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On the feasibility of data assimilation for uncertainty modelling 

in geotechnics 
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1Chalmers University of Technology, Gothenburg, Sweden 
2Ramboll Sweden AB 

 
ABSTRACT: Advanced constitutive models are usually employed in geotechnical applications to achieve higher fidelity 

solutions consequently demanding more model parameters. However, due to limited data availability, characterisation becomes 

difficult leading to increased uncertainties in the prediction which is quite common in geotechnical problems. In view of this, 

simpler models are preferred but sometimes are not robust enough to capture a complex geotechnical system. In this paper, we 

examine the issue of system uncertainty and model selection to gain a qualitative insight regarding the question of whether a 

simple model can capture a complex system when augmented with a data assimilation procedure, namely Ensemble Kalman 

Filter, while maintaining model fidelity and robustness. Results indicate that data assimilation can help capture the behaviour of 

the system even if the model complexity does not match that of the in-situ geotechnical system considered. The calibrated 

parameters can still capture the behaviour (be it simple or complex) beyond the assimilation window, however, for system with 

time dependent behaviour, longer monitoring time is required to enable simple models to reasonably capture the creep settlements 

demonstrating that a simple model would not always be sufficiently robust for modelling alternate scenarios that substantially 

change the complex system’s behaviour.  
 

Keywords: Data Assimilation, Ensemble Kalman Filter, system uncertainty, creep.  

 

 

1 INTRODUCTION 

Discrepancies exist between predicted and observed 

behaviour in geotechnical engineering since the forward 

models are only abstractions of the true state. 

Researchers resort to sophisticated techniques to 

improve the fidelity of the model making it more 

complex and challenging to use while general 

practitioners prefer simpler versions for better 

useability. So, the conflict between selecting an 

advanced or simple model relies not just on the system 

behaviour but also most importantly on the quality, 

accessibility and comprehensiveness of dataset of the 

observed behaviour to characterize corresponding 

model parameters. Given that a plethora of geotechnical 

models exist, practitioners still face the challenge to 

choose an appropriate model for which there is sparse 

information. This is a long-standing problem and is 

rarely studied in geotechnical engineering.  Apart from 

limited data, the error in observed behaviour can also 

contribute to the difficulty in characterizing model 

parameters regardless of the model complexity used. As 

such, given the uncertainty of the model parameters, a 

deterministic assessment can further degrade the 

predictive ability of the considered model therefore 

demanding a probabilistic approach. Recent 

developments in other fields of science have shown a 

new powerful Bayesian updating procedure, known as 

the Ensemble Kalman Filter (EnKF), a Data 

Assimilation (DA) technique, which systematically 

incorporates observations into numerical forecasting 

models accounting for the uncertainties from 

measurement and model parameters. The EnKF 

approximates the background error covariance matrix 

using a statistically consistent ensemble of states and as 

such they provide reasonable estimates of the state 

variables, i.e., deformation, pore pressure, or  unknown 

parameters of the constitutive model in geotechnical 

practice as shown in recent works (Vardon et al., 2016; 

Liu et al., 2018; Tao et al., 2021). DA is a powerful tool 

holding great potential for geotechnical problems. When 

the geotechnical model is augmented with the EnKF 

algorithm, the uncertainties of the model parameters, 

characterized in a probabilistic manner, can be reduced 

when new project-specific monitoring data become 

available. However, the problem of model uncertainty 

still persists, and the performance of the numerical 

model combined with EnKF, even when it does not 

completely represent the geotechnical system is yet to 

be investigated. This study aims to provide some insight 

into whether it is possible for a geotechnical forward 

model, when augmented with a Data Assimilation 

procedure, to capture the geotechnical system behaviour 

that is not necessarily fully captured by the assumed 

numerical model (be it simple or advanced). Three 

constitutive models with differing, but hierarchical, 
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levels of complexity are considered in this study: 

Elastoplastic model, Elastoplastic model with structural 

degradation and an Elastoviscoplastic model with 

structural degradation. The general formulation for the 

EnKF and the aforementioned forward models are 

discussed in the coming sections. The insights gained 

from this study are expected to be useful to identify the 

effect of model uncertainty for application combining 

state and parameter estimation in geotechnical models.  

2 THEORY 

2.1 Principles of data assimilation 

Given a monitoring window t ϵ [0, T] the evolution of 

the system state xk ϵ Rm governed by the forward model 

F: f (t,x) → f (t+Δt, x), Ɐ (t,x) ϵ [0,T] x Ω, is shown via 

the causality link in Equation (1). The true state of the 

system is measured through a set of observations 

modelled by yk ϵ Rn in the observation space via the 

operator, H: f (t, x) → g (t, x), Ɐ (t,x) ϵ [0, T] × Ω in 

Equation (2).  

 𝑥𝑘+1 = 𝐹 (𝑥𝑘) + 𝑞𝑘 (1) 

 𝑦𝑘 = 𝐻 (𝑥𝑘) +  𝑣𝑘 (2) 
 

where the subscript ‘k’ denotes the timestep. The 
elements of the system state xk comprise of displacement 

and porewater pressure at the nodes of the discretized 

system. ‘qk’ is the process noise due to model error 

(which is implicitly taken into account from parameter 

uncertainty) and ‘vk’ is the measurement noise. The error 

covariance matrix is then given as E[qk qk
T] → Qk and 

E[vk vk
T] → Rk.. By incorporating the latest observation 

likelihood p(xk|y1:k-1) the posterior can be updated at time 

‘k’ in Equation (3).  

 𝑝(𝑥𝑘  | 𝑦1:𝑘) = 𝑝(𝑦𝑘 | 𝑥𝑘)𝑝(𝑥𝑘 | 𝑦1:𝑘−1)𝑝(𝑦𝑘 | 𝑦1:𝑘−1)  (3) 

 

The final goal of the data assimilation is to improve 

the state vector by obtaining the posterior distribution 

when monitoring data become available.  

2.2 Ensemble Kalman Filter 

The Ensemble Kalman Filter (EnKF) introduced by 

Evensen (2006) is based on the formulation of the 

Kalman Filter (Kalman, 1960) where the statistics of the 

state variable are represented by an ensemble of 

representations. This ensemble set is then forwarded in 

time by the nonlinear dynamics of the state evolution 

and analysed via the standard Kalman Filter analysis 

scheme to obtain the true posterior mean and variance at 

each time step. The ensemble representation of the 

forecast state vector is represented as 

 𝑥𝑘𝑓 = (𝑥𝑘𝑓,1 , 𝑥𝑘𝑓,2, 𝑥𝑘𝑓,3, … , 𝑥𝑘𝑓,𝑁) (4) 

 

The mean, anomaly and the subsequent covariance 

matrix of the ensemble forecast state vector is given as 

 𝑥𝑘𝑓 =  1𝑁  ∑ 𝑥𝑘𝑓,𝑛𝑁𝑛=1  (5) 

 𝑋𝑘𝑓 =  1√𝑁−1  (𝑥𝑘𝑓 −  𝑥𝑘𝑓) (6) 

 𝑃𝑘𝑓 = (𝑋𝑘𝑓)(𝑋𝑘𝑓)𝑇
 (7) 

 
An ensemble of perturbed observations with 

covariance matrix ‘R’ is defined.   
 𝑦𝑘𝑗 =  𝑦𝑘𝑡 + 𝑣𝑘𝑗  ;   𝑗 = 1,2, … , 𝑁 (8) 

 𝑌 =  1√𝑁−1  [𝑣𝑘1 , 𝑣𝑘2 , … , 𝑣𝑘𝑁] (9) 

 𝑅 = 𝑌 𝑌𝑇 (10) 
 

The Kalman gain ‘K’ is then obtained, and each 
ensemble member is updated in the analysis step 

 𝐾 =  𝑃𝑘𝑓 𝐻𝑇  [𝐻 𝑃𝑘𝑓 𝐻𝑇 + 𝑅]−1
  (11) 

 𝑥𝑘𝑎,𝑛 =  𝑥𝑘𝑓,𝑛 + 𝐾  [𝑦𝑛,𝑘 − 𝐻 𝑥𝑘𝑓,𝑛]  (12) 

 
 where,  𝑛 ~ (1, 𝑁) 

 𝑃𝑘𝑎 = [ 𝐼 − 𝐾 𝐻 ] 𝑃𝑘𝑓
 (13) 

2.3 Geotechnical Forward models 

In this study, an elastoviscoplastic constitutive model 

with structural degradation (denoted herein as M3) is 

implemented. The total strain rate is decomposed into 

elastic and viscoplastic strain components (Perzyna, 

1966).  

 𝜀�̇� = 𝜀�̇�𝑒 +  𝜀�̇�𝑣𝑝
 (14) 

 

The elastic part is denoted as 

 𝜀�̇�𝑒 = 𝜅∗ �̇�𝑧′𝜎𝑧′  (15) 

 

where κ* is the modified swelling index and σz’ the 

vertical effective stress. The viscoplastic component 

based on Creep-SCLAY1S model (Gras et al., 2017) is 

proposed as 
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𝜀�̇�𝑣𝑝 =  𝜇𝑖∗𝜏   { 𝜎𝑧′ (1+ 𝜒0)[1+ 𝜒0 𝑒𝑥𝑝(−𝜌𝜀𝑧𝑣𝑝)] 𝜎𝑝0′  𝑒𝑥𝑝( 𝜀𝑧𝑣𝑝𝜆𝑖∗− 𝜅∗) }
𝜆𝑖∗− 𝜅∗𝜇𝑖∗

 (16) 
 

For the elastic-plastic model (denoted herein as M1), 

the total strain rate consists of the elastic part (Equation 

(15)) and the elastic-plastic part. For stress levels 

beyond the apparent preconsolidation pressure, 𝜎𝑝0′ , the 

irrecoverable plastic strain is given as 

 𝜀�̇�𝑝 = (𝜆∗ − 𝜅∗) �̇�𝑧′𝜎𝑧′  (17) 

 

In this study, to account for destructuration effects in 

the elastoplastic model, the breakdown of the modified 

compression index to its intrinsic value is represented 

directly by proposing the relation below.  

 𝜀�̇�𝑝 = Ϛ [1 +  (𝜓Ϛ )  exp (−𝑏 𝜀𝑧𝑝)] �̇�𝑧′𝜎𝑧′ (18) 

 

where ψ = (𝜆∗ −  𝜆𝑖∗), Ϛ = (𝜆𝑖∗ −  𝜅∗) and ‘b’ is the scalar 

parameter defining the rate at which degradation occurs. 

This is different from the ‘ρ’ parameter used in M3 
model to capture structural degradation. This model is 

denoted as M2. These 3 constitutive models with 

differing complexity are coupled with consolidation and 

discretized with the finite difference procedure (Rahman 

and Can Ulker, 2018; Yin and Graham, 1996) to solve 

the coupled partial differential equations for a one-

dimensional settlement model simulated for an 

embankment loading. The parameters of all models are 

described in Table 1.    

3 CASE STUDY  

The problem geometry comprises of a single 

homogeneous soil layer of thickness, ‘H’ discretized 
using finite difference solution. An external load 

increment is applied at the top surface which is time 

dependent to simulate the construction of the 

embankment (3 m high and 20 m wide) until a specified 

time period. The embankment is built 3 m high with 

slope 1:2, on soil material of unit weight 21 KN/m3. For 

simplicity, the true value of hydraulic conductivity is 

maintained to enable better comparison between 

different constitutive models. In this study, an error of 2 

mm is chosen to generate noise from the true 

settlements. The synthetic noisy measurements for all 3 

models are generated from simulations with known 

parameters as shown in Table 1. The prior knowledge of 

the uncertain parameters is assumed to follow a 

multivariate lognormal distribution from which 100 

ensembles are generated for all cases.    

 

Table 1. Description of parameters of all constitutive models 
along with the synthetic true values to generate observations 

Parameters Constitutive models 

M1 M2 M3 

Modified compressibility 

index, λ* (-) 

0.27 0.27 - 

Preconsolidation pressure, 

σp’ (kPa) 

47 52 51 

Modified swelling index, 

κ* (-) 

0.025 0.025 0.025 

Modified intrinsic com-

pressibility index, λi* (-) 

- 0.18 0.12 

Destructuration constant, b 

(-) 

- 10 - 

Destructuration constant, ρ 

(-) 

- - 10.5 

Structural parameter, χ0 (-) - - 7.5 

Modified intrinsic creep 

index, μi* (-) 

- - 2.7e-3 

Reference time, τ (day) - - 1 

 

3.1 M1 model for capturing M2 soil behaviour  

This section investigates whether M1 model in 

combination with the Ensemble Kalman Filter can be 

used to capture a soil behaviour where observations are 

synthetically generated with noise using M2 model with 

known parameters from Table 1. Table 2 shows the prior 

and final assimilated values of the M1 model 

parameters. The initial coefficient of variation (COV) is 

chosen as 0.15 for all parameters. Figure 1, 2 and 3 

shows the back-calculated parameters of the M1 model 

with their corresponding confidence interval (1 standard 

deviation). It can be observed that the modified 

compressibility index (λ*) of M1 tries to reach a lower 

value mimicking the destructuration process of the M2 

model. This shows that even when the feature of 

destructuration does not exist in M1, it can still be able 

to capture that feature if it exists in the system with the 

help of data assimilation. The low convergence rate of 

the modified swelling index (κ*) is attributed to its lower 

sensitivity (Tao et al., 2020). The preconsolidation 

pressure (σ’p), in this case, converges toward a smaller, 

but reasonably close, value than the ground truth. Figure 

4 shows that M1 combined with EnKF provides an 

accurate forecast of the settlement against time than with 

just prior knowledge of the parameters. The calibrated 

parameters of M1 are subsequently used to predict the 

response beyond the time window used for DA, (i.e., 

beyond 2500 days). The settlement of the synthetic true 

system behaviour from the simulation is observed to be 

0.6968 m while that from the calibrated parameters of 

the M1 model is around 0.6967 m at 5000 days making 

it a robust set of parameters. This shows that the 

calibrated parameters can capture the future behaviour 

beyond the monitoring window where no observations 

are available. 
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Table 2. List of prior knowledge of parameters and their post-
assimilation values of Model M1 

Parameters Model M1 

Prior Final Assimilated 

Mean COV Mean COV 

λ* (-) 0.245 0.15 0.203 0.02 

σp’ (kPa) 55.5 0.15 50.3 0.01 

κ* (-) 0.029 0.15 0.027 0.14 

 

 
Figure 1. Convergence of modified compressibility index pa-
rameter from model M1  

 

 
Figure 2. Convergence of preconsolidation pressure parame-
ter from model M1 

 

 
Figure 3. Convergence of modified swelling index parameter 
from model M1 
 

 
Figure 4. Comparison of settlement forecast between prior 
knowledge of parameters and using data assimilation  

3.2 M2 model for capturing M1 soil behaviour  

This section investigates whether a complex M2 model 

can capture a simpler system where observations are 

synthetically generated with noise using M1 with known 

parameters from Table 1. The convergence of the M2 

parameters are not shown here for the sake of brevity but 

Table 3 shows the prior and final assimilated parameters 

along with their COV values for the M2 model. It can 

be observed that the destructuration parameter ‘b’ tends 
towards 0 and the modified intrinsic compressibility 

index (λi*) approaches a smaller value. This is expected 

as observed from the formulation of the M2 model in 

Equation (18) which now moves back to Equation (17) 

representing the M1 model. The preconsolidation 

pressure is captured reasonably accurately. The λ* value 

is slightly elevated than the original true value since the 

‘b’ parameter has not reached zero completely. The 

evolution of the gradient of the model M2 (see Figure 5) 

due to its structural degradation formulation attempts 

initially to reach the intrinsic value but as the 

observations get assimilated the gradient is pulled 

towards the M1 behaviour. The calibrated parameters of 

M2 are subsequently used to predict the response 

beyond the time window used for DA, (i.e., beyond 

2500 days). The settlement from the true system 

behaviour is 0.9982 m while that from the assimilated 

parameters of the M2 model is around 0.9978 m at 5000 

days making it a robust set of parameters.   

 
Table 3. List of prior knowledge of parameters and their post-
assimilation values of Model M2 

Parameters Model M2 

Prior Final Assimilated 

Mean COV Mean COV 

λ* (-) 0.201 0.15 0.285 0.04 

σp’ (kPa) 51.7 0.15 48.1 0.02 

κ* (-) 0.029 0.15 0.023 0.13 

λi* (-) 0.106 0.15 0.092 0.14 

b (-) 7.5 0.15 0.81 0.12 
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Figure 5. Convergence of stiffness toward M1 soil behaviour 
due to employed data assimilation  
 

 
Figure 6. Comparison of settlement forecast between prior 
knowledge of parameters and using data assimilation  

 

3.3 M1 and M2 model for capturing M3 soil 

behaviour  

Although it is demonstrated that data assimilation can be 

a useful tool to capture the behaviour of the system with 

a model, not necessarily matching its complexity, it can 

be argued that both the M1 and M2 models are strictly 

hierarchical to each other which is believed to be the 

reason for the more or less compatible results. 

Furthermore, even beyond the monitoring window, the 

calibrated model parameters are still able to capture the 

future behaviour given incorrectly chosen model. 

However the latter finding need to be further 

investigated with a system which exhibits time 

dependent behaviour.  

For the final case, a system with all the complex 

features from which observations are generated 

synthetically with noise using M3 model is considered 

(see Table 1 for parameters used to generate the 

synthetic data). The simpler models M1 and M2 are 

coupled with EnKF to investigate whether they can 

capture the M3 behaviour. As shown in Figure 7, the 

settlements are captured well using both models M1 and 

M2. In this case, in M1, the preconsolidation pressure 

goes to lower value far from the system truth with 

elevated λ* value. This is due to the compensation for 

the missing features from the M3 model. In contrast, for 

the M2 model, it is the intrinsic value λi* that reaches a 

higher value since the ‘b’ parameter is elevated due to 

the presence of structural degradation in the system. 

Similar to M1, M2 also shows convergence of σp’ to 

lower values. Although most of the assimilated 

parameters goes beyond the physical meaning,  it still 

show better performance from both these models in 

terms of settlement prediction in the short period. At 

2500 days, the settlement of the true system is 1.2465 m. 

For M1, the prediction is 1.2515 m and M2 is 1.2479 m 

making M2 more accurate than the M1 model. In terms 

of precision both models achieve similar result when 

using data assimilation.  

The calibrated parameters for models M1 and M2, are 

subsequently used to predict the response beyond the 

time window used for DA, i.e. beyond 2500 days (see 

Figure 8). Although a significant improvement from the 

prior knowledge can be observed, the results show that 

both models underpredict the future settlements when 

the calibrated parameters of M1 and M2 resulting from 

the DA procedure are used for future forecasts. This 

shows that the assimilated parameters are not robust in 

this case due to the presence of time-dependent 

deformations which both the models, the elastoplastic 

M1 and M2, fail to capture beyond the monitoring 

window. This deviation can be regarded as low for this 

particular static problem but for scenarios with large 

changes in the system’s boundary condition, the 

discrepancy can be severe. This finding underlines the 

importance of the fidelity of the forecasting model 

proving that a physically accurate model, of which the 

parameters and state variables are updated with DA, is 

always preferred that can be able to accurately predict 

the future state of the system.  

 
Table 4. List of prior knowledge of parameters and their post-
assimilation values of Model M1 

Parameters Model M1 

Prior Final Assimilated 

Mean COV Mean COV 

λ* (-) 0.176 0.15 0.33 0.01 

σp’ (kPa) 55.8 0.15 45.6 0.02 

κ* (-) 0.029 0.15 0.018 0.14 

 
Table 5. List of prior knowledge of parameters and their post-
assimilation values of Model M2 

Parameters Model M2 

Prior Final Assimilated 

Mean COV Mean COV 

λ* (-) 0.176 0.15 0.125 0.06 

σp’ (kPa) 55.8 0.15 40.3 0.01 

κ* (-) 0.029 0.15 0.022 0.13 

λi* (-) 0.114 0.15 0.320 0.01 

b (-) 14.8 0.15 27.5 0.03 
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Figure 7. Comparison of settlement forecast of M1 and M2 
models between prior knowledge of parameters and using 
data assimilation on a complex system.  
 

 
Figure 8. Investigation of long-term settlement prediction of 
both M1 and M2 models on a complex system  
 

4 CONCLUSIONS 

In this paper, the effectiveness of data assimilation in 

capturing the behaviour of the system even if the model 

complexity does not match that of the in-situ 

geotechnical system is studied. It is shown that by 

integrating the observations using Ensemble Kalman 

Filter, the model is able to capture the behaviour of the 

system (be it simple or complex) within the monitoring 

time window. Furthermore, using the calibrated 

parameters, the model is still able to capture the long 

term behaviour of the system well beyond the 

monitoring window where observations are not 

available. This shows that the choice of a suitable model 

is not based on capturing all the physical processes of 

the system as long as it is augmented with a data 

assimilation procedure. However, for system with time 

dependent behaviour, the calibrated parameters of the 

simpler non-viscous models struggle to capture the 

creep settlement beyond the monitoring window 

although the short term behaviour is well captured. 

Hence the assimilated parameters of the simpler models 

are not robust enough for scenarios that substantially 

change the system’s behaviour although a significant 

improvement is still achieved compared to the prior 

knowledge of the parameters. This can be partially 

alleviated by monitoring over longer duration which in 

most cases is not cost efficient. The findings in this study 

are based on a simplified numerical model to maintain 

computational efficiency but this can be scaled to more 

advanced numerical models to investigate the reliability 

of various geotechnical infrastructures involving 

different and complex stress paths.  
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