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ABSTRACT
Software systems typically have an input domain that can be subdivided into sub-
domains, each of which generates similar or related outputs. Testing it on the
boundaries between these sub-domains is critical to ensure high-quality software.
Therefore, boundary value analysis and testing have been a fundamental part of the
software testing toolbox for a long time and are typically taught early to software
engineering students. Despite its many argued benefits, boundary value analysis for a
given software specification or application is typically described in abstract terms. This
allows for variation in how testers apply it and in the benefits they see. Additionally, its
adoption has been limited since it requires a specification or model to be analysed. We
propose an automated black-box boundary value detectionmethod to support software
testers in performing systematic boundary value analysis. This dynamic method can be
utilized even without a specification or model. The proposed method is based on a
metric referred to as the program derivative, which quantifies the level of boundariness
of test inputs. By combining this metric with search algorithms, we can identify and
rank pairs of inputs as good boundary candidates, i.e., inputs that are in close proximity
to each other but with outputs that are far apart. We have implemented the AutoBVA
approach and evaluated it on a curated dataset of example programs. Furthermore, we
have applied the approach broadly to a sample of 613 functions from the base library
of the Julia programming language. The approach could identify boundary candidates
that highlight diverse boundary behaviours in over 70% of investigated systems under
test. The results demonstrate that even a simple variant of the program derivative,
combined with broad sampling and search over the input space, can identify interesting
boundary candidates for a significant portion of the functions under investigation. In
conclusion, we also discuss the future extension of the approach to encompass more
complex systems under test cases and datatypes.

Subjects Algorithms and Analysis of Algorithms, Software Engineering
Keywords Software testing, Boundary value detection, Boundary value analysis, Boundary value
exploration, Program derivative

INTRODUCTION
Ensuring software quality is critical, and while much progress has been made to improve
formal verification approaches, testing is still the de facto method and a crucial part
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of modern software development. A central problem in software testing is how to
meaningfully and efficiently cover an input space that is typically very large. A fundamental,
simplifying assumption is that even for such large input spaces, there are subsets of inputs,
called partitions or sub-domains, that the software will handle in the same or similar
way (Goodenough & Gerhart, 1975; Richardson & Clarke, 1985; Grindal, Offutt & Andler,
2005). Thus, if we can identify such partitions, we only need to select a few inputs from
each partition to test and ensure they are correctly handled.

While many different approaches to partition testing have been proposed (Goodenough
& Gerhart, 1975; Richardson & Clarke, 1985; Ostrand & Balcer, 1988; Hamlet & Taylor,
1990; Grochtmann & Grimm, 1993), one that comes naturally to many testers is boundary
value analysis (BVA) and testing (Myers, 1979; White & Cohen, 1980; Clarke, Hassell &
Richardson, 1982). It is based on the intuition that developers are more likely to get things
wrong around the boundaries between input partitions, i.e.,where there should be a change
in how the input is processed and in the output produced (Clarke, Hassell & Richardson,
1982). By analysing a specification, testers can identify partitions and boundaries between
them. They should then select test inputs on either side of these boundaries and thus,
ideally, verify both correct behaviours in the partitions and that the boundary between
them is in the expected, correct place (Clarke, Hassell & Richardson, 1982; British Computer
Society, 2001). But note that identifying the boundaries, and thus partitions, is the critical
step; a tester can then decide whether to focus only on them or sample some non-boundary
inputs ‘‘inside’’ of each partition.

Empirical studies on the effectiveness of partition and boundary value testing do not
provide a clear picture. While early work claimed that random testing was as or more
effective (Hamlet & Taylor, 1990), they were later countered by studies showing clear
benefits to BVA (Reid, 1997; Yin, Lebne-Dengel & Malaiya, 1997). A more recent overview
of the debate also provided theoretical results on the effectiveness and discussed the
scalability of random testing in relation to partition testing methods (Arcuri, Iqbal &
Briand, 2011). Regardless of the relative benefits of the respective techniques, we argue that
improving partition testing and boundary value analysis has both practical and scientific
value; judging their value will ultimately depend on how applicable and automatic they
can be made.

A problem with partition testing, in general, and BVA, in particular, is that there is no
clear and objective method for identifying partitions or the boundaries between them.
Already Myers (1979) pointed out the difficulty of presenting a ‘‘cookbook’’ method and
that testers must be creative and adapt to the software being tested. Later work describes
BVA and partition testing as relying on either a partition model (British Computer Society,
2001), categories/classifications of inputs or environment conditions (Ostrand & Balcer,
1988; Grochtmann & Grimm, 1993), constraints (Richardson & Clarke, 1985; Ostrand &
Balcer, 1988), or checkpoints (Yin, Lebne-Dengel & Malaiya, 1997) that are all to be derived
from the specification. But they do not guide this derivation step in detail. Several authors
have also pointed out that existing methods do not give enough support to testers (Grindal,
Offutt & Andler, 2005) and that BVA is, at its core, a manual and creative process that
cannot be automated (Grochtmann & Grimm, 1993). More recent work can be seen as
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overcoming the problem by proposing equivalence partitioning and boundary-guided
testing from formal models (Hübner, Huang & Peleska, 2019). However, this assumes that
such models are(readily) available or can be derived and maintained without major costs.

One alternative is to view and provide tooling for using BVA as a white-box testing
technique. Pandita et al. (2010) use instrumentation of control flow expressions and
dynamic, symbolic execution to generate test cases that increase boundary value
coverage (Kosmatov et al., 2004). However, it is unclear how such boundaries, internal to
the code, relate to the boundaries that traditional, black-box BVAwould find. Furthermore,
it requires instrumentation and advanced tooling, which might be costly and unavailable.
It should be noted that white-box testing is limited to situations where source code is
available; black-box testing approaches do not have this limitation.

Here we address the core problem of how to automate black-box boundary value
analysis. We build on our recent work that proposed a family of metrics to quantify the
boundariness of software inputs (Feldt & Dobslaw, 2019) and combine it with search and
optimization algorithms to detect promising boundary candidates automatically. These can
then be (interactively) presented to testers and developers to help them explore meaningful
boundary values and create corresponding test cases (Dobslaw, de Oliveira Neto & Feldt,
2020). Our search-based, black-box, and automated boundary value detection method
does not require manual analysis of a specification nor the derivation of any intermediate
models. It can even be used when no specifications nor models are available. Since it is
based on generic metrics of boundariness, it can principally be applied even for software
with non-numeric, structured, and complex inputs and/or outputs. However, for brevity
and since the overall approach is novel, we focus on implementing our AutoBVA method
on testing software with arbitrarily many numeric arguments but with any type of output.
In future work, we will utilize the existing hooks and empirically evaluate AutoBVA for
ever more complex software to better understand the critical parts and to understand to
what extent manual intervention is required for higher-level software interfaces. In this
article, our main contributions are:

• A generic method for and implementation of automated boundary value analysis
(AutoBVA) that uses a simple and fast variant of the program derivative (Feldt &
Dobslaw, 2019) for quickly searching for boundary behaviour. One of the boundaries
found by AutoBVA revealed inconsistencies between the implementation and
documentation in the Julia language. (https://github.com/JuliaLang/julia/pull/48973)
• The comparison of two random sampling strategies within the tool: uniform and
bituniform, as well as a more sophisticated heuristic local-search algorithm, and
• An empirical evaluation of AutoBVA on four curated and 654 broadly sampled software
under test (SUT) to understand its capabilities in detecting boundary candidates.
The code and artefacts from our experiment are available in a replication package.
(https://doi.org/10.5281/zenodo.7677012)

Our results show that the proposed method can be effective even when using a simple
and fast program derivative. We also see that the choice of sampling strategy affects the
efficiency of boundary candidate detection-uniform random sampling without the use of
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compatible type sampling does, in most cases, perform poorly (see Appendix A). For some
investigated programs, the two heuristic local search strategies complement each other in
the boundary-finding capabilities.

The rest of this article is organized as follows. After providing amore detailed background
and overview of related work in the ‘Related Work’ section, we present AutoBVA in
‘Automated Boundary Value Analysis’. The empirical evaluation is detailed in ‘Empirical
Evaluation’ followed by the results in ‘Results and Analysis’. The results are discussed
in ‘Discussion’, and the article concludes in the ‘Conclusions’ section. Appendix A and
B contain details of two screening studies that supported AutoBVA meta-parameter
choices for its detection and summarisation phases, respectively. An earlier version of this
article has previously been made available as a pre-print (https://arxiv.org/abs/2207.09065);
consequently several parts of this article overlap heavily with that pre-print.

RELATED WORK
In the following, we provide a brief background to boundary value analysis and the related
partition testing concepts of domain testing and equivalence partitioning.

White & Cohen (1980) proposed a domain testing strategy that focuses on identifying
boundaries between different (sub-)domains of the input space and ensuring that boundary
conditions are satisfied. As summarised by Clarke, Hassell & Richardson (1982): ‘‘Domain
testing exploits the often observed fact that points near the boundary of a domain are most
sensitive to domain errors. The method proposes the selection of test data on and slightly
off the domain boundary of each path to be tested.’’. This is clearly connected to the testing
method typically called boundary value analysis (BVA), first described more informally
by Myers (1979) but later also included in software testing standards (Reid, 1997; Reid,
2000; British Computer Society, 2001). Jeng & Weyuker (1994) even describe domain testing
as a sophisticated version of boundary value testing.

While White & Cohen (1980) explicitly said their goal was to ‘‘replace the intuitive
principles behind current testing procedures by amethodology based on a formal treatment
of the program testing problem’’ this has not led to automated tools, and a BVA is typically
performed manually by human testers. Worth noting is also that while boundary value
analysis is typically described as a black-box method (Myers, 1979; Reid, 1997; British
Computer Society, 2001), requiring a specification, the White and Cohen papers are less
clear on this, and their domain testing strategy could also be applied based on the control
flow conditions of an actual implementation.

The original domain testing paper (White & Cohen, 1980) made several simplifying
assumptions, such as the boundary being linear, defined by ‘‘simple predicates’’, and that
test inputs are continuous rather than discrete. While none of these limitations should
be seen as fundamental, they do leave a practitioner in a difficult position since it is not
explicit what the method entails when some or all of these assumptions are not fulfilled.
Even though later formulations of BVA as a black-box method (British Computer Society,
2001) avoid these assumptions, they, more fundamentally, do not give concrete guidance
to testers on how to identify boundaries or the partitions they define.
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1An annexe to the standard does provide
an example of how to find partitions and
identify boundaries, but the specification
used in the example explicitly states the
boundaries, so the identification task is
trivial.

2A form of diversity-driven test generation
that also relates clearly to what is recently
more commonly referred to as adaptive
random testing (ART).

As one example, the BCS standard (British Computer Society, 2001) states that ‘‘(BVA)
...uses a model of the component that partitions the input and output values of the
component into ordered sets with identifiable boundaries.’’ and that ‘‘a partition’s
boundaries are normally defined by the values of the boundaries between partitions,
however where partitions are disjoint the minimum, and maximum values in the range
which makes up the partition are used’’ but do not give guidance on where to find or how
to create such a partition model1 if none is already at hand. This problem was clear already
from Myers’s original description of BVA (Myers, 1979), which stated, ‘‘It is difficult to
present a cookbook for boundary value analysis since it requires a degree of creativity and
a certain amount of specialisation to the problem at hand’’.

Later efforts to formalise BVA ideas have not addressed this. For example, Richardson &
Clarke (1985) partition analysis methodmakes a clear difference between partitions derived
from the specification versus from the implementation and proposes to compare them but
relies on the availability of a formal specification and does not detail how partitions can
be derived from it. Jeng & Weyuker (1994) proposed a simplified and generalized domain
testing strategy with the explicit goal of automation but only informally discussed how
automation based on white-box analysis of path conditions could be done.

A very different approach is Pandita et al. (2010), which presents a white-box automated
testing method to increase the Boundary Value Coverage (BVC) metric (originally
presented byKosmatov et al. (2004)). The core idea is to instrument the SUTwith additional
control flow expressions to detect values on either side of existing control flow expressions.
An existing test generation technique to achieve branch coverage (Pandita et al. (2010)
uses the dynamic symbolic execution test generator Pex) can then be used to find inputs
on either side of a boundary. The experimental results were encouraging in that BVC
could be increased by 23% on average and also lead to increases (11% on average) in the
fault-detection capability of the generated test inputs.

There have been several studies that empirically evaluate BVA. While an early empirical
study by Hamlet & Taylor (1990) found that random testing was more effective, its results
were challenged in later work (Reid, 1997; Yin, Lebne-Dengel & Malaiya, 1997). Reid (1997)
investigated three testing techniques on a real-world software project and found that BVA
was more effective at finding faults than equivalence partitioning and random testing. Yin,
Lebne-Dengel & Malaiya (1997) compared a method based on checkpoints, manually
encoding qualitatively different aspects of the input space, combined with antirandom
testing2 to different forms of random testing and found the former to be more effective.
The checkpoint encoding can be seen as a manually derived model of essential properties
of the input space and, thus, indirectly defines potentially overlapping partitions.

Even recent work on automating partition and boundary value testing has either been
based on manual analysis or required a specification/model to be available.Hübner, Huang
& Peleska (2019) recently proposed a novel equivalence class partitioning method based on
formal models expressed in SysML. An SMT solver is used to sample test inputs inside or
on the border of identified equivalence classes. They compared multiple variants of their
proposed technique with conventional random testing. The one that sampled 50% of test
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inputs within and 50% on the boundaries between the equivalence partitions performed
best as measured by mutation score.

Related work on input space modelling has also been done to improve combinatorial
testing. Borazjany et al. (2013) proposed to divide the problem into two phases, where the
first models the input structure while the latter models the input parameters. They propose
that ideas from partition testing can be used for the latter stage. However, for analysing
the input structure, they propose a manual process that can support only two types of
input structures: flat (e.g., for command line parameters that have no apparent relation)
or graph-structured (e.g., for XML files for which the tree structure can be exploited).

We have previously proposed a family of metrics to quantify the boundariness of
pairs of software inputs (Feldt & Dobslaw, 2019). This generalises the classical definition of
functional derivatives inmathematics, which we call program derivatives. Instead of using a
standard subtraction (‘‘-’’) operator tomeasure the distance between inputs and outputs, we
leverage general, information theoretical results on quantifying distance and diversity. We
have previously used such measures to increase and evaluate test diversity’s benefits (Feldt
et al., 2008; Feldt et al., 2016). In a recent study, we used the program derivatives to explore
input spaces and visualize boundaries for testers and developers (Dobslaw, de Oliveira Neto
& Feldt, 2020). Here, we automate this approach by coupling it to search and optimization
algorithms.

In summary, early results on partition and boundary value analysis/testing require a
specification and do not provide detailed advice or any automatedmethod to find boundary
values. One automated method has been proposed, but it requires a system model of the
SUT. One other method can automatically increase a coverage metric for boundary values
but is white-box and requires both instrumentation of the SUT as well as advanced test
generation based on symbolic execution. In contrast to existing research, we propose an
automated, black-box method to identify boundary candidates that is simple to implement
for integer arguments and conceptually extendable to arbitrary data, even with complex
structures.

AUTOMATED BOUNDARY VALUE ANALYSIS
We propose to automate boundary value analysis by a detection method that outputs
a set of input/output pairs that are then summarised and presented to testers. Figure 1
shows an overview of our proposed approach. The two main parts are detection (on the
left), which produces a list of promising boundary candidates that are then summarised
and presented to the tester (on the right). The boundary value detection method is based
on two key elements: (1) search to explore (both globally and locally) the input domain
coupled with (2) the program derivative to quantify the boundariness of input pairs. While
exploration acts as a new boundary candidate input pair generator, the program derivative
acts as a filter and selects only promising candidate pairs for further processing. An archive
is updated with the new pairs for summarisation, and only the unique and good boundary
candidates are kept. The final list of promising candidates in the archive is then summarised
and presented to the tester, who can select the most interesting, meaningful, or surprising

Dobslaw et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1625 6/48

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1625


Detection Summarization

Global
Exploration

Samples
input space

Starting
points

Samples
neighborhood

Candidate
pairs

Local
Exploration

Discard pairs with 
low program 
derivative values

Boundariness
Filter

Promising
Boundary
Candidates

Update
Archive Clustering

Final
Candidate List

Presentation
Feedback to guide exploration (optional)

...

0.8

0.62

0.2

0.1

0.8

0.7

0.6

0.55

...
0.3

...

i o
SUT

- 

+ 

- 

+ 

Figure 1 AutoBVA framework for automated boundary value analysis.
Full-size DOI: 10.7717/peerjcs.1625/fig-1

ones to turn them into test cases or start a dialogue regarding the intent with the product
owner. For the summarisation step, we propose using clustering to avoid showing multiple
candidates that are very similar to each other.

In this section, we describe the three main parts of our approach: selection in ‘Selection:
Program Derivative’, search/exploration in ‘Exploration: Generation of Candidate Pairs’,
and summarisation in ‘Summarisation: validity-value similarity clustering’. Since selection
is the most critical step, we first formally define the program derivative and exemplify
its application by the simple bytecount SUT in ‘Example: program derivative for
bytecount’. It follows an explanation of theAutoBD search/explorationwith its global search
component (‘Global Sampling’) and two alternative local search strategies ‘Local Neighbour
Sampling’ (LNS) and ‘BoundaryCrossing Search’ (BCS). Finally, the Summarisation section
introduces our approach to categorizing boundary candidates into coarse-grained validity
groups by taking advantage of output types to then cluster them individually.

Selection: program derivative
We argue that the critical problem in boundary value analysis is judging what is a boundary
and what is not. If we could quantify how close to a boundary a given input is, we could
then use a plethora of methods to find many such inputs and keep only the ones closest to
a boundary. Together such a set could indicate where the boundaries of the software are
or at least indicate areas closer to the actual boundaries.

In a previous work (Feldt & Dobslaw, 2019), we proposed the program derivative for
quantifying boundariness. The idea is based on a generalisation of the classic definition of
the derivative of a function in (mathematical) analysis. In analysis, the definition is typically
expressed in terms of one point, x , and a delta value, h, which together define a second
point after summation. The derivative is then the limit as the delta value approaches zero:

lim
h→0

f (x+h)− f (x)
(x+h)−x

= lim
h→0

f (x+h)− f (x)
h

The derivative measures the sensitivity to a change in the function given a change in the
input value. A large (absolute value of a) derivative indicates that the function changes a
lot, even for a minimal input change. If the function f here instead was the SUT, and the
slight change in inputs would cross a boundary, it is reasonable that the output would also
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3We here assume each input corresponds
to a single argument of the program,
but by using distance functions that can
also handle multiple arguments, the
formulation becomes fully general. The
same holds for output P(x) that may
extend to any execution properties. At
the same time, we limit ourselves in this
study to the actual primary or secondary
output (valid return value or error).

change more than if the change did not cross a boundary. We could then use this program
derivative to screen for input pairs that are good candidates to cross the boundaries of a
program.

The key to generalizing from mathematical functions to programs is to realize that
programs typically have many more than one input, and their types can differ greatly from
numbers. Also, there can be many outputs, and their types might vary from the types of
inputs. Instead of simply using subtraction (‘‘-’’) both in the numerator and denominator,
we need two distance functions, one for the outputs (do) and one for the inputs (di). Also,
rather than finding the closest input to calculate the derivative of a single input, for our
purposes here, we only need to quantify the boundariness of any two individual inputs. We
thus define the program difference quotient (PDQ) for program P and inputs3 a and b as
Feldt & Dobslaw (2019):

PDQdo,di(a,b)=
do(P(a),P(b))

di(a,b)
, where P(x) denotes the output of the program for input x .

Since the PDQ is parameterized on the input and output distance functions, this
defines not a single but a whole family of different measures. A tester can choose distance
functions to capture meaningful output differences and/or inputs. In the original program
derivative paper, Feldt & Dobslaw (2019), we argued for compression-based distance
functions as a good and general choice. However, a downside with these is that they can
be relatively costly to calculate, which could be a hindrance when used in a search-based
loop, potentially requiring many distance calculations. Also, compression-based distances
using mainstream string compressors such as zlib or bzip2might not work well for short
strings, as commonly seen in testing.

In this work, we thus use one of the least costly output distance functions one can think
of: strlendist as the difference in length of outputs when they are printed as strings.
This distance function works regardless of the type of output involved. A downside is
that it is coarse-grained and will not detect smaller differences in outputs of the same
length. Still, if a simple and fast distance function can suffice to detect boundaries, this can
be a good baseline for further investigation. Also, our framework is flexible and can use
multiple distance functions for different purposes in its different components. For example,
one could use strlendist during search and exploration while using more fine-grained
NCD-based output distance when updating the archive or during summarisation (see
Fig. 1).

For the input distance function, this will typically vary depending on the SUT. We can
use simple vector functions such as Euclidean distance if inputs can be represented as
numbers or a vector of numbers. For more complex input types, one can use string-based
distance functions like Normalised Compression Distance (NCD) (Feldt et al., 2008; Feldt
et al., 2016; Feldt & Dobslaw, 2019) or even simpler ones like Jaccard or the related Overlap
Coefficient distance (Jaccard, 1912).

Example: program derivative for bytecount
We illustrate our framework with the simple bytecount function that is one of the
most copied snippets of code on Stack Overflow but also known to contain a bug
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4The buggy code can be found here
https://programming.guide/worlds-most-
copied-so-snippet.html.

Table 1 Example of six boundary candidates for the bytecount SUT with their corresponding program difference quotient (PDQ) values for
two different output distances.

Row Input 1 Input 2 Output 1 Output 2 do1 (strlendist) do2 (Jacc(1)) di PDQ1 PDQ2

1 9 10 9B 10B 1 0.75 1 1 0.75
2 999949999 999950000 999.9 MB 1.0 GB 2 0.63 1 2 0.63
3 99949 99950 99.9 kB 100.0 kB 1 0.43 1 1 0.43
4 99949 99951 99.9 kB 100.0 kB 1 0.43 2 0.50 0.21
5 99951 99952 100.0 kB 100.0 kB 0 0.0 1 0.0 0.0
6 99948 99949 99.9 kB 99.9 kB 0 0.0 1 0.0 0.0

(Baltes & Diehl, 2019; Lundblad, 2019).4 bytecount is a function that translates an input
number of bytes into a human-readable string with the appropriate unit, e.g., ‘‘MB’’ for
megabytes etc. For example, for an input of 2,099, it returns the output ‘‘2.1 kB’’, and for
the input 9950001, it returns ‘‘10.0 MB’’.

Table 1 shows a set of manually selected examples of boundary candidate pairs, using a
single input distance function (subtraction) but two different output distances: strlendist
and Jacc(1), the Jaccard distance based on 1-grams (Jaccard, 1912). The Jaccard distance
can approximate compression distances but is also fast to calculate and applicable for short
strings. Correspondingly, in our example table, there are two different PDQ values, and we
have sorted them in descending order based on the PDQ2, i.e., that uses the Jacc(1) output
distance function.

Starting from the bottom of the table, on row 6, the bytecount output is the same for
the input pair (99948,99949). This leads to PDQ values of 0.0 regardless of the output
distance used. The PDQ values are zero also for the example on row 5; even though the
output has changed compared to row 6, they are still the same within the pair. We are thus
in a different partition since the outputs differ from the ones on row 6, but we are not
crossing any clear boundary, and the PDQ values are still zero.

The example in row 4 shows a potential boundary crossing. Even though the input
distance is now greater, at 2, the outputs differ, so both PDQ values are non-zero. However,
this example pair can be improved further by subtracting 1 from 99951 to get the pair
(99949,99950) shown in row 3. Since the denominator in the PDQ calculation is smaller,
the PDQ value is higher, and we consider it a better boundary candidate. In fact, it is the
input pair with the highest PDQ value of those with these two outputs; thus, it can be
considered the optimal input pair to show the ‘‘99.9 kB’’ to ‘‘100.0 kB’’ boundary.

Finally, the examples on rows 2 and 1 show input pairs for which the two PDQmeasures
used differ in ranking. While we can agree that both of these input pairs detect boundaries,
different testers might have different preferences on which one is the more preferred. Given
that PDQ1, using the bytecount output distance is so simple and quick to compute, we
will use that in the experiments of this study. Future work can explore trade-offs in the
choice of distance functions as well as how to combine them. Note that regardless of how
the input pairs have been found, they can be sorted and selected using different output
distance functions when presented.
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Exploration: generation of candidate pairs
While the program derivative can help evaluate whether an input pair is a good candidate
to detect a boundary, there are many possible such pairs to consider. Thus, we need
ways to explore the input space and propose good candidate pairs, i.e., that have high
program derivative values. A natural way to approach this is as a search-based software
engineering problem (Harman & Jones, 2001; Afzal, Torkar & Feldt, 2009; Feldt, 1998),
with the program derivative as the goal/fitness function and a search algorithm that tries
to optimize for higher program derivative values.

However, detecting the boundaries is insufficient to find and return one candidate
pair. Most software will have multiple and different boundaries in their input domain.
Furthermore, boundaries are typically stretched out over (consecutive) sets of inputs. The
search and exploration procedure we chose should thus output a set of input pairs that
are, ideally, spread out over the input domain (to find multiple boundaries) as well as over
each boundary (to help testers identify where it is).

An additional concern when using search-based approaches is the shape of the fitness
landscape, i.e., how the fitness value changes over the space being searched (Smith, Husbands
& O’Shea, 2002; Yu & Miller, 2006). Many search and optimisation approaches assume, or
at least benefit from, a smooth landscape, i.e., small steps in the space lead to only a tiny
change in the fitness value. Whether we can assume this to be the case for our problem is
unclear. The program derivative might be very high right at the boundary while showing
minimal variation when inside the partitions on either side of the boundary. Worst case,
this could be a kind of needle-in-a-haystack fitness landscape (Yu & Miller, 2006) where
there is little to no indication within a sub-domain to guide a search towards its edges,
where the boundary is.

Given these differences compared to how search and optimisation have typically been
applied in software testing, we formulate our approach in a generic sense. We can then
instantiate it using different search procedures and empirically study which are more or less
effective. However, given that we are searching for a pair of two inputs with a significant
derivative in the program, we must tailor even the most basic random search baseline to
this problem.

We, therefore, formulate AutoBVA detection as a generic framework with
customizable components of significance. Two essential abstractions are (1) the global
sampling/generation strategy to decide starting points for (2) the local exploration/mutation
strategy to modify those starting points in a structured way to detect good, candidate
boundary pairs. Algorithm 1 outlines this generic, 2-step automated boundary detection.
Given a Software under test SUT , it returns a set of boundary candidate pairs (BC). It has
three additional parameters: a way to quantify the boundariness of pairs of inputs (Q),
a (global) sampling strategy (SS) to propose starting points for local exploration and a
(local) boundary search (BS) strategy. These exploration strategies capture two different
types of sampling/search procedures. The global one explores the input space of the SUT
as a whole by sampling different input points (line 3). The local strategy will then search
from the starting point (line 4) by manipulating it by applying mutations. Each of the
potential new candidates (in PBC) is then evaluated and their boundariness is compared
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to a threshold (line 5) and added to the final set (BC) returned. The bytecount function
simply captures the fact that we might not use a fixed threshold but rather can allow more
complex updating schemes where the threshold is based on the candidates that have already
been found. For example, the threshold could be taken as some percentile (say, 90%) of the
boundariness values of the candidate set saved so far. Alternatively, even more, elaborate
boundariness testing and candidate set update procedures can be used, such as rather than
simply adding to the current set whenever a sufficiently good boundary value is found, we
could save a top list of the highest boundariness values found so far. The update would
then be generalized so that it can also delete previously added candidate pairs that are no
longer promising.

Algorithm 1 Automated Boundary Detection - AutoBD-2step
Input: Software under test SUT , Boundariness quantifier Q, Sampling strategy SS,

Boundary search BS
Output: Boundary candidates BC
1: BC =∅
2: while stop criterion not reached do
3: input = SS.sample(SUT ,BC) # globally sample a starting point
4: PBC =BS.search(SUT ,Q,input ) # locally explore and detect potential candidate(s)
5: BC =BC∪{c|c ∈ PBC∧Q.evaluate(c)> threshold(BC)}
6: end while
7: return BC

The sampling strategy defines where we start looking, i.e., what input we start our search
from. The local search strategy defines how we manipulate that input to identify boundary
candidates. For complex data types, such as XML trees or images, more sophisticated
generators are required. For numbers, the shelf sampling from basic distributions, such as
uniform at random, suffices. We use uniform at-random sampling as a sampling baseline.

To illustrate, consider a SUT that takes a single integer number as input. The sampler
returns a randomnumber, say 10. Let us assume that the local search has access to increment
and decrement mutations. In the most naive form, the local search simply applies each
mutation operator once per argument to obtain a neighbourhood of distance one. The
candidate pairs (9,10) and (10,11) would be probed in the local search. If the SUT in
question were actually the above-mentioned bytecount PBC, it would then return all
candidates above a threshold - here, the candidate pair (9,10) since it has the highest PDQ
value. Since this is among the simplest mechanisms for deriving boundary candidates, it
informed our formulation of the Local Neighbourhood Search below, which we use as a
baseline.

The benefit of creating candidate input pairs in two steps may become particularly
obvious when the inputs are of a complex and structured datatype, such as an XML tree.
If search was done with a single, global exploration step, it would be relatively unlikely
that the two inputs of a candidate pair would have a small distance or that there even is a
useful way of generating inputs that lead from one point to the other. By doing this in two
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steps, we could first sample XML tree instances and then explore their neighbourhoods in
the input space by small mutations. This mechanism, however, is not limited to exploring
only the very near neighbourhood of a point but may be used to explore the space by a
repeated application of mutation operators. This idea informed our second local search
strategy. Future work may still look into using global sampling only. Still, the combination
of arbitrary inputs to detect boundaries seems non-trivial and might require tailored
crossover mechanisms for input types.

For this study, we first benchmark the impact of the global sampling (uniform,
bituniform) in a screening study to understand its effect on the results. The study is
presented in Appendix A. We found that uniform sampling (often referred to as random
sampling) performed substantially worse-in fact, it did not find any boundary candidates
in any attempt when another feature was deactivated. Consequently, we simplified the
experimental design of the main study to bituniform sampling. Next, we explain the two
boundary search algorithms mentioned above: Local Neighbour Sampling and Boundary
Crossing Search.

Global sampling
As mentioned above, the initial implementation of AutoBVA for validation of overall
applicability is limited to numbers. By our findings on poor performance in the screening
(see Appendix A) for uniform (random) sampling but promising performance for
bituniform sampling, we deem uniform sampling insufficient as a sampling baseline
(Algorithm 1, line 3). We hypothesise that this is because it favours larger numbers not
covering the entire input spectrum-and arguably less of the often more interesting regions,
including the switch between positive and negative numbers around zero. Bituniform
sampling selects random numbers with a bit-shift that inserts leading zeros. The number
of leading zeros is decided uniformly at random in the range of 0 (no change to the orignal
number) and the bit-size of the datatype (e.g., 64 for 64 bit integers).

For a broad exploratory sampling, we introduce a complementing technique that we
call compatible type sampling (CTS), i.e., argument-wise sampling based on compatible
types per argument. An example of a compatible type is any integer type with a specific bit
size. For instance, in the Julia programming language, we use in our experiments, booleans
(Bool), 8-bit (Int8), and 32-bit integers (Int32) types are compatible because they all are
sub-types of integer.

More details and justification for the global sampling strategy we use here, bituniform
sampling combined with CTS, can be found in Appendix A. We do note that in general,
more advanced test input generation strategies (Feldt & Poulding, 2013) can be used,
and adapting them to the SUT and its arguments will likely be important when further
generalizing our framework. We revisit the topic of handling more complex software in
‘Discussion’.

Local neighbour sampling
Because we are searching for pairs, among the simplest imaginable strategies for local
search in Algorithm 1 (line 4), local neighbourhood sampling (LNS), is presented as
Algorithm 2. The basic idea with LNS is to structurally sample neighbouring inputs, i.e.,
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5A stop criterion returns the original point
in case no difference could be picked up.

inputs close to a given starting point i, to form potential candidate pairs, including i.
The algorithm processes mutations over all individual arguments (line 3), considering all
provided mutation operators mos (line 4). For integer inputs, the mutation operators are
basic subtraction and addition (of 1). Outputs are produced for the starting point (line 2)
and each neighbour (line 6) to form the candidate pairs (line 7). Without filtering by, e.g.,
a program derivative, they are all blindly added to the set of potential boundary candidates
(line 8), returned by the algorithm (line 11). LNS is a trivial baseline implementation to
understand better what is possible using AutoBD without a sophisticated search. LNS will
invariably return pairs that contain starting point i as one side of the boundary candidate.
We include this method as a baseline to understand whether a more sophisticated and
time-consuming method is justified.

Algorithm 2 search – Local Neighbour Sampling (LNS)
Input: Software under test SUT , mutation operatorsmos, Starting Point i
Output: potential boundary candidates PBC
1: PBC =∅
2: o= SUT .execute(i)
3: for a∈ arguments(SUT ) do
4: formo∈mos[a] do
5: n=mo.apply(i,a)
6: on= SUT .execute(n)
7: c =〈i,o,n,on〉
8: PBC = PBC∪{c}
9: end for
10: end for
11: return PBC

Boundary crossing search
Boundary crossing search (BCS) is a more sophisticated heuristic local search strategy
(see Algorithm 3) that uses a boundariness quantifier Q, in our experiments the program
derivative. BCS seeks a locally derived potential boundary candidate pair that stands out
compared to starting point i. For a random direction (argument a in line 1 and mutation
operator mo in line 2) a neighbouring input inext gets mutated (line 3) and outputs for
both inputs are produced (line 4) to define the initial candidate (line 5) for which the
boundariness gets calculated (line 6).

Lines 7–12 describe the constraints and conditions for a resulting boundary candidate c
to stand out locally. This search can be implemented in a variety of ways. We implemented
a binary search that first identifies the existence of a boundary crossing by taking ever
greater steps and calculating the difference 1c to find an input for the state in which the
boundariness is greater than 1init , thereby guaranteeing the necessary condition in line
12.5 Once that is achieved, the algorithm squeezes that boundary to obtain c , which is the
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6In practice for numbers, this is
implemented by subtraction of a larger
constant 2, 4, etc. but the framework
abstracts this as a concatenation of
mutation operators and is therefore
extendable to any types of data types and
mutations.

7It can be noted that because of the binary
nature of the search, the distance to the
original point 13 is first one (12), then two
(10), then four (6), and so forth.

Algorithm 3 search – Boundary Crossing Search (BCS)
Input: Software under test SUT , Boundariness quantifier Q, mutation operatorsmos,

Starting Point i
Output: potential boundary candidates PBC
1: a= rand(arguments(SUT )) # select random argument
2: mo= rand(mos[a]) # select random mutation operator for argument
3: inext =mo.apply(i,a) # mutate input a first time in single dimension
4: o= SUT .execute(i),onext = SUT .execute(inext ) # produce outputs
5: cinit =〈i,o,inext ,onext 〉 # instantiate initial candidate
6: 1init =Q.evaluate(cinit ) # calculate candidate distance
7: c = 〈i1,o1,i2,o2〉, with i1 obtained by a finite number of chained mutationsmo of a

over i, and
8: i2=mo.apply(i1,a), and
9: o1= SUT .execute(i1), and
10: o2= SUT .execute(i2), and
11: 1c =Q.evaluate(c), and
12: 1c >1init or cinit == c
13: return {c}

nearest point to cinit that ensures a greater local difference in neighbouring inputs, and by
that guarantees the neighbouring constraint in line 8.

We illustrate the search by finding a date (three integer inputs) boundary candidate
with starting point thirteenth of February 2022, or (13,2,2022), and using the program
derivativewith bytecount as outputmetric. Let us further assume that argument 1 or day in
combination with mutation operator subtraction are randomly selected. We probe and get
Date(i)= ‘‘2022-13-02’’. BCS will probe the initial neighbour mo(i)= inext = (12,2,2022),
which results in ‘‘2022-12-02’’ and no conceivable difference, with1init = 0. The algorithm
will apply the mutation operator in a binary fashion, meaning first twice mo(mo(inext )),
then four times, and so on until it perceives a larger difference.6 BCS thus first tries days 10
and then 6 with no perceivable difference still7 Next, at -2 it perceives a difference due to
an error message that signals the date out of bounds. From here on, it backtracks to squeeze
the boundary to identify the two neighbouring points for which the transition happens,
as guided by the program derivative. There are multiple strategies to do this, and a simple
one is to apply binary cuts between the two points to eventually find the candidate pair
〈(0,2,2022),(1,2,2022)〉 for which the input distance is atomic, and the program derivative
locally maximal (in the starting point, argument, and mutation operator). In the general
case, these detected potential boundaries could both separate two valid outputs, as well as
a combination of valid and error outputs (such as in our case), or even two error cases.
As explained in the following section, we use this grouping information in the boundary
candidate summarisation.

Dobslaw et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1625 14/48

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1625


8Note that in the implementation, we
have to clearly distinguish between the
situation when an exception was thrown
during execution from the one where the
function itself returns a value that is an
exception. Otherwise, our framework
could not be used for functions that
manipulate exceptions (without raising
any exceptions).

Summarisation: validity-value similarity clustering
The boundary candidate set resulting from AutoBD-2step (Algorithm 1) can be extensive.
However, human information processing is limited, and more fundamentally many of the
boundary pairs found can be similar to each other and represent the same or a very similar
boundary. Take, for instance, the Date example with a great number of different boundary
pairs crossing the same behavioural boundary between valid dates and the invalid 0 for the
day - 〈(0,m,y),(1,m,y)〉. The summary method(s) we choose should thus not only limit
the number of candidates presented, but those candidates also need to be different and
represent different groups of behaviours and boundaries over the input space.

Furthermore, the goals for the summary step will likely differ depending on what the
boundary candidates are to be used for; comparing a specification to actual boundaries
in an implementation is a different use case than adding boundary test cases to increase
coverage. Thus we cannot provide one general solution for summarisation, and future work
will have to inspect different methods to cluster, select, and prioritize but also visualize the
boundary candidates.

In the following, we propose one particular but very general summarisation method.We
hope it can show several building blocks needed when creating summarisation methods
for specific use cases and act as a general fallback method that can provide value regardless
of the use case. This is also the method we use in the experimental evaluation of the article.
We consider a general, black-box situation with no specification available. Thus, we only
want to use information about the boundary candidates themselves. The general idea
is to identify meaningful clusters of similar candidates, then sample only one or a few
representative candidates per cluster and present them to the tester.

For instance, Table 2 contains a subset of (nine) candidate pairs found by our method
for the bytecount example introduced above. Different features can be considered when
grouping and prioritizing. We see that candidates differ at least in the output type, i.e.,
whether the outputs are valid return values or exceptions, as well as in the actual values of
inputs and/or outputs themselves. For example, both outputs for the candidate on row 2
are strings and are considered normal, valid return values. On the other hand, for row 9,
both outputs are (Julia) exceptions indicating that a string of length 6 (‘‘kMGTPE ’’) has
been accessed at (illegal) positions 9 and 10, respectively.

We argue that the highest level boundary in boundary value analysis is between valid and
invalid output values. Any time there is an exception thrown when the SUT is executed,
we consider the output to be invalid; if not, the output is valid.8 Since we consider pairs of
inputs, two outputs per candidate can be grouped into three, what we call, validity groups:

• VV: two valid outputs in the boundary pair.
• VE: one valid output and one invalid (error) output.
• EE: two invalid (error) outputs.

We use validity as the top-level variation dimension and produce individual summaries
for these three groups. Table 2 indicates the validity group in the rightmost column (VV
for lines 1–7, VE in line 8, and EE in line 9). We may consider other characteristics within
each validity group to categorize candidates further. For example, we could use the type of
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Table 2 A summary of boundary candidates found for bytecount by our method. Rows 1–7 are for the valid-valid (VV) validity group of type
String-String, row 8 for the valid-error (VE) group of type String-BoundsErrror, and row 9 for error-error (EE) group of type BoundsError-
BoundsError. The candidates of rows 1–7 are the shortest candidate pairs of each identified cluster.

Row Input 1 Input 2 Out 1 Out 2 Validity

1 false true falseB trueB VV

2 9 9B 10 10B VV

3 −10 −9 −10B −9B VV

4 999949 999950 999.9 kB 1.0 MB VV

5 99949999999999999 99950000000000000 99.9 PB 100.0 PB VV

6 9950000000000001999 9950000000000002000 9.9 EB 10.0 EB VV

7 −1000000000000000000000000000000 −999999999999999999999999999999 −1000000000000000000000000000000B −999999999999999999999999999999B VV

8 999999999999994822656 999999999999994822657 1000.0 EB BoundsError(‘‘kMGTPE’’, 7) VE

9 999999999999990520104160854016 999999999999990520104160854017 BoundsError(‘‘kMGTPE’’, 9) BoundsError(‘‘kMGTPE’’, 10) EE

the two outputs to create additional (sub-)groups. This is logical since it is not clear that
comparing the similarity of values of different types is always meaningful. However, for
many SUTs and their validity groups, the types might not provide further differentiation
as they often are the same.

In the final step, we propose to cluster based on the similarity of features within the
identified sub-groups. A type-specific similarity function can be used, or a general, string-
based distance function can be used after converting the values to strings. We can create a
distance matrix per sub-group after calculating the pair-wise similarities (distances). This
can then be used with any clustering method while in the experiments in this article, we
used k-means clustering (Likas, Vlassis & Verbeek, 2003). We select one representative (or
short) boundary pair from each cluster to present to the tester. The distance matrix can also
be used with dimensionality reduction methods to visualize the validity-type sub-group.
We thus call our summarisation method validity-value similarity clustering.

The duality of having two sites of a boundary exposes more structure than thinking in
test cases as single points with the expected outcomes only. Therefore, the validity groups
are not meant to be a sufficient differentiator but a tool to exploit general structure for
better separation for most, if not all SUTs.

EMPIRICAL EVALUATION
This section starts by explaining the overall aim of the experimental study-broken up into
research questions RQ1–RQ3-with its two investigations. Details about the experimental
design and setup can be found in ‘Selection: Program Derivative’, with subsections for
each investigation. ‘Setup of summarisation step’ then describes the applied clustering
approach with the utilized metrics that define the feature space for the summarisation in
both investigations.

We run our framework using the two local search strategies, LNS and BCS, introduced
above (independent variable) in two investigations and study the sets of boundary
candidates returned in detail. Investigation 1 offers a deep analysis of four curated SUTs of
different types, whereas Investigation 2 tests the applicability of all compatible functions
in Julia’s core library called Base (control variables). All SUTs are program functions.
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9Note that both pairs belong to the valid-
error (VE) validity group as both 2021 and
2022 are not leap years, and thus February
29 leads to an ArgumentError exception
being thrown.

We evaluate the degree to which the framework can find many diverse and high-quality
candidate boundary pairs. Specifically, we address the following research questions:

• RQ1: Can AutoBVA identify large quantities of boundary candidates?
• RQ2: Can AutoBVA robustly identify boundary candidates that cover a diverse range
of behaviours?
• RQ3: To what extent can AutoBVA reveal relevant behaviour or potential faults?

Through RQ1, we try to understand to what extent AutoBVA can pick up potential
boundary candidates (PBC) by comparing two local search strategies. We analyse the (1)
overall quantities and (2) quantities of uniquely identified PBCs using a basic boundary
quantifier. The uniqueness here is measured in relation to the set of all PBCs for a SUT
over all repetitions of our experiments, irrespective of the local search applied.

Through RQ2, we try to understand how well AutoBVA covers the space of possible
boundaries between equivalence partitions in the input space of varying behaviour.
For a given arbitrary SUT, we argue that there is no one-size-fits-all approach to
extracting/generating ‘‘correct’’ equivalence partitions; many partitions and, thus,
boundaries exist and which ones a tester considers might depend on the particular
specification, the details with which it has been written, the interests and experience of
the tester, etc. Therefore, we use our summarisation method (validity-value similarity
clustering as described in ‘Summarisation: validity-value similarity clustering’) to group
similar PBCs within each validity group (VV, VE, and EE) and apply clustering per each
group.We answer RQ2 by analysing how the PBCs found by each explorationmethod cover
those different clusters. Comparing the coverage of these clusters allows us to interpret the
behaviour triggered by the set of PBCs. For instance, the two boundary candidates identified
for the Date constructor SUT, bc1 = (28-02-2021, 29-02-2021) and bc2 = (28-02-2022,
29-02-2022) are different PBCs, but they do cover the same valid-error boundary.9 It
is, therefore, not clear that finding those two specific PBCs, or many similar boundary
candidates showing a similar boundary, helps identify diverse boundary behaviour.

The quantitative approaches used for RQ1 andRQ2 cannot probewhether the candidates
found are high quality, i.e., if the boundaries they indicate are unexpected or essential to
test. For RQ3, we thus perform a qualitative analysis of the identified PBCs by manually
investigating each cluster, systematically sampling candidates with varied output lengths,
and analysing them. Consequently, we examine whether and how often AutoBVA can
identify relevant, rare, and/or fault-revealing SUT behaviour.

A sub-question for all three RQs is how the different local search/exploration strategies
compare against one another in detecting unique boundary candidates. In short, the
dependent variables in our experiment are the number of (unique) candidates found
(RQ1), the number of (unique) clusters covered (RQ2), and the characteristics of interesting
candidates (RQ3) found by each exploration approach. Next, we detail how we set up each
stage of AutoBVA in our experiments.
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Table 3 The different configurations used to run each of the four SUTs.

Parameter Investigation 1 Investigation 2

Sampling method (SS) bituniform + CTS activated same as Investigation 1
Exploration strategy (ES) LNS, BCS same as Investigation 1
Boundariness quantifier (PD) strlendist same as Investigation 1
Threshold 0 same as Investigation 1
Mutation operators (m) increment/decrement (++/–) same as Investigation 1
SUTs bytecount, BMI-Value, BMI-Class, Date 580 functions (Julia Base)
Stop criterion {30,600} seconds 30 seconds

Setup of selection and exploration step
Before the main experiment, we performed two screening studies to configure (1) the
(global) sampling strategy and (2) the clustering of boundary candidates (see Appendices A
and B). Table 3 summarises the setup of both investigations. The sampling method is fixed
as the best-performing configuration from the screening study and uses both bituniform
sampling and CTS for all experiments. The boundariness quantifier is based on the program
derivative with bytecount for the outputs, i.e., the length difference between the stringified
versions of outputs. Since all input parameters of the SUTs in this study are integer types,
numerical distance is used (implicitly) as input distance. In the search, we use an increment
(add to integer) and a decrement (subtract from integer) as mutation operators. We repeat
each experiment execution 20 times to account for variations caused by the pseudorandom
number generator used during the search. A constant and permissive threshold of 0 for
adding boundary candidates to BC is applied in this study, i.e., all pairs with any difference
in output length are added. Setup specific for each investigation is taken up below.

Investigation 1
For each SUT, we conducted two series of runs, one short for 30 s each and one longer for
600 s (10 min), to understand the convergence properties of AutoBVA. We selected those
two time-limits to loosely assess a tester’s more direct (30 s) or offline (10 min) usage.

We investigate four SUTs: a function to print byte counts, Body Mass Index (BMI)
calculation as value and category, and the constructor for the type Date. The SUTs have
similarities (i.e., unit-level that have integers as input), but each has peculiar properties
and different sizes of input vectors. For instance, when creating dates, the choice of months
affects the day’s range validity (and vice-versa), whereas the result of a BMI classification
depends on the combination of both input values (height and weight). Below, we explain
the input, output, and reasoning for choosing each SUT. The code for each SUT is available
in our reproduction package (https://doi.org/10.5281/zenodo.7677012).

bytecount (i1: Int): Receives an integer representing a byte value (i1). The function
returns a human-readable string (valid) or an exception, signalling whether the input is
out of bound (invalid). The largest valid inputs are those represented as Eta-bytes. We
chose this SUT because it is the most copied code in StackOverflow. Moreover, the code
faults the boundary values when switching between scales of bytes (e.g., from 1,000 kB to
1.0 MB).
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10We use the constructor from the Julia
language as in https://docs.julialang.org/en/
v1/stdlib/Dates/.

bmi_value (h: Int, w: Int): Receives integer values for a person’s height (h, in
cm) and weight (w , in kg). The function returns a floating point value resulting from
w/(h/100)2 (valid) or an exception message when specifying negative height or weight
(invalid). The SUT was chosen because the output is a ratio between both input values, i.e.,
different height and weight combinations yield the same BMI values.

bmi_classification (h: Int, w: Int):: Receives integer values for a person’s
height (h, in cm) and weight (w , in kg). Based on the result of bytecount, the outcome is a
category string serving as a health indicator with six categories, spanning from underweight
all the way to severely obese in the valid range, and causing exceptions if called with negative
height or weight values. This design was chosen because the boundaries between classes
depend on the combination of the input values, leading to various valid and invalid
combinations.

date (year: Int, month: Int, day: Int): Receives an integer value representing
a year, month, and day. The function returns the string for the specified date in the proleptic
Gregorian calendar (valid).10 Otherwise, it returns specific exceptionmessages for incorrect
combinations of year, month, and day values (invalid). The Date SUT was chosen because
it has many boundary cases conditional to the combination of outputs (e.g., the maximum
valid day value varies depending on the month or the year during a leap year).

Our choice of SUTs offers a gradual increase in the input complexity, where the tester
needs to understand (1) individual input values, (2) how they will be combined according
to the specification, and (3) how changing them impacts the behaviour of the SUT. For
instance, when choosing the input for the year in the date constructor, a tester can choose
arbitrary integer values (case ‘1’) or think of year values that interact with February 29 to
check leap year dates (case ‘2’). Another example would be choosing a test input for BMI,
in which the tester needs to manually calculate specific height and weight combinations
to verify all possible BMI classifications (case ‘3’). A tester must check the boundaries for
the types used (e.g., maximum or minimum integer values) in parallel to all those cases.
Note that systematically thinking of inputs to reveal boundaries is a multi-faceted problem
that depends on the SUT specification (e.g., what behaviours should be triggered), the
values acceptable for the input type and the output created independently of being a valid
outcome or an exception.

Investigation 2
To investigate AutoBVA’s generalizability and mitigate selection bias in a realistic scenario,
we test it on a non-curated set of actual SUTs (the basemodule in Julia). Unlike Investigation
1, we limit the execution time per SUT to 30 s as we mostly want to understand whether
interesting candidates can be gathered.

The base module in Julia 1.8.0 contains a wide range of basic services that all Julia
programs can access by default. We run AutoBVA in 580 functions out of 2,375 (24.4%).
In Julia, each function (name) yields several methods that, in turn, have unique signatures
(name + input parameters). For instance, the bytecount function comes with four
methods, of which each is considered a unique SUT in our study to obtain a more
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fine-grained detection assessment. Ultimately, the 580 functions resulted in 613 SUTs
investigated in our experiment.

The resulting sample of 613 methods is divided between 259 explicitly exported methods
and 358 non-exported ones. Non-exported methods can be used in Julia with the globally
unique full namespace qualifier. We could not run AutoBVA on all functions because
(1) our current framework implementation only supports functions with inputs of type
integer, and (2) we sample only functions with at most three input parameters. To support
future research studies aiming to also automatically sample from Julia Base functions, we
share the following obstacles that we faced:

• Circa 20 exported functions were pre-filtered as they were deemed too low-level
(operators such as and, or, and multiplier that might have direct representations in the
command set of the CPU).
• A set of 36 functions crashed the AutoBVA due to memory allocation issues for large
integer inputs. Another special case that crashed AutoBVA was when it used, as a SUT,
the exit function that exits Julia.

Numbers for LNS and BCS are reported separately to highlight their respective impact for
very short runtimes, whichmay benefit themore straightforward strategy. RQ1 is addressed
by reporting the proportion of functions for which boundary candidates could be detected.
Average and standard deviation measures are offered for the quantitatively successful ones,
i.e., those for which candidates could be detected. RQ2 is firstly addressed quantitatively
by the number of successfully summarised SUTs. A SUT is successfully summarised if a
mean Silhouette score of above 0.6 is reported for all its clusterings in the validity groups-a
value that is commonly recognized as an acceptable/good clustering. Secondly, (unique)
cluster coverage is reported in an aggregate per exploration strategy. RQ3 is addressed by
observations about success factors in successful SUTs and potential reasons for issues that
did not lead to successful detection. This will be exemplified by several non-successful
ones and their commonalities and a selection of the two successful ones with the best
Silhouette scores that are analyzed similarly to the four SUTs in Investigation 1 through
cluster representative tables.

Setup of summarisation step
To summarise a large set of boundary candidates, we have to decide and extract a set
of complementing features able to group similar candidates and set apart those that are
dissimilar. Ideally, we want a generic procedure which can give good results for many
different types of SUTs. We want to select features so boundary pairs with similar outputs
are grouped. The focus of this study has been on detection, while the following reasoning
regarding simplicity and feature selection guided the applied summarisation.

We implement the AutoBVA summarisation by validity-value similarity clustering using
k-means clustering Hartigan & Wong (1979). We choose k-means clustering because it is
one of the simplest, well-studied, and understood clustering algorithms andwidely available
Xu & Tian (2015). Clustering was done per validity group to avoid mixing pairs that have
very different output types, namely: VV (String, String), VE (String, Error), and EE (Error,
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11All distance values from Q are normalised
between zero and one to keep all features
and corresponding attributes on the same
scale.

12For occasional comparisons with single
character strings, this defaults back to
Overlap of length one as it otherwise leads
to divisions by zero.

Error). We span a feature space over the boundary candidates to capture a diverse range
of properties and allow for a diversified clustering from which to sample representatives
per cluster. We extract features from the output differences between boundary candidates
since input distances within the boundary candidates are already factored into the selection
of the candidates. Moreover, outputs can easily be compared in their ‘‘stringified’’ version
using a generic information theoretical measure Q, typically a string distance function.

Our goal is that the features that span the space shall be generic and capture different
aspects of the boundary candidates. We, therefore, introduce two feature types: (1) WD
captures the differences within a boundary candidate as the distance between the first and the
second output; (2) U is a two-attribute feature that captures the uniqueness of a candidate
based on the distance between the first (U1) and second (U2) output to the corresponding
outputs of all other candidates in the set.11 Considering Q as the distance measure chosen
for the outputs, we define U and WD for a boundary candidate j ∈BC,j = (outj1,outj2) as:

WDj =Q(j1,j2)

Uj = (Uj1,Uj2); where Ujk =
∑
j ′∈BC

Q(jk,j ′k), k= 1,2

To understand which combination of distance measures (Q) yields better clustering of
boundary candidates, we conducted a screening study using three different string distances
to measure the distance between the outputs, namely, strlendist, Levensthein (Lev)
and Overlap Coefficient of length two.12 These common metrics cover different aspects
of string (dis)similarity, each with its own trade-off. For instance, strlendist is efficient
but ignores the characters of both strings, whereas Overlap compares combinations
of characters but disregards specific sequences in which those characters show up (e.g.,
missing complete names or identifiers); lastly, Lev is the least efficient but more sensitive to
differences between the strings. Nonetheless, all three measures only consider lexicographic
similarity and are not sensitive to semantics, such as synonyms or antonyms.

For simplicity, the screening study was done only on the bytecount SUT. Details of the
screening study and examples of features extracted from boundary candidates are presented
in Appendix B. Our screening study reveals that strlendist(WD) and Overlap(WD, U)
is the best combination of features and distance measures that yield clusters of good fit with
high discriminatory power. Choosing those types of models yields more clusters that can
be differentiated with high accuracy, hence allowing for a more consistent comparison of
cluster coverage between exploration strategies. Moreover, clearer clusters are also useful
in practice, allowing AutoBVA to suggest testers with more diverse individual boundary
candidates.

Formally, we create a feature Matrix M over boundary candidates of a SUT with each
row i representing each attribute from the features over each boundary candidate j, as
defined below.

M =

[
WD
U

]
,
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13For SUTs with fewer than that, we skip this
procedure entirely.

For this experiment, each M has four rows, one per attribute in the chosen features:
strlendist(WD), Overlap(WD), Overlap(U1) and Overlap(U2). The number of
columns (j) varies depending on the number of candidates found per exploration approach
and SUT. Since k-means clustering is a heuristic algorithm, we run the clustering 100 times
on each SUTs feature matrixM to retain the model of clustering of best fit according to the
Silhouette score. To evaluate the coverage of the boundary candidates (RQ2), we choose
the clustering discriminating best, i.e., the one resulting in the most clusters based on the
top five percentile Silhouette scores.

We improve overall clustering quality by selecting only a diverse subset of boundary
candidates for the clustering. For that, we create an initial diversity matrix as of above
using 1,000 randomly selected candidates.13 We then substitute the least diverse 100
candidates (based on the sumof all normalized diversity readings) with 100 of the remaining
candidates. Until no more candidates exist, we repeat this step to receive M for clustering.
In the second step, we assign all candidates not part of M to the cluster with the closest
cluster centre. A positive side-effect of this procedure is that it is much more memory
efficient (limiting matrix sizes roughly to 1,000 candidates × 4 features).

RESULTS AND ANALYSIS
We here present the results and analyze them in correspondence to RQ1–RQ3 (‘RQ1-
Boundary candidate quantities, RQ2-Robust coverage of diverse behaviours, RQ3-
Identifying relevant boundaries’). The answers combine Investigations 1 and 2, and
each section concludes with a list of key findings. RQ3, with its focus on relevant behaviour
and potential faults, demands a thorough analysis, which is why it is subdivided into a
subsection per SUT for Investigation 1 (‘Bytecount, BMI classification’), a subsection for
Investigation 2 on Julia Base (‘RQ3 and Investigation 2’), and an RQ3 summary subsection
(Summary for RQ3).

RQ1-Boundary candidate quantities
Table 4 summarises the number of common and unique boundary candidates found
by the two search strategies, LNS and BCS of Investigation 1. For each SUT and search
strategy, it shows results for the 30-second and the 600-second runs individually. For each
time control, the mean and standard deviation, over the 20 repetitions, of the number of
potential boundary candidates as well as the number of unique candidates, is listed. For
example, we can see that BCS in a 600-second run for the Date SUT finds, on average,
897.4 +/- 82.6 PBCs out of a total of 45456 unique ones (found over all runs and search
strategies). And overall, 7,276 of the total 45,456 PBCs were uniquely only found by BCS,
i.e., in none of the LNS runs, any of these 7,276 were found.

We see that overall, AutoBVA produces a large number of boundary candidates with
either exploration strategy. Except for bytecount, there is also a large increase in the
number of candidates found as the execution time increases. While the number of
candidates found per second does taper off also for BMI-class, BMI and Julia Date

(from 166, 552, and 81 per second for the short runs to 117, 380, and 76 for the long runs,
respectively), longer execution clearly has the potential to identify more candidates. Since
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Table 4 Descriptive statistics (µ ± σ) over the potential boundary candidates (PBC) found by both BCS and LNS. Total refers to the size of the
union set of candidates found during the 20 executions of each strategy.

30 seconds 600 seconds

SUT Strategy Total # PBC found # Unique Total # PBC found # Unique

bytecount LNS 57 10.05±0.8 0 59 12.8±0.8 0
BCS 57 56.7±0.5 44 57.85±0.4 43

BMI class LNS 25,207 1,747.85±86.6 23,238 358,956 24,421.7±354.9 332,120
BCS 25,207 149.85±13.3 1,276 1,944.8±74.5 18,358

BMI LNS 90,027 6,147.45±95.1 86,157 1,280,955 87,319.0±1747.8 1,226,314
BCS 90,027 272.7±15.8 2,481 3873.05±124.4 36,186

Julia Date LNS 2,444 246.1±13.7 2,232 45,456 4,351.6±86.3 37,216
BCS 2,444 21.6±5.9 191 897.4±82.6 7,276

Table 5 A summary of Investigation 2 for boundary detection shows the number of SUTs for which
boundaries were successfully detected and howmany per run (µ±σ) were found, divided by explo-
ration strategy.

Exported Strategy # SUTs # SUTs success (%) # PBCs per run (30 s.)

yes LNS 259 197 (76%) 1,042±76
BCS 198 (76%) 554±40

no LNS 354 243 (69%) 578±67
BCS 247 (70%) 391±37

the 20 times longer execution time for bytecount only finds one additional candidate (58
total versus 57 for 30 s), it might be useful to terminate search and exploration when the
rate of new candidates found goes below some threshold.

For the bytecount SUT, only BCS finds a unique set of candidates, meaning that BCS
also identified all boundaries identified by LNS. This means that only 14 (58–44) of all
candidates found were found by LNS, even after 20 runs of 600 s, and BCS also found all of
those. For the other SUTs, LNS clearly finds more candidates and more unique candidates,
between 5 and 15 times more, depending on the SUT.

The boundary detection statistics for Investigation 2 are summarised in Table 5.
Boundary candidates could be identified with both exploration strategies in roughly
76% of the exported SUTs and 70% of the non-exported SUTs. Even though BCS could
cover more SUTs in numbers, the difference is not statistically significant. LNS detects
significantly more candidates.

Thus, overall, LNS produces a higher quantity of boundaries. This is expected since
it is a random search strategy with minimal local exploration. The effect can likely be
explained by two reasons that may also interplay. First, the low algorithmic overhead
of the LNS search method enables it to make more calls to the underlying SUT, given
a fixed time budget. Second, a proportion of the BCS searches can fail and return no
boundary candidates since the input landscape does not regularly lead to changes in output
partition through single-dimensional mutations, i.e., to one input. However, the quantity
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Table 6 Summary of the resulting clusters per validity groups: VV, VE, and EE.

# of Clusters # of Pairs Silhouette Score

SUT VV VE EE VV VE EE VV VE EE

bytecount 6 1 1 57 1 1 0.95 1.0 1.0
BMI 3 3 – 579,030 759,380 0 0.82 0.0 –
BMI-class 13 2 – 7,288 367,125 0 1.0 1.0 –
Julia Date 7 2 3 368 77,207 253,875 0.73 0.89 0.89

of boundary candidates might not directly translate to finding more diverse and ‘‘better’’
boundary candidates; next, we thus consider RQs 2 and 3 addressing this issue.

Box 1. Key findings (RQ1):

Both exploration strategies can identify large quantities of boundaries. Overall, Lo-
cal Neighbour Search (LNS) finds more and more unique candidates than Boundary
Crossing Search (BCS) for the more complex SUTs with multiple input arguments.
In contrast, BCS finds larger numbers and more unique candidates for the one-input
SUT. AutoBVA could successfully detect boundaries in over 70% of the investigated
SUTs.

RQ2-Robust coverage of diverse behaviours
Using our validity-value similarity clustering summarisation method, we obtained between
six and 15 clusters in Investigation 1 across the different SUTs and validity groups (VV, VE
and EE) with high clustering quality scores (see Table 6). We see that most clusters were
differentiated in the VV group. No EE candidates were identified for BMI and BMI-class
because of the lack of detected boundary candidates. We also find that, except for the
clustering for BMI in group VE, all attempted clusterings had a high discriminate score.

We summarise the coverage of clusters per SUT, exploration strategy, and execution
time in Table 7. For example, we can see that for the Julia Date SUT, after we merged all
candidates found by any of the methods in any of the runs and clustered them, we found
11 clusters. In a 30-second run, LNS covered 4.9 +/- 0.3 of them and covered one cluster
that was not covered by BCS (in a 30-second run), while in a 600-second run, BCS covered
7.5 +/- 0.8 clusters and covered six that were not covered by LNS (in a 600-second run).

LNS shows consistent but modest cluster coverage growth with increasing running time.
In other words, on average, boundary candidates were found using LNS to cover one or
two more clusters when increasing the execution time from 30 s to 10 min. In contrast,
BCS shows more cluster coverage improvement over time, where five additional clusters
were covered when searching for 10 min, both for BMI classification and Julia Date. It
shows no such growth for bytecount or BMI. Still, it has also ‘‘saturated’’ for these SUTs
already after 30 s, i.e., it has covered the total number of clusters found after 30 s and thus
has little to no potential for further improvements.

In many cases, BCS and LNS cover the same clusters, but some exceptions exist. For
instance, only BCS found boundaries between the valid-error and error-error partitions
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Table 7 Statistics over the potential boundary candidate clusters covered by BCS and LNS.We also
show the number of clusters uniquely covered by each approach for each execution time setting. The Total
Clusters column lists the number of clusters found by the summarisation method when run on all candi-
dates found by any method in any run.

Total 30 seconds 600 seconds

SUT Strategy Clusters # Found # Unique # Found # Unique

bytecount LNS 8 5.25±0.6 0 6.0±0.0 0
BCS 8.0±0.0 2 8.0±0.0 2

BMI-class LNS 15 14.95±0.2 3 15.0±0.0 0
BCS 9.35±0.9 0 14.25±0.6 0

BMI LNS 6 6.0±0.0 0 6.0±0.0 0
BCS 6.0±0.0 0 6.0±0.0 0

Julia Date LNS 11 4.9±0.3 1 5.0±0.0 0
BCS 2.7±1.1 1 7.5±0.8 6

for bytecount-clusters 7 and 8 (see ‘Bytecount’). In contrast, considering the 30-second
search, only LNS identified candidates in BMI classification that cover the transitions
between (underweight, normal) and (normal, overweight)-clusters 8 and 13 (see Section
‘BMI classification’). However, with increased execution time, BCS was the only strategy
to find unique clusters (final column of Table 7). Particularly, if we look at Julia Date
(10 min), BCS covers six unique clusters-including two clusters with ‘‘valid’’ outputs but
unexpectedly long month strings. In RQ3, we further explain and compare these clusters
for each SUT and argue their importance.

The comparisons above highlight the trade-off between time and effectiveness of the
exploration strategies. Overall, LNS can be more effective in covering clusters in a short
execution (BMI-class and Julia Data), but this is not always the case (e.g., bytecount). And
withmore execution time, BCS generally catches up to LNS (BMI-class) and often surpasses
it (bytecount and Julia Date) both on average and in the number of uncovered unique
clusters. Clearly, attributes of the SUTs will affect cost-effectiveness, e.g., the number of
arguments in the input, (complexity of) specification, or the theoretical number of clusters
that could be obtained to capture boundary behaviour.

From Table 7, we also note that the standard deviations are typically low, so the method
is overall robust to random variations during the search. Still, we do note that the best
method for Julia Date (BCS) only finds 7–8 of the total 11 clusters. This is not so for the
other three SUTs, where it tends to find all of the clusters in a 600-second run.

For Investigation 2, Table 8 details the success rates of the boundary candidate
summarisation. Summarisation is considered failed for a validity group where no boundary
candidates could be found in that group. For instance, for 85% of the SUTs, no VE
boundaries were found; thus, no summarisation could be attempted. The separation into
good and bad summarisations is entirely based on the Silhouette score, where SS≥ 0.6
is considered good, otherwise bad. While there are differences between the exported and
non-exported SUTs, nothing sticks out, except that the exported functions have a lower
overall summarisation success rate, with 61% of the SUTs, compared to the 68% of the
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Table 8 Overall success statistics of the boundary candidate detection for Julia Base in Investigation 2 separated into two categories. Successful
detection with bad clustering quality (SS< 0.6) and good clustering (SS≥ 0.6).

VE VV EE Total

Exported bad good bad good bad good good SUTs

yes 14 (4%) 38 (11%) 37 (10%) 109 (31%) 13 (4%) 127 (36%) 216 (61%) 354
no 12 (5%) 29 (11%) 34 (13%) 119 (46%) 1 (0%) 75 (29%) 175 (68%) 259
all 26 (4%) 67 (11%) 71 (12%) 228 (37%) 14 (2%) 202 (33%) 391 (64%) 613

Table 9 The impact of the exploration strategy on the number of clusters identified during the 30-
second runs.

Exported Ground truth size Strategy Found Unique

yes 3.97±4.65 bcs 3.36±0.17 0.16±0.69
lns 3.5±0.13 0.1±0.47

no 3.78±5.06 bcs 3.02±0.22 0.2±0.68
lns 3.17±0.19 0.16±0.92

non-exported ones. For all Validity Groups, good clusterings far outnumber the bad ones.
It should be noted that the total numbers for good clustering in Table 8 counts those
SUTs for which good quality clustering could be obtained for at least one validity group -
a number smaller than the sum over all high-quality clusterings over all validity groups.
Given that candidates could be detected for roughly 70% of the SUTs (see RQ1), and
64% could successfully be summarised, summarisation seems successful in separating the
candidates in most cases.

Table 9 looks at the exploration strategies that impact boundary detection by validating
how many clusters could be covered per 30 s run (average and standard deviation). The
finding capabilities are relatively stable for both strategies, but the simpler LNS detects
most candidates for these short runs over the board.

Box 2. Key findings (RQ2):

The identified boundary candidates cover a diverse range of boundary behaviours.
While local neighbour sampling (LNS) can often find more clusters in a short (30-
second) run, boundary crossing search (BCS) catches up and often finds both more
diverse and more unique candidates in longer runs. The framework is robust to
random variations during the search and the number of unique behaviours found is
mainly a function of the execution time and the characteristics of the SUT.

RQ3-Identifying relevant boundaries
While the main focus here will be on Investigation 1, one subsection is devoted to the
findings of the broader Investigation 2 and the generalizability of AutoBVA.

None of the SUTs in Investigation 1 have a formal specification to which we can compare
the actual behaviour of the implementations as highlighted by the identified boundary
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candidates. Thus, we cannot judge if any of the identified boundary candidate pairs indicate
real faults.

Also, in practice, even if there was a formal specification, it might not be entirely correct
or incomplete, i.e., there might be situations/inputs for which it does not fully specify the
expected behaviour. Human judgment would then be needed to decide what, if anything,
would need to be updated or changed in response to unexpected behaviour uncovered
during testing. In industry, it is more common with informal specifications consisting of
requirements in natural language, which can further exacerbate these problems. However,
a relative benefit of automated black-box boundary exploration with the techniques
proposed here is that they can potentially help identify several of these problems in the
specification (incompleteness or even incorrectness), the implementation (bugs), and/or
both. And even if no issues are identified, our proposed techniques can help strengthen the
test suite.

Below, we go through each SUT, in turn, and manually analyse the boundary pairs
identified and if they actually did uncover relevant (expected and unexpected) behaviour
or even indicate actual faults. We used the clusters identified by the summarisation process
(see RQ2 above) as the starting point. For clusters of a size smaller than 50 boundary pairs,
we went through all of them. For larger clusters, we randomly sampled pairs, stratified by
the total size of the outputs and analysed them, from smaller sub-groups to larger ones until
saturation, i.e., looking at least at 50 pairs and going on further until no new, interesting
or unexpected behaviour was found. For additional detail, we also calculated program
derivative values using the Overlap Coefficient (based on 2-grams) function as output
distance and checked all top-10 ranked pairs, per cluster. In the following, we highlight the
critical findings per cluster and SUT.

To support our reporting on the manual analysis, we extracted tables with cluster
representatives (see Tables 10–13). Unfortunately, some table entries had to be shortened
for brevity. The original values and details can be found as part of the reproduction
package (https://doi.org/10.5281/zenodo.7677012). Since the answers to RQ1 and RQ2
above indicated that BCS was sometimes more effective (even if not always as efficient as
LNS), the tables have a column showing how many of the total candidates per cluster were
found by BCS.

Bytecount
Table 10 contains the representatives for the clusters identified for bytecount. All six
members of cluster 4 for bytecount are the very natural and expected boundaries where
the output string suffix changes from a lower value to the next, e.g., from the smallest
input pair of the cluster (999, 1000) with outputs (‘‘999B’’, ‘‘1.0 kB’’) to the largest pair
(999949999999999999, 999950000000000000) with outputs (‘‘999.9 PB’’, ‘‘1.0 EB’’). While
the behaviour is not unexpected, it is essential that also these expected boundaries are
identified. A tester can then more easily verify that the implementation corresponds to
what is expected.

The six members of cluster 3 have a similar pattern to the ones in cluster 4, but here
the transition is within each output string suffix category for the transitions from 9.9 to
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Table 10 Examples of representative candidates for each cluster, and corresponding validity group
(Gr.) for bytecount.We include the cluster coverage for BCS (BCSclust-cov) as absolute values and percent-
age in percentage. Rows marked with an asterisk indicate clusters that are uniquely covered by BCS in a
600 s search. Some input values and exception types (BError refers to BoundsError) were abbreviated for
brevity.

ID Gr. Input 1 Output 1 Input 2 Output 2 BCSclust-cov
1 VV -1 -1B 0 0B 3 (100%)
2 VV -10 -10B -9 -9B 34 (100%)
3 VV 9,950 9.9 kB 9,951 10.0 kB 6 (100%)
4 VV 999 999B 1,000 1.0 kB 6 (100%)
5 VV 99,949 99.9 kB 99,950 100.0 kB 7 (100%)
6 VV false falseB true trueB 1 (100%)
7∗ VE 99...56 1000.0 EB 99...57 B.Error(‘‘kMGTPE’’, 7) 1 (100%)
8∗ EE 99...16 B.Error(‘‘kMGTPE’’, 9) 99...17 B.Error(‘‘kMGTPE’’, 10) 1 (100%)

Table 11 Examples of representative candidates for each cluster, and corresponding validity group (Gr.), for Julia Date.We include the cluster
coverage for BCS (BCSclust-cov) as absolute values and percentages in parenthesis. Rows marked with an asterisk indicate clusters uniquely covered
by BCS in a 600-second search. Some input values and exception messages were abbreviated for brevity. ‘Err’ refers to Errors in Julia due to months
(Mon) or days out of range (oor).

ID Gr. Input 1 Output 1 Input 2 Output 2 BCSclust-cov
1∗ VV (-10000,2,3) -10000-02-03 (-9999,2,3) -9999-02-03 8 (100%)
2 VV (-1,9,3) -0001-09-03 (0,9,3) 0000-09-03 38 (33%)
3∗ VV (9999,5,9) 9999-05-09 (10000,5,9) 10000-05-09 13 (92%)
4∗ VV (75...81,2,21) 25...50-60...91-02 (75...82,2,21) -25...50-12...77-30 1 (100%)
5∗ VV (16...92,3,22) 99...99-18...68-20 (16...93,3,22) 10...00-18...68-20 5 (100%)
6 VE (0,2,0) Err(‘‘Day: 0 oor (1:29)’’) (0,2,1) 0000-02-01 1560 (14%)
7 VE (330,5,0) Err(‘‘Day: 0 oor (1:31)’’) (330,5,1) 0330-05-01 111 (12%)
8 EE (-8,3,-1) Err(‘‘Day: -1 oor (1:31)’’) (-8,3,0) Err(‘‘Day: 0 oor (1:31)’’) 6373 (18%)
9 EE (0,0,92) Err(‘‘Mon: 0 oor (1:12)’’) (0,1,92) Err(‘‘Day: 92 oor (1:31)’’) 108 (12%)
10∗ EE (0,4,99) Err(‘‘Day: 99 oor (1:30)’’) (0,4,100) Err(‘‘Day: 100 oor (1:30)’’) 7 (87%)
11∗ EE (0,9...9,0) Err(‘‘Mon: 9...9 oor (1:12)’’) (0,1...0,0) Err(‘‘Mon: 1...0 oor (1:12)’’) 3 (100%)

10.0, e.g., the input pair (99949999, 99950000) with outputs (‘‘99.9 MB’’, ‘‘100.0 MB’’).
Since the outputs in such pairs differ in length, our output distance function detects them.
Cluster 5 has the same six transitions but between 99.9 and 100.0 and one extra boundary
pair for the exabyte suffix (‘‘EB’’). Since this is the last suffix class and thus does not switch
over to the following suffix at the value of ‘‘1000.0 EB’’. Since it is not apparent what the
behaviour at ‘‘1000.0 EB’’ should be, not all specifications might cover it, and thus it would
be important to test and check against expectations.

Cluster 1 contains three candidates all within the ‘‘B’’ byte suffix group, covering the
transitions from ‘‘-1B’’ to ‘‘0B’’, from ‘‘9B’’ to ‘‘10B’’, and from ‘‘99B’’ to ‘‘100B’’. While
the transition from zero to negative one seems like a natural boundary, one could argue
that the other two boundaries are less fundamental and are an artefact of our specific
choice of output distance function (string distance, here detecting the difference in lengths
between ‘‘9’’ and ‘‘10’’ etc.). But the extra cost for a tester to verify they are there seems
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Table 12 Examples of representative candidates for each cluster, and corresponding validity group (Gr.), for BMI classification.We include the
cluster coverage for BCS (BCSclust-cov) as absolute values and percentages in parentheses. Some input values and exception messages were abbreviated
for brevity. ‘DomErr’ refers to DomainError.

ID Gr. Input 1 Output 1 Input 2 Output 2 BCSclust-cov
1 VV (1,0) Underweight (1,1) Severely obese 19 (100%)
2 VV (21,1) Normal (21,2) Severely obese 5 (100%)
3 VV (26,1) Underweight (26,2) Obese 5 (100%)
4 VV (29,1) Underweight (29,2) Overweight 3 (100%)
5 VV (29,2) Overweight (29,3) Severely obese 2 (100%)
6 VV (105,20) Underweight (105,21) Normal 115 (68%)
7 VV (102,31) Obese (102,32) Severely obese 79 (82%)
8 VV (100,22) Normal (100,23) Overweight 32 (36%)
9 VV (51,6) Overweight (51,7) Obese 39 (41%)
10 VV (102,26) Obese (103,26) Overweight 150 (37%)
11 VV (110,28) Overweight (111,28) Normal 183 (44%)
12 VV (1,002,3,012) Severely obese (1,003,3,012) Obese 2,766 (95%)
13 VV (100,255,18,544,584) Normal (100,256,18,544,584) Underweight 3,012 (97%)
14 VE (-1,0) DomErr(...) (0,0) Severely obese 7,457 (4%)
15 VE (1,-1) DomErr(...) (1,0) Underweight 7,995 (4%)

Table 13 Examples of representative candidates for each cluster, and corresponding validity group
(Gr.), for BMI.We include the cluster coverage for BCS (BCSclust-cov) as absolute values and percentages in
parenthesis. The exception messages were abbreviated for brevity.

ID Gr. Input 1 Output 1 Input 2 Output 2 BCSclust-cov
1 VV (0,1) Inf (1,1) 10000.0 4039 (1%)
2 VV (90,8) 9.9 (90,9) 11.1 6129 (5%)
3 VV (100,10) 10.0 (101,10) 9.8 4194 (3%)
4 VE (-1,0) DomainError(‘‘H or W negative...) (0,0) NaN 2 (100%)
5 VE (-1,1) DomainError(‘‘H or W negative...) (0,1) Inf 9101 (1%)
6 VE (1,-1) DomainError(‘‘H or W negative...) (1,0) 0.0 6277 (3%)

slight. In the general case, there is, of course, a cost involved in having to screen very many
candidate pairs. However, the transition from zero to negative inputs should prompt a
tester to consider if this should really be allowed (in the specification) or not.

The 34 members of cluster 2 are of more questionable relevance as they are all the
transitions from ‘‘-9B’’ to ‘‘-10B’’, ‘‘-99B’’ to ‘‘-100B’’, and so on up for every output string
length between 2 up to 36. An argument can be made that it is suitable for a tester to check
if negative inputs should even be allowed and, if so, how they should be handled. But having
more than a few such examples is probably not adding extra insight, and the transition
from 0 to -1 was already covered by the candidate in cluster 1 above.

The final valid-valid (VV) cluster (6) for bytecount contains the single pair (false, true)
with outputs (‘‘falseB’’, ‘‘trueB’’). This comes from the fact that in Julia, the ‘‘Bool’’ type is
a subtype of ‘‘Integer’’, and our tested Julia implementation of bytecount only specifies
that inputs should be integers; booleans are thus generated during the search, and this pair
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is found. Again, it is unclear if this input type should be allowed, but we argue that a tester
must know of this implemented behaviour to decide if it is good enough or needs to be
addressed. Even if one chooses to keep this functionality in the implementation, adding it
as a test case to the test suite, at least as a kind of documentation, seems valuable.

There is a single valid-error (VE) cluster for bytecount (7) that has the single member
(999999999999994822656, 999999999999994822657) where the first output is the string
‘‘1000.0EB’’ while the latter throws the exception BoundsError(‘‘kMGTPE’’,7). The Julia
exception indicates that the implementation tried to access the string ‘‘kMGTPE’’, of length
6, at position 7. Similarly, there is a single error-error (EE) cluster (8) where the exception
thrown changes from BoundsError(‘‘kMGTPE’’,9) to BoundsError(‘‘kMGTPE’’,10). Having
found three inputs for which there are different kinds of BoundsErrors thrown, it is then
obvious that there will be other such transitions, i.e., between the errors accessing the string
at position 7 and those at position 8, etc. Since our output distance only detects differences
in length it does not identify the transition from 7 to 8 or 8 to 9 but picks up the transition
from 9 to 10. This shows some of the trade-offs in the selection of the output distance
function; while the one we have chosen here is very fast and does find a lot of relevant
boundary pairs more fine-grained detection can be possible with more sensitive output
distance functions.

Julia Date
Cluster number 4 for the Julia Date SUT, shown in Table 11, contains a single boundary
candidate pair which shows an unexpected switch in the outputs despite both being valid
Dates. The pair also has among the largest program derivative values found overall (0.634).
This candidate uses very large values for the year input parameter (757576862466481
and its successor), coupled with ‘‘normal’’ month and day values, but the outputs
have no resemblance to the inputs and also switches the sign for the year in the date
outputs (outcomes are 252522163911150-6028347736506391-02 and -252522163911150-
12056695473012777-30, respectively). Even if such high values for the year parameter are
not very likely in most use cases, we argue that it is still useful for a developer or tester to
know about this unexpected behaviour. They can then decide if and how to handle the case,
i.e., update either the specification and the implementation or document the behaviour by
adding a test case.

The pairs found in the valid-valid cluster 5 similarly all happen for large values of the
year input parameter but differ from cluster 4 in that the output dates are more similar
to each other and typically only differ in one of the Date elements, e.g., year or month.
Correspondingly the PD values are much lower (minor variation around 0.20).

Cluster 1 contains pairs where all years are negative and switches from one order
of magnitude (all nines, e.g., ‘‘-9999-02-03’’, to the next one followed by zeros, e.g.,
‘‘-10000-02-03’’). Since the PD output distance is the output string length, many such
boundaries (for a different number of nines) are found. While the outputs in this cluster
have similarities to the ones in cluster 5 above, the latter does not have inputs that
correspond to the outputs. For cluster 1, the input years correspond to the output years.
Splitting these into two clusters thus makes sense.
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The largest valid-valid cluster (2) contains many pairs that only differ in the month and
day, while the year always goes from -1 to 0.

Clusters 6 and 7 have pairs where one input leads to an Error while the other leads to
a valid Date. Both clusters have errors that complain about an invalid day or an invalid
month. We could not identify an apparent reason why these two clusters were not merged.
Most likely, it is just an artefact of the clustering method we used in the summarisation
step.

The remaining clusters all raise exceptions for both inputs. Cluster 11 has only 3 pairs
complaining about invalid month inputs, all of a month transition from a number of nines
to the next order of magnitude. Similarly, the pairs of cluster 10 all complain about invalid
day inputs, all being variations of nines and the next order of magnitude. This cluster is
larger since there are more unique exceptions of this type. The error message depends on
the month since different months have differing numbers of allowed day ranges. Cluster 9
then has pairs where one input leads to an argument error for an invalid month and the
other for an invalid day. Cluster 8 then mainly has both inputs being invalid day values,
although some combined pairs (both invalid month and invalid day) are also in this one.

BMI classification
For the BMI classification SUT (Table 12), many clusters show the boundaries between
‘‘adjacent’’ output classes, i.e., underweight to normal (clusters 6 and 13), normal to
overweight (8 and 11), overweight to obese (9 and 10), and obese to severely obese (7 and
12). There are two clusters for each such boundary, and they differ only in the order of the
outputs, i.e., cluster 6 has the underweight output first while cluster 13 has normal first, etc.
We can also note that these clusters are relatively large, with the smallest one (cluster 10)
containing 93 pairs up to the largest one (cluster 13) containing 871 pairs. This is natural
since the formula for calculating BMI allows many different actual inputs to be right on
the border between two adjacent output classes.

In contrast to the ‘‘natural’’ boundaries above, clusters 1 to 5 all contain fewer boundary
candidates (from 2 to 19), but all correspond to transitions between output classes that are
unexpected. For example, cluster 1 contains extreme examples of inputs that are very close
but where the output class jumps from underweight to severely obese. We note that all of
these clusters happen for very extreme input values, and it is likely that we can address many
of these problems by putting limits on the valid ranges of each of the inputs. However, it
is essential that our method was able to find a transition not only between some of these
non-adjacent output classes but for several combinations of them.

Finally, the method identified a large number of valid-error pairs at either end of the
output class adjacency scale. Cluster 14 has pairs that go from severely obese to an input
domain error where one of the values is negative, while cluster 15 has pairs that go from the
underweight output class to input domain errors. The sizes of these clusters are very large
and it is not likely a tester would get much extra benefit from having so many candidate
pairs. Future work can thus explore ways of focusing the search to avoid finding many
candidate pairs in the same cluster.
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Table 14 The top three lists of SUTs in Julia Base from Investigation 2 with the highest clustering Sil-
houette scores in VV, VE, and EE, respectively. The BCS coverage is the number of boundary candidate
clusters for the 30 s runs (µ±σ ). In bold font are the SUTs we describe in more detail in the article.

Silhouette Score # Clusters

SUT VV VE EE VV VE EE Total # BCS coverage
per run

power_by_squaring(2) 0.92 0.93 0.63 15 10 16 41 29.9±2.13
tailjoin(2) 0.91 0.69 0.9 3 14 8 25 17.9±2.33
max(2) 0.90 0.82 0.92 4 3 3 10 9.0±0.82
cld(2) 0.79 0.97 0.0 2 4 0 6 6.0±0.0
fldmod1(2) 0.83 0.96 0.88 2 9 2 13 11.7±0.82
fld(2) 0.67 0.96 0.0 2 4 0 6 6.0±0.0
max(2) 0.9 0.82 0.92 4 3 3 10 9.0±0.82
tailjoin(2) 0.91 0.69 0.9 3 14 8 25 17.9±2.33
fldmod1(2) 0.83 0.96 0.88 2 9 2 13 11.7±0.82

BMI
For the BMI SUT (Table 13), there are only six clusters identified, with clusters 4 to 6
all having one input that leads to a domain error raised while the other output is either
NaN (cluster 4), Infinity (5), or 0.0 (6). While cluster 4 is rare and only happens for two
specific input pairs, the other clusters are huge. This reflects the fact that there are many
ways to create an infinite output (height of zero and weight is any value) or zero output
(weight is zero and height is any value). Even though the clustering for the VE group
was of objectively low quality (see Table 6), clusters 4–6 clearly highlight different kinds
of boundaries. This suggests that high-quality clustering is not a prerequisite for good
boundary summarisation. It can be expected to be a heuristic and imperfect process as it is
very generic. As long as only a few interesting candidates can be differentiated and selected,
as was possible here (with a poor Silhouette Score of 0), the results may be helpful for a
tester. How this generalizes shall be investigated in future research.

The valid-valid cluster 1 has pairs where the first outputs infinity while the second input
leads to a normal, floating point output. The largest cluster is the valid-valid cluster 2 which
has pairs with normal, floating point outputs that differ only in their length. Of course,
there are many such transitions, and our system identifies many of them, but it is not clear
that a tester would be helped by some of themmore than others. Sorting just by length and
including a few such transitions will likely be enough.

RQ3 and Investigation 2
To supplement the quantitative findings for RQ1 and RQ2, we manually analysed some of
the SUTs from Investigation 2. As each of the three validity groups, namely VV, VE, and
EE, produces a unique Silhouette score, we have selected three SUTs with the highest score
per group and present them in Table 14. Our analysis reveals that the clusters identified by
AutoBVA correspond to the expected behaviours/clusters in the documentation for most
of the investigated SUTs, with a few exceptions. To illustrate our analysis, we have chosen
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14We could not identify a semantically
meaningful difference between the three
clusters; the method splits the candidates
up into clusters based on the length of the
actual inputs

Table 15 Examples of representative candidates for each cluster, and corresponding validity group
(Gr.), for cld(2).We include the cluster coverage for BCS (BCSclust-cov) as absolute values and percentages
in parentheses.

ID Gr. Input 1 Output 1 Input 2 Output 2 BCSclust-cov
1 VV (-12,-2) 6 (-12,-1) 12 6,016 (61%)
2 VV (-10,10) 1 (-9,10) 0 3,532 (67%)
3 VE (-644...482,false) DivideError() (-644...482,true) -644...482 1,995 (63%)
4 VE (-11,-1) 11 (-11,0) DivideError() 1,310 (65%)
5 VE (-2,-1) 2 (-2,0) DivideError() 6,510 (62%)
6 VE (339...990,-1) 917...466 (339...990,0) DivideError() 524 (71%)

two SUTs from the table, namely, cld(2) (which had the highest VE Silhouette score) and
max(2) (which had the highest EE and 3rd highest VV Silhouette score).

Looking into the SUTs for which no useful summarisation was obtained, some common
properties could be observed. A larger number of these functions output memory address
information, particularly in the error messages when they throw exceptions. This makes
them non-deterministic and, therefore, harder to summarise as the memory information
adds noise to the feature extraction for the clustering.

Table 15 shows the six (6) clusters identified for the cld(2) SUT in one of the AutoBVA
runs. This function is documented as a special case of the more general div(2) function for
integer division but always rounding up to the nearest, larger integer divisor. The three VE
clusters, 4, 5, and 6, all represent the boundary between a valid input and one that leads to a
division by zero, which raises an exception. Thus, All these candidates are expected for any
function implementing division.14 The candidates in (VE) cluster 3 are more unexpected.
They also lead to a division by zero exception but result from dividing by the boolean value
false. While this is consistent with Julia’s type system, where the boolean type is a subtype
of the integer type hierarchy, it isn’t certain if a developer or tester would realize this nor
what the correct behaviour should be. Thus it is useful that AutoBVA identifies the cluster.
The two VV clusters, 1 and 2, are also meaningful and represent the boundary between a
negative and positive output (cluster 2) or outputs of different lengths (cluster 1).

Table 16 shows the ten (10) clusters identified for the bytecount(2) SUT on one of
the AutoBVA runs. This function should return the maximum value of the arguments
supplied to it. The VV clusters identified are the expected ones with different output length
boundaries for both positive (cluster 3) and negative (cluster 1 and 2) arguments, as well
as a boundary for the cases when arguments are boolean (cluster 4). The three VE clusters
(5–7) are unexpected and, at first sight, hard to understand. In cases where one argument
is−1, and the other argument is a very large positive number requiring either 64 (cluster 5
and 7) or 128 (cluster 6) bits to represent, the SUT throws an exception. A similar problem
can be seen for the EE clusters 8–10, but here the exception is thrown on both sides of the
boundary resulting in different lengths of the outputs.

We investigated these unexpected boundary candidates for max(2) further and argued
that this is either a genuine bug or, if not, should be documented so that developers are
aware of it. The sample Julia REPL interactions in the Listing 1 highlights the problem: for
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Table 16 Examples of representative candidates for each cluster, and corresponding validity group (Gr.), for max(2).We include the cluster
coverage for BCS (BCSclust-cov) as absolute values and percentages in parentheses. For brevity, we abbreviate some values and Errors (InexErr refers
to the InexactError type).

ID Validity
group

Input 1 Output 1 Input 2 Output 2 BCSclust-cov

1 VV (-1,-3) -1 (0,-3) 0 10 (7%)
2 VV (-10,-16) -10 (-9,-16) -9 237 (48%)
3 VV (3,9) 9 (3,10) 10 820 (60%)
4 VV (false,false) false (true,false) true 2 (100%)
5 VE (-1,229...193) InexErr(..., UInt64, -1) (0,229...193) 229...193 60 (60%)
6 VE (-1,455...560) InexErr(..., UInt128, -1) (0,455...560) 455...560 63 (55%)
7 VE (195...517,-1) InexErr(..., UInt64, -1) (195...517,0) 195...517 6 (42%)
8 EE (-100,181...675) InexErr(..., UInt64, -100) (-99,181...675) InexErr(..., UInt64, -99) 91 (64%)
9 EE (187...829,-100) InexErr(..., UInt128, -100) (187...829,-99) InexErr(..., UInt128, -99) 83 (54%)
10 EE (568...833,-10) InexErr(..., UInt64, -10) (568...833,-9) InexErr(..., UInt64, -9) 43 (26%)

unsigned integers of sizes 8, 16, or 32 bits max(2) correctly returns the largest argument,
even when the other argument is negative. But this is not so for 64 or 128-bit unsigned
integers, where an exception is thrown. It seems that if the two arguments have different
types the implementation coerces the smaller one into the type of the larger one. Thus, if
the larger argument is an unsigned integer type (of size 64 or 128) an exception is thrown
since the other argument, here −1, cannot be coerced into a value of the large unsigned
type.

Summary for RQ3
Taken together, our manual analysis of the identified clusters and their boundary
candidates shows that the method we propose can reveal both expected and
unexpected behaviour for each of the tested SUTs. Using bytecount as an example,
21 expected boundaries were automatically identified, and divided into three main
groups: Listing 1 Bug identified when running AutoBVA on the Julia Base function max(2). If one argument is

negative and the other one is an unsigned integer of 64 (or 128) bits an exception is thrown. This does not
happen for smaller unsigned integers.

1 julia> max(-1, UInt8(0))
2 0
3

4 julia> max(-1, UInt16(0))
5 0
6

7 julia> max(-1, UInt32(0))
8 0
9

10 julia> max(-1, UInt64(0))
11 ERROR: InexactError: check_top_bit(UInt64, -1)

4. transition from two different exceptions, BoundsError("kMGTPE", 9) for input 999999999983

999990520104160854016 and BoundsError("kMGTPE", 10) for input 9999999999999905984

20104160854017.985

In hindsight, a tester can likely understand the reasons for these boundaries. Still, we argue that it is986

not apparent from just looking at the implementation or specification that these boundaries exist. Even987

though the very simple output distance function we have used cannot detect the additional error-error988

boundaries, we can understand to be there (between bounds error 7 and 9, for example), it would be989

relatively simple to find them with a more focused search once we know to look for them. This also points990

to future work investigating alternative output distance functions or even hybrid search approaches that991

apply multiple distance functions for different purposes.992

For bytecount, another 34 boundary candidates were identified that were also unexpected, but where993

we judge, it is less likely that a tester would include them all in a test suite. These are the transitions994

between different sizes of negative inputs, e.g. from "-9B" to "-10B" and so on. A tester might want to995

sample some of them to ensure proper treatment by a refined implementation. Still, since the transition996

from zero to negative one has already been found, the additional value is relatively limited.997

For the Julia Date SUT, several clusters were of more debatable value. In particular, in the error-error998

group, likely, a tester would only have selected some typical examples from the identified clusters. While999

there were some differences between the clusters, they essentially just differed in whether the month or1000

day inputs led to an exception being thrown. We note that the boundary transitions for invalid day inputs1001

covered all the different months (30 to 31 valid-error transition for June, 31 to 32 for August, 28 to 29 for1002

February, etc). However, the clustering was insufficient to separate them into individual groups, making1003

the manual screening less efficient.1004

For BMI-class, most clusters contained relevant boundaries. While all the expected boundaries1005

between consecutive, ordinal outputs (like Normal to Obese) were identified, the method also identified1006

many unexpected boundaries between non-consecutive output categories.1007

With its numerical outputs, a much larger number of candidates were identified for BMI. Still, the1008

summarisation method successfully distilled them to only 5 clusters, making it relatively easy to screen1009

them manually. Even if expected and relevant boundaries were found, it is harder, in this case, to define1010

and judge if other boundaries should be found in the large, valid-valid groups. In this case, it was unclear1011

that the output distance function used was fine-grained enough to pick out essential differences.1012

While all eight clusters for bytecount and BMI contained at least one boundary candidate that we argue1013

a tester would like to look at, this was not the case for all the other SUTs. For example, for BMI-class,1014

several clusters differed only in the order of the outputs. This should be refined in future work on the1015

method. There were also cases where clusters seemed unnecessarily split into multiple clusters for which1016

we could not discern any apparent pattern or semantic reason. This is most likely an artefact of the1017

clustering method and the features we used as input. Still, we argue that since the number of clusters1018

identified was relatively limited, it would not be a significant cost for testers to screen them all.1019

While the number of identified candidates for bytecount was low (58), the clustering for summarisation1020
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1. transitions between consecutive byte suffix partitions, e.g., ‘‘999.9 kB’’ to ‘‘1.0 MB’’ (6
candidates),

2. transitions from zero to negative values, ‘‘0B’’ to ‘‘-1B’’ (1),
3. transitions within the same byte suffix partitions, e.g., ‘‘9B’’ to ‘‘10B’’, ‘‘9.9 MB’’ to

‘‘10.0 MB’’, and ‘‘99.9 GB’’ to ‘‘100.0 GB’’ (14).
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15Since the example number below is very
long, the numbers might be split between
different lines.

Of these, we argue that the first two groups (1 and 2) are expected and natural, while
a tester can decide if and, if so, how many from group 3 to include in the test suite. The
method also identified four (4) boundaries for bytecount that we argue were unexpected:15

1. transition from ‘‘999.9 EB’’ to ‘‘1000.0 EB’’,
2. transition between boolean inputs ‘‘falseB’’ to ‘‘trueB’’,
3. transition from the valid output, ‘‘1000.0 EB’’ for input 999999999999994822656, to

an exception, BoundsError("kMGTPE", 7) for input 999999999999994822657,
4. transition from two different exceptions, BoundsError("kMGTPE", 9) for input

9999999999999905201
04160854016 and BoundsError("kMGTPE", 10) for input 999999999999990520
104160854017.
In hindsight, a tester can likely understand the reasons for these boundaries. Still, we

argue that it is not apparent from just looking at the implementation or specification that
these boundaries exist. Even though the very simple output distance function we have
used cannot detect the additional error-error boundaries, we can understand to be there
(between bounds error 7 and 9, for example), it would be relatively simple to find them
with a more focused search once we know to look for them. This also points to future work
investigating alternative output distance functions or even hybrid search approaches that
apply multiple distance functions for different purposes.

For bytecount, another 34 boundary candidates were identified that were also
unexpected, but where we judge, it is less likely that a tester would include them all
in a test suite. These are the transitions between different sizes of negative inputs, e.g., from
‘‘-9B’’ to ‘‘-10B’’ and so on. A tester might want to sample some of them to ensure proper
treatment by a refined implementation. Still, since the transition from zero to negative one
has already been found, the additional value is relatively limited.

For the Julia Date SUT, several clusters were of more debatable value. In particular, in the
error-error group, likely, a tester would only have selected some typical examples from the
identified clusters. While there were some differences between the clusters, they essentially
just differed in whether the month or day inputs led to an exception being thrown. We
note that the boundary transitions for invalid day inputs covered all the different months
(30 to 31 valid-error transition for June, 31 to 32 for August, 28 to 29 for February, etc.).
However, the clustering was insufficient to separate them into individual groups, making
the manual screening less efficient.

For BMI-class, most clusters contained relevant boundaries. While all the expected
boundaries between consecutive, ordinal outputs (like normal to obese) were identified,
the method also identified many unexpected boundaries between non-consecutive output
categories.

With its numerical outputs, amuch larger number of candidates were identified for BMI.
Still, the summarisation method successfully distilled them to only five clusters, making
it relatively easy to screen them manually. Even if expected and relevant boundaries were
found, it is harder, in this case, to define and judge if other boundaries should be found in
the large, valid-valid groups. In this case, it was unclear that the output distance function
used was fine-grained enough to pick out essential differences.
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While all eight clusters for bytecount and BMI contained at least one boundary candidate
that we argue a tester would like to look at, this was not the case for all the other SUTs. For
example, for BMI-class, several clusters differed only in the order of the outputs. This should
be refined in future work on the method. There were also cases where clusters seemed
unnecessarily split into multiple clusters for which we could not discern any apparent
pattern or semantic reason. This is most likely an artefact of the clustering method and the
features we used as input. Still, we argue that since the number of clusters identified was
relatively limited, it would not be a significant cost for testers to screen them all.

While the number of identified candidates for bytecount was low (58), the clustering
for summarisation helped identify attractive boundary candidates. This was even more
evident for the more complex SUTs where the number of candidates identified was huge;
summarisation is thus necessary, and clustering is one helpful way to achieve it. Future
work should investigate how to refine the summarisation further to reduce the number of
candidates a tester has to look at.

The above findings were also seen for the larger number of SUTs sampled from Julia’s
Base library for Investigation 2. Both expected and unexpected boundaries were identified,
and for the latter, the boundary highlighted ‘‘buggy’’ behaviour. Still, the number of
clusters can often be large, and in several cases, the only difference between clusters we
could identify was the length differences in their output. While this is a direct consequence
of the chosen output distance function, it does lead to more manual work for the tester.
Future work should thus investigate other complementary ways to summarise the boundary
candidates that AutoBVA identifies.

Box 3. Key findings (RQ3):

The AutoBVA method can successfully identify expected and unexpected boundaries
without using a specification or white-box information. While the value of identified
candidates ultimately depends on the tester, the summarisation via clustering helped
focus the manual screening. The approach identified boundaries for some programs
that indicate implementation, specification, or documentation bugs. Further refine-
ment to the summarisation method should be investigated to minimize the number of
different clusters a tester must manually inspect.

DISCUSSION
In this section, we provide a more general discussion on lessons learnt and future work,
followed by dedicated sections on tester actions for various situations (‘Boundary candidates
types and tester actions’) and the threats to validity (‘Threats to validity’).

Our results show that relevant boundaries in the input space and behaviour of programs
can be identified automatically without needing a specification, white-box analysis, or
instrumentation. This is important since it can help make boundary value analysis and
testing more automated and systematic. While these techniques for quality assurance and
testing have been advocated for a long and sometimes even been required by standards
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and certification bodies, prior work has relied, for effective results, on the creativity and
experience of the tester performing them.

By building on the vision from Feldt & Dobslaw (2019), Dobslaw, de Oliveira Neto &
Feldt (2020) and coupling their proposal to simple search algorithms, the system we
propose here enables augmenting the testers performing boundary value analysis and
testing by automatically identifying and presenting them with candidate input pairs that
are more likely to reveal actual boundaries.

Our experimental validation shows that for the investigated SUTs, the system could
identify many boundary candidate pairs that also cover a diverse range of behaviours.
These results were also robust over multiple executions, despite the stochastic nature of the
algorithms used. Manual screening showed that many relevant (important) boundary
candidates were automatically identified, both those that could be expected for the
investigated SUTs and relevant but unexpected ones that we argue would have been
harder for a tester to think of.

We investigated two different search strategies within our overall framework. The
simpler one, local neighbour search (LNS), is more directly similar to random testing
(in automated testing) but with a local exploration around a randomly sampled point.
It identified more boundary candidates but, even if given a longer execution time, did
not find as diverse types of candidates as the other strategy. The latter, boundary crossing
search (BCS), was tailored specifically to the problem at hand by first identifying inputs in
two different input partitions and then ‘‘honing’’ in on the/any boundary between them.
BCS needs more computational resources but consistently finds as many or more diverse
clusters of candidates than LNS. Both strategies performed notably better when sampling
broadly and bit-uniformly over the entire input space - this was, in fact, critical for LNS to
identify boundaries overall (see Appendix A).

Regardless of the search strategy used, for our system to be beneficial to actual testers, a
critical step is how to group and summarise the set of candidates found. While this is not
the main focus of this study, we show that basing the grouping on the type of outputs of
the pair and then clustering them based on their within- and between-pair distances can be
helpful. However, our experiments also uncovered challenges in this approach that should
be investigated in future work, i.e., how to avoid showing too many groups (clusters) as
well as candidates to a tester.

The key idea that our system builds upon is the program derivative, a way to quantify
the rate of change for any program around one of its inputs. Our essential choice in this
study was to use a fast but exceedingly simple distance function for outputs. By simply
comparing the length of the outputs in a pair, we can only detect a difference that leads to
differing lengths after stringifying them. This will not always be enough, for example, for
functions where all outputs are the same length despite being different. Given this major
limitation in our experiments, our results are encouraging; we can find relevant boundaries
despite this simplification. One reason is likely that if outputs differ in some way, they
often will also vary in their length. Another reason can be that by using such a fast but
coarse-grained distance function, we can explore larger parts of the search space. Even the
reasonably simple Overlap Coefficient string distance function, which would detect more
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fine-grained differences in outputs, would be at least an order of magnitude and possibly
more, slower. Andmore advancedmethods like the compression distances would be orders
of magnitude slower yet. Future work should examine the trade-off between fast but coarse
and slower but more fine-grained distance functions. We note that the system need not
select only one distance function; hybrid solutions could be tried to get a coarser view of
the boundaries and then zooms in for further details in different sub-partitions.

We also saw limitations in the clustering approach we used in the summarisation step.
In several cases, our manual analysis of the clusters it produced did not uncover any clear
semantic difference between clusters. Instead, they mainly seemed to differ in the length
of their inputs or outputs. Future work should investigate alternative summarisation
methods, in particular clustering ones. Since the summarisation is done offline, outside of
the search process, there is potentially more time for this analysis step, so more complex,
costly and fine-grained distance functions are likely relatively more helpful.

While our results constitute evidence that the proposed approach has value, it is
methodologically challenging to judge how complete a set of boundaries the method can
find. There is no clear baseline to compare to, given that boundary value analysis has
traditionally been a manual activity heavily dependent on a clear and detailed specification
and the tester’s experience. Still, futurework should performuser studies, both ‘‘competing’’
with testers doing purely manual analysis and ‘‘in tandem’’ with testers to evaluate the
added value of the automated system. And while this is a first step towards an automatic
extraction of boundary pairs and, in extension, the creation of test cases, we acknowledge
that entirely relying on bottom-up test case creation from the implementation only is not
going to be sufficient in the general case. Using specifications as input into the process
would help keep intent and actual behaviour aligned.

The choice of distance function will also be critical in future work that evaluates the
approach on software with inputs and/or outputs of complex, non-numeric types. Here
we have focused on and experimented with many SUTs with a small number of integers as
inputs using Euclidean distance. It is natural for such inputs to use the absolute difference
between inputs as the distance function. However, if the inputs are two complex trees or a
directed acyclic graph and a vector of complex objects, it will be less clear which distance
function to choose or the relative benefits of different choices. Using multiple distance
functions to reveal a diverse range of boundary candidates could be considered.

Similarly, more complex mutation operators will be needed for complex types since
there is no obvious, or at least not a single, way to mutate a complex object by a small
amount. While our empirical evaluation does not show that the approach can be applied to
all types of software, we consider the choice of mutation operators and distance functions
to be relatively orthogonal to the overall approach used. Any automated testing approach
that needs to execute SUTs with inputs of a complex type will need to grapple with these
issues, e.g., how to generate and mutate relevant inputs. This also means that there is
a plethora of known techniques and tools that can be leveraged in this. For example,
search-based techniques (McMinn, 2004; Afzal, Torkar & Feldt, 2009) can be used and
have been investigated explicitly for complex test data generation (Feldt & Poulding, 2013).
There is also active work on grammar-based data generation and fuzzing (Havrikov &
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Table 17 Different actions a tester can take given one or a set of related automatically identified
boundary candidates and which artefacts will likely change for each action.

Action Specification Implementation Test suite

Skip — — —
ExtendTests — — X
Debug — X X
Clarify X — (X)
Refine X X X

Zeller, 2019; Eberlein et al., 2020) and creating input grammars or specifications from
concrete examples or executions (Bastani et al., 2017; Steinhöfel & Zeller, 2022). Future
work should explore which techniques to leverage when evaluating our approach to SUTs
with more complex, structured inputs.

While writing this article, we sought confirmation from the Julia core developers
by stating an issue on the official Github Julia repository regarding the max(2)
behaviour from Investigation 2 (https://github.com/JuliaLang/julia/issues/48971). They
argued that this behaviour was not unexpected, but we then concluded that the
documentation was unclear on this point. Consequently, we have submitted clarifying
documentation pull request (https://github.com/JuliaLang/julia/pull/48973), which has since
been merged into the main branch of the language (https://github.com/JuliaLang/julia/
commit/e4c90e22e999e85268fc5465b2840df6f4f2fb94). Our manual analysis of boundary
candidates indicated that different types of candidates exist and differ in the kind of action
they are likely to lead to. The max (2) candidate, for instance, would require clarification,
which we link to a need for updates in the specification/documentation and (potentially)
extension of the test suite, but no implementation adjustments. In the next section, we give
more examples and discuss these action types in more detail. Finally, we then conclude the
discussion with limitations and threats to validity.

Boundary candidates types and tester actions
Table 17 shows five actions a tester can typically take concerning one or a set of similar
boundary candidates. The columns to the right show the artefacts likely to be affected in
each case: the specification, the implementation, or the test suite.

A Skip action typically means that either the tester does not find the candidate(s)
relevant/useful, or it is handled correctly by the implementation, clear enough in the
specification, and tested well enough. Even in the latter case, it is crucial that an automated
testing method can also identify boundaries of this type; if it frequently misses them, a
tester might lose confidence in the tool. An ExtendTests action would happen when the
identified behaviour is correct according to the specification but not yet well covered by
the test suite. The Debug action occurs when a fault exists in the implementation, i.e., the
specification describes the correct behaviour, but the implementation does not comply.
The Clarify situation is a consequence of a behaviour that is intended but not explicitly
specified. Finally, the Refine action is a consequence of a boundary that is not desired but
when the specification is either incorrect or incomplete. In this situation, we must clarify
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16For Clarify, there might, though, be
situations where this is impractical, for
instance, the max(2) SUT discussed above,
which is why we set parentheses around
the selection in Table 17.

the specification and debug/fix the implementation. For the last actions, the test suite will
also typically be extended to ensure the same problem does not occur in the future.16

One type of boundary candidate we identified in the manual analysis was the under-
specified input range, i.e., for inputs that are not expected, which leads to unexpected
behaviour. One example, for BMI-class, was the candidate with outputs that move from
Underweight to Severely Obese by a change in body weight from 0 to 1 kg for a person
with a height of 1 cm. Another example is Julia Date, with a very large year input that led to
nonsensical outputs that showed no resemblance to the inputs, likely due to some overflow
in the internal representation of date values. This type of boundary would typically lead to
either a Debug or a Refine action, depending on whether an update of the specification is
meaningful/necessary or not.

Other problems were identified concerning the bytecount SUT. We used this SUT
since it is known as the most copied (Java) code snippet on StackOverflow and has several
bugs as described in Lundblad (2019): a rounding error, correctness for large values over
64 bits, and the fact that negative inputs are not appropriately handled. As described in
our results above, the latter was clearly identified and can be seen as an under-specified
problem. It likely leads to a Refine action since it is unclear how to handle negative inputs
from the specification. The correctness for large values is still a problem even though the
Integer type also includes 128-bit integers and the BigInt type to handle arbitrarily large
integers in Julia. However, the problem manifests in the boundary candidates that lead
to BoundsErrors since they also try to access larger byte suffix categories after exabytes
(‘‘EB’’). A Refine or at least a Debug action is probably called for. The boundary candidates
capturing the rounding error of bytecount, e.g., kB to MB, were all identified in the
searches (cluster 5 in Table 10) and represent wrongly positioned boundaries. While it is
unclear if the rounding error can be directly spotted, even given the boundary examples
in the cluster, it is contained in all the cluster boundaries. A diligent tester is likely to
investigate critical boundaries in depth, and the fact that they are all in the same cluster
can help make this checking more likely. This will lead to a Debug action.

Threats to validity
Our analyses involve simple comparisons through descriptive statistics (RQ1 + RQ2) and
qualitative analysis of the clusters (RQ3). We mitigate conclusion validity threats in our
quantitative comparison by focusing on how the sampling strategies complement each
other rather than simply comparing which is better.

By analyzing the uniqueness of candidates and clusters, we identified essential trade-offs.
For RQ3, we did not exhaustively inspect all candidates in larger clusters. Hence there is
a risk we miss important ones. We mitigate this risk by random sampling and iterative
analysis until saturation in conclusions.

We operationalize the constructs of our proposed approach with a limited set of
treatments and dependent variables. Consequently, the primary construct validity threats
are our choices of (1) configuration (string length for PD, mutation operators, sampling
methods, etc.), (2) SUTs with integer inputs, (3) measures of uniqueness, clustering, and
coverage/inspection of clusters. However, given the novelty of the approach, we argue it
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17The implementation did not check for
height or weight equals to zero, hence
triggering a division by zero error which
leads to a NaN output.

would be very difficult to analyze the overall results if we used more advanced or just more
choices for these contextual factors. Future work is needed to understand performance
implications better as these factors vary.

We use clustering as an attempt for summarising boundary candidates into a presentable
subset for testers.

To a certain degree, the ‘‘relevance/importance of a boundary’’ is subjective. Hence an
optimal or perfect summarisation is hardly attainable. It should also be mentioned that
in a real-world situation, a single search run with sufficiently many boundary candidates
should suffice to do both the clustering and summary extraction - which will be faster and
simpler than running many times over and building an overall clustering model over the
entire set of found candidates. However, the number of clusters found in each run was
smaller than the total number for some SUTs, even for BCS, so the effect of execution time
needs further study in the future.

We mitigate internal validity threats by doing pilot studies and testing our
instrumentation. The screening studies helped us to identify feasible and consistent
strategies for sampling candidates and clustering outputs instead of going for arbitrary
choices. Encouraging was also that our method revealed a fault in our implementation
of the BMI value function (Table 13)17 Regarding verifying the search procedure and
system itself, we use automated unit tests in Julia to mitigate faults in our implementation
(https://docs.julialang.org/en/v1/stdlib/Test/#Basic-Unit-Tests).

Lastly, our results cannot be generalised beyond the scope of our experimental study,
i.e., finding boundaries for unit-level SUTs that take integers as input. On the one hand,
various aspects in AutoBVA indicate it might be generally applicable, such as the concept
of the program derivative and its basis on string distances rather than type-specific distance
function. However, more general test data generation algorithms, mutation operators, and
distance functions will need to be experimented with to increase the external validity.

CONCLUSIONS
While automated boundary value analysis and testing are often advocated or required for
quality assurance, prior work has relied mainly on the testers’ creativity and experience.
As a result, boundary value analysis has been a manual activity. Automated solutions are
needed to support testers better, increase efficiency, and make boundary value analysis
more systematic. However, existing proposals have relied either on formal specifications,
the development of additional models, or white-box analysis, limiting their applicability.

Herewehave presented an automated andblack-box approach to identify and summarise
the boundaries of programs. It is based on coupling a boundary quantification method
to a search algorithm. We further proposed using string length distance as a fast but
coarse-grained boundary quantifier and proposed two different strategies to search for
boundary candidates. Finally, a clustering algorithm was used to summarise the identified
candidates in groups based on the similarity of their values.

We validated our approach through two investigations on a total of 613 SUTs with both
single and multiple numbers as inputs and arbitrary outputs. We quantitatively evaluated
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how many candidates were found by the two search strategies as well as their uniqueness
and diversity. A manual, qualitative analysis of the identified boundary candidates for
selecting SUTs was also performed to understand their usefulness better.

We find that even using one of themost straightforward possible boundary quantification
metrics, large quantities of boundary candidates could be found by both strategies for a large
number of SUTs. While the naive local neighbour search found more unique candidates
than the boundary crossing search strategy, the latter found more unique groups if given
more search time. Even though our approach is stochastic, it was robust over multiple,
repeated executions. Themanual analysis showed that many both expected and unexpected
boundaries were found. The system identified previously known bugs in the investigated
SUTs and the new ones we introduced. Based on our findings, we outlined a simple
taxonomy of different actions the proposed system can prompt a tester to take, refining
either a test suite, an implementation, or even the specification.

While our results are promising, future work must consider more SUTs that are more
complex and have non-numerical input parameters. It should also explore more elaborate
search strategies to search globally over the input space and use the already identified
candidates and groups to avoid unnecessary, repeated work.

APPENDIX A. SCREENING STUDY-CONFIGURING THE
EXPLORATION STRATEGY
Several parameters greatly influence the exploration process, particularly regarding the
sampling strategy. A pre-study investigating two parameters was conducted and is detailed
below. The purpose was to reduce the complexity of the main experiments without
sacrificing quality, if possible. We here describe the experiments and the verdict.

High-level languages usually offer to sample based on a single concrete datatype (such
as Int32 in Julia, representing Integers of 32 bits). When activating CTS, the sampling is
based on the compatible types per argument. For abstract data types, the compatible types
per argument can be derived from the type graph (see Julia’s type graph for numbers in
Fig. A1). In this study, all input parameters are Integers. In Julia, Integers are an abstract
type that cannot be sampled. Thus we use 128-bit Integers in this study as per default. CTS
must contain concrete types only, not abstract types, and a sampler for the type must be
available. For instance, for Integer in Julia, the CTS per the graph is

CTS(Integer)={UInt8,UInt64,UInt32,UInt16,UInt128,Int8,Int64,Int32,Int16,

Int128,BigInt ,Bool}

Further, CTS is not limited to abstract data types such as Integer but can be extended to
concrete types. For Int16, and per the conversion rules of Julia, we may declare:

CTS(Int16)={UInt8,Int8,Int16,Bool}

Sampling using CTS becomes a two-step process. A compatible type is selected for each
argument, and then the sampler for that type gets invoked. Two simple approaches to
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Figure A1 The type hierarchy for numbers in Julia shows the compatible types for Integer. Bool is an
Integer.
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Table A1 The results for the screening over the bytecount SUT.

Algorithm CTS Sampling # Found (µ±σ)

LNS uniform 0.0±0.0
LNS X uniform 8.6±0.9
LNS bituniform 7.0±0.0
LNS X bituniform 9.8±0.8
BCS uniform 0.0±0.0
BCS X uniform 22.0±1.0
BCS bituniform 55.8±0.8
BCS X bituniform 56.0±0.7

choosing the type for each sample are round-robin and uniformly at random. Without loss
of generality, we use the latter approach in this study.

We here investigate the impact of CTS (activated, deactivated) and the sampling method
(uniform, bituniform), explained in 3.2.1, on the efficacy of boundary exploration. We,
therefore, apply AutoBD with LSN compared to BCS according to Section ‘Automated
Boundary Value Analysis’ on bytecount for 30 s each for all possible configurations. As
a boundariness measure, we used the program derivative with bytecount on the outputs.
The results can be seen in Table A1.

Note that regular uniform sampling without CTS, often called random search, rarely
finds boundary candidates. First, after activating CTS, boundary candidates can be
identified. The greatest number of boundary candidates in all scenarios is obtained
when both CTS and bituniform sampling are activated. We, therefore, limit the study to
configurations with CTS activated and bituniform sampling. The implied limitations in
terms of generalizability are further discussed under 6.

APPENDIX B. SCREENING STUDY-CLUSTERING FOR
SUMMARISATION
The goal of our screening study is to identify a combination of features (U and WD)
and distance measures (strlendist, Overlap Coefficient, and Levenshtein) that yield a
good model for doing k-means clustering of boundary candidates found by AutoBVA (as
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Table A2 The top 9 clustering configurations for bytecount with their respective average Silhouette
score and number of clusters (sorted by Silhouette Score).

Configuration Silhouette score Number of clusters

strlendist (WD) + Overlap(WD) 0.982 5
strlendist (WD) + Overlap(WD + U) 0.942 6
strlendist (WD) + Overlap (U) 0.938 3
Overlap(WD + U) 0.924 5
strlendist (WD) + Lev(U) 0.779 3
strlendist (WD) + Overlap(WD + U) + Lev(WD) 0.777 4
Lev(WD) + Overlap(U) 0.773 2
strlendist (WD) + Lev(WD) + Overlap(U) 0.771 3
strlendist (WD) + Overlap(WD) + Lev(U) 0.760 4

introduced and explained in ‘Setup of summarisation step’). Finding a good clustering is
important to allow for the automated and consistent comparison of types of boundary
candidates since we cannot define equivalence partitions manually for the chosen SUTs.
We also illustrate some examples of features extracted from actual boundary candidates to
clarify how the features and attributes represent the different types of boundaries.

To get a clustering of a good fit, we evaluate k in the range of 1–10 and select the
one having the highest Silhouette score Rousseeuw (1987), which offers an overview of
the cohesion within each cluster and the separation between different clusters Xiong & Li
(2018). We use the default level of neighbours for orientation per data point of 15. We use
Euclidean distance between feature vectors and 200 max iterations per the interface default.
Silhouette values vary between +1 and +1, where +1 indicates that the clusters are clearly
distinguishable from each other; values of zero indicate that the clusters are relatively close
to each other, so there is little significance in clustering the candidates. Lastly, -1 means
that the distance between candidates within the cluster is greater than between different
clusters, indicating that the clustering performed is not appropriate and more distinct
clusters are likely needed.

We repeated the runs 100 times per all combinations of features, totalling 64, and ranked
the configurations according to the silhouette mean while selecting the model of maximum
score per configuration. The objective here was not to find perfect-fit models/clusterings
but to identify models of a good fit with high discriminatory power because the more
clusters that can be differentiated with high accuracy, the more diverse the individual
boundary candidates to present to a tester.

The best models can be seen in Table A2. The selected feature set produced the largest
number of clusters among the top five percentile Silhouette scores for k-Means over
k ∈ 1,...,10, i.e., bytecount(WD) and bytecount(WD + U). It strikes a good balance
betweenmodelling quality and the ability to discriminate for the bytecount SUT that serves
for the training due to its low computational complexity and straightforward separation
of boundaries within the V domain. The clustering, therefore, uses the Overlap Coefficient
for bothWD and U. How/whether the feature space generalizes well is a question for future
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work. The final matrix with three features represented by four attributes over which all
clusterings in this article are conducted is, therefore:

M =


|strlendist |(WD)
|Overlap|(WD)
|Overlap|(U1)
|Overlap|(U2)

.
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