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A B S T R A C T

The Allee effect describes the phenomenon that the per capita reproduction rate increases along with the
population density at low densities. Allee effects have been observed at all scales, including in microscopic
environments where individual cells are taken into account. This is great interest to cancer research, as
understanding critical tumour density thresholds can inform treatment plans for patients. In this paper, we
introduce a simple model for cell division in the case where the cancer cell population is modelled as an
interacting particle system. The rate of the cell division is dependent on the local cell density, introducing
an Allee effect. We perform parameter inference of the key model parameters through Markov Chain Monte
Carlo, and apply our procedure to two image sequences from a cervical cancer cell line. The inference method
is verified on in silico data to accurately identify the key parameters, and results on the in vitro data strongly
suggest an Allee effect
1. Introduction

The Allee effect is a phenomena in ecology, noting that a popula-
tion’s growth rate often is a function of its density. More precisely, the
per capita growth rate increases along with the population density until
a maximum is reached at an optimal population density. After passing
this density, the per capita reproduction rate diminishes, eventually
becoming zero at the carrying capacity. The underlying mechanics
giving rise to an Allee effect are for example difficulty finding mates,
lack of protection from predators and lessened production of public
goods facilitating population growth (Courchamp et al., 2008). In
bio-conservation applications, determining the threshold for when a
population becomes unsustainable and risks extinction is of dire im-
portance to mitigate biodiversity collapse as a result of human action,
e.g deforestation and over-fishing.

In recent years, microbiological systems have increasingly been un-
derstood and modelled in terms of ecosystems of normal cells (Basanta
and Anderson, 2013). In this context, cancer growth functions akin to
an invasive species. This has spurred a flurry of research into both
how one can understand cancer in terms of theory from mathematical
ecology, and how one can use this knowledge to devise novel cancer
therapies.

1.1. Mathematical models of population growth

We will now give a brief history of population dynamics modelling,
building up to a few proposals for Allee effect expressions found in
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the literature. Let 𝑁(𝑡) be the size of some population at time 𝑡. A
deterministic mean-field model of population growth takes the form

d𝑁(𝑡)
d𝑡

= 𝑁(𝑡)𝑅(𝑁(𝑡)). (1.1)

where 𝑅(⋅) models the per-capita reproduction rate as a function of the
population size. No spatial structure of the population is taken into
account, it is assumed to be ‘well-mixed’ in whatever homogeneous
environment it resides in. Ordinary differential equations such as (1.1)
can exhibit steady states, found by solving 𝑁𝑅(𝑁) = 0. Depending on
the initial condition, 𝑁(𝑡) will approach one of the steady states as
𝑡 → ∞. For example, we can consider 𝑅(𝑁) = 𝑟(1 − 𝑁∕𝐾) − 𝑑, which
gives logistic growth with constant death rate;

d𝑁(𝑡)
d𝑡

= 𝑟𝑁(𝑡)
(

1 −
𝑁(𝑡)
𝐾

)

− 𝑑𝑁(𝑡). (1.2)

Here 𝑟 is a baseline reproduction rate, 𝐾 is the carrying capacity and
𝑑 < 𝑟 is the death rate. This equation exhibits two steady states; 𝑁1 = 0
and 𝑁2 = 𝐾(𝑟−ℎ)∕𝑟. 𝑁1 is an unstable fix-point of the dynamical system
(1.2), and as such a population modelled by this equation will gravitate
towards the stable fix point 𝑁2 as 𝑡 → ∞. However, this model fails
to take the Allee effect into account, and thus needs modification if
one wishes to model the Allee effect. In ecology, a population that is
below its extinction threshold is said to be in extinction debt, meaning
that below the threshold extinction of the species is inevitable without
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intervention to push it above the threshold (Tilman et al., 1994). Thus,
we wish to modify 𝑅(⋅) so that an extinction threshold is accounted for
n the model.

Several different strategies to mitigate this has been proposed. A
atural modification would be setting (Sun, 2016)

(𝑁) = 𝑟(𝑁 − 𝛼1)(𝛼2 −𝑁) (1.3)

for 𝛼2 > |𝛼1| and 𝛼2 > 0. 𝑁𝑅(𝑁) now has three roots, and importantly
the parabolic shape of 𝑅(𝑁) ensures a local maxima in the per capita
reproduction for some 𝑁 . We can divide (1.3) into two distinct cases,
a weak and a strong Allee effect, depending on the roots 𝛼1 and 𝛼2. In
the case of 𝛼1 < 0, the ODE
d𝑁(𝑡)
d𝑡

= 𝑟𝑁(𝑡)(𝑁(𝑡) − 𝛼1)(𝛼2 −𝑁(𝑡)) (1.4)

has a stable fix point for 𝑁 = 𝛼2, and an unstable fix point for 𝑁 = 0.
he third root of the right-hand side of (1.4), 𝑁 = 𝛼1, is not biologically
easible, as it corresponds to a negative population size. We call this a
eak Allee effect, as no extinction threshold exists.

If 𝛼1 > 0, we obtain stable fix points for 𝑁1 = 0 and 𝑁2 = 𝛼2,
and an unstable fix point for 𝑁1 = 𝛼1, resulting in a strong Allee
ffect. The parameters 𝛼1 and 𝛼2 are referred to as the lower and upper

Allee thresholds, and correspond to extinction and carrying capacity
respectively. Extinction will eventually occur if the population size fall
below 𝛼1. If one were to include an additional death rate in (1.3), the
Allee thresholds would shift, making it possible to turn a weak Allee
effect into a strong one. Thus, one can for example model over-fishing
using this 𝑅(𝑁), with 𝑅(𝑁) − 𝑑 corresponding to harvesting at a rate
𝑑. Other models have also been proposed, for example Johnson et al.
(2019), González-Olivares et al. (2006)

𝑅(𝑁) =
(

1 − 𝑁
𝐾

)(

1 − 𝐴 + 𝜏
𝑁 + 𝜏

)

(1.5)

where 𝐴 < 𝐾 here plays the part of the extinction threshold, and
> 0 is required to model a weak Allee effect. The derivation of

1.5) can be found in Boukal and Berec (2002), with arguments based
n mate finding probability in well-mixed populations. Both of these
odels have been used for cancer modelling (Johnson et al., 2019;
erlee et al., 2022; Delitala and Ferraro, 2020). In the context where
e use the Allee effect as part of a cancer tumour model, harvesting

n an ecological setting is akin to targeting the tumour with some drug
r treatment. Thus, identifying the existence of a potential extinction
hreshold for a tumour can be vital when calculating dosage (Da Silva
t al., 2020).

In this paper, we are more concerned with spatial population dy-
namics, where the population is not assumed to be well-mixed. Thus,
instead of talking about absolute population size 𝑁(𝑡), we are con-
cerned with individual based models where each cell constitutes an
agent in an interacting particle system. There exists a rich literature
on these approaches as well; in Gerlee et al. (2022) a cellular automata
is used as the basis of the system. In Fadai and Simpson (2020), Fadai
et al. (2020), a hexagonal lattice model is utilized, and the Allee effect is
modelled using a binary switches depending on occupied neighbouring
sites. Other articles studying spatial models utilizing an Allee effect
include (Cassini, 2011), which focuses on its consequences in patchy
population patterns.

Empirical evidence of Allee effects in cancer cell populations have
been known for some time (Johnson et al., 2019), and the current
understanding is that cell production of a growth factor upregulating
the mitosis intensity of nearby cells plays an important role (Menon
and Korolev, 2015); this process is called autocrine signalling. In Ger-
lee et al. (2022), the authors formulate a spatial–temporal cellular
automata model taking growth factor production into account, pro-
ducing an Allee effect. Our goal with this paper is to extend on the
earlier work, using an agent-based model of cell migration and consider
neighbour-wise interactions to explain the Allee effect.
2

1.2. Parameter inference on Allee effect

While we have noted a multitude of authors studying the dynamics
of population models, work on fitting models to data is a less explored
field. In dos Santos et al. (2015), an approach for modelling the Allee
effect in agent based systems is explained, sharing many similarities
to the approach taken in this article. The model fitting, however, was
based on least-squares regression, with birth rate as the dependent
variable and local population density as the independent variable.
An inference-wise more detailed undertaking can be found in Simp-
son et al. (2022), where parameter identification in several proposed
per-capita growth rate functions is discussed. The method used was
profile-likelihood, similar to the approach taken here. However, the
models discussed there were all of sigmoid-growth type, not taking
a potential Allee effect into account. Finally, we can note (Morris,
2002), where measurements of proliferation rates of small mammals
in different habitats was compared. The underlying model proposed
was piece-wise linear, and as such linear regression was used to fit the
pieces.

To our knowledge, no attempt has yet been made to take full advan-
tage of the data available in microscopy imaging to fit an Allee effect
model to cell-tracking data. We find the prospect of taking full advan-
tage of images attractive, as it provides richer information than simply
observations of density and birth rate does. In the case of imaging data
being used in earlier work, the preferred method is still to use the total
population number as the explanatory variable (Gerlee et al., 2022),
or dividing the spatially structured data into patches (Morris, 2002).
To remedy this, we have utilized an agent-based model, where the
birth rate of each agent is modelled and taken into account. By using
every individual detected in the imaging sequences, we hypothesize
that accurate determination of the presence of an Allee effect can be
determined using modest amounts of data.

The purpose of this paper is twofold. First, we construct a model
for the growth of a population of cancer cells growing in vitro, taking
into account an up-regulating effect that the tumour has on its own
growth rate and how this gives rise to an Allee effect. We then justify
a number of simplifications, simplifying the model as to only depend
on three key parameters. In addition, a Markov Chain Monte Carlo
(MCMC) algorithm is constructed to sample from the Bayesian posterior
of these parameters. The algorithm is tested on in silico data, before
applying it to a small yet high quality in vitro data set described in
Section 5. Note that the application of our method to the in vitro data
is in the interest of evaluating the validity of the model, rather than to
draw novel conclusions from the data.

2. Model

In this section, we give an overview of our model for a public goods-
derived Allee effect, and show how our per-capita reproduction rate
can be derived from fairly simple calculations. We will also give an
introduction to the stochastic model used for our in silico experiment.

2.1. Cell migration dynamics

The data set considered in this study consist of microscopy images
of cancer cells. We will now discuss the inclusions and omissions made
in our model, given the context of our experimental data presented
in Section 5. The micro-environment surrounding the cells is fairly
homogeneous, and hence we assume a complete absence of ECM or
chemotaxis. Given the high resolution data of the spatial evolution of
the cells, an off-lattice agent based model is a natural choice. We chose
to model cell migration using stochastic differential equations (SDE:s)
with isotropic diffusion in 𝐑2. The location 𝐱𝑖(𝑡) of each individual cell
𝑖 for 𝑖 = 1,… , 𝑁 at time 𝑡 ≥ 0 evolves according to an equation

d𝐱𝑖(𝑡) = −
∑

∇𝐱𝑖𝑢(‖𝐱𝑖(𝑡) − 𝐱𝑗 (𝑡)‖)d𝑡 + 𝜎d𝑊𝑖(𝑡). (2.1)

𝑗≠𝑖
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Table 2.1
Most of the notation used in this paper.

Variable Explanation

𝐱(𝑡) The locations of all cancer cells at time 𝑡
𝑖, 𝑗 Used as indices for individual cells
𝐱𝑖(𝑡) The location of cell 𝑖 at time 𝑡
𝑁𝑡 The total number of cells at time 𝑡
𝐾 The total number of images
𝑘 Used to talk about individual images
𝐱𝑘 The 𝑘:th image
𝐱𝑖𝑘 The location of cell 𝑖 in image 𝑘
𝛽𝑖𝑘 The number of cells born from cell 𝑖 between image 𝑘 and 𝑘 + 1
𝑑𝑘 The number of cells who have died between image 𝑘 and 𝑘 + 1
𝐗 Capital 𝐗 is reserved for real data

Here −
∑

𝑗≠𝑖 ∇𝐱𝑖𝑢(‖𝐱𝑖(𝑡) − 𝐱𝑗 (𝑡)‖) is a drift term describing pairwise cell
nteractions, 𝐷 is a diffusion coefficient and 𝑊𝑖(𝑡) is a 2-dimensional

Wiener process (Klebaner, 2012). Now, let us define the number density
𝑛(𝐱, 𝑡) as a distribution so that for some subset 𝐴 ⊂ 𝐑2,

∫𝐴
𝑛(𝐱, 𝑡)d𝐱 = # of cells within 𝐴. (2.2)

Given the large number of variables in the model we supply the
reader with the below table (Table 2.1) which lists all variables and
their meanings. Furthermore, we make the assumption that cells are
circular, and their diameter is equal to one length unit. Both of these
assumptions stem out of mathematical convenience, and are encoded
in the pairwise interaction potential 𝑢.

2.2. Production of growth factor

It has been observed that some cancer cells, e.g glioblastoma, pro-
duces growth factors (GF) that upregulates the rate of cell division (Ger-
lee et al., 2022). Thus, it serves as a public good facilitating mitosis.
This growth factor is produced by the cells in the culture, and under-
goes a diffusion- and decay process. We describe this process in terms
of a reaction–diffusion equation (Menon and Korolev, 2015)

𝜕𝑡𝑔(𝐱, 𝑡) = 𝐷𝑔∇2𝑔(𝐱, 𝑡) + 𝑝𝑔𝑛(𝐱, 𝑡) − 𝑑𝑔𝑔(𝐱, 𝑡) (2.3)

where 𝑔(𝐱, 𝑡) is the GF concentration, 𝐷𝑔 the rate at which it diffuses,
𝑝𝑔 its production rate and 𝑑𝑔 its decay rate. Note that (2.3) is defined in
a weak sense, since 𝑛(𝐱, 𝑡) is a distribution rather than a function (Hör-
mander, 2009). Furthermore, the length scale of (2.3) is such that cells
occupy space and are counted as individuals, whereas the GF density
is seen as a continuum.

Compared to the time scales at which the cell culture undergo
migration and mitosis, the dynamics of growth factor occurs on a much
faster time scale (Menon and Korolev, 2015). We can thus make the
approximation that (2.3) is in its steady state when compared to the
cell population evolution, i.e (2.3) can be written as

0 = 𝐷𝑔∇2𝑔(𝐱, 𝑡) + 𝑝𝑔𝑛(𝐱, 𝑡) − 𝑑𝑔𝑔(𝐱, 𝑡) (2.4)

This equation can be solved by finding the fundamental solution to
1
𝑝𝑔

(

𝐷𝑔∇2𝑔(𝐱, 𝑡) − 𝑑𝑔𝑔(𝐱, 𝑡)
)

= 0 (2.5)

and viewing 𝑛(𝐱, 𝑡) as a source term. A standard procedure gives us that

(𝐱, 𝑡) =
𝑝𝑔

2
√

𝐷𝑔𝑑𝑔 ∫𝐑2
𝑒−
√

𝑑𝑔∕𝐷𝑔‖𝐱−𝐱′‖𝑛(𝐱′, 𝑡)d𝐱′ (2.6)

Thus, the amount of GF at 𝐱 ∈ 𝐑2 at some time 𝑡 is given by a convo-
lution of the number density 𝑛(𝐱, 𝑡) and a kernel 𝑤(𝐱) corresponding to
the fundamental solution of (2.5);

𝑤(𝐱) ∶=
𝑝𝑔

√
𝑒−
√

𝑑𝑔∕𝐷𝑔‖𝐱‖.
3

2 𝐷𝑔𝑑𝑔
To simplify the notation, we reparameterize 𝑤(𝐱) using 𝜀 =
√

𝑑𝑔∕𝐷𝑔
and 𝑝𝑔∕2𝑑𝑔 = 𝐶, giving us a kernel

(𝐱) = 𝐶𝜀𝑒−𝜀‖𝐱‖. (2.7)

e will refer to 𝜀 as the growth factor dispersion length scale and 𝐶 as
the production factor. Let us now consider how to calculate the amount
of GF around a particular cell. If all cell locations 𝐱𝑖 are known at time
𝑡, we have that the density 𝑛(𝐱, 𝑡) is given by the empirical measure

𝑛(𝐱′, 𝑡)d𝐱′ = d𝜇𝑡(𝐱′) ∶=
𝑁𝑡
∑

𝑖=1
𝛿𝐱𝑖(𝑡)(𝐱

′)d𝐱′

generated by the observation. Here 𝐱𝑖(𝑡) is the centre of cell 𝑖, which is
ssumed to be a circle with diameter 𝑟0 = 1. Thus, the GF-concentration
timulating a particular cell 𝑖 at time 𝑡 will be given by

𝑔(𝐱𝑖(𝑡)) = ∫𝐑2
𝑤(‖𝐱𝑖(𝑡) − 𝐱′‖)d𝜇𝑡(𝐱′) =

𝑁𝑡
∑

𝑗=1
𝑤(‖𝐱𝑖(𝑡) − 𝐱𝑗 (𝑡)‖). (2.8)

.3. Cell division modelling

The exact way that growth factors contribute to increased rates of
ell division is complex, and depends on what stage in the cell cycle
he cell in question is currently in. The simplest way to think of the
F influence on an individual cell is that it expedites the early growth
f the cell, leading to DNA replication and subsequent mitosis taking
lace earlier (Obeyesekere et al., 1999). For the sake of our study, we
ill not divide the cell cycle into several different stages. Rather we
ill model the time from birth to division as a random variable from

he exponential family, defined by a dynamic rate depending on the
F concentration. In the discussion we examine this simplification and
xplore more realistic approaches.

In order to model cell division, we will take inspiration from the
ield of reliability theory. The central object in this field is the survival
quation. The survival equation is an ODE depending on a rate function
(𝑡), who’s solution is the probability that some event has occurred
t a time 𝑡 after initiation at time 𝑡0. Such equations are frequently
sed to model a large number of life length phenomena, ranging from
omponent failures in electrical engineering to patient survival times in
edical studies (Cleves et al., 2008). Here, we will use the same frame-
ork to model mitosis times. We assign a survival equation to each

ell 𝑖 and make its rate ℎ𝑖(𝑡) a function of the local GF-concentration
(𝐱𝑖(𝑡), 𝑡), letting 𝐵𝑖(𝑡) be the probability that cell 𝑖 has divided at time
after its birth at time 𝑡0. The survival equation is given by

𝑖(𝑡) =
𝐵′
𝑖 (𝑡)

1 − 𝐵𝑖(𝑡)
, 𝐵𝑖(𝑡0) = 0 (2.9)

nd the solution of (2.9) at time 𝑡 > 𝑡0 is given by

𝐵𝑖(𝑡) = 1 − (1 − 𝐵𝑖(𝑡0)) exp
(

−∫

𝑡

𝑡0
ℎ𝑖(𝑠)d𝑠

)

(2.10)

= 1 − exp
(

−∫

𝑡

𝑡0
ℎ𝑖(𝑠)d𝑠

)

. (2.11)

mportantly, we see that ∫ 𝑡
𝑡0
ℎ(𝑠)d𝑠 gives us an accumulation of birth rate

over the time interval [𝑡0, 𝑡). We now assume that ℎ𝑖(𝑡) can be factorized
as ℎ𝑖(𝑡) = 𝐽𝑖(𝑡)𝐺𝑖(𝑡). Here 𝐽𝑖(𝑡) model contact inhibition, giving negative
eedback to the birth rate as the local cell density increases, and 𝐺𝑖(𝑡)
epends on the GF-concentration, providing a positive feedback. We let
𝑖(𝑡) be proportional to the GF present around cell 𝑖,

𝑖(𝑡) = 𝜆𝑔(𝐱𝑖(𝑡)) (2.12)

or some rate 𝜆 > 0. We implement contact inhibition 𝐽𝑖(𝑡) for cell 𝑖
sing an inhibition function 𝜌𝑖(𝑡), representing the local cell density. We
alculate inhibiting effect cells have on one another by using a similar
ernel to (2.7). With 𝑤𝜌 being the inhibition kernel, our assumption is
hat

(𝐱) ∶= 𝛾
𝑒−𝛾‖𝐱‖. (2.13)
𝜌 𝐶
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Fig. 2.1. Visualization of (2.18); we can fully index every steady state cell location in one sixth of the plane, and use the cosine law to calculate the distance from a cell located
at site (0, 0) to a cell located at (𝑛, 𝑚).
For simplicity, we choose in this study to lock the length scales of our
two kernels to one another, i.e 𝛾 = 𝜀. We thus get that the inhibiting
effect the cells 𝑗 ≠ 𝑖 has on cell 𝑖 is

𝜌𝑖(𝑡) = 𝜀
∑

𝑗≠𝑖
𝑒−𝜀‖𝐱𝑖(𝑡)−𝐱𝑗 (𝑡)‖ ⟹ (2.14)

𝜌𝑖(𝑡) =
1
𝐶
(𝑔(𝐱𝑖(𝑡)) −𝑤(0)) (2.15)

where 𝑤(0) is subtracted since the cells do not self-inhibit. Furthermore
we assume that the inhibition follows a simple logistical relationship,
a common practice in this type of models (Browning et al., 2018;
Fadai et al., 2020), motivated by the fact that the inhibition is directly
proportional to the local cell density. We set the maximum inhibition
to be one, implying that the local carrying capacity is one as well, i.e

0 ≤ 𝜌𝑖(𝑡) ≤ 1, (2.16)

𝐽𝑖(𝑡) = 1 − 𝜌𝑖(𝑡). (2.17)

where 𝜌𝑖 = 0 is the case of a 2-dimensional universe devoid of
neighbouring cells, and 𝜌𝑖 = 1 represents the case of an infinite
hexagonal lattice fully packed with identical circular cells resulting in
maximum inhibition. Let d𝜂(𝐱) be the measure consisting of a 𝛿-spike
at every hexagonal lattice point. We can then determine 𝜀 by solving
the equation

∫𝐑2
𝑤𝜌(‖𝐱𝑖(𝑡) − 𝐱′‖)d𝜂(𝐱′) = 6𝜀

∞
∑

𝑛=1

∞
∑

𝑚=0
𝑒−𝜀

√

𝑛2+𝑚2+𝑛𝑚 = 1 (2.18)

which is visualized in Fig. 2.1. Solving (2.18) numerically gives us
𝜀 ≈ 3.07. With this 𝜀, we provide an example of how the inhibition is
calculated in Fig. 2.2. Keep in mind that solving (2.18) has imposed an
assumption on the relationship between the decay rate and diffusion
coefficient of the growth factor, a concession made in the name of
convenience. Further note that if the problem was to be extended to
three dimensions, a simple closed expression such as (2.18) would cease
to exist.

Remember that the constant 𝐶 encodes the relationship between
the production and decay rates of GF, and thus plays a pivotal role
in how neighbour stimulation affects population growth. Using (2.15),
we express (2.12) as

𝐺𝑖(𝑡) = 𝜆
(

𝑤(0) + 𝐶𝜌𝑖(𝑡)
)

∶= 𝜆0 + 𝜆1𝜌𝑖(𝑡) (2.19)

where the compound parameters 𝜆0 and 𝜆1 will be considered in our
inference algorithm. Putting all components together, the cell division
rate becomes

ℎ (𝑡) = 𝐽 (𝑡)𝐺 (𝑡) = (1 − 𝜌 (𝑡))(𝜆 + 𝜆 𝜌 (𝑡)). (2.20)
4

𝑖 𝑖 𝑖 𝑖 0 1 𝑖
Fig. 2.2. An example of how contact inhibition on cell 1 is computed. 𝐱1 = (0, 0), and
it has three neighbours, centred at
𝐱2 = (1,−1)∕

√

2,
𝐱3 = (−12,−5)∕10,
𝐱4 = (0, 3)∕2.
The resulting contact inhibition becomes
𝜌1 =

∑4
𝑗=2 𝜀𝑒

−𝜀‖𝐱𝑖−𝐱𝑗‖ = 0.2302.

Lastly, in order to observe a strong Allee effect where under a certain
density the growth rate becomes negative, we must also introduce cell
death. Consider the survival equation

𝜔 =
𝐷′

𝑖(𝑡)
1 −𝐷𝑖(𝑡)

, 𝐷𝑖(𝑡0) = 0, (2.21)

where 𝐷𝑖(𝑡) is the probability that cell 𝑖 has died at time 𝑡 after its birth.
Note that the solution to this equation is simply 𝐷𝑖(𝑡) = 1− 𝑒−𝜔(𝑡−𝑡0), i.e
the cells lifespan is modelled by an exponentially distributed random
variable. We let this random time be independent of the one govern-
ing cell division. Dropping subscripts and time-dependence, we get a
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er-capita growth rate 𝑅(𝜌) of

(𝜌) = (1 − 𝜌)(𝜆0 + 𝜆1𝜌) − 𝜔. (2.22)

Alternatively, we can express (2.22) in terms of its roots;

𝑅(𝜌) = −𝜆1
(

𝜌 −
𝜆1 − 𝜆0 −

√

4𝜆1(𝜆0 − 𝜔) + (𝜆1 − 𝜆0)2

2𝜆1
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

∶=𝛼1

)

×

(

𝜌 −
𝜆1 − 𝜆0 +

√

4𝜆1(𝜆0 − 𝜔) + (𝜆1 − 𝜆0)2

2𝜆1
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

∶=𝛼2

)

where the roots 𝛼1,2 of this polynomial are the lower and upper Allee-
thresholds, respectively. This also serves as a first-principles derivation
of (1.3) in the introduction. We experience a strong Allee-effect when
𝛼1 > 0 - this corresponds to that for some 𝜌, we get ℎ(𝜌) < 𝜔. Examples
of per capita-growth rate for weak and strong Allee effects can be seen
in Fig. 2.3.
Note that 𝜆1 > 0 does not necessarily produce an Allee effect; in order
for the per capita growth rate to have a distinct maximum for some
𝜌 > 0, we need to have that 𝜆1 > 𝜆0. Thus, if a population sports a per
capita growth rate where 0 < 𝜆1 < 𝜆0, we say that this population does
not exhibit an Allee effect.

3. Inference method

In this section we describe the method used for performing infer-
ence on the parameters 𝜆0, 𝜆1 and 𝜔. We will implement a classical
Metropolis–Hastings Bayesian method for estimating the model param-
eters. For a good introduction to these types of sampling methods,
see Bishop and Nasrabadi (2006). Assume that we have observed a total
of 𝑁 cells in a series of 𝐾 images. Throughout this section, remember
that 𝐱𝑖𝑘 is the observed location of cell 𝑖 at time 𝑡𝑘 for 𝑖 = 1,… , 𝑁 and
= 1,… , 𝐾.

It turns out we can find an exact posterior distribution for the cell
eath intensity 𝜔 if 𝑡𝑘+1 − 𝑡𝑘 ≡ 𝛥𝑡 is constant for all 𝑘. Let 𝛿𝑖 be the
eath time of cell 𝑖. From the exponentially distributed life lengths, we
et from the Markov property that

(𝛿𝑖 ∈ [𝑡, 𝑡 + 𝛥𝑡) | 𝛿𝑖 ≥ 𝑡) = 𝑃 (𝛿𝑖 ∈ [0, 𝛥𝑡)) = 1 − 𝑒−𝛥𝑡𝜔

meaning that the question ‘‘does cell 𝑖 die in a time span of length 𝛥𝑡,
iven it was alive at time 𝑡?’’ can be probabilistically modelled using a
ernoulli random variable with parameter 𝜔̄ = 1 − 𝑒−𝛥𝑡𝜔. Applying this

to the entire population, then 𝜔̄ is the parameter for a binomial random
variable 𝐷𝑘 ∼ Bin(𝑁𝑘, 𝜔̄); i.e 𝐷𝑘 models the number of deaths taking
lace during the interval [𝑡 , 𝑡 + 𝛥𝑡) given that 𝑁 cells were alive at
5

𝑘 𝑘 𝑘
ime 𝑡𝑘. Imposing a Beta prior distribution on 𝜔̄ with parameters 𝑜0, 𝑜1,
e get a conjugate posterior

̄ ∼ Beta(𝑜0 +
𝐾−1
∑

𝑘=0
𝑑𝑘, 𝑜1 +

𝐾−1
∑

𝑘=1
[𝑁𝑘 − 𝑑𝑘]), (3.1)

= − 1
𝛥𝑡

log(1 − 𝜔̄). (3.2)

where 𝑑𝑘 is the number of deaths observed in time interval 𝑘. If we
wish for an explicit probability distribution for 𝜔, we have it in

𝑜0𝐾 = 𝑜0 +
𝐾−1
∑

𝑘=1
𝑑𝑘, 𝑜1𝐾 = 𝑜1 +

𝐾−1
∑

𝑘=1
[𝑁𝑘 − 𝑑𝑘], (3.3)

(𝜔0 ≤ 𝜔 ≤ 𝜔1) =
(𝑜0𝐾 + 𝑜1𝐾 − 1)!

(𝑜0𝐾 − 1)!(𝑜1𝐾 − 1)! ∫

𝜔1

𝜔0

(1 − 𝑒−𝛥𝑡𝑟)𝑜0𝐾−1𝑒−(𝑜1𝐾−1)𝛥𝑡𝑟d𝑟.

(3.4)

Now let 𝛽𝑖𝑘 be the number of cells born from cell 𝑖 in the time interval
[𝑡𝑘, 𝑡𝑘+1). Keep in mind that one of the cells that 𝑖 splits into inherits
the index of its parent, thus making it possible for the cell labelled 𝑖 to
divide more than once on a time interval. Since the birth rate depends
on the state of the system, 𝛽𝑖𝑘 follows a non-homogeneous Poisson process.

Let 𝑡𝑖0 be either the birth time of cell 𝑖 or the last time cell 𝑖
divided, and 𝛽𝑖 the time of its next birth. From (2.10), we know that
for 𝑡𝑘+1 > 𝑡𝑘 ≥ 𝑡0 that

𝑃 (𝛽𝑖 ∈ [𝑡𝑘, 𝑡𝑘+1) | 𝛽𝑖 ≥ 𝑡𝑘) = 1 − exp
(

−∫

𝑡𝑘+1

𝑡𝑘
ℎ𝑖(𝑠)d𝑠

)

, (3.5)

ℎ𝑖(𝑡) = (1 − 𝜌𝑖(𝑡))(𝜆0 + 𝜆1𝜌𝑖(𝑡)). (3.6)

Note that (3.6) cannot be directly evaluated between observations. To
mitigate this, we fix the inhibition on cell 𝑖 over the interval [𝑡𝑘, 𝑡𝑘+1)
to be what it was when observed at time 𝑡𝑘, i.e

𝜌𝑖(𝑡) ≈ 𝜌𝑖𝑘 ∶=
∑

𝑗≠𝑖
𝑤𝜌(‖𝐱𝑖𝑘 − 𝐱𝑗𝑘‖), 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1). (3.7)

ixing 𝜌𝑖𝑘 in accordance with the observations let us calculate an
pproximate expression for the instantaneous birth rate (3.6) for cell 𝑖
ver the interval [𝑡𝑘, 𝑡𝑘+1). Thus we approximate the accumulated birth
ate as

𝑖𝑘 = ∫

𝑡𝑘+𝛥𝑡

𝑡𝑘
(1 − 𝜌𝑖𝑘)(𝜆0 + 𝜆1𝜌𝑖𝑘)d𝑡 = 𝛥𝑡(1 − 𝜌𝑖𝑘)(𝜆0 + 𝜆1𝜌𝑖𝑘). (3.8)

We can now use (3.8) to approximate (3.5),

𝑃 (𝛽𝑖 ∈ [𝑡𝑘, 𝑡𝑘+1) | 𝛽𝑖 ≥ 𝑡𝑘) ≈ 1 − exp
(

−𝐻𝑖𝑘
)

. (3.9)

Thus we get that the probability of cell 𝑖 giving birth in [𝑡𝑘, 𝑡𝑘+1) is
pproximately exponentially distributed with rate 𝐻𝑖𝑘. For a more in-

depth treatise on inference strategies on non-homogeneous Poisson
processes, we refer to Li and Godsill (2021). With (3.8) in place, we
can construct an approximate probability distribution from which we
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can view 𝛽𝑖𝑘 as samples of. Calling this probability distribution 𝐵𝑖𝑘, we
have that

𝐵𝑖𝑘 ∼ Poisson(𝐻𝑖𝑘) ⟹ 𝑃 (𝐵𝑖𝑘 = 𝑏) =
𝐻𝑏

𝑖𝑘𝑒
−𝐻𝑖𝑘

𝑏!
, 𝑏 ∈ N. (3.10)

Given a sequence of observations 𝜌𝑖𝑘, 𝛽𝑖𝑘, this gives us the log-
likelihood:

𝓁(𝜆0, 𝜆1|𝐱, 𝛽) =
𝐾−1
∑

𝑘=0

𝑁𝑘
∑

𝑖=1
𝛽𝑖𝑘 log(𝐻𝑖𝑘) −𝐻𝑖𝑘 − log(𝛽𝑖𝑘!). (3.11)

he joint posterior distribution 𝑞(𝜆0, 𝜆1) for 𝜆0 and 𝜆1 does not have a
losed form expression, and we will access the posterior distribution
f these parameters by Markov Chain Monte Carlo. This algorithm is
ummarized in Algorithm 1. Throughout the algorithm, 𝑍 is a standard
ormally distributed random variable. Sampling from the posterior of
ll the parameters 𝜆0, 𝜆1 and 𝜔 is thus simple — use Algorithm 1 for a
oint distribution over 𝜆0 and 𝜆1, and sampling 𝜔 from (3.1)–(3.2).

Also note that the posterior 𝑞(𝜆0, 𝜆1) is two-dimensional, and this
pens up to the possibility of generating a surface plot over 𝑞 by simply
valuating 𝑞 for a large number of parameter configurations. We will
ake use of this as an alternate way to analyse our results.

Algorithm 1 Generate 𝑆̂ samples 𝑞𝑠, 𝑠 = 1,… , 𝑆̂ from the distribution
(𝜆0, 𝜆1)

Require: 𝜇0, 𝜇1 ∈ 𝐑, 𝜎0, 𝜎1 > 0, 𝜎𝑠 > 0, 𝑆 ≫ 0, 𝑆 > 𝑆̂ > 0
nsure: 𝑞𝑠 ∼ 𝑞(𝜆0, 𝜆1)
log(𝜆01) ←∼  (𝜇0, 𝜎20 )
log(𝜆11) ←∼  (𝜇1, 𝜎21 )
for 𝑠 = 2 ∶ 𝑆 do

log(𝜆∗0) ← log(𝜆0(𝑠−1)) + 𝜎0𝑠𝑍
log(𝜆∗1) ← log(𝜆1(𝑠−1)) + 𝜎1𝑠𝑍
𝛼 ← min[1, exp(𝓁(𝜆∗0 , 𝜆

∗
1) − 𝓁(𝜆0(𝑠−1), 𝜆1(𝑠−1)))], 𝓁 as in (3.11)

𝛼∗ ← Unif[0, 1]
if 𝛼 > 𝛼∗ then

𝜆0𝑠 ← 𝜆∗0, 𝜆1𝑠 ← 𝜆∗1.
else

𝜆0𝑠 ← 𝜆0(𝑠−1), 𝜆1𝑠 ← 𝜆1(𝑠−1).
end if

end for
Keep the last 𝑆̂ samples from 𝜆0(1∶𝑆), 𝜆1(1∶𝑆) respectively. Let these
constitute 𝑞1∶𝑆̂ .

4. In silico model

We chose to model our cell population using a system of SDE:s as
presented in (2.1). Isotropic diffusion vastly simplifies some implemen-
tation aspects and given the homogeneity of the environment in the
experimental data, it also serves as a fair assumption for an in silico
model. At a particular moment in time 𝑡, the system evolves according
to the following set of equations;

d𝐱𝑖(𝑡) = −
∑

𝑗≠𝑖
∇𝐱𝑖𝑢(‖𝐱𝑖(𝑡) − 𝐱𝑗 (𝑡)‖)d𝑡 + 𝜎d𝑊𝑖(𝑡)., (4.1)

𝑢(𝑟) = 𝐷𝑒

[( 𝜑(𝑟)
𝜑(𝑟0)

)2𝑎
− 2

( 𝜑(𝑟)
𝜑(𝑟0)

)𝑎]
. (4.2)

where 𝜑(𝑟) ∶ 𝐑+ ↦ 𝐑+ is a positive, monotonically decreasing function
o that lim𝑟→∞ 𝜑(𝑟) = 0. We chose 𝜑(𝑟) = 𝑒−𝑟 - this choice of 𝜑 gives us

the Morse potential as our model of interactions. 𝑟0 is the equilibrium
distance between two cells, and since we have already decided that
𝑟0 = 1, the entire interaction potential is governed by two parameters;
𝐷𝑒 (well depth) and 𝑎 (well steepness).

4.1. Experimental setup

We simulate the system (4.1)–(4.2) using an Euler Maruyama
6

scheme with a fine time-grid 𝛿𝑡 = 1, representing one in silico second,
Table 4.1
Parameters used in our simulations.

Cell migration parameters: 𝐷𝑒 = 0.00021 𝑎 = 3.5 𝜎𝑖 = 𝑒−9∕2

For weak Allee effect: 𝜆0 =
1
12

⋅ 10−4 𝜆1 =
1
4
⋅ 10−4 𝜔 = 1

6
10−5

For strong Allee effect: 𝜆0 =
1
12

⋅ 10−4 𝜆1 =
1
2
⋅ 10−4 𝜔 = 10−5

Initial densities: 𝑠𝑛 = 3 ⋅
√

29−𝑛 𝑛 = 1, 2, 3

Initial cell counts: 𝑁𝑚 = 25+𝑚 𝑚 = 1, 2, 3

for a duration of 24 h. To mimic time-lapse microscopy data, we sample
cell locations 𝐾 = 72 times, representing 20 min between observations.
We run this set up nine times for both modes of the Allee effect, with
𝑁𝑚 cells spawned uniformly in circle of radius 𝑠𝑞 in a 100 × 100 square
‘‘petri dish’’. The exact numbers are given by the bottom two rows of
4.1. In every time step, we propagate the particle system according to
the Euler–Maruyama scheme;

𝐱𝑖(𝑡 + 𝛿𝑡) = 𝐱𝑖(𝑡) + 𝛿𝑡
[

−∇𝑉 (𝐱𝑖(𝑡), 𝑡)
]

+
√

𝛿𝑡𝜎𝑖𝑍

Simultaneously, we simulate cell division and death for each cell. We
remind ourselves of the Eqs. (2.9) and (2.21), and note that these
are simple ODE:s that can be solved using an Euler forward scheme.
So in every time step, we compute the evolution of birth and death
probability as

𝐵𝑖(𝑡 + 𝛿𝑡) = 𝐵𝑖(𝑡) + 𝛿𝑡
[

ℎ𝑖(𝑡)(1 − 𝐵𝑖(𝑡))
]

, (4.3)

𝑖(𝑡 + 𝛿𝑡) = 𝐷𝑖(𝑡) + 𝛿𝑡
[

𝜔(1 −𝐷𝑖(𝑡))
]

. (4.4)

division or death is triggered for cell 𝑖 whenever 𝐵𝑖(𝑡) or 𝐷𝑖(𝑡) passes a
hreshold 𝑏𝑖 or 𝑑𝑖; here both 𝑏𝑖 and 𝑑𝑖 are standard uniformly distributed
andom variables. When a cell divides, a new 𝑏𝑖 is generated and 𝐵𝑖(𝑡)
eturns to 0, see Fig. 4.1 for a demonstration. The daughter cell is placed
alf a cell radius away from the parent cell at a random angle, letting
he interaction potential further push them apart.

Note that when cell division occurs, one of the new cells keep the
ndex of the parent cell for the sake of efficiency. When a death is
riggered, that individual is removed from the system. The simulations
re run with the following parameters:

After every experiment is finished, we store three objects of particu-
ar interest. Let 𝑁 be the total number of cells that were detected during
he simulation. We first create the 𝑁 × 𝐾 matrix 𝐑, where 𝐑𝑖𝑘 = 𝜌𝑖𝑘
s detailed in (3.7). The second object is the 𝑁 × 𝐾 matrix 𝐁, where
𝑖𝑘 = 𝛽𝑖𝑘 (number of cells born from cell 𝑖 in interval 𝑘). Lastly, we have
binary 𝑁×𝐾 matrix 𝐋, where 𝐋𝑖𝑘 = 1 if cell 𝑖 was alive in observation
and 0 otherwise. With these three matrices, we have everything we

eed for Algorithm 1 and (3.1).

. In vitro data

The in vitro data considered for testing our method is provided by
ell Tracking Challenge, where a large number of 2D video sequences
f in vitro cell migration are available. The particular data set chosen
or use here is ‘‘Fluo-N2DL-HeLa’’ of cervical cancer cells, first used in
study on phenotypic profiling using time-lapse microscopy (Neumann
t al., 2010). Cervical cancer cells are round and of uniform size, thus
iving us an ideal scenario for the inference algorithm as we assume
ll cells to be identical and circular. We will use two data sets, who
erved as hand annotated reference data for the challenge, giving us the
losest to a ground truth possible for in vitro imaging. The two data sets
re from the same cell line, consist of 𝐾 = 92 images taken at 30 min
ntervals, and are of the same resolution. The only differing factor is
nitial cell density, see Table 5.1. Additionally, not a single cell died in
ither data set. As such, inference on the death rate 𝜔 for the in vitro
xperiments will be omitted.

Though the exact cell tracks are freely made available, we still need
o normalize them so that an average cell radius equates to one in
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Fig. 4.1. A demonstration of how cell birth is modelled, for a simulation where cell 2 gave birth to cell 230 at observation 𝑘 = 49. In every time step 𝑘, we forward simulate the
birth rate 𝐵2(𝑡) for cell 2 using (4.3). Once the birth rate hits the uniformly distributed birth threshold 𝑏2 ≈ 0.4, cell 230 was born and cell 2 was given a new birth threshold,
2 ≈ 0.9. Cell 2 is marked in blue, cell 230 in red, and all other cells are marked in black.
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Table 5.1
Summary of the in vitro data sets.
Data set Fluo-N2DL-HeLa/01 Fluo-N2DL-HeLa/02

𝑁1 43 137
𝑁92 125 363

order to directly apply our algorithm. We do this by computing the
radial distribution function (RDF) for our image sequence. Enumerating
he observation times as 𝑘 = 1,… , 𝐾, the RDF for cell 𝑖 at time 𝑡𝑘 is
omputed numerically as

DF(𝑟) = 1
2𝜋𝑟d𝑟

𝐾
∑

𝑘=1

𝑁𝑘
∑

𝑖=1

∑

𝑗≠𝑖

[

|‖𝐱𝑖𝑘 − 𝐱𝑖𝑘‖ − 𝑟| < d𝑟∕2
]

(5.1)

Here,  is the indicator function and d𝑟 = 0.5 is a reasonably small
radius ‘shell’, resulting in (5.1) returning the number density of cells
within a distance 𝑟±d𝑟∕2 of cell 𝑖 at time 𝑡𝑘. RDF(𝑟) for one of our data
sets is visualized in Fig. 5.1.

6. Results

6.1. Results on in silico data

For each experiment, we run Algorithm 1 for 10,000 generations
and discard the first 2,000 samples as burn-in. The remaining 8,000
samples constitutes our samples from the parameter posterior over 𝜆0
and 𝜆1. The posterior for 𝜔 is found using (3.1) with the uninformative
prior 𝑜0 = 𝑜1 = 0. Let 𝜃(𝑛,𝑚) =

[

𝜆̂0 𝜆̂1 𝜔̂
]

be the mode of the joint
posterior for the data set with 𝑁𝑚 and 𝑠𝑛 initial condition. We propose
7

to measure the goodness of fit of our results by a metric informed S
by the phenomenological nature of our model. Consider the 𝐿2-norm
between 𝑅̂(𝜌), (2.22) parameterized by the inferred parameters, and
𝑅(𝜌) using the ground truth parametrization. Calling this metric 𝛹(𝑛,𝑚)
for experiment (𝑛, 𝑚), we have that

𝛹 2
(𝑛,𝑚) = ∫

1

0

(

𝑅(𝜌) − 𝑅̂(𝑛,𝑚)(𝜌)
)2d𝜌 (6.1)

where 𝑅̂(𝑛,𝑚) is (2.22) using the inferred parameters 𝜃(𝑛,𝑚). Note that the
integrand in (6.1) is simply a fourth degree polynomial, and thus the
integral is simple to evaluate. Results using this metric for the strong
and weak Allee effect are found in Tables 6.1 and 6.2 respectively. Note
that in these tables, we present the results for initiation circles with
radius 𝑠𝑛 as in Table 4.1 by their area 𝜋𝑠2𝑛.

We also wish to study if more insight can be gained by adding
ogether all nine data sets featuring the strong and weak Allee effect
espectively. In addition to inference on the two sets of nine data sets
eparately, we thus perform inference on these larger data sets as well.
igures using parameters inferred from this run can be seen in Fig. 6.1.
e use the posterior modes, and they were found to be

Weak Alle effect:
𝜆0 = 9.05 ⋅ 10−6, 𝜆1 = 2.20 ⋅ 10−5, 𝜔 = 1.66 ⋅ 10−6.

Strong Allee effect:
𝜆0 = 7.82 ⋅ 10−6, 𝜆1 = 5.00 ⋅ 10−5, 𝜔 = 1.01 ⋅ 10−5.

(6.2)

dditionally, we present the full posterior distribution over the death
ate, seen in Fig. 6.2.

.2. Results on in vitro data

The inference procedure used for the in vitro data described in

ection 5 is identical to the set up used for our in silico data, barring
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Fig. 5.1. The first and last frame of in vitro data set Fluo-N2DL-HeLa/01, along with the radial distribution function (5.1) for the data set in the bottom panel.
Fig. 6.1. Plots of (2.22) using the parameters found in (6.2). Ground truth in solid line (parameters given by 4.1), inferred curve in dashed line. The 𝐿2 distance between these
curves serves as our metric of fitness 𝛹 .
Fig. 6.2. Plots of the parameter posterior (3.4) pdf obtained from combining all nine data sets for the weak and strong Allee effect respectively. Ground truth marked with a
dashed black line.
the fact that no cell death was detected in the considered data sets.
As such, no strong Allee effect can be detected, as the presence of an
extinction threshold require information on the population’s death rate.
Nonetheless, we attempt to fit the parameters 𝜆0 and 𝜆1 to our data,
using 10,000 MCMC iterations, discarding a 2,000 iteration long burn-
in. We consider the two data sets separately along with them added
together. The resulting 𝑅(𝜌) for these three experiments are presented
in Fig. 6.4. A summary of the parameter posteriors are found in Fig. 6.5,
and visualization of the full joint posterior 𝑞(𝜆0, 𝜆1) in the case of
HeLa-02 is given by Fig. 6.6.
8

7. Discussion

7.1. Model development

The model used for the growth factor dynamics in this paper is
the simplest type of reaction–diffusion equation one can formulate that
accounts for the relevant processes governing the GF, and has been
used in several earlier works (Gerlee et al., 2022; Menon and Korolev,
2015). The assumption of a linear relationship between the GF concen-
tration and the stimulation of mitosis intensity (see Eq. (2.12)) also has
precedent (Gerlee et al., 2022), although this relationship can undergo
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t

Fig. 6.3. Summary of results from Algorithm 1 applied to our in silico data. In every panel, experiment 1,… , 9 refer to our different initial conditions, counted row-wise according
o Tables 6.1 and 6.2. Experiment 10 is the case for when all data sets were added together. The mode of the marginal posteriors for 𝜆0, 𝜆1 are marked with a circle; one standard

deviation away is marked with a diamond. The ground truth is marked with a dashed black line.
Table 6.1
Weak Allee effect results for simulated data. In table cell (𝑚, 𝑛), we have
(6.1) for experiment (𝑚, 𝑛). The bottom right cell is 𝛹 for when all data
sets were added together.
𝑁𝑚∖𝜋𝑠2𝑛 2304𝜋 1152𝜋 576𝜋

64 1.38 ⋅ 10−6 6.04 ⋅ 10−7 9.69 ⋅ 10−7

128 1.38 ⋅ 10−6 6.15 ⋅ 10−7 1.59 ⋅ 10−6

256 1.07 ⋅ 10−6 9.28 ⋅ 10−7 6.15 ⋅ 10−7
∑

𝑚,𝑛 3.33 ⋅ 10−7

some further scrutiny. GF molecules bind to cell surface receptors that
transduce the signal to intra-cellular pathways that upregulate mitosis.
This implies that above some threshold GF concentration all receptors
are bound and additional GF does not increases the rate of mitosis
further. A natural extension to the model would therefore be to assume
that the relationship between GF concentration and the rate of mitosis
is non-linear and saturating.

Under the assumption that the interaction time is short and the GF
to cell ratio is high, a linear relationship suffices. However, one could
choose to model the effect GF concentration has on mitosis intensity by
9

Table 6.2
Strong Allee effect results for simulated data. In table cell (𝑚, 𝑛), we
have (6.1) for experiment (𝑚, 𝑛). The bottom right cell is 𝛹 for when all
data sets were added together.
𝑁𝑚∖𝜋𝑠2𝑛 2304𝜋 1152𝜋 576𝜋

64 1.94 ⋅ 10−6 1.70 ⋅ 10−6 1.43 ⋅ 10−6

128 1.50 ⋅ 10−6 1.23 ⋅ 10−6 1.33 ⋅ 10−6

256 4.24 ⋅ 10−7 8.07 ⋅ 10−7 1.45 ⋅ 10−6
∑

𝑚,𝑛 4.29 ⋅ 10−7

letting 𝐺𝑖(𝑡) in (2.12) be a sigmoid, resulting in a saturation effect. An
example of a model taking this into account is given by (1.5), which
has precedence of usage in cancer research (Johnson et al., 2019).
Additionally, letting 𝐺𝑖(𝑡) be sigmoid can model a threshold situation,
where a certain amount of GF is required to accumulate before it
impacts cell division rate.

The choice of using the same interaction kernel for GF uptake and
contact inhibition factor was made for mathematical convenience. An
interesting next step in developing the model is to instead let the

kernels 𝑤(𝐱) and 𝑤𝜌(𝐱) function on different length scales. If we have
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Table 6.3
Lower Allee thresholds estimated in the case of strong Allee effect for our in silico data sets. Experiment
1,… , 9 refer to our different initial conditions, counted row-wise according to Table 6.1 and Table 6.2.
Experiment 10 is the case for when all data sets were added together.
Truth 1 2 3 4 5 6 7 8 9 10

0.042 0.094 0.125 0.036 0.056 0.028 −0.021 0.015 0.078 0.081 0.0591
Fig. 6.4. 𝑅(𝜌) = (𝜆0 + 𝜆1𝜌)(1 − 𝜌) fitted to the in vitro data. HeLa-01 in the dashed
line, HeLa-02 in the dashed-dotted line, and both sets combined in the solid line.

Fig. 6.5. The modes along with one standard deviation for each of our in vitro data
sets. Note that 𝜆1 is very close to zero for HeLa-01, see Fig. 6.4.

Fig. 6.6. Numerically computed posterior distribution 𝑞(𝜆0 , 𝜆1) for the data set HeLa-
02. Note a strong negative correlation between 𝜆0 and 𝜆1, resulting in the wide
marginal likelihoods indicated in Fig. 6.5.

that

𝜌𝑖(𝑡) = 𝛾
∑

𝑗≠𝑖
𝑒−𝛾‖𝐱𝑖(𝑡)−𝐱𝑗 (𝑡)‖

we can still perform the same calculations as in (2.8) giving us 𝛾 = 3.07
without disturbing 𝜀 =

√

𝑑 ∕𝐷 . This leads to a much more involved
10

𝑔 𝑔
per-capita reproduction rate of the form

ℎ𝑖(𝑡) =
(

𝜆0 + 𝜆1
∑

𝑗≠𝑖
𝑒−𝜀‖𝐱𝑖(𝑡)−𝐱𝑗 (𝑡)‖

)(

1 − 𝛾
∑

𝑗≠𝑖
𝑒−𝛾‖𝐱𝑖(𝑡)−𝐱𝑗 (𝑡)‖

)

introducing 𝜀 as a fourth parameter. It is still possible to construct
an MCMC algorithm sampling from the posterior 𝑞(𝜆0, 𝜆1, 𝜀), but the
computational aspects become more complicated. First, the likelihood
function for this model, analogous to (3.11) in this study, becomes
geometrically more involved, perhaps facilitating the need for a more
sophisticated sampling scheme than Algorithm 1. Secondly, we run a
risk of further problems with parameter identifiability. Nevertheless,
we aim for this model extension in future work.

Finally, the model we have studied does not take the different stages
of the cell cycle into account. In Kynaston et al. (2022), the authors
model the cell cycle for individual cells starting in a hypoexponential
distribution, where a sequence of exponentially distributed holding
times have to trigger before mitosis takes place. Comparing our model
to this work, we make the progress through G1 depend on GF con-
centration, while S/G2/M takes place instantaneously. An interesting
development could thus be to append a second holding time after 𝛽𝑖,
modelling the time from growth finalization to cell division.

7.2. Inference algorithm

As previously alluded to, the algorithm we have implemented is
of a basic Metropolis–Hastings type, giving us the benefit of straight-
forward implementation and little need for tuning hyper-parameters.
We found that for the in silico experiments, it performed more than
satisfactory given the relative simplicity of the task it was designed to
solve.

There were a few pitfalls that can be addressed, however. When
calculating the likelihood (3.11), every observation is given equal
weight, despite some being arguably more valuable than others. For
example, in denser data sets, 𝜌𝑖𝑘 ≈ 0 is rarely featured. This could be an
explanatory factor behind why the denser data sets generally performed
worse when trying to approximate 𝜆0, as this is the chief parameter at
play at low cell densities. Problems of this flavour is an active field
of research in data science (Sapsis, 2020; Huan and Marzouk, 2014;
Agrawal et al., 2019), where perhaps a method akin output-weighing
as in Sapsis (2020) can be considered for future modifications of our
sampling scheme.

A second issue is the problem of accurately determining the extinc-
tion threshold in the case of a strong Allee effect. Crucially, extinction
thresholds are a notoriously difficult thing to quantify in any biological
setting (Fieberg and Ellner, 2000). We speculate that such issues could
perhaps be mitigated by giving extra weight to low-density observa-
tions, meaning that intelligent sample weighting can perhaps kill two
birds with one stone here.

7.3. In silico results

Across the board, we find a very strong performance of our method
on the in silico data. The best performance for both weak and strong
Allee effect was found for experiments that struck a good balance
between available data and cell density, with performance trailing of
as density increases for estimating a weak Allee effect, and the inverse
being true for strong Allee effect.

As previously discussed, the greatest uncertainty was in the cases

of denser data sets, where 𝜆0 in general suffered much higher variance
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in its estimate. Likewise, the very sparsest data sets returned greater
uncertainty in 𝜆1, even though the mode of the posterior distribution
was accurate in both the case of strong and weak Allee effect (see
Fig. 6.3). The uncertain inference for low densities were particularly
devastating for the strong Allee effect, resulting in some variance for
the extinction threshold estimation (see Table 6.3). In one case, the
inference method even proposed a weak Allee effect, likely due to the
lack of low-density observations for this particular data set.

We see that the overall fit got slightly better when combining the
data sets, as can be expected. The combined data sets include all
combinations of high and low cell count coupled with high and low cell
density, meaning that more levels of contact inhibition are presented
to the inference algorithm.

7.4. In vitro results

Our results applying the algorithm to the in vitro data show some
promise, and further highlight conclusions drawn from the in silico
tudy. We note that HeLa-01 had even lower cell count than our
ost sparse in silico experiments, numbered 1–3. For all of those

xperiments, we note a larger variance in the parameter posteriors
hen compared to our denser sets. Especially, estimating 𝜆1 in the case
f a weak Allee effect proved especially troublesome, see Fig. 6.3. This
ight explain the great discrepancy detected between the inference on
1 in HeLa-01 and HeLa-02.

In the case of HeLa-02, the variance in the marginal posteriors
een in Fig. 6.5 is much greater than for HeLa-01, indicating a

potential identifiability problem for our model. This was the motivat-
ing factor behind the generation of Fig. 6.6, where we illustrate a
noticeable covariance between 𝜆0 and 𝜆1 in the posterior distribution.
Thus along the peak of the likelihood surface, there are many equally
viable combinations of 𝜆0 and 𝜆1 that suits the data set. Still, the
posterior indicate that an Allee effect is at play in this data set — unlike
HeLa-01, 𝜆1 ≈ 0 is given a next to zero likelihood.

The are several possible explanations to this. One could be that a
certain concentration of growth factor has to be accumulated in order
for it to have an up-regulating effect on the cell division rate. This
could explain why no Allee effect is detected in HeLa-01, as that data
set is too sparse to reach this level. The second explanation could be
that the growth factor dispersion length scale 𝜀 is much further than
what it was forced to be in order to satisfy (2.13). The model only
takes GF produced by the immediate neighbours into account, but long-
range dispersion remains a possibility. Both of these hypothesis can be
tested by the model extensions discussed in Section 7.1. Finally, we
acknowledge that the in vitro data set considered in this paper is quite
small, and it is possible that Algorithm 1 could have honed in on a
smaller portion of the parameter space given more information to work
with.

The data set was chosen not only because of how cervical cancer
cells satisfy our assumption of round cells well, but also because it
had a gold standard truth available. Individual cell tracking is an
exceedingly challenging problem (Ulman et al., 2017), especially so
when determining familial relationship between the individual cells
is important. This further highlights the need for high quality data
processing methods when dealing with microscopy data. The in silico
experiments confirmed that our method is capable of very precise
inference using only modest amounts of data, as long as it is of high
reliability.

It is crucial to note that no general statements on the presence of an
Allee effect for cervical cancer can be made based in this limited study,
be it in vitro or in vivo. The HeLa cells have evolved in a laboratory
setting since the 1950’s, making them a non-representative for cervical
cancer on a whole (Masters, 2002). The main observation we make
here is that for this particular set of data, a phenomenological Allee
effect could be detected using a novel method. In order to draw strong
conclusions on an Allee effect for a certain cell line, more data is
necessary. Furthermore, conclusions on in vivo behaviour given in vitro
studies of sample tissue require much finer considerations than the
11

value of the parameters of our model can summarize.
8. Conclusion

In this article, we have derived a model for a spatial Allee effect for
cancer cell populations. The derivation is based on the production of a
common good by the cells, and an algebraic expression for the growth
factor uptake is derived under simple assumptions. An MCMC sampling
scheme was constructed to find the key parameters in the model based
on imaging data, performing with high precision on moderately sized
in silico experiments. For the limited trial on in vitro data, the results
indicate the presence of an Allee effect, but parameter identification
becomes a problem. Avenues of further research has been suggested,
mainly on developing the model at the cost of added complexity. We
also address the challenge of acquiring high enough volumes of depend-
able data, a possible bottleneck when conducting inference using single
cell tracking in microscopy imaging.
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