutile 136,53 125,37 138,74 114,80 4,9E−02 8,4E−02 1,34 0,52
NSH 8,07 12,59 8,16 11,36 7,1E−02 9,7E−02 1,55 0,58
RDP 6,59 15,68 8,60 12,65 1,1E−01 1,9E−01 3,48 1,18
To 24,73 29,06 28,75 22,34 1,1E−01 2,3E−01 11,32 2,64
Li2C1N2 40,33 20,00 37,73 16,66 1,1E−01 1,7E−01 2,53 0,88

Te
tr

ag
on

al

Tl2Cu1F4 19,47 13,47 19,86 9,74 1,5E−01 2,8E−01 5,17 1,16

𝛼 − Be 10,47 151,80 10,80 151,01 3,9E−03 5,2E−03 0,05 0,02
𝛼 − Ti 77,73 44,07 78,20 43,36 5,8E−03 1,6E−02 0,18 0,08
𝛼 − Co 135,27 78,27 136,34 76,64 7,5E−03 2,1E−02 0,2 0,09
Nb4N4 190,93 160,43 191,08 156,75 1,4E−02 2,3E−02 0,29 0,12
𝛼 − Tl 32,68 6,23 33,13 5,43 2,5E−02 1,3E−01 1,98 0,75
Mn2Sb2 25,47 42,47 27,10 39,83 3,3E−02 6,2E−02 0,68 0,28
Mn2Bi2 36,40 10,57 34,12 10,36 4,8E−02 2,0E−02 0,27 0,14
Zn 45,93 51,27 44,50 46,80 6,9E−02 8,6E−02 1,67 0,6
Ba2 4,87 4,87 5,42 4,03 7,9E−02 1,8E−01 2,29 0,84
Be2Se2 73,87 28,37 80,48 18,33 1,0E−01 3,5E−01 8,78 2,27
Sr4Si2 20,80 16,13 23,02 12,18 1,0E−01 2,4E−01 5,17 1,58

H
ex

ag
on

al

Al2Cu2O6 130,87 49,70 143,14 24,79 1,4E−01 4,3E−01 196 8,26

Al 54,92 26,42 55,01 26,29 1,6E−03 4,9E−03 0,05 0,02
Cr 83,92 116,92 85,00 115,31 6,8E−03 1,4E−02 0,14 0,06
Nb 137,21 39,85 138,68 37,65 1,4E−02 5,5E−02 0,63 0,26
RbF 18,54 13,84 19,22 12,82 3,0E−02 7,4E−02 0,8 0,33
Cu 102,24 53,84 106,34 47,69 3,9E−02 1,1E−01 1,75 0,67
In 112,76 93,56 119,06 84,11 4,2E−02 1,0E−01 1,42 0,56
As1 48,40 47,40 51,72 42,42 4,7E−02 1,1E−01 1,17 0,47
RbCl 10,34 8,84 11,23 7,50 6,5E−02 1,5E−01 1,82 0,69
RbBr 8,15 7,83 9,07 6,44 7,9E−02 1,8E−01 2,19 0,81
RbI 7,00 6,10 7,83 4,86 8,8E−02 2,1E−01 2,64 0,95
Li 7,88 6,18 9,12 4,32 1,2E−01 2,9E−01 8,70 2,25

Cu
bi

c

Dy1S1 64,00 50,00 73,58 35,63 1,2E−01 2,9E−01 4,35 1,14

1. Each crystal is considered to be isolated from all other crystals, and they all experience the same incident wave propagating in the
omogenized isotropic medium surrounding them.

2. Two assumptions are made regarding the surrounding medium: in the SSA-V approach the surrounding medium is considered to be the
oigt average of the properties of a single crystal, while in the self-consistent approach SSA-SC the surrounding medium is considered equal to the
ffective medium of the polycrystal in the static limit.

3. The scattered wave is studied in the far field of the surrounding homogenized medium.
4. The only statistical information of the geometrical properties of the grains considered is their effective volume, and the size distribution is

eglected.
5. The explicit expressions are valid for the Rayleigh regime, where the size of the scatterers is much smaller than the wavelength of the incident

ave. This is mainly due to the truncation of the 𝐓 matrix elements to the dominant term in the low-frequency limit, which can be overcome by
umerically evaluating higher orders. However, the validity of other assumptions, such as the neglect of the grain size distribution and multiple
cattering, remains questionable for higher frequencies.

. Numerical results for polycrystalline materials

This section presents numerical evaluation of the attenuation and phase velocity for the 50 different polycrystals with single-phased equiaxed
rystals listed in Table 2, characterized by orthorhombic, tetragonal, hexagonal, and cubic symmetries. A brief overview is provided for the
11
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analytical and numerical models that are compared with the current method. This is followed by an investigation of the quasi-static properties
and anisotropy degree of the polycrystals. Finally, the numerical results for the attenuation and phase velocity of the polycrystals for low and
intermediate frequencies are presented.

A classical approach to study polycrystalline materials is to replace the micro-inhomogeneous elastic polycrystal with a continuous random
medium described by a local elastic stiffness tensor 𝐶𝑖𝑗𝑘𝑙(𝐫) = 𝑐𝑖𝑗𝑘𝑙 + 𝛿𝑖𝑗𝑘𝑙(𝐫) with mean isotropic stiffness 𝑐𝑖𝑗𝑘𝑙 and random fluctuation 𝛿𝑖𝑗𝑘𝑙(𝐫). The
mean elastic medium with tensor 𝑐𝑖𝑗𝑘𝑙 is called the reference medium and for a single-phase polycrystalline is considered to be the Voigt average.
The fluctuations with respect to the mean elastic tensor 𝛿𝑖𝑗𝑘𝑙(𝐫) are considered to be small and described by a two-point correlation function (TPC),
giving the probability of two points lying in the same grain. Such a definition of the TPC function describes the fluctuation of the elastic stiffness and
the geometrical properties of the crystals. Given such a definition of the medium, the elastodynamic equations that govern polycrystalline materials
constitute a system of partial differential equations with random coefficients. This is addressed either by the perturbative Keller approximation as
used by Stanke and Kino [1], or equivalently by the first-order smoothing (Bourret) approximation of the Dyson equation as used by Weaver
[36]. This approach is generally called SOA (Second Order Approximation) and is accurate when the crystals are not strongly anisotropic and the
fluctuations with respect to the mean elastic tensor is small. To modify the SOA method for strongly anisotropic materials, Huang et al. [15] define
a scattering parameter equivalent to the degree of inhomogeneity as an anisotropy index to categorize anisotropic materials and propose the direct
approximation method (DAM) using this scattering parameter. In the DAM method, the phase velocity and attenuation in the Rayleigh limit are
defined as a quadratic function of the scattering parameter and the quasi-static phase velocity of each polycrystal is modified based on its static
properties evaluated by the self-consistent method [35]. This modification improved the estimation of the effective phase velocity for strongly
anisotropic materials, however, the attenuation estimation remains inaccurate [15].

To compare the present method with other analytical and numerical methods, the results are compared with the calculations presented by Huang
et al. [15]. As in the analytical methods, single phase polycrystals with randomly oriented crystallographic axes are considered in FEM [17]. The
methodology of FEM including grain geometry, finite element spatial discretization, loading, and boundary conditions are described in detail
by Van Pamel et al. [17]. The FEM results are of course not exact, both because of modeling issues (size of sample, generation of grains) and
numerical issues (discretization errors, etc.). Specifically, for low frequency calculations, due to a change of mesh in the FE calculations [18], the
inaccuracies in the FEM results are expected to be at least of the order of 5% [29].

The FE results compared in this study are based on multiple realizations with regard to the orientation of the crystals [15]. The geometrical
model consists of 11,520 grains with a mean grain volume of 0.125 mm3 and a variance of 0.0558 mm3. Further discussion regarding the generation
of the geometrical model, multiple realizations, and the effect of various grain size distributions can be found in the literature [16,17,37]. The
analytical methods considered here have different considerations for the crystallography of the polycrystals and it is necessary to have a suitable
correspondence of the geometrical models in the analytical methods and the one developed in the FE model. The geometrical properties required for
the SOA and DAM models is the TPC function which describes the probability of two points in the medium lying in the same grain. An appropriate
TPC function, according to the geometrical model generated by Van Pamel et al. [16] for the FE calculations, is determined by dropping two
random points within the medium and through repetition calculate their probability of lying within a single grain [17]. The TPC function is then
defined by an analytical fit to this measured distribution [6,17]. This TPC function is utilized in a comprehensive study by Huang et al. [15], and
their results for SOA, DAM and FE methods are considered here for comparison with the SSA methods.

On the other hand, in the present method all crystals are assumed to be spheres with the same radius 𝑎. However, it is well established that
the attenuation is significantly dependent on the actual grains sizes, and an accurate comparison of the present method requires consideration of
statistical information regarding the grain size distribution. To compare the SSA methods, which assume a single grain size, with the SOA and DAM
methods, which incorporate a grain size distribution, the volume of a single grain in the present method (𝑉 = 4𝜋𝑎3∕3) is set to be equal to the
effective volume of the model used in both the SOA and DAM methods. The effective volume is defined by the volumetric integration of the TPC
function, considering the fitted TPC function [6] to the FE model. The resulting effective grain volume is found to be 0.1459mm3, and the radius of
the grains in the present model is adopted as 𝑎 = 0.3266mm, which is used as the normalization radius in the subsequent calculations. It is worth
noting that the effective grain volume (0.1459mm3) is larger than the mean grain volume of the FE model (0.125mm3).

Calculations for the present method are performed using Eqs. (51) and (50), first with the explicit expressions of the 𝐓 matrix elements in the
low frequency limit (which are referred to as the Rayleigh asymptote of the present methods (R-SSA-V and R-SSA-SC)), then with the numerical
computations carried out with truncation at 𝑙𝑚𝑎𝑥 = 𝑚𝑚𝑎𝑥 = 5, and 𝑗𝑚𝑎𝑥 = 6 (referred to as SSA-V and SSA-SC). For the calculations, Mathematica 12.3
is employed. The codes used to evaluate explicit expressions, as presented in the last section, are provided in the supplementary materials [38].
However, for the numerical evaluation of higher orders, the computational cost increases significantly. On a normal computer with a 3.2 GHz CPU
and 64 GB RAM, the authors did not find it computationally reasonable to perform a calculation for higher orders. In general, to use the present
approach for higher frequencies, it would be beneficial to analytically evaluate the parameters 𝐻𝜏𝜎𝑚𝑙 and 𝐺𝜏𝜎𝑚𝑙 (Eqs. (31) and (33)) for any orders.
This is done for the simple case of scattering of SH waves by a transversely isotropic sphere [39].

At very low frequencies the attenuation tends to zero and the real effective wave numbers provide the static properties of the polycrystals. The
quasi-static phase velocity of the polycrystalline materials in the DAM and SSA-SC methods are equal with the self-consistent method and it differs
from the Voigt phase velocity as the anisotropy increases. The self-consistent method shows a good correspondence with FE and experimental
evaluation [35] and is considered as accurate [15]. Table 2 presents macroscopic isotropic Lamé parameters for the 50 polycrystals examined in
this study calculated using both Voigt and SC (static-consistent and self-consistent) averages. The measures of anisotropy degrees in the longitudinal
(𝐴𝑝) and transverse (𝐴𝑠) directions are also presented in Table 2, together with the universal (𝐴𝑈 ) [40] and log-Euclidean (𝐴𝐿) [41] anisotropy
indices. Fig. 2(a–b) displays the ratio of quasi-static effective phase velocity (𝐶𝑞−𝑠

𝑖 ) to Voigt phase velocity (𝑐𝑖) for (a) longitudinal (𝐶𝑞−𝑠
𝑝 ∕𝑐𝑝) and

(b) transverse (𝐶𝑞−𝑠
𝑠 ∕𝑐𝑠) waves versus 𝐴𝑝 and 𝐴𝑠, respectively. The quasi-static effective phase velocities are evaluated by SC (green dots), SSA-V

(blue dots) and SOA (black dots) methods. The green dots show that the Voigt phase velocities have more than 5% difference with the accurate SC
phase velocities when 𝐴𝑖 > 0.1, and the error increases almost monotonically with respect to 𝐴𝑖 for more anisotropic materials. It is also observed
that the SSA-V quasi-static phase velocities has less than 1% difference with SC phase velocities when 𝐴𝑖 < 0.1 and the difference increases
monotonically to more than 5% for materials with 𝐴𝑖 > 0.2. On the other hand, the SOA quasi-static phase velocities are accurate when 𝐴𝑖 < 0.05
nd do not show a clear monotonic relation with anisotropy degree. To compare the introduced measures of anisotropy degree with universal and
og-Euclidean anisotropy indices, Fig. 2(c–d) displays the ratio of self-consistent effective phase velocity (𝐶𝑠𝑐

𝑖 ) to Voigt phase velocity (𝑐𝑖) for c)
ongitudinal (𝐶𝑠𝑐

𝑝 ∕𝑐𝑝) and d) transverse (𝐶𝑠𝑐
𝑠 ∕𝑐𝑠) waves, respectively, versus 𝐴𝑈 (dark green dots) and 𝐴𝐿 (red dots). The materials with extreme
12
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Fig. 2. The ratio of quasi-static phase velocities to Voigt phase velocities for (a) longitudinal (𝐶𝑞−𝑠
𝑝 ∕𝑐𝑝) and (b) transverse (𝐶𝑞−𝑠

𝑠 ∕𝑐𝑠) waves, versus longitudinal anisotropy degree
𝐴𝑝 and transverse anisotropy degree 𝐴𝑠, respectively. Quasi-static phase velocities are evaluated by SSA-V (blue dots), SC (green dots), and SOA (Black dots) for 50 polycrystals of
Table 2. The ratio of SC quasi-static phase velocities to Voigt phase velocities for longitudinal (𝐶𝑠𝑐

𝑝 ∕𝑐𝑝) and transverse (𝐶𝑠𝑐
𝑠 ∕𝑐𝑠) waves is depicted in Figure (c) and (d), respectively.

he anisotropy indices 𝐴𝑈 are shown on the bottom 𝑥-axis as dark green dots, while 𝐴𝐿 is represented on the top 𝑥-axis as red dots.

ave a better monotonic relation with accurate SC results compared to 𝐴𝑈 and 𝐴𝐿. This is partly due to the separation of the degree of anisotropy
n the longitudinal and transverse directions, whereas anisotropy indices aim to indicate the anisotropy of a material with a single parameter,
isregarding the direction. However, as shown in Table 2 and Fig. 2(a–b), a material may have quite different degrees of anisotropy in various
irections.

In the following, longitudinal attenuation and phase velocity for the materials listed in Table 2 are evaluated using the SSA, SOA, and DAM
ethods, with a focus on strongly anisotropic materials in the longitudinal direction.

The longitudinal attenuation and phase velocity are calculated for the materials listed in Tables 2 and 3, ordered based on the longitudinal
nisotropy 𝐴𝑝 for each symmetry of the crystals. Considering the good correspondence of the present methods for estimation of the attenuation
nd phase velocity for weakly anisotropic materials, the study is focused on strongly anisotropic materials. However, normalized root-mean-square
eviation (NRMSD) of the longitudinal attenuation with respect to FEM is presented in Table 3 for all materials. NRMSD quantifies the overall
ifference in the frequency range of 𝑘𝑝𝑎 ≤ 0.5 and is calculated as root mean square of (𝛼Model

𝑝 ∕𝛼FEM
𝑝 − 1).

In the following the normalized longitudinal attenuation 𝛼𝑝𝑎 and normalized longitudinal phase velocity 𝐶𝑝∕𝑐𝑝 are depicted versus normalized
requency 𝑘𝑝𝑎 for different materials. The normalization parameters, 𝑐𝑝 and 𝑘𝑝, are determined by the Voigt average. For each material, the quantities
re calculated with the R-SSA-V method (dashed blue lines), SSA-V method (solid blue lines), R-SSA-SC method (dashed green lines), SSA-SC method
solid green lines), SOA method (dotted black lines), DAM method (solid red lines), and the FEM results (circles).

Fig. 3 shows (a) normalized longitudinal attenuation 𝛼𝑝𝑎 and (b) normalized longitudinal phase velocity 𝐶𝑝∕𝑐𝑝 versus normalized frequency
𝑝𝑎 for the strongest anisotropic materials in the longitudinal (Sr1Mg6Ga1) and transverse (Al2Cu2O6) cases. Fig. 4 shows normalized longitudinal
ttenuation 𝛼𝑝𝑎 versus normalized frequency 𝑘𝑝𝑎 for the three polycrystals of, orthorhombic, tetragonal, hexagonal and cubic symmetries with the
ighest anisotropy factors 𝐴𝑝 as stated in Table 2 (excluding the materials shown in Fig. 3). Finally, Fig. 5 shows normalized longitudinal phase
elocity 𝐶𝑝∕𝑐𝑝 versus normalized frequency 𝑘𝑝𝑎 for the same polycrystals as in Fig. 4.

Combining the results of Figs. 3–5 and Table 2, the following observations are of interest:
The R-SSA-V and R-SSA-SC methods are valid only in the Rayleigh limit when the wavelength is much larger than the grain radius. In this

requency range they should be very attractive to use due to their simplicity and the fact that they are valid also for strong anisotropy. The range
f validity of the Rayleigh results are somewhat hard to specify as it can vary significantly depending on the degree of anisotropy, ranging from
𝑝𝑎 > 0.5 for weakly anisotropic materials to 𝑘𝑝𝑎 < 0.1 for strongly anisotropic materials, such as Sr1Mg6Ga1. The Sr1Mg6Ga1 crystals possess

orthorhombic symmetry, with different longitudinal wavenumbers along each coordinate axis. The ratio of these wavenumbers to the Voigt wave
number of the macroscopically isotropic medium is 𝑘𝑥𝑝∕𝑘𝑝 = 0.82, 𝑘𝑦𝑝∕𝑘𝑝 = 1.65, and 𝑘𝑧𝑝∕𝑘𝑝 = 0.66 for longitudinal wave numbers in the 𝑥, 𝑦, and 𝑧
directions, respectively. The significant variation in wave velocities in different directions inside the crystals impacts the range of validity of the
Rayleigh results.

For the phase velocity evaluation, the SSA-V method estimation of phase velocity shows a good correspondence with FEM for 𝐴𝑝 < 0.1, however,
the difference with FE calculation increases for higher degrees of anisotropy. On the other hand, for the DAM and SSA-SC methods all studied
materials (except Sr1Mg6Ga1) show good agreement with FEM results. Theoretically, DAM quasi-static phase velocity should be equal to R-SSA-SC
phase velocity and the small differences that appear for the strongly anisotropic materials seem to be due to the fewer iterations considered in the
evaluation of the self-consistent phase velocity by Huang et al. [15].
13
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Table 3
NRMSD with respect to FEM in longitudinal attenuation for SOA, DAM, SSA-V, and SSA-SC methods [15].
Type Material 𝐴𝑝 𝛼𝑝 NRMSD to FEM (%) Material 𝐴𝑝 𝛼𝑝 NRMSD to FEM (%)

SOA DAM SSA-V SSA-SC SOA DAM SSA-V SSA-SC

Co2Se4 4,6E−03 4,35 9,74 1,00 0,93 Enstatite 8,5E−03 25,40 17,51 4,14 2,61
Ni2SiO4 1,1E−02 8,45 13,88 6,56 4,85 Fe2SiO3 1,6E−02 24,92 19,47 2,53 1,79
Fe2SiO4 2,6E−02 5,17 3,37 6,76 1,92 U 3,0E−02 5,26 5,62 5,52 1,45
Ca2Ag4 4,4E−02 40,43 35,41 5,11 1,42 Sn4Pd40 5,3E−02 36,38 5,50 12,65 1,75
Mo4O10 8,7E−02 5,05 8,91 19,13 6,98 Li4Nb4N8 9,3E−02 19,61 4,48 27,06 2,74
Na2Cu1O2 1,1E−01 4,64 37,11 24,40 8,01 Na2U1O4 1,5E−01 65,13 55,74 33,95 13,49O

rt
ho

rh
om

bi
c

Te8O16 1,3E−01 14,23 4,84 30,30 11,52 Sr1Mg6Ga1 2,6E−01 90,15 66,77 82,99 59,39

Mg1Al3 4,9E−03 1,84 1,60 6,03 6,62 Sm4O2 5,7E−03 17,41 9,26 5,21 4,66
Sn 2,0E−02 52,22 10,96 2,70 3,32 PDP 2,2E−02 20,07 5,26 4,44 2,42
K2N6 3,2E−02 6,75 4,65 10,78 5,85 Zr1H2 4,6E−02 19,24 8,98 12,30 3,16
Rutile 4,9E−02 32,78 3,71 14,77 4,63 NSH 7,1E−02 22,84 5,32 14,62 3,61
RDP 1,1E−01 33,03 14,60 21,96 5,07 To 1,1E−01 61,90 20,14 33,04 6,97Te

tr
ag

on
al

Li2C1N2 1,1E−01 6,53 10,56 22,03 2,13 Tl2Cu1F4 1,5E−01 46,38 7,33 41,02 12,02

𝛼 − Be 3,9E−03 6,65 26,15 6,39 6,71 𝛼 − Ti 5,8E−03 1,46 1,63 5,05 5,41
𝛼 − Co 7,5E−03 31,41 34,72 1,28 1,02 Nb4N4 1,4E−02 25,72 19,81 0,94 2,82
𝛼 − Tl 2,5E−02 13,04 8,38 5,11 4,14 Mn2Sb2 3,3E−02 9,25 0,68 7,13 3,28
Mn2Bi2 4,8E−02 7,93 2,18 3,33 3,15 Zn 6,9E−02 58,04 14,91 26,92 12,28
Ba2 7,9E−02 2,29 28,24 11,46 2,35 Be2Se2 1,0E−01 18,90 39,05 24,24 5,19H

ex
ag

on
al

Sr4Si2 1,0E−01 47,36 2,75 23,12 2,70 Al2Cu2O6 1,4E−01 77,39 36,26 55,18 18,68

Al 1,6E−03 8,43 1,63 1,66 1,74 Cr 6,8E−03 2,44 6,24 0,86 0,90
Nb 1,4E−02 3,43 9,91 2,73 1,84 RbF 3,0E−02 1,85 13,33 6,90 4,71
Cu 3,9E−02 36,62 7,74 8,91 2,67 In 4,2E−02 34,01 9,49 7,95 2,08
As1 4,7E−02 1,94 11,66 8,35 4,30 RbCl 6,5E−02 4,07 11,84 11,58 5,15
RbBr 7,9E−02 5,34 11,19 13,34 5,53 RbI 8,8E−02 7,30 11,37 14,43 5,85

Cu
bi

c

Li 1,2E−01 63,91 9,79 34,10 7,37 Dy1S1 1,2E−01 14,70 12,37 19,85 7,11

Fig. 3. Normalized attenuation 𝛼𝑝𝑎 and normalized phase velocity 𝐶𝑝∕𝑐𝑝 versus normalized frequency 𝑘𝑝𝑎 for longitudinal waves evaluated by the Rayleigh asymptote of the
SSA methods, R-SSA-V (dashed blue lines), R-SSA-SC (dashed green lines), numerical evaluation of the SSA methods, SSA-V (solid blue lines), SSA-SC (solid green lines), SOA
(dotted black lines), DAM method (solid red lines) and numerical FEM results (circles), for Al2Cu2O6 and Sr1Mg6Ga1 with highest transverse and longitudinal anisotropy degree,
respectively.

For the attenuation estimation, the correspondence of the SSA methods with FEM results has an almost monotonic correlation with the anisotropy
degree 𝐴𝑝. The SSA-V method shows a good agreement with NRSMD less than 10% for materials with 𝐴𝑝 < 0.1, while the SSA-SC method shows
such correspondence for all materials except Sr1Mg6Ga1 with 𝐴𝑝 = 0.26. On the other hand, the correspondence of SOA and DAM methods with
FEM are not directly related to the anisotropy degree 𝐴𝑝. Overall, both methods show better correspondence with FEM for weakly anisotropic
materials, and the agreement of DAM is higher than the SOA method. However, there are plenty of exceptions for all types of crystal symmetries.
As the accuracy of the FEM results depend on several factors discussed in the last section, the validity of the mentioned analytical approaches is
best to be examined with experimental results.

For Sr1Mg6Ga1, with an extremely high degree of anisotropy, none of the studied methods has a good agreement with FEM. The lowest NRMSD
14

in the range of 0.15 < 𝑘𝑝𝑎 < 0.5 is for the SSA-SC method with 3% difference for the phase velocity and 60% difference for the attenuation.
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Fig. 4. Normalized attenuation 𝛼𝑝𝑎 versus normalized frequency 𝑘𝑝𝑎 for longitudinal waves evaluated by the Rayleigh asymptote of the SSA methods, R-SSA-V (dashed blue lines),
-SSA-SC (dashed green lines), numerical evaluation of the SSA methods, SSA-V (solid blue lines), SSA-SC (solid green lines), DAM method (solid red lines), and numerical FEM
esults (circles), for three highly anisotropic polycrystals of cubic, hexagonal, tetragonal and orthorhombic symmetries.

his appears to be due to the high degree of anisotropy and strong attenuation, even at low frequencies. As a result, the frequency range of
.15 < 𝑘𝑝𝑎 < 0.5 is beyond the Rayleigh limit for this material and is in the region where the geometrical properties of crystals are becoming
ignificant. This confirms that the Rayleigh limit not only depends on the ratio of the grain size and wavelength, but also on the elasticity of the
rains and the attenuation.

. Concluding remarks

This paper examines the scattering of elastic waves by an anisotropic sphere with orthorhombic symmetry in an isotropic environment. To
ccomplish this spherical coordinates are utilized and the displacement field inside the sphere is expanded in terms of vector spherical harmonics
n the angular coordinates and powers in the radial coordinate. This leads to recursion relations among the expansion coefficients. The boundary
onditions on the sphere are then used to determine the elements of the transition matrix (𝐓). At low frequencies the leading order elements

are expressed explicitly in simple form. The contributions of monopole, dipole, and quadrupole elements are all taken into account. The dipole
elements are not coupled to the other elements and depend solely on the density of the sphere, and are, in fact, the same as for an isotropic sphere.
The monopole elements, however, are coupled with the quadrupole elements for even waves of even order (𝜎 = 𝑒 and 𝑚 = 0, 2) in azimuthal
coordinates. These elements depend on the elasticity of the sphere but not on the density or shear moduli. On the other hand, the remaining
quadrupole elements are uncoupled and only depend on the shear moduli of the sphere.

Furthermore, the wave propagation in single phase polycrystalline materials with cubic, hexagonal, tetragonal, and orthorhombic symmetry of
the crystals is analyzed using the Foldy theory. To assess the degree of anisotropy of the grains, two parameters for measuring degrees of anisotropy
in longitudinal and transverse directions are introduced. The Voigt average has typically been used to calculate the unperturbed elasticity constants
for determining attenuation and phase velocity in polycrystals. However, this method seems to be not suitable for highly anisotropic materials as it
does not show a good agreement in quasi static phase velocity estimation with accurate SC results. To address this, a new methodology is proposed
that calculates the average macroscopic homogenized and isotropic properties of polycrystals. This average is shown to be equivalent with self
15
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Fig. 5. Normalized phase velocity 𝐶𝑝∕𝑐𝑝 versus normalized frequency 𝑘𝑝𝑎 for longitudinal waves evaluated by the Rayleigh asymptote of the SSA methods, R-SSA-V (dashed blue
lines), R-SSA-SC (dashed green lines), numerical evaluation of the SSA methods, SSA-V (solid blue lines), SSA-SC (solid green lines), SOA (dotted black lines), DAM method (solid
red lines), and numerical FEM results (circles), for three highly anisotropic polycrystals of cubic, hexagonal, tetragonal and orthorhombic symmetries. The SOA method for Na2U1O4
yields a phase velocity that is outside the current plotting range.

consistent average. Furthermore, adopting this average for the properties of the matrix exhibit better agreement with FE results for calculations of
attenuation and phase velocity.

The present method is compared to other theories and numerical FEM computations from the literature, and the results exhibit very good
agreement with FEM for low frequencies and high anisotropy. Specifically, when comparing the SOA with SSA-V and DAM with SSA-SC methods,
the present method demonstrates significant advantages for evaluating the attenuation in strongly anisotropic polycrystalline materials in the low
and medium frequency ranges. However, it should be noted that other methods do not have the frequency limitation of the present method.

The present method is restricted to low frequencies due to various factors. The explicit form of the 𝐓 matrix elements utilized in the method is
only reliable for low frequencies. Although a numerical computation of additional 𝐓 matrix elements can extend the frequency range, this approach
is more computationally complex. The use of the Foldy theory is another limitation, which could potentially be addressed by incorporating more
refined multiple scattering theories. Furthermore, the present approach assumes spherical grains, which is appropriate for low frequencies where
the scattering is mainly a volume effect, but may be inadequate at higher frequencies.

The present methods can be expanded and improved in various ways. In the current approach only spheres of the same size are considered.
However, within the Foldy theory framework it is feasible to explore a distribution of sphere sizes, which would provide a more realistic
representation of many polycrystalline materials. Additionally, the present method can be extended to study particulate composite materials with
multiple phases, which would offer a broader scope for potential applications. These potential improvements and extensions to the present method
offer interesting opportunities to advance the understanding of wave propagation in composite materials.
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