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A B S T R A C T

This thesis presents novel numerical methods and a multi-scale modelling
framework tailored for advancing the phase-field fracture model with appli-
cations in linear elastic and poro-elastic media. In the realm of the numerical
methods, the focus lies on devising computationally efficient and robust
monolithic solution techniques. These techniques aim to solve non-convex
fracture problems, while ensuring the irreversibility of fracture in a vari-
ationally consistent way. The multi-scale modelling framework seeks to
incorporate microstructural heterogeneities (such as material constituents,
voids, and defects) and fractures to derive engineering-scale mechanical
responses.

Within the range of monolithic solution techniques proposed in this
thesis, the fracture energy-based arc-length method and the Hessian scaling
method stand out for their demonstrated computational efficiency and
robustness on benchmark mechanical problems. Furthermore, to ensure the
irreversibility of fracture in a variational context, a micromorphic variant of
the phase-field fracture model is presented. The micromorphic variant not
only allows a point-wise treatment of the fracture irreversibility constraint,
but also demonstrates compatibility with the aforementioned arc-length
method. Based on the computational efficiency and robustness proven by
the arc-length method, this thesis presents a time-step computing variant of
the method for hydraulic fracturing problems.

Furthermore, in the context of multiphysics fracture problems, a novel
energy functional is proposed for soil desiccation cracking. The energy
functional incorporates the part of the water pressure propagating into the
solid skeleton in the fracture driving energy. Numerical experiments that
utilize the integration point Hessian scaling method showcase the model’s
ability to capture experimentally observed phenomenon.

Finally, a hierarchical multi-scale phase-field fracture framework is de-
veloped using the variationally consistent homogenization technique. The
framework allows the selective upscaling of micro-structural information
to the engineering scale. The numerical multi-scale ‘finite element squared’
(FE2) experiment conducted in this thesis successfully demonstrates the
solvability of the engineering and fine-scale governing equations in a nested
sequence.

The culmination of the novel numerical methods and the multi-scale
framework represents a significant step towards robust, computationally
efficient, and accurate modelling of fractures in engineering materials and
structures.

Keywords: multiphysics, multiscale, phase-field, fracture, fracking, desicca-
tion, solution techniques, solvers, finite element
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Part I

P R O L O G U E

The need for computational modelling of fracture and relevant theoreti-
cal background.





1
I N T R O D U C T I O N

This chapter presents a background to the ever-increasing interest in the computa-
tional modelling of fracture(s) in engineering materials and structures. The relevant
research gaps are identified and the chapter concludes with an outline of this thesis.

1.1 background

‘Why and how materials fracture?’ is a fundamental question in the design of
engineered structures. Fracture is a common material failure mechanism,
and is often associated with catastrophic consequences. One may think of
infrastructure (such as, buildings, bridges, dams and embankments) col-
lapsing due to severe earthquakes and winds [3–7]. Earthquakes and winds
induce mechanical forces on these structures, leading to high stresses in the
underlying material. This results in material fracture and eventual structural
collapse. Fractures, however, may be induced by non-mechanical forces as
well. For instance, earthen road/rail embankments, flood protection dykes
and dams may crack due to high temperatures and low relative humidity,
severely undermining their usefulness. This phenomenon is referred to
as drying-induced or desiccation cracking. Desiccation cracks also appear in
agricultural lands, resulting in nutrient shortage for crops [8], in turn affect-
ing food security. Moving onto an energy security perspective, controlled
fracturing of shale rocks is required to extract oil and natural gas, without
creating undesirable artificial earthquakes and groundwater contamination.
This process is known as hydraulic fracturing. The aforementioned exam-
ples pertaining to human habitation and safety, food and energy security
stress the need for accurate fracture prediction models for different kinds of
materials around us.

The study of the fracturing phenomenon in materials gained impetus
following the breaking of the Liberty cargo ships due to hull and deck
fractures in the 1940s [9]. Pioneering theoretical contributions were made by
Griffith and Taylor [10], and Irwin [11], and following the advent of powerful
computers in the past 50 years, the development of computational fracture
models also gained momentum. Broadly, the computational fracture models
can be categorized into discrete and diffused (smeared) fracture modelling
techniques. In discrete fracture models, the fracture is explicitly represented
using discontinuous surfaces. Examples of these models include the Cohe-
sive Zone Model (CZM) [12–14], eXtended Finite Element Method (XFEM)
[15–17], and intra-element (embedded) discontinuity approaches [18, 19].
The elegance of these models is the similarity in the representation of frac-
tures with those observed in reality. However, the discrete fracture models
involve a rather cumbersome and complex modelling process, often requir-

3
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ing a priori knowledge of possible fracture propagation path and additional
ad hoc criteria for complex fracture topologies (branching, kinking, merging
of fractures). Other computational challenges include the ill-convergence of
the solution techniques used to simulate the fracture of a material. Often,
the solution techniques break-down even before the simulated material
fractures.

In order to circumvent the challenges pertaining to discrete fracture
models, one resorts to diffused fracture models. In these models, the fracture
is represented by a band of finite width, where the material strength and
stiffness properties are degraded. Examples of diffused fracture models
include the phase-field model for fracture [20–22], gradient damage [23, 24],
and peridynamics [25–27]. Among these models, the phase-field fracture
model, conceived as a variational approach to Griffith and Taylor’s brittle
fracture theory [10], has grown in popularity in the past two decades. Based
on a simple notion of minimizing the global energy of a structure/material,
the phase-field fracture model circumvents the need for additional ad hoc
criteria or a priori knowledge of the fracture propagation path. Complex
topological features such as branching, merging and kinking of fractures
can be simulated without a priori knowledge of the problem at hand. These
desirable features offer the phase-field fracture model an edge over the
discrete fracture models.

The phase-field fracture model, however, exhibits the notoriety of solu-
tion technique break-down, even before a fracture starts propagating in
the simulated material. From a mathematical standpoint, this behaviour is
attributed to the non-convex nature of the underling energy description, for-
mally referred to as ‘the energy functional’. A non-convex energy functional
results in an ill-behaving Hessian, which impedes the convergence of con-
ventional solution techniques, like the Newton-Raphson method. This has
led to the development of alternative solution techniques, see De Lorenzis
and Gerasimov [28] or Wick [29] for more details. Most of these alternative
solution techniques have demonstrated mixed performance for the wide
range of problems simulated so far. Thus, the development of robust solu-
tion techniques for the phase-field fracture model is still an active area of
research. This leads to the first research objective of this thesis formulated
as:

Research Objective 1: Conduct an investigation into existing solution
techniques for the phase-field fracture model, and propose novel
computationally efficient monolithic solution technique(s).

A second computational challenge pertaining to the phase-field fracture
model, arises from the notion of fracture irreversibility, i.e., a fracture is
never allowed to heal. From a realistic standpoint, one might challenge
the irreversibility notion as materials around us do exhibit some form of
self-healing. Nevertheless, the engineering design of structures/materials
follows a conservative approach, as such fractures are not allowed to heal
computationally. The fracture irreversibility condition in the phase-field
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fracture model does pose a challenge to computational frameworks, such as
the finite element method [30, 31]. Traditionally, the finite element method
is not developed to handle these irreversibility bounds/constraints. There-
fore, researchers have opted to use constrained optimization techniques in
conjunction with the finite element method to model fractures using the
phase-field model. However, apart from the penalty method [32], techniques
such as the primal-dual active set method [33, 34], interior-point method
[35], and augmented Lagrangian method [36] are rather complex to imple-
ment. This is the reason why a rather simple notion of enforcing pointwise
irreversibility of the fracture driving energy, the history variable approach
[37] gained popularity. However, the history variable approach is variation-
ally inconsistent. With this approach, starting from a set of strong or weak
form phase-field fracture model equations, the energy functional cannot
be retrieved. Furthermore, De Lorenzis and Gerasimov [28] reported an
over-estimation of the diffused fracture bandwidth with the history variable
approach. Motivated by the study, a second research objective of this thesis
is formulated as:

Research Objective 2: Propose a numerical method that allows point-
wise treatment of fracture irreversibility, albeit in a variationally
consistent fashion.

Assuming that a choice of fracture model is made, and pertinent compu-
tational challenges are addressed, one may tackle a wide range of problems
involving single or several simultaneous physical phenomena in a material.
The latter holds more appeal due to the inherent multiphysics nature of
real-life processes/events. For instance, in hydraulic fracturing of shale
rocks or desiccation cracking of soils, the underlying material comprises of
a porous solid grain skeleton with interconnected pores/voids. These pores
may contain different kinds of fluids (liquids and gases). Whenever a rock
or a soil specimen is disturbed from its state of equilibrium, the mechanical
response and the movement of fluids in the pores affect each other. When
a fracture occurs, not only the porous skeleton loses strength, but also a
channeled preferential path is created for the fluid flow. One can deduce
that fluid flow through a fractured rock/soil specimen transitions from the
laminar Darcian flow in the intact material to a Poiseuille-type fluid flow in
the cracks. As such, computational fracture models are required to capture
these fracture-induced responses.

Phase-field models for hydraulic fracture have been extensively developed
over the past decade. They vary in the construction of the energy functional
and fidelity w.r.t. representation of fluid flow in the diffused fracture region.
However, most models involve either convexification measures [36, 38, 39] to
circumvent minimizing a non-convex energy functional or computationally
expensive alternate minimization solution techniques [40–42]. A robust and
computationally efficient solution technique for hydraulic fracture is still
elusive to the computational mechanics community.
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In the context of desiccation cracking in soils, one observes a significant
gap in the development of computational fracture models. Although, Irwin’s
Linear Elastic Fracture Mechanics (LEFM) theory [11] has been applied as
early as in the 1960s [43], the focus was limited to obtaining analytical
expressions for the crack depth and spacing. In later developments, the
cohesive zone model was adopted within the framework of distinct element
method [44–47]. Be it within a distinct element method or a finite element
method framework, the cohesive zone model requires a priori knowledge of
the fracture propagation path, which is undesirable. Phase-field desiccation
cracking models [48–50] circumvent the undesirable features associated with
‘discrete’ cohesive zone models. However, so far, the phase-field models for
desiccation cracking in soil have not achieved consensus in the construction
of energy functional and in the introduction of fracture dependent material
parameters to transition from a Darcian flow to Poiseuille-type flow upon
fracturing. This motivates the need to investigate energy functional con-
structs and implement the transition from a Darcian flow to Poiseuille-type
flow upon fracturing. Furthermore, similar to phase-field hydraulic fracture
models, the desiccation models developed so far have relied on the compu-
tationally expensive alternative minimization solution techniques [48–51].
The use of monolithic solution techniques is still an open research question.
Thus, a research objective is formulated based on the open-challenges as-
sociated with the phase-field hydraulic fracture and desiccation cracking
models as:

Research Objective 3: Propose computationally efficient solution
techniques and investigate possible fidelity enhancements for the
phase-field hydraulic fracturing and desiccation cracking models.

In computational modelling of linear elastic or porous media (hydraulic
fracturing, soil desiccation cracking), the governing equations are directly
formulated at the engineering design scale. These governing equations are
based on physical laws, such as the balance of linear momentum and the
conservation of mass. The associated material properties and their evolution
are described using phenomenological constitutive models/laws, based
on select few experiments. As such, these constitutive material laws are
empirical relationships with limited observations. Consequently, they do not
cover the full range of material behaviour. Adopting an alternative approach,
one may disregard the notion of constitutive laws, and directly model the
material and its associated physical laws on a finer scale. Depending on
the length-scale assumed for the fine scale, the material may comprise of
atoms, molecules, grains or phases. Thereafter, an engineering scale material
behaviour may be obtained from the fine scale information, a concept known
as multi-scale modelling of materials.

Broadly, multi-scale modelling of materials may be categorized into re-
solved scale and upscaling/hierarchical methods. Resolved scale methods
employ engineering scale and fine scale physics in different part of a speci-
men. At the interface between the scales, exchange of information is carried
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out. Most phase-field multi-scale fracture models [52–55] have adopted the
different variants of the resolved scale method. However, when the fine scale
features (such as material phases, voids and defects) are several magnitudes
smaller than that of the engineering scale, resolved scale methods become
computationally expensive. In such cases, one resorts to upscaling/hierarchi-
cal multi-scale models. However, the hierarchical models [56, 57] developed
so far, are restricted to upscaling elastic properties. The fractures on the
fine scale are not accounted for. As such, the development of a variationally
consistent hierarchical multi-scale phase-field fracture model accounting for
fine scale fractures, is still an open question. This is addressed as the final
research objective in this thesis.

Research Objective 4: Develop a variationally consistent hierarchical
phase-field multi-scale framework for fracture in complex heteroge-
neous materials.

1.2 thesis outline

This thesis comprises of several parts, aimed providing the foundational
concepts and addressing the research objectives. In Part I, the background
to this thesis has already been presented in the previous section. Chapter 2
provides the basic theoretical concepts, such as the finite element method,
computational fracture models, poro-mechanics, and multi-scale modelling
of materials. These concepts are later adopted to address the research
objectives of this thesis.

Part II of this thesis is titled Numerical methods for phase-field fracture, and
comprises of Chapters 3 and 4. They address research objectives 1 and 2
respectively. Chapter 3 presents a set of monolithic solution techniques for
the ‘non-convex’ phase-field fracture model. In Chapter 4, a variationally
consistent way of enforcing fracture irreversibility is developed using a
micromorphic theory. The efficacy of the numerical methods is investigated
using benchmark numerical experiments.

Part III of this thesis is titled Computational modelling of fractures in porous
media, and comprises of Chapters 5 and 6. They address research objective
3. A novel arc-length method is presented for the phase-field hydraulic
fracturing model in Chapter 5. Chapter 6 presents a phase-field desiccation
cracking model for clayey soil, where a novel energy functional is proposed
and monolithic solution techniques developed in Chapter 3 are adopted for
the numerical experiments.

Part IV of this thesis is titled Multi-scale modelling of fractures, and com-
prises of Chapter 7. Therein, a variationally consistent homogenization tech-
nique is adopted to develop a hierarchical multi-scale phase-field fracture
framework. Additional concepts, such as selective upscaling/homogeniza-
tion are introduced.
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Part V concludes this thesis with new developments, conclusion, and
future research directions in Chapter 8.



2
B A S I C T H E O R E T I C A L C O N C E P T S

This chapter presents the theoretical concepts used throughout this thesis. The
finite element method is introduced for a generic (possibly nonlinear) continuum
mechanics problem. It is followed by discussions on computational modelling of
fracture, poro-mechanics, and multi-scale modelling of materials.

2.1 the finite element method

The Finite Element Method (FEM) [30, 58, 59] is a general numerical tech-
nique that provides a formalism for generating discrete (finite) algorithms to
approximate solutions of Partial Differential Equations (PDEs) on a certain
geometry1 [31]. To this end, a given geometry, for instance in Figure 2.1a is
discretized (sub-divided) into a finite numbers of parts, as shown in Figure
2.1b. The smaller triangular parts referred to as elements and their vertices
designated as nodes constitute a finite element mesh. The FEM, however,
offers the flexibility in placing nodes anywhere inside an element or on its
boundary. The solution of a PDE is typically computed at the nodes.

Ω

ΓuD

ΓuN

(a) A continuum Ω ∈ R2

X

Y

Z

(b) Finite element mesh

Figure 2.1: Figure (a) presents a continuum Ω ∈ R2 with Dirichlet and Neumann boundaries indicated
as Γu

D and Γu
N respectively. The corresponding finite element discretized mesh in shown in

Figure (b).

In the subsequent part of this section, the application of the FEM is
presented for a generic continuum mechanics problem, involving the defor-
mation of a two-dimensional solid geometry under mechanical forces.

A generic continuum mechanics problem

Let us assume a solid geometry Ω ∈ R2 in Figure 2.1, subjected to me-
chanical forces. Its boundary Γ is additively decomposed into Dirichlet and
Neumann boundaries, indicated as ΓuD and ΓuN respectively. The rate of the
forces acting on Ω are assumed to be low enough to eliminate the dynamic

1 A geometry is a collection of points, lines, surfaces and/or volumes.

9
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(inertia) effects. The potential energy functional for the solid geometry is
then stated as

E(u) =
∫
Ω
Ψ(ϵ[u]) dΩ︸ ︷︷ ︸

internal energy

−

∫
ΓuN

tup · u dΓ −
∫
Ω

b · u dΩ︸ ︷︷ ︸
externally applied energy

,
(2.1)

where, Ψ(ϵ[u]) is the strain energy density. It is a function of the strain ϵ,
which is defined as the symmetric gradient of the displacement2 u,

ϵ[u] =
1

2

(∇u +∇uT
)
. (2.2)

In the subsequent integrals of the energy functional (2.1), tup is an external
traction acting on the Neumann boundary ΓuN, and b represents the body
force. Examples of body forces include gravitational force and magnetic
force.

The energy functional (2.1) is not used for generating discrete FEM al-
gorithms to approximate solutions for the generic continuum mechanics
problem. Instead, the variational equation3 is used. The variational equation
is obtained upon minimizing the energy functional (2.1) w.r.t. its primary
unknown, the vector-valued displacement field u. With appropriately de-
fined test and trial Sobolev4 spaces H1(Ω), a complete variational problem
statement is defined as:

Variational Problem 1. Find u ∈ U such that

E ′(u; δu) =
∫
Ω

∂Ψ(ϵ[u])
∂ϵ︸ ︷︷ ︸

σ(ϵ[u])

: ϵ[δu] −
∫
ΓuN

tup · δu dΓ

−

∫
Ω

b · δu dΩ = 0 ∀ δu ∈ U0

(2.3)

using pertinent time-dependent Dirichlet boundary conditions up on ΓuD
and Neumann boundary condition tup on ΓuN. The trial and test spaces are
defined as

U = {u ∈ [H1(Ω)]dim|u = up on ΓuD}, (2.4a)

U0 = {u ∈ [H1(Ω)]dim|u = 0 on ΓuD}. (2.4b)

■

2 adopting the small-strain or linearized kinematics assumption
3 also referred to as ‘variational form’, ‘weak form’, or ‘Euler-Lagrange’ equation
4 A function u for which

∫
Ω(u)2 + (∇u)2 < ∞, belongs to Sobolev space of degree one,

denoted by H1(Ω). For more on function spaces, the reader is referred to [31].
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With reference to the Variational Problem 1, the definition of the Cauchy
stress, σ(ϵ[u]) is introduced as the derivative of the strain energy density
w.r.t. the strain,

σ(ϵ[u]) =
∂Ψ(ϵ[u])
∂ϵ

. (2.5)

Finite element discretized equations

Within the FEM framework, the Variational Problem 1 is assumed to operate
on the discrete finite element mesh, shown in Figure 2.1b. Subsequently, the
solution computed at the nodes is stored in a finite-dimensional vector ũ.
The solution vector for a particular element el, ũel is then extracted using
an incidence/location matrix Lel as

ũel = Lelũ. (2.6)

Thereafter, the continuous solution field uel(x) inside the element el is
computed using,

uel(x) = Nel(x) ũel, (2.7)

where, Nel is matrix of interpolation functions5. For a two-dimensional
problem, the Nel matrix is given by

Nel(x) =

[
N1(x) 0 N2(x) 0 . . . Nn(x) 0

0 N1(x) 0 N2(x) . . . 0 Nn(x)

]
, (2.8)

where, an individual interpolation function NI(x) attains a value one at the
Ith node and zero at other nodes. Adopting a Bubnov-Galerkin approach6,
the continuous test function for the element el is stated in a similar fashion
as in (2.7),

δuel(x) = Nel(x) δũel. (2.9)

The strain field inside element el follows from (2.2), and is given by

ϵ[u] = Bel(x)ũel and ϵ[δu] = Bel(x)δũel, (2.10)

where, the Bel matrix is defined as

5 also called basis functions or shape functions in the finite element method literature
6 Bubnov-Galerkin approach requires that test and trial functions come from the same finite-

dimensional space.



12 basic theoretical concepts

Bel(x) =

N1,x(x) 0 N2,x(x) 0 . . . Nn,x(x) 0

0 N1,y(x) 0 N2,y(x) . . . 0 Nn,y(x)

N1,y(x) N1,x(x) N2,y(x) N2,x(x) . . . Nn,y(x) Nn,x(x)

 .

(2.11)

Note that the individual components of the Bel matrix are derivatives of the
interpolation functions w.r.t. the argument after the comma. Furthermore,
the last row in the Bel matrix is added to compute the shear strain, an
essential component in the study of deformable solids.

Substituting (2.6), (2.7), (2.9), and (2.10) in the momentum balance equa-
tion (2.3), and assuming the resulting equation to hold for an arbitrary
choice of the test function δũ results in the discrete problem:

Discrete Problem 1. Find ũ such that

fext − fint(ũ) = 0, (2.12)

where,

fint(ũ) =
nel∑
el=1

LT
el

∫
Ωel

BT
el σ(ϵ[ũ])dΩ, (2.13)

and

fext =
nel∑
el=1

LT
el

∫
ΓuN,el

NT
el tup dΓ +

nel∑
el=1

LT
el

∫
Ωel

NT
el b dΩ, (2.14)

respectively, and using pertinent Dirichlet boundary conditions ũp on ΓuD.
Note that nel is the total number of elements in the finite element mesh.

Without the loss of generality, the Discrete Problem 1 is assumed as a
nonlinear problem. A nonlinear discrete problem may be solved using first-
order optimization techniques (for e.g., fixed point method, gradient descent
method, Wegstein’s method [60]) or second-order optimization techniques
(for e.g., Newton-Raphson method, quasi Newton-Raphson method). In the
computational mechanics community, the Newton-Raphson method and its
variants are often used to solve nonlinear problems. Being a second-order
iterative solution technique, it requires both the gradient and the Hessian
(stiffness matrix) of the functional which is minimized. In the context of
the Discrete Problem 1, the energy functional E(u) in (2.1) is minimized, its
gradient in the discrete form expressed in (2.12), and the Hessian K is given
by
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K =
∂fint(ũ)
∂ũ

. (2.15)

Given a solution ũk in the kth iteration, the Newton-Raphson method
computes the current (k+ 1)th solution as

ũk+1 = ũk +α∆ũk, with ∆ũk = K−1
k

[
fext − fint,k(ũ)

]
, (2.16)

where, α ∈ (0, 1] is a scalar line-search parameter. When α is explicitly set to
1, the solution technique is referred to as the full Newton-Raphson (full-NR)
method.

Remark 1. The solution increment ∆ũk in (2.16) is computed without
computing the Hessian inverse K−1

k explicitly. Using direct solvers (e.g.,
Umfpack [61], MUMPS [62], Pardiso [63, 64]), the action of the Hessian
inverse on the vector

[
fext − fint,k(ũ)

]
is computed using LU factorization

of the Hessian, followed by forward and backward substitutions.

2.2 computational modelling of fracture in materials

The computational fracture modelling techniques can be broadly classified
into two categories, the discontinuous (discrete) approach and the con-
tinuous (smeared) approach. In resemblance to the observed reality, the
discontinuous modelling approach introduces the crack as a pair of surfaces
in a continuum. Across these surfaces, the possible jump in the displacement
field is computed. Examples of discontinuous modelling approaches include
Cohesive Zone Model (CZM) [12–14], PUFEM [65], and XFEM [15, 16]. How-
ever, these models require changes to the finite element framework, which
include adaptation of discontinuous displacement kinematic descriptions,
dynamic tracking of the fracture front and mesh adaptivity. For complex
fracture topologies (crack branching, merging and kinking), these changes
may be prohibitively complex to incorporate in a computational model.

On the other hand, in continuous fracture modelling approaches, both the
intact material and the fracture is modelled as a continuum. The fracture is
viewed as weaker material with limited or no strength and stiffness, and is
smeared over a finite band width. Although this representation of fracture
departs from the observed reality, the modelling approach remains appeal-
ing from the finite element modelling perspective. Unlike the discontinuous
modelling approaches, continuous models such as the gradient damage
model [23, 24, 66] and the phase-field fracture model [20–22] circumvents
the need for incorporating any discontinuity, tracking of the fracture front,
and adaptive mesh refinement. The phase-field fracture model, developed
over the last two decades, has shown its flexibility in modelling complex
fracture topologies without any ad hoc criterion for different materials, as
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reported by De Lorenzis and Gerasimov in [28]. As such, the phase-field
fracture model is chosen as the fracture modelling approach in this thesis.

2.2.1 The phase-field fracture model

The phase-field fracture model emerged from the variational approach
towards brittle fracture pioneered by Francfort and Marigo [20], and its
regularized formulation proposed in [21, 22]. The model introduces an order
parameter, a scalar continuous phase-field variable φ, as an approximation
of a discrete crack. An illustration of this approximation is presented in
Figure 2.2, where a continuum Ω ∈ R2 embedded with a discrete crack is
presented in (a), and its phase-field (φ) regularized counterpart is shown in
(b). The phase-field φ : Ω −→ [0, 1] localizes into a band of finite width, l,
where zero and one correspond to the intact and fully fractured material
states, respectively.

Ω C

ΓuD

ΓuN

(a) discrete crack

Ω
l

ΓuD

ΓuN

(b) diffused (smeared) crack

Figure 2.2: A solid Ω ∈ R2 embedded with (a) discrete crack C and (b) diffused (smeared) crack, with
Dirichlet and Neumann boundaries indicated as Γu

D and Γu
N, respectively. Figure reproduced

from [1].

The energy functional for the fracturing continuum in Figure 2.2a is ex-
pressed as

E(u,C) = Ψ(ϵ[u]) dΩ −

∫
ΓuN

tup · u dΓ −
∫
Ω

b · u dΩ+Gc

∫
C

dΓ , (2.17)

where, Ψ(ϵ[u]) represents the strain energy density, and tup and b indicate
the surface traction and the body force, respectively. The fracture energy is
contributed by the last integral, where Gc is the Griffith fracture toughness.

The phase-field fracture model [21, 22] incorporates an approximation of
the discrete fracture energy using elliptic Ambrosio-Tortorelli function [67],

Gc

∫
C

dΓ ≈
∫
Ω

Gc

cw

(
w(φ)

l
+ l|∇φ|2

)
dΩ, (2.18)

where, the phase-field φ : Ω −→ [0, 1] represents the fracture in a smeared
(diffused) sense (see Figure 2.2b), cw is a normalization constant linked
with the choice of locally dissipated fracture energy w(φ) [68]. Thereafter,
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the phase-field energy functional for a fracturing continuum in Figure 2.2b
is stated as

E(u,φ) =
∫
Ω
g(φ)Ψ+(ϵ[u]) dΩ +

∫
Ω
Ψ−(ϵ[u]) dΩ −

∫
ΓuN

tup · u dΓ

−

∫
Ω

b · u dΩ+

∫
Ω

Gc

cw

(
w(φ)

l
+ l|∇φ|2

)
dΩ,

(2.19)

where, an additive decomposition of the strain energy density Ψ(ϵ[u]) yields
the fracture driving energy Ψ+(ϵ[u]) and the residual energy Ψ−(ϵ[u]). A
degradation function g(φ) is attached to Ψ+(ϵ[u]), accounting for the loss
of strength and stiffness properties of the material upon fracture.

Choice of degradation and locally dissipated fracture energy functions

The phase-field fracture model offers flexibility in the construction of the
degradation function g(φ), albeit with the following restrictions,

• g(0) = 1 and g(1) = 0, since φ = 0 and 1 represent the intact and fully
fractured material states, respectively,

• g ′(φ) < 0, for a strictly decreasing monotone, and

• g ′(1) = 0, in order to ensure that the energy converges to a finite value
for a fractured material state.

The last criterion g ′(1) = 0 ensures a zero crack driving force for a fully
developed fracture, i.e., φ = 1. The zero crack driving force prevents the
widening of localization band (see Figure 2.2b) in the direction orthogonal
to the fracture.

Remark 2. A key difference between the phase-field fracture model and the
gradient-enhanced continuum damage model [23] pertains to the fracture
driving force. Unlike the phase-field fracture model, in gradient-enhanced
damage models, the fracture driving force is constant. This results in the
orthogonal widening of the localization band [24].

Table 2.1 presents some of the popular degradation functions from the
phase-field fracture literature. The quadratic function [22] and the cubic
function [69] are adopted for modelling brittle fracture, whereas the rational
fractions [2, 66] are a popular choice for modelling quasi-brittle fracture.
Among the latter two, the rational fraction degradation function proposed
by Wu [2] is adopted in this thesis. It involves additional material parameters
(p, a1, a2, and a3) which are calibrated from the different cohesive zone
traction-separation relations. For a detailed derivation of these parameters,
the reader is referred to Section 3 of [2]. Table 2.2 presents some of the
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cohesive zone traction-separation relations adopted in phase-field fracture
models. For all models, the parameter a1 is computed as

a1 =
4 lch
cw l

, (2.20)

where, lch is the Irwin’s characteristic length, which governs the length of
the fracture process zone. It is given by

lch =
E0Gc

f2t
, (2.21)

where, E0 and ft represent the Young’s modulus and the tensile strength of
the material, respectively.

g(φ) Contribution

(1−φ)2 Bourdin [22]

3(1−φ)2 − 2(1−φ)3 Borden et al. [69]

(1−φ)2

(1−φ)2 +φ+pφ2
Lorentz and Godard [66]

(1−φ)p

(1−φ)p +a1φ+a1a2φ2 +a1a2a3φ3
Wu [2]

Table 2.1: Commonly used degradation functions in the phase-field fracture literature

Traction-separation relation p a2 a3

Linear 2 −0.5 0

Exponential 2.5 0.1748 0

Cornellisen et. al. [70] 2 1.3848 0.6567

Table 2.2: Cohesive zone traction-separation relations adopted in the phase-field fracture models [2].

Furthermore, the commonly used local dissipation fracture energy func-
tions, w(φ) are presented in Table 2.3. Here, AT and PFCZM are abbrevi-
ations for Ambrosio-Tortorelli [67] and Phase-Field regularized Cohesive
Zone Model [2], respectively. In the cases of AT1 and PFCZM, an elastic
stage precedes the onset of the phase-field fracture evolution. However,
this elastic stage is missing from the AT2 model. The phase-field fracture
evolves as soon as a specimen is loaded. In order to recover a pre-peak
linear elastic behaviour for the AT2 model, Borden et al. [69] proposed a
cubic degradation function (see Table 2.1).

Decomposition of the strain energy density

Within the phase-field fracture model, the strain energy density Ψ(ϵ[u]) is
additively decomposed into fracture driving Ψ+(ϵ[u]) and residual Ψ−(ϵ[u])
energies. The model offers flexibility in the choice of decomposition. Table
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Abbreviated name w(φ) cw

AT1 φ 8/3

AT2 φ2 2

PFCZM 2φ−φ2 π

Table 2.3: Commonly used local fracture energy functions in the phase-field fracture literature

2.4 provides the frequently used strain energy density decompositions in
the phase-field fracture literature. In this context, K, λ and µ are material
constants representing the bulk modulus, Lamé constant and shear modulus,
respectively. The trace operator is given by tr, while ⟨•⟩± represents the
positive/negative Macaulay brackets. The latter is given by 0.5(• ± | • |),
where | • | indicates the absolute value of ‘•’. Furthermore, ϵdev is the
deviatoric strain tensor, and ϵ± indicates the tensile/compressive strain
tensors, obtained through spectral decomposition of the strain tensor.

Ψ+ Ψ− Contribution

µϵdev : ϵdev +
1
2Ktr

2(ϵ) 0 Bourdin [22]

µϵdev : ϵdev
1
2Ktr

2(ϵ) Lancioni and Royer-Carfagni [71]

1
2K⟨tr(ϵ)⟩2+ + µϵdev : ϵdev

1
2K⟨tr(ϵ)⟩2− Amor, Marigo, and Maurini [72]

1
2λ⟨tr(ϵ)⟩2+ + µϵ+ : ϵ+ 1

2λ⟨tr(ϵ)⟩2− + µϵ− : ϵ− Miehe, Hofacker, and Welschinger [37]

Table 2.4: Frequently used strain energy density decompositions in the phase-field fracture literature

With reference to Table 2.4, it is observed that earlier research on the phase-
field fracture model by Bourdin [22] did not consider any decomposition
of strain energy density. In such a model, the total strain energy density,
irrespective of its tensile or compressive nature, contributes to the evolution
of the phase-field. As a consequence, the model exhibits (i) an unrealistic
symmetric behaviour in terms of fracture propagation under tension and
compression, and (ii) possible fracture interpenetration under compressive
loading [73]. In a later research, Lancioni and Royer-Carfagni [71] proposed
a deviatoric-volumetric split of the strain energy density for describing
fracturing under shear loading. However, for most materials, fracturing is
observed under tensile loading. This motivated the development of strain
energy decomposition approaches by Amor, Marigo, and Maurini and
Miehe, Hofacker, and Welschinger in [37, 72]. Amor, Marigo, and Maurini
assumed a pure volumetric strain energy and the deviatoric energy as the
fracture driving energy, while Miehe, Hofacker, and Welschinger opted for
a tensile strain energy density, obtained through spectral decomposition of
the strain.
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Remark 3. The tension-compression strain energy density decompositions
proposed by Amor, Marigo, and Maurini [72] and Miehe, Hofacker, and
Welschinger [37] have been used in this thesis. Their limitations and draw-
backs are discussed by Li [74] and De Lorenzis and Maurini [73].

2.2.1.1 Variational equations

The set of variational equations for the phase-field fracture model is derived
upon minimizing the energy functional (2.19) w.r.t. its solution fields, the
vector-valued displacement u, and the scalar-valued phase-field φ. With
appropriately defined test and trial Sobolev7 spaces H1 and the fracture
irreversibility constraint φ̇ ⩾ 0, the complete variational problem assumes
the form:

Variational Problem 2. Find (u, φ) ∈ U × P such that

E ′(u,φ; δu) =
∫
Ω

(
g(φ)

∂Ψ+(ϵ[u])
∂ϵ

+
∂Ψ−(ϵ[u])

∂ϵ

)
: ϵ[δu] dΩ

−

∫
ΓuN

tup · δu dΓ = 0 ∀ δu ∈ U0,
(2.22a)

E ′(u,φ; φ̂) =
∫
Ω

(
g ′(φ)Ψ+(ϵ[u]) +

Gc

cw l
w ′(φ)

)
(φ̂−φ) dΩ

+

∫
Ω

Gcl

cw
∇φ ·∇(φ̂−φ) dΩ ⩾ 0 ∀ φ̂ ∈ P,

(2.22b)

using pertinent time-dependent Dirichlet boundary conditions up on ΓuD
and φp on ΓφD, and Neumann boundary condition tup on ΓuN. The trial and
test spaces are defined as

U = {u ∈ [H1(Ω)]dim|u = up on ΓuD}, (2.23a)

P = {φ ∈ [H1(Ω)]|φ ⩾ nφ|φ = φp on ΓφD}, (2.23b)

U0 = {u ∈ [H1(Ω)]dim|u = 0 on ΓuD}. (2.23c)

In (2.23b), the left superscript n refers to the previous time-step. ■

The fracture irreversibility constraint φ̇ ⩾ 0 manifests in the form of vari-
ational inequality phase-field evolution equation (2.22b) with a restricted
space (2.23b). The variational inequality, as such, is not challenging to im-
plement in a computational framework, if the inequality can be enforced
pointwise. However, for the phase-field fracture model, pointwise enforce-
ment of the inequality is not possible due to the gradient terms manifesting a

7 A function u for which
∫
Ω(u)2 + (∇u)2 < ∞, belongs to Sobolev space of degree one,

denoted by H1. For more on function spaces, the reader is referred to [31].
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higher regularity requirement H1(Ω) on the phase-field variable and its test
function. Hence, the definition in (2.23b) is not viable from a mathematical
point of view and needs regularization.

2.2.2 Computational challenges in phase-field fracture models

Despite the popularity and the ease of implementation for modelling com-
plex fracture topologies, the phase-field fracture model has its set of com-
putational challenges. Broadly, these challenges are categorized into, mini-
mizing of a non-convex energy functional (2.19) simultaneously w.r.t. the
displacement and phase-field variables, fracture irreversibility and associ-
ated variational inequality (2.22b), and the requirement for extremely fine
meshes in the diffused fracture region of the continuum (see Figure 2.2b).
The addressment of these challenges in phase-field fracture literature is
presented in the next sub-sections.

2.2.2.1 Non-convex energy functional

The non-convex nature of the phase-field fracture energy functional (2.19)
stems from the term accounting for material degradation due to fracture, i.e.,
g(φ)Ψ+(ϵ[u]). The fracture driving energy Ψ+(ϵ[u]) is quadratic, and the
degradation function g(φ) is quadratic or higher order w.r.t to its argument.
This non-convex nature manifests in the form of poor convergence behaviour
of the fully coupled Newton-Raphson method, possibly due an indefinite
Hessian during numerical simulations.

In the past decade, several efforts were undertaken to improve the conver-
gence behaviour of the monolithic Newton-Raphson method, adopting tech-
niques mostly borrowed from optimization theory. For instance, Gerasimov
and De Lorenzis [75] incorporated possible negative curvature directions in
line-search method. The line-search parameter range is set to [−1, 1] using 10
or 20 intervals, where the functional and their derivatives were computed.
Thereafter, a C1 continuous functional is constructed, and a line-search
parameter corresponding to its minimum value is chosen as an admissible
step in the iterative process. The negative curvature direction technique
has been worked upon as early as the 1970s by Fletcher and Freeman [76]
and Mukai and Polak [77]. However, in the context of phase-field fracture
models, its robustness and efficiency is not yet established.

In another set of methods, modifications to the Hessian were proposed to
obtain a convergent monolithic solution technique. For instance, Wick [78]
identified the matrix block arising from the derivative of the momentum
balance equation (2.27a) w.r.t the phase-field variable as the problematic
component of the Hessian matrix. Based on this observation and drawing
inspiration from fluid mechanics literature [79–81], in [78], Wick proposed a
separation of well-posed and problematic Hessian terms. The problematic
term is then scaled with heuristically computed scalar. A main drawback
of this method, mentioned by Wick is the lack of rigorous convergence re-
sults. Adopting an alternative approach, Lampron, Therriault, and Lévesque
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proposed monolithic solution technique in [82], based on the eigenvalue
decomposition of the Hessian, and adding scaled diagonal matrices to
ensure its positive definiteness. Although the method yields desirable re-
sults in the context of convergence behaviour, eigenvalue computations
are expensive and as such, the method is not scalable. Finally, Wu, Huang,
and Nguyen introduced the quasi-Newton BFGS8 method as a promising
solution technique for the phase-field fracture model in [83]. Aided with an
existing implementation in the commercial finite element software, Abaqus,
the BFGS method soared in popularity for phase-field fracture modelling.
However, most studies involving the BFGS method are confined to a weak
iteration terminating tolerance (≈ 5 · 10−3). This points to the lack of a rig-
orous convergence study of the BFGS method in the context of phase-field
fracture models.

Furthermore, in an completely different approach, researchers explored
convexification techniques. Heister, Wheeler, and Wick [34] proposed an
extrapolation technique for the phase-field variable to be used in the mo-
mentum balance equation (2.27a). Consequently, the problematic Hessian
component is circumvented, and the monolithic Newton-Raphson method is
established as a convergent solution technique. However, due to the lack of
temporal regularity in the phase-field variable evolution, the extrapolation
technique itself is questionable as stated by the authors themselves. More
recently, in [84], an outer fixed-point iterative process was proposed to cor-
rect the error introduced due to extrapolation. However, extensive studies
are required to establish the convergence behaviour of the outer fixed-point
iteration on the extrapolation. In yet another convexification technique, the
alternate minimization9 technique was proposed by Bourdin [22] based on
the convex nature of the displacement and phase-field sub-problems. In
this method, the displacement and the phase-field variational equations are
solved in an alternate fashion until the L2 norm of the change in the phase-
field reaches a certain tolerance. Although, the convex sub-problems lend
robustness, the alternate iterative sequence makes the method expensive,
typically requiring thousands of iterations to converge for brittle fracture
benchmark problems [85].

In the aforementioned methods in this section, researchers have adopted
a incremental iterative approach. Within this approach, the loading of a con-
tinuum specimen is carried out using predetermined force/displacement
increments. In a deviation from this approach, the arc-length method, pio-
neered by Wempner [86], Riks [87, 88] and Crisfield [89], considers the load
increment as an unknown. A path-following/arc-length constraint equation
is added to the original system of equations to maintain static determi-
nacy. Based on the design of the constraint equation, spherical [86, 88, 89],
cylindrical [89] and elliptical [90] arc-length methods emerged as different
variants. The variants were initially conceived to solve structural engineer-

8 BFGS is an acronym for its developers Charles George Broyden, Roger Fletcher, Donald
Goldfarb and David Shanno.

9 also referred to as the staggered solution technique in phase-field fracture literature
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ing problems exhibiting complex deformations beyond limit points10. Later,
in [91], Verhoosel, Remmers, and Gutiérrez proposed a dissipation based
arc-length constraint encompassing a larger class of material and geometric
nonlinear response. In the context of phase-field fracture models, the arc-
length method with a dissipation-based constraint was used by Vignollet
et al. [92], and May, Vignollet, and De Borst [93]. However, both studies
were limited to a single benchmark problem, and data supporting robust-
ness and convergence behaviour were absent. In a later study, Singh et al.
[94] combined the dissipation-based arc-length solver with the alternate
minimization solver.

2.2.2.2 Fracture irreversibility

The fracture irreversibility constraint φ̇ ⩾ 0 in the phase-field fracture model
stems from the model assumption of preventing any healing of fractures. In
that sense, it is similar to Continuum Damage Mechanics (CDM) [95–97],
where the damage variable evolution is irreversible. However, in the case
of CDM, the damage variable is local11, hence, a local set of Karush-Kuhn-
Tucker (KKT) conditions [98, 99] is used to enforce damage irreversibility.
For the phase-field fracture model, the phase-field variable is a global field
with a regularity requirement pertaining to the existence of its derivative.
Therefore, the KKT conditions apply in a global sense, yielding a variational
inequality phase-field evolution equation with restrictive test and trial spaces
(see Variational Problem 2).

The implementation of a variational inequality equation in a computa-
tional framework is a challenging task. Several researchers have proposed
different methods to circumvent this. For instance, Miehe, Hofacker, and
Welschinger in [37] proposed a ‘history variable’ method, where the local
KKT conditions are enforced on the fracture driving energy Ψ+(ϵ[u]), as a
means to satisfy fracture irreversibility. The method stems from ignoring
the gradient term in the phase-field evolution equation (2.22b) and treating
Ψ+(ϵ[u]) as the fracture driving source term. A history variable H stores
the maximum value of this fracture driving energy Ψ+(ϵ[u]). Thereafter,
Ψ+(ϵ[u]) in (2.22b) is replaced by H. Mathematically, H is defined as

H = max{nH,Ψ+(ϵ[u])} (2.24)

where, the left superscipt n refers to the previous time-step. On replacing
Ψ+(ϵ[u]) in (2.22b) with H, the Variational Problem 2 attains the modified
form:

10 Limit points are coordinates in the load-displacement space, where load increments or
displacement increments switch signs.

11 exists pointwise in the domain without any regularity requirements
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Variational Problem 3. Find (u, φ) ∈ U × P such that

E ′(u,φ; δu) =
∫
Ω

(
g(φ)

∂Ψ+(ϵ[u])
∂ϵ

+
∂Ψ−(ϵ[u])

∂ϵ

)
: ϵ[δu] dΩ

(2.25a)

−

∫
ΓuN

tup · δu dΓ = 0 ∀ δu ∈ U0,

E ′(u,φ; δφ) =
∫
Ω

(
g ′(φ)H+

Gc

cw l
w ′(φ)

)
δφ dΩ (2.25b)

+

∫
Ω

Gcl

cw
∇φ ·∇δφ dΩ = 0 ∀ δφ ∈ P0,

using pertinent time-dependent Dirichlet boundary conditions up on ΓuD
and φp on ΓφD, and Neumann boundary condition tup on ΓuN. The trial and
test spaces are defined as

U = {u ∈ [H1(Ω)]dim|u = up on ΓuD}, (2.26a)

P = {φ ∈ [H1(Ω)]|φ = φp on ΓφD}, (2.26b)

U0 = {u ∈ [H1(Ω)]dim|u = 0 on ΓuD}, (2.26c)

P0 = {φ ∈ [H1(Ω)]|φ = 0 on ΓφD}. (2.26d)

The history variable H in (2.25b) is defined in (2.24). ■

The history variable approach results in a variational equality phase-field
evolution equation (2.25b) with relaxed trial (2.26b) and test (2.26d) spaces
for the phase-field variable and its test function. However, the variational
consistency is lost, since the energy functional (2.19) cannot be recovered
from the variational equations.

The penalization method was proposed by Gerasimov and De Lorenzis
[32] as a variationally consistent way of enforcing the fracture irreversibil-
ity constraint. The variational problem with the penalization method is
formulated as:

Variational Problem 4. Find (u, φ) ∈ U × P such that

E ′(u,φ; δu) =
∫
Ω

(
g(φ)

∂Ψ+(ϵ[u])
∂ϵ

+
∂Ψ−(ϵ[u])

∂ϵ

)
: ϵ[δu] dΩ

−

∫
ΓuN

tup · δu dΓ = 0 ∀ δu ∈ U0,
(2.27a)
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Variational Problem 4 (continued)

E ′(u,φ; δφ) =
∫
Ω

(
g ′(φ)Ψ+(ϵ[u]) +

Gc

cw l
w ′(φ)

)
δφ dΩ

+

∫
Ω

Gcl

cw
∇φ ·∇δφ dΩ

+ η

∫
Ω
⟨nφ−φ⟩+ δφ dΩ = 0 ∀ δφ ∈ P0,

(2.27b)

using pertinent time-dependent Dirichlet boundary conditions up on ΓuD
andφp on ΓφD, and Neumann boundary condition tup on ΓuN. The superscript
n in the above equation indicates the previous (pseudo) time-step. the The
trial and test spaces are defined as

U = {u ∈ [H1(Ω)]dim|u = up on ΓuD}, (2.28a)

P = {φ ∈ [H1(Ω)]|φ = φp on ΓφD}, (2.28b)

U0 = {u ∈ [H1(Ω)]dim|u = 0 on ΓuD}, (2.28c)

P0 = {φ ∈ [H1(Ω)]|φ = 0 on ΓφD}. (2.28d)

■

Similar to the history-variable approach in Variational Problem 3, the penal-
ization approach in Variational Problem 4 also relaxes the function space for
the phase-field and its test function (cf. (2.28b), (2.28d) with (2.26b), (2.26d)).
Theoretically, the fracture irreversibility φ̇ ⩾ 0 is enforced in an exact fash-
ion only when the penalty parameter η −→ ∞. However, Gerasimov and
De Lorenzis in [32] introduced the notion of a user-prescribed tolerance
TOLir on the fracture irreversibility constraint. Based on the choice of TOLir,
a lower bound for the penalty parameter was proposed as

η(TOLir) =


Gc

l

27

64 TOL2ir
AT1 model

Gc

l

(
1

TOL2ir
− 1

)
AT2 model

(2.29)

For a strict user-prescribed tolerance TOLir on the fracture irreversibility
constraint, the penalty parameter may attain values that results in an ill-
conditioned system of equations, affecting numerical accuracy of the linear
solvers.

Yet another approach for implementing fracture irreversibility was pro-
posed by Heister, Wheeler, and Wick [34]. Therein, the authors adapted
Hintermüller, Ito, and Kunisch’s primal-dual active set method [33] for
the phase-field fracture model. It is argued that the approach circumvents
possible ill-conditioning of the system of equations, observed with the penal-
ization method. The primal-dual active set method incorporates the fracture
irreversibility constraint φ̇ ⩾ 0 using a Lagrange multiplier. The resulting
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system of equations is then treated using a primal-dual active set strategy
[33]. An active set Ak in the kth Newton-Raphson iteration is defined as

Ak = {i|(B−1)ii(rφk )i + c(φ̃k +∆φ̃k − nφ̃)i < 0}, (2.30)

where, i represents a Degree Of Freedom (DOF) index in the discrete system
of equations, pertaining to the phase-field. Furthermore, B is a fictitious
lumped mass matrix constructed using unit density, rφk is the phase-field
equation residual, c is a scalar constant, and φ̃ and ∆φ̃ represents the phase-
field solution vector and its increment, respectively. The left superscript n
refers to the previous converged step.

In every Newton-Raphson iteration, the active set DOFs are eliminated
from the system of equations. Convergence is achieved when the norm of
the residual is below a certain tolerance limit and the active set does not
change. Although, this primal-dual active set method circumvents the need
for tuning/penalty parameters, the explicit tracking of the active/inactive
sets could be expensive according to De Lorenzis and Gerasimov [28].

2.2.2.3 Extremely fine mesh

The phase-field fracture model requires extremely fine meshes to resolve
the smeared crack region (see Figure 2.2b). This requirement may be ful-
filled upon adopting a uniformly refined mesh, or pre-refining a mesh in
certain sub-domains if the crack path is known a priori. However, the use of
uniformly refined meshes increases the computational cost, warranting the
need for parallel computing resources [22]. Alternatively, one may adopt
mesh refinement strategies based on certain indicators. For instance, Heister,
Wheeler, and Wick [34] proposed the use of a threshold phase-field value to
refine certain elements in the mesh. This strategy was also adopted by [38,
100]. Furthermore, Jansari et al. [101] used recovery-based error estimates,
while Wick [102] opted for posteriori error estimates based on the dual-
weighted residual method as element refinement indicators. Other mesh
adaptivity strategies in the phase-field fracture literature include the finite
cell method [103] and the dual mesh approach [100].

In this thesis, the finite element meshes pertaining to the benchmark
problems are pre-refined since the crack path is known a priori. Only in
Chapter 6, uniformly refined meshes are used to simulate soil desiccation
cracking as no information is available on the crack path.

2.3 poro-mechanics

Poro-mechanics is the study of fluid-filled porous materials whose mechan-
ical behaviour is influenced by the pore fluid [104]. Typical example of
such materials include rocks and soil, biological tissues, foams, gel, and
ceramics. Early theoretical developments in poro-mechanics were carried
out in the context of rocks and soil by Maurice A. Biot, during 1935-1962 (see
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[105–109]). Biot’s theory of poro-mechanics [109] assumes a linear elastic
behaviour of the solid and fluid phases, and a laminar flow of the fluid
through the interconnected pores within the solid matrix. Due to the linear-
ity assumption, Biot’s theory of poro-mechanics is also referred to as the
theory of poro-elasticity.

In the subsequent part of this section, the set of governing equations
pertinent to poro-elasticity is derived. These equations are re-visited later in
this thesis for developing hydraulic fracturing and soil desiccation cracking
models in Chapters 5 and 6, respectively.

2.3.1 The energy functional

The energy functional for a generic continuum (2.1) is extended towards
porous medium, adapting the seminal work of Biot [109]. The extended
energy functional is posited as a function of the strain ϵ[u] and the increment
of the fluid content ζ. The fluid content increment depends on the fluid
pressure in the pore space p and the volumetric strain of solid skeleton
ϵvol[u] = ∇ · u, and is expressed as

ζ =
p

M
+α∇ · u. (2.31)

Here, the coefficients M and α represent the Biot modulus and the Biot
coefficient, respectively. The energy functional is then expressed as [38, 42],

E∗(u, ζ) =
∫
Ω
Ψ(ϵ[u]) dΩ+

∫
Ω

p2(ϵ[u], ζ)
2M

dΩ. (2.32)

Thereafter, a Legendre transformation is carried out to replace the argument
ζ with the fluid pressure p. This results in an alternative energy functional,

E(u,p) =
∫
Ω
Ψ(ϵ[u]) dΩ−

∫
Ω
αp∇ · u dΩ−

∫
Ω

p2

2M
dΩ. (2.33)

The first variation of the energy functional (2.33) w.r.t the displacement u
yields the momentum balance variational equation,

E ′(u,p; δu) =
∫
Ω

σ(ϵ[u]) : ϵ[δu] dΩ−

∫
Ω
αp∇ · δu dΩ = 0. (2.34)

The momentum balance variational equation (2.34) is applicable when the
pore space is fully saturated with one type of fluid. For a porous medium,
where the pore space is filled with more than one immiscible fluids (for
instance, water and gas12), the fluid pressure p is additively decomposed as

p = χw pw + χg pg, (2.35)

12 Model assumption considering water and gas as immiscible.
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where, the subscripts w and g indicate water and gas phases, and χ is an
experimentally determined Bishop parameter accounting for the different
contact area of the fluids with the solid grains [110]. The decomposition
(2.35) follows from the Representative Volume Element (RVE) based aver-
aging theory [111]. Furthermore, in the case of microstructurally isotropic
constituents, the Bishop parameter χ may be replaced by the degree of
saturation S. This results in,

p = Sw pw + Sg pg. (2.36)

At this point, it is important to note that the fluid pressures (pw and pg)
utilized in the momentum balance variational equation (2.34) are obtained
from their respective mass conservation equations.

2.3.2 Mass conservation

The conservation of mass states that the rate of increase in mass in any
domain Ω is equal to the difference between the rate of mass entering and
leaving the domain. In the context of porous medium, the mass conservation
equation applies to all of its constituents, i.e., the solid matrix and the fluid
phases, water and gas.

Conservation of solid mass

Let us consider a porous RVE medium occupying the domain Ω. The mass
of its solid constituent ms is expressed as

ms =

∫
Ω
(1−n) ρs dΩ (2.37)

where, (1−n) accounts for the solid constituent volume fraction, using the
porosity n, and ρs is the intrinsically averaged density of the solid. The
conservation of the solid mass ms is mathematically expressed as

Dms

Dt
= 0. (2.38)

Adopting the material time derivative in an Eulerian reference frame, the
solid mass conservation equation (2.38) is reformulated as

∫
Ω

(
∂(1−n)ρs

∂t
+
[
(1−n) ρs u̇s

]
·∇
)

dΩ = 0. (2.39)

Here, u̇s represents the solid skeleton velocity. Thereafter, assuming (2.39)
to hold pointwise in the domain Ω in conjunction with negligible spatial
variation of ρs and n,
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∂(1−n)ρs
∂t

+ (1−n) ρs∇ · u̇s = 0. (2.40)

The time derivative of the solid pressure density ρs, adopted from Verruijt
[112] is stated as

∂ρs

∂t
=
ρsCs

1−n

[
(α−n)

∂p

∂t
−
1

C

∂ϵvol
∂t

]
. (2.41)

Note that the fluid pressure p in the above equation comprises of both the
water and gas phases, expressed earlier via (2.36). Furthermore, Cs and
C represent the solid grain compressibility and the compressibility of the
porous medium, respectively. The use of differentiation chain rule in (2.40)
in conjunction with (2.41) results in an expression for the time derivative of
the porosity as

∂n

∂t
= (α−n)Cs

∂p

∂t
+

(
1−

Cs

C

)
ϵ̇vol −n∇ · u̇s. (2.42)

Upon defining the Biot coefficient α as

α = 1−
Cs

C
, (2.43)

the time derivative of the porosity, (2.42) is further simplified to,

∂n

∂t
= (α−n)Cs

∂p

∂t
+αϵ̇vol −n∇ · u̇s. (2.44)

Conservation of fluid mass

The conservation of mass of a fluid phase π = w,g is carried out in similar
fashion as the conservation of solid mass. To that end, the mass of the fluid
phase π is defined as

mπ =

∫
Ω
nSπρπdΩ. (2.45)

Here, the volume fraction of π is accounted for with nSπ, and ρπ is its
intrinsic averaged density. The conservation of the fluid mass requires

Dmπ

Dt
= 0. (2.46)

Similar to the derivation of the solid mass conservation, adopting the
material time derivative in conjunction with negligible spatial variation of
n, ρπ and Sπ results in
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∂(nSπρπ)

∂t
+nSπρπ∇ · u̇π = 0, (2.47)

and using the chain rule of differentiation yields

Sπρπ
∂n

∂t
+nρπ

∂Sπ

∂t
+nSπ

∂ρπ

∂t
+nSπρπ∇ · u̇π = 0. (2.48)

In the above equation, ∂n
∂t is substituted from (2.42). The time derivative of

the fluid pressure density ρπ is obtained from the constitutive relationship,

ρπ(pπ) := ρπ,0 exp(pπ + pπ,s + pπ,0). (2.49)

Here, ρπ,0 and pπ,0 represent the reference fluid density and the fluid
pressure, respectively, and pπ,s is the initial hydrostatic fluid pressure.
Incorporating (2.42) and (2.49) in (2.48) results in

(α−n)CsSπρπ
∂p

∂t
+nρπ

∂Sπ

∂t
+nρπSπCπ

∂pπ

∂t

+αρπSπ
∂ϵvol
∂t

+∇ · [nSπρπ(u̇π − u̇s)] = 0.
(2.50)

In the above expression, the fluid flow in the interconnected pore space is
assumed to be laminar. As such, the Darcy’s law,

nSπρπ(u̇π − u̇s) = −krπ
kiI
µπ

(∇pπ − ρπg), (2.51)

is adopted. Here, krπ and ki represent the relative permeability and the
intrinsic permeability of the fluid phase π, respectively, and µπ is the
dynamic viscosity of the phase π. Furthermore, the pressure decomposition
(2.36) is utilized, resulting in a mass conservation equation for the water
phase (π = w),

[
(α−n)CsS

2
w +nSwCw

]
∂pw

∂t
+ (α−n)CsSwSg

∂pg

∂t

+

[
(α−n)CsSw(pw − pg) +n

]
∂Sw

∂t
+αSw

∂ϵvol
∂t

+∇ ·
[
− krw

kiI
µw

(∇pw − ρwg)

]
= 0,

(2.52)

and for the gas phase (π = g),
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[
(α−n)CsS

2
g +nSgCg

]
∂pg

∂t
+ (α−n)CsSwSg

∂pw

∂t

+

[
(α−n)CsSg(pg − pw) +n

]
∂Sg

∂t
+αSg

∂ϵvol
∂t

+∇ ·
[
− krg

kiI
µg

(∇pg − ρgg)

]
= 0.

(2.53)

In the above equations (2.52,2.53), the water and gas saturation (Sw and Sg)
are obtained using fluid retention models. In the context of geomechanics,
the term Soil Water Retention Curve (SWRC) is prevalent. Typical examples
of SWRCs include van Genuchten [113], Corey-Brooks [114], and Gardner
[115] curves.

Remark 4. Instead of modelling the porous medium as a three-phase par-
tially saturated model, a two-phase partially saturated model may be as-
sumed, setting the gas pressure pg = 0. This eliminates the gas transport
equation (2.53), and simplifies the water transport equation (2.52) to

[
(α−n)CsS

2
w +nSwCw

]
∂pw

∂t
+

[
(α−n)CsSwpw +n

]
∂Sw

∂t

+αSw
∂ϵvol
∂t

+∇ ·
[
− krw

kiI
µw

(∇pw − ρwg)

]
= 0.

(2.54)

For a fully saturated two-phase porous medium, the water transport equation
(2.54) is further simplified to,

[
(α−n)Cs +nCw

]
∂pw

∂t
+α

∂ϵvol
∂t

+∇ ·
[
−
kiI
µw

(∇pw − ρwg)

]
= 0.

(2.55)

These equations are used for modelling soil desiccation cracking and hy-
draulic fracture in the latter part of this thesis.

2.4 multi-scale modelling of materials

Multi-scale modelling of materials is a concept concerning the derivation
of equations, parameters, and simulation algorithms, which describes the
material behaviour at a given length-scale, based on the physical phenomena
at a finer scale [116]. Central to this concept, is the better understanding
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of the fine scale physics and topological features (e.g., spatial distribution
of the material constituents, voids, defects), compared to that of the coarse
scale. The fine scale material constituents may be atoms, molecules, or
mesoscale entities like phases, grains. Multi-scale modelling of materials
circumvents the drawback of the phenomenological constitutive material
modelling approach. The constitutive material models are based on limited
experimental data, and does not account for the underlying fine scale
physics.

Multi-scale modelling of materials today has evolved from its early influ-
ence from the Cauchy-Born rule [117]. Different variants exists, evolving
from the developments in statistical mechanics, homogenization theory
and linear algebra. Broadly, the multi-scale modelling techniques maybe
classified into two categories, resolved scale methods13 and upscaling/hier-
archical methods [116]. Resolved scale methods employ coarse and fine scale
physics in different parts of the computational domain. At the interface
between the scales, information exchange is carried out. This process is
also referred to as a ‘hand-shake’. Examples of the resolved scale methods
include the Quasi-Continuum method [118], the multi-scale finite element
method [119–122], the global-local method [123], and domain decomposition
method [124].

In this thesis, the focus is towards upscaling/hierarchical multi-scale
modelling methods. The upscaling methods rely on fine scale physics on
an idealized domain, and communicates the average material response to
the coarse scale. The idealized fine scale domain is often referred to as
the microstructure, Representative Volume Element (RVE) [125], or Statis-
tical Volume Element (SVE) [126]. Furthermore, the fine scale and coarse
equations may be derived using asymptotic methods [127], variationally
consistent homogenization [128] technique, or even postulated directly.
Thereafter, the link between the fine scale and coarse scale is established
using the Hill-Mandel macro-homogeneity conditions [129–131]. In this
thesis, the variationally consistent homogenization technique is adopted to
derive the fine scale and coarse scale equations.

2.4.1 Variationally Consistent Homogenization

The Variationally Consistent Homogenization (VCH) technique was pro-
posed by Larsson, Runesson, and Su [128], as a method to obtain fine and
coarse scale variational equations from the former. Therefore, it may be
viewed as an alternative to the asymptotic methods. The VCH technique
assumes the existence of fully resolved fine scale physics equations in the
variational form. Thereafter, the coarse scale equations are derived using
suitable averaging methods, resulting in a bottom-up approach. The essen-
tial ingredients of the VCH technique are (A) the separation of scales via the
Variational Multi-Scale (VMS) method [119, 121], (B) the computational ho-

13 Resolved scale methods are also referred to as concurrent or information passing methods
in multi-scale modelling literature.
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mogenization or the averaging approach, (C) prolongation of solution fields
using Taylor series expansion, and (D) establishing the macro-homogeneity
conditions [129–131]. They are addressed in detail in the remaining part
of this section. Note that the terms coarse scale and fine scale are used
interchangeably with macro scale and sub scale (denoted with superscripts
M and S, respectively) throughout the thesis.

(A) Variational Multi-Scale (VMS) method

The VCH technique adopts the Variational Multi-Scale (VMS) method [119,
121] as the point of departure from a fully resolved fine scale problem. The
VMS method admits an additive decomposition of the solution fields and
corresponding test functions into a smooth coarse scale and a fluctuating
fine scale component. To put the VMS method into context, let us consider
the generic continuum mechanics Variational Problem 1. For clarity, the
variational equation (2.3) is re-stated,

∫
Ω

σ(u) : ϵ(δu)dΩ = 0 ∀ δu ∈ U0, (2.56)

excluding external forces (e.g., traction and body forces) for simplicity. Next,
the solution field u and the corresponding test function δu are additively
decomposed as

u = uM + uS and δu = δuM + δuS. (2.57)

Here, the superscript M and S represent the coarse (macro) scale and fine
(sub) scale, respectively. Substituting (2.57) in the variational equation (2.56)
resulting in two decoupled equations

∫
Ω

σ[uM + uS] : ϵ[δuM]dΩ = 0, (2.58a)∫
Ω

σ[uM + uS] : ϵ[δuS]dΩ = 0, (2.58b)

pertaining to the coarse and fine scales, respectively.
Depending on the chosen test function δuS, the fine scale problem gov-

erned by the variational equation (2.58b) may exist on the entire compu-
tational domain Ω or a sub-domain. The sub-domain may comprise of a
single element or set of elements. Correspondingly, this results in a coupled
volume multi-scale model [132] or the domain decomposition methods
[133–137]. However, these approaches are suitable only for problems with
a moderate difference in length scales of coarse and fine scale physics. In
contrast, the VCH technique assumes a separation of scales between coarse
and fine scale physics, adopting the computational homogenization method.
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(B) Homogenization of integrals

The computational homogenization method [138–141] assumes an idealized
fine scale domain containing sufficient statistical information. The idealized
fine scale domain is referred to as the microstructure, RVE [125] or SVE
[126]. In this thesis, the term RVE is used interchangeably with fine scale
domain. The RVE/fine scale domain is independent of the coarse scale
discretization.

Assuming the separation of scales, the fine scale test function δuS lives
only on the integration points of the coarse scale domain. Thereafter, any
integrand on the coarse scale domain is stated as an average over the fine
scale domain, say Ω□. To put it into a mathematical perspective, let us
consider an integral expression over the coarse scale domain,

∫
Ω
f(x)dΩ, (2.59)

for an arbitrary fluctuating integrand function f(x). With the assumption
that an RVE exist for all x ∈ Ω, the integrand f(x) is redefined as

f(x) −→ f(x) ≈ f(x) = ⟨f⟩□(x) :=
1

|Ω□|

∫
Ω□(x)

fdΩ, (2.60)

where, Ω□ centered at x. It is important to note that integrals over the coarse
domain, such as (2.59), are evaluated using numerical integration. Therefore,
a finite number of RVEs/fine scale domains are required, each associated
with a coarse scale integration point. Adapting the definition (2.60) to the
integrands in the coarse and fine scale variational equations (2.58a) and
(2.58b) results in

∫
Ω
⟨σ[uM + uS] : ϵ[δuM]⟩□ dΩ = 0, (2.61a)

∫
Ω
⟨σ[uM + uS] : ϵ[δuS]⟩□ dΩ = 0. (2.61b)

Here, the shorthand notation, ⟨f⟩□ = f is used. It is observed that the
coarse scale variational equation (2.61a) exists over the entire computational
domain. Its fine scale counterpart may be expressed as a set of independent
problems of the form

⟨σ[uM + uS] : ϵ[δuS]⟩□ = 0, (2.62)

because the fine scale test function δuS lives locally at each coarse scale
integration point. In this context, the term ‘locally’ implies no regularity
requirements on δuS.
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(C) Prolongation

The prolongation operation transfers information from the coarse scale
onto the fine scale in the VCH technique. To that end, a smooth solution
field u(x) ∀ x ∈ Ω is assumed to exist, as shown in Figure 2.3 (left). Its
contribution to the coarse scale solution field uM is established using a
Taylor series expansion about x,

uM(u, x, x) = u + u ⊗∇
∣∣
x︸ ︷︷ ︸

ϵ[u]

·[x − x] +H.O.T , (2.63)

•u(x)u

x
|Ω|| |

•

x
|Ω□|

u

uM

| |

Figure 2.3: Figures showing the smooth solution field u on the macro-scale domain Ω (left), and the
rapidly oscillating solution field u on the RVE domain Ω□ (right). The linear macro-scale
contribution uM from u is denoted by the dashed red line in the right sub-figure.

where, the Higher Order Terms (H.O.T) are ignored. This assumption is
also referred to as the first-order homogenization method. Furthermore, the
solution field on the fine scale, u = uM + uS is restated using (2.63) as

u(u, x, x) = u + u ⊗∇
∣∣
x · [x − x]︸ ︷︷ ︸

uM

+uS. (2.64)

Note that the coarse scale solution field contribution uM is linear, as shown
by the red dashed line in Figure 2.3 (right). By definition, the average of the
any fluctuating field, such as uS or δu is zero. Consequently,

u(x) = ⟨uM(u, x, x)⟩□, and ϵ[u(x)] = ⟨ϵ[uM(u, x, x)]⟩□. (2.65)

Adopting a similar strategy for the test function δu, one arrives at

δu(x) = ⟨δuM(u, x, x)⟩□, and ϵ[δu(x)] = ⟨ϵ[δuM(δu, x, x)]⟩□ (2.66)

On substituting (2.65) and (2.66) in the coarse scale variational equation
(2.61a), one obtains
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∫
Ω

σ : ϵ[δu]dΩ = 0, (2.67)

where, the homogenized stress is given by

σ = ⟨σ⟩□. (2.68)

Following the computation of u using (2.67), its coarse scale contribution
uM is computed using (2.65). Thereafter, the coarse scale contribution drives
the fine scale problem, evident from (2.61b). However, constraints must be
enforced on the fine scale problem to ensure its solvability. These constraints
are defined based on the (Hill-Mandel) macro-homogeneity condition [129–
131].

(D) Macro-homogeneity condition

The (Hill-Mandel) macro-homogeneity condition [129–131] establishes the
equivalence of virtual work between the coarse and fine scales. This requires
a strain identity,

ϵ[u] = ⟨ϵ[u]⟩□, (2.69)

to hold. This is achieved through Dirichlet, Neumann, and Strongly Periodic
boundary conditions on the RVE problem (commonly adopted in the com-
putational homogenization literature). Recalling the stress identity (2.68) in
conjunction with the aforementioned boundary conditions, the virtual work
identity or the macro-homogeneity condition,

σ : ϵ[u] = ⟨σ : ϵ[u]⟩□, (2.70)

is fulfilled. The above expression is the classical form of the macro-homogeneity
condition, popular in the computational homogenization literature [142].
For a generalized form of the macro-homogeneity condition, the reader is
referred to [128].



Part II

N U M E R I C A L M E T H O D S F O R P H A S E - F I E L D
F R A C T U R E

Development of novel numerical methods to address the computational
challenges in the phase-field fracture model (Research Objectives 1 and
2).





3
M O N O L I T H I C S O L U T I O N T E C H N I Q U E S

This chapter deals with the development of monolithic solution techniques for
the phase-field fracture model. Conventional monolithic solution techniques, like
the Newton-Raphson method exhibits a poor convergence behaviour. Due to an
indefinite Hessian at the onset of fracture localization, the iterative process diverges,
resulting in a break-down of the method. This is revealed through a numerical
experiment carried out in Section 3.1.
Section 3.2 introduces a convexificiation technique proposed by Heister, Wheeler,
and Wick for the phase-field fracture model. Its limitations w.r.t step size dependence
and variational consistency is discussed, and modifications are proposed. Thereafter,
in Section 3.3, Hessian modification techniques are presented. Finally, in Section 3.4,
an arc-length method is proposed, adopting constraints on the incremental fracture
energy. The performance of the aforementioned monolithic solution techniques
is evaluated through numerical experiments on benchmark fracture problems in
Section 3.5.

3.1 minimizing a non-convex functional

The phase-field modelling of fracture is a minimization problem, involving
a non-convex energy functional (2.19). The non-convex nature of the func-
tional stems from the degraded strain energy density, g(φ)Ψ+(ϵ[u]). Here,
the degradation function g(φ) is quadratic or higher order w.r.t. the phase-
field φ, and the fracture driving strain energy Ψ+(ϵ[u]) is quadratic w.r.t.
the strain ϵ[u]. Consequently, for the Newton-Raphson method, the Hes-
sian1 may be indefinite. In the case of minimization problems, an indefinite
Hessian does not guarantee a descent direction for the search directions2

generated [143]. As a result, the Newton-Raphson method exhibits a poor
convergence behaviour. For the phase-field modelling of fracture, several re-
searchers [34, 75, 78] have reported the break down of the Newton-Raphson
method at the onset of fracture localization.

3.1.1 Finite element discretized equations

An investigation into the Newton-Raphson method break down requires
the finite element discretized equations for the phase-field fracture model.
To that end, the Variational Problem 3 from Chapter 2 is considered as the
starting point. Next, the corresponding finite element discretized equations
are derived following the procedure explained in Section 2.1. The derivation
is skipped here for brevity, instead the phase-field fracture Discrete Problem

1 referred to as the stiffness matrix in the computational mechanics literature
2 referred to as solution updates in the computational mechanics literature

37
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2 is presented. Note that the terms stiffness matrix and residual are used for
the Hessian and the Jacobian of the energy functional respectively.

Discrete Problem 2. Compute the solution update sk+1 = {∆ũ ; ∆φ̃} for
the current iteration k+ 1 using

[
Kuu Kuφ

Kφu Kφφ

]
k︸ ︷︷ ︸

Stiffness matrix, Kk

{
∆ũ

∆φ̃

}
k+1︸ ︷︷ ︸

sk+1

=

{
fext,u

fext,φ

}
i

−

{
fint,u

fint,φ

}
k︸ ︷︷ ︸

Residual, rk

, (3.1a)

and update the solution as{
ũ

φ̃

}
k+1

=

{
ũ

φ̃

}
k

+α

{
∆ũ

∆φ̃

}
k+1

, (3.1b)

until the norm of the residual is sufficiently small. Here, α is the step-length.
Furthermore, the stiffness matrix components are given by,

Kuu = A

∫
Ωel

[Bu]T
(
g(φ)

∂σ+

∂ϵ
+
∂σ−

∂ϵ︸ ︷︷ ︸
D

)
[Bu] dΩ

Kuφ = A

∫
Ωel

[Bu]T
(
g ′(φ)σ+

)
[Nφ] dΩ,

Kφu = A

∫
Ωel

[Nφ]T
(
∂H

∂ϵ

)
[Bu] dΩ,

Kφφ = A

∫
Ωel

[Bφ]T
(
Gcl

cw

)
[Bφ]

+ [Nφ]T
(
Gc

cwl
w ′′(φ) + g ′′(φ)H

)
[Nφ] dΩ

(3.1c)

and the internal force vector components are computed as

fint,u = A

∫
Ωel

[Bu]T
(
g(φ)σ+ +σ−

)
dΩ,

fint,φ = A

∫
Ωel

[Bφ]T
(
Gcl

cw
∇φ

)
+ [Nφ]T

(
Gc

cwl
w ′(φ) + g ′(φ)H

)
dΩ.

(3.1d)

Note that A is an assembly operator that maps element contributions to
their global counterparts. Furthermore, the external force vectors fext,u and
fext,φ are considered equal to zero. The material stiffness matrix D depends
on the chosen strain energy density split (see Table 2.4). The history variable
H is defined in (2.24). ■
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3.1.2 Tapered bar tension test

A simple numerical experiment is devised to investigate the performance
of the Newton-Raphson method for the phase-field fracture model. The
experiment consists of a tapered bar loaded in tension, as shown in Figure
3.1. A quasi-static loading is applied at the right edge in the form of
prescribed displacement increment ∆ûx = 1e− 2 [mm] for the first 25 steps,
following which it is changed to 1e− 4 [mm]. The left edge remains fixed.
The length of the bar is 10 [mm], and left and right edges are 1.5 [mm] and
4 [mm], respectively. The bar is discretized using three-noded triangular
elements with a single integration point. Additional modelling parameters
are presented in Table 3.1.

y

x Fixed displacements

∆ûx

Figure 3.1: Tapered bar under tension

Parameters Value [Units]

Model Plane Strain, AT2

Energy split None

λ 0.0 [MPa]

µ 50.0 [MPa]

Gc 1.0 [N/mm]

l 0.25 [mm]

Table 3.1: Model parameters
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Figure 3.2: Figure (a) presents the phase-field distribution in the tapered bar, when the Newton-Raphson
(full-NR) method breaks down (top) and the failure mode obtained with the diagonal only
variant of the Newton-Raphson (dia-NR) method (bottom). Figure (b) presents the respective
load-displacement curves. The black dot represents the last converged step for the full-NR.

Figure 3.2a (top) presents the phase-field distribution corresponding
to the last converged step, obtained with the Newton-Raphson method
(full-NR). Therein, the maximum value of the phase-field ≈ 0.4. From the
load-displacement curve (in black), presented in Figure 3.2b, it is evident
that the full-NR did not converge for the entire loading path. The black
dot represents the last converged step. An eigenvalue decomposition of the
Hessians (stiffness matrices) generated in the non-converged step reveals
dominant negative eigenvalues in terms of magnitude. This conclusively
proves the Hessian being indefinite when the phase-field reaches ≈ 0.4.
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During the iterative process, the indefinite Hessian generates a sequence of
solution updates not of descent direction, which results in divergence of the
full-NR method.

3.1.3 Circumventing indefinite Hessian

In order to circumvent the undesirable effects of the indefinite Hessian(s),
Nocedal and Wright [143] have proposed the use of modified Hessian(s),
which are positive definite. A positive definite Hessian guarantees a descent
direction for a minimization problem. When used in conjunction with Wolfe
line-search conditions [144], the resulting solution technique is proven to
be convergent. The proof of convergence is obtained using the Zoutendijk
theorem on feasible directions [145] (see Sections 3.1 and 3.2 in [143] for a
detailed derivation). Adopting the proposition of Nocedal and Wright, a
variant of the Newton-Raphson method (dia-NR) is adopted, wherein the
off-diagonal Hessian (stiffness matrix) blocks Kuφ and Kφu are explicitly
set to zero when computing the search direction. The dia-NR method
converges for the entire loading path, evident for the load-displacement
curve (in red) in Figure 3.2b. Furthermore, the phase-field also attains a
value 1, signifying the detachment of the bar from its constrained left edge.

The numerical experiment on the tapered bar reveals the undesirable
consequence of minimizing the phase-field fracture problem with an in-
definite Hessian. Circumventing an indefinite Hessian is possible in two
different ways, (i) devise a convex variant of the nonconvex phase-field
fracture Discrete Problem 2, or (ii) modify the indefinite Hessian into a
positive (semi) definite one.

3.2 convexification via extrapolation and correction

The reformulation of a non-convex problem into a convex variant is not a
menial task. It requires careful considerations of the changes introduced.
One such reformulation, popular in the phase-field fracture modelling liter-
ature has been proposed by Heister, Wheeler, and Wick in [34]. Therein, the
authors advocated the Hessian block Kuφ to be the root of all convergence
problems. In order to circumvent the need for this block, the phase-field
used in the momentum balance equation (3.1d1) is replaced by an extrapo-
lated phase-field, say φ̂. The extrapolated phase-field is computed from the
previous two converged steps of the simulation, and is expressed as

φ̂ = n−1φ+
∆t+ n∆t

n∆t
(nφ− n−1φ). (3.2)

Here, n and n−1 represent the two previous converged steps. It is important
to note that the regularity of the phase-field in time is not established. As
such, the extrapolation of the phase-field has no mathematically sound basis.
It is only a heuristic assumption.
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Incorporating the extrapolated phase-field (3.2) in the momentum balance
equation (3.1d1) modifies the non-convex Discrete Problem 2 into its convex
variant, Discrete Problem 3. Here, the problematic Hessian block Kuφ (see
Equation (3.3a)) is circumvented in the system of equations.

Discrete Problem 3. Compute the solution update sk+1 = {∆ũ ; ∆φ̃} for
the current iteration k+ 1 using

[
Kuu 0

Kφu Kφφ

]
k︸ ︷︷ ︸

Stiffness matrix, Kk

{
∆ũ

∆φ̃

}
k+1︸ ︷︷ ︸

sk+1

=

{
fext,u

fext,φ

}
i

−

{
fint,u

fint,φ

}
k︸ ︷︷ ︸

Residual, rk

, (3.3a)

and update the solution fields,{
ũ

φ̃

}
k+1

=

{
ũ

φ̃

}
k

+α

{
∆ũ

∆φ̃

}
k+1

, (3.3b)

until the norm of the residual is sufficiently small. Here, α is the step-length.
Furthermore, the stiffness matrix components are given by,

Kuu = A

∫
Ωel

[Bu]T
(
g(φ̂)

∂σ+

∂ϵ
+
∂σ−

∂ϵ︸ ︷︷ ︸
D

)
[Bu] dΩ,

Kφu = A

∫
Ωel

[Nφ]T
(
∂H

∂ϵ

)
[Bu] dΩ,

Kφφ = A

∫
Ωel

[Bφ]T
(
Gcl

cw

)
[Bφ]

+ [Nφ]T
(
Gc

cwl
w ′′(φ) + g ′′(φ)H

)
[Nφ] dΩ,

(3.3c)

and the internal force vector components are computed as

fint,u = A

∫
Ωel

[Bu]T
(
g(φ̂)σ+ +σ−

)
dΩ,

fint,φ = A

∫
Ωel

[Bφ]T
(
Gcl

cw
∇φ

)
+ [Nφ]T

(
Gc

cwl
w ′(φ) + g ′(φ)H

)
dΩ.

(3.3d)

Note that A is an assembly operator that maps element contributions to
their global counterparts. Furthermore, the external force vectors fint,u and
fint,φ are considered equal to zero. The material stiffness matrix D depends
on the chosen strain energy density split (see Table 2.4). The history variable
H is defined in (2.24). ■
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Following the formulation of the phase-field extrapolation-based Discrete
Problem 3, the numerical experiment on the tapered bar is revisited. The
experiment has been introduced in the previous section, the geometry and
the model parameters are presented in Figure 3.1 and Table 3.1 respectively.
Although, the Newton-Raphson method (full-NR) is used for the simulation,
due to the extrapolation (3.2), it is referred to as the extrapolation-based
Newton-Raphson method (ext-NR). Furthermore, the extrapolation on the
phase-field (3.2) explicitly depends on the step size. As such, an investigation
into the step size sensitivity is carried out. To that end, in the post-peak
regime of the load-displacement curve, the step size is varied as 1e − 4
[mm], 5e− 4 [mm] and 1e− 3 [mm], in three separate simulations.

Figure 3.3a presents the load-displacement curves obtained using the
extrapolation-based Newton-Raphson method (ext-NR) with varying step
sizes. It is observed that as the step size is increased from 1e− 4 [mm] to
1e− 3 [mm], the displacement at which the tapered bar loses integrity is
higher. For higher step sizes the difference between the extrapolated phase-
field and the actual phase-field is higher. In particular, the extrapolated
phase-field lags behind the actual phase-field. In conjunction with the
problem constructed where the extrapolated phase-field affects the material
strength and stiffness parameters, this results in a delay in loss of integrity.
Thus, the choice of the step size provides an artificial ductility not exhibited by
the material in reality. Another critical drawback of the extrapolation-based
formulation in [34] is the lack of variational consistency. The momentum
balance equation (3.1d1) is not consistent with the energy functional (2.19).

dia−NR ∆ux = 10−4 ∆ux = 5 · 10−4 ∆ux = 10−3
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Figure 3.3: Figure (a) and (b) presents the load-displacement curves corresponding to the extrapolation-
based Newton-Raphson method, ext-NR (see Discrete Problem 2) and extrapolation-
correction Newton-Raphson method, extC-NR (see Discrete Problem 3). In both figures the
red, blue and green curves correspond to the choice of step-size (∆ux = 10−4, 5 · 10−4,
10−3 [mm]). The black curve is the reference solution obtained using the diagonal only
variant of the Newton-Raphson (dia-NR) method (red curve in Figure 3.2b).
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Proposed modification

Variational consistency of the momentum balance equation (3.3d1) can only
be achieved when the extrapolated phase-field φ̂ converges towards the
actual phase-field φ. To that end, a modified version of the extrapolation-
based Discrete Problem 3 is proposed in this thesis. The modification,
however, is incremental, in the sense that an additional function defined as
the difference between the extrapolated phase-field and the actual phase-
field is minimized on top of the Discrete Problem 3. The additional function
is given by

f(φ̂) = φ̂−φ. (3.4)

Incorporating the modification, the Discrete Problem 3 assumes the form:

Discrete Problem 4. Compute the solution (u,φ) for a loading step as:

• Set outer iteration count to zero (k = 0).

• Compute the extrapolated phase-field φ̂k using (3.2).

• Solve Discrete Problem 3 for (u,φ).

• While ||φ̂k −φ|| > tolC,

– Set φ̂k = φ.

– Solve Discrete Problem 3 for (u,φ).

– Increment outer iteration count (k = k+ 1).

Here, tolC is a user-defined tolerance, chosen as 10−4.

On revisiting the tapered bar experiment with the extrapolation-fixed
point correction Discrete Problem 4, the load-displacement curves in Figure
3.3b are obtained. Although, the Newton-Raphson method (full-NR) is
used to solve the nonlinear problem, due to the extrapolation and fixed
point correction on the phase-field, it is referred to as the extC-NR variant.
Furthermore, the load-displacement response corresponding to varying
step sizes (1e− 4 [mm], 5e− 4 [mm] and 1e− 3 [mm]) is similar to that
obtained with the diagonal variant of the Newton-Raphson method. This
points towards the success in eliminating the step size dependent artificial
ductility observed with the extrapolation-based Discrete Problem 3.

3.3 hessian modification techniques

Hessian modification techniques offer an alternative to convexification of
a non-convex minimization problem. The numerical experiment on the
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tapered bar in Section 3.1 clarifies the role of the indefinite Hessian in
the break-down of the Newton-Raphson method. In this context, Nocedal
and Wright [143] have proposed the use of modified Hessian(s), which are
positive definite. A positive definite Hessian matrix always guarantees a
descent direction, as such, better convergence behaviour may be expected
[143].

Several techniques exist for modification of an indefinite Hessian into a
positive definite one. In the context of the phase-field fracture model, three
techniques are popular, (i) the BFGS3 method [83, 85], (ii) scaling of the
problematic Hessian block Kuφ [78], and (iii) the addition of multiples of
identity matrix to make a Hessian positive definite [82].

3.3.1 BFGS method

The BFGS method [146–149] replaces the true Hessian (K in Discrete Prob-
lem 2) with an approximate Hessian, say K̃. The approximate Hessian K̃ at
k+ 1 iteration is computed as

K̃ = K̃k −
(K̃k sk) (K̃k sk)T

sTk K̃k sk
+

yk yT
k

yT
k sk

. (3.5)

Here, sk is the solution update obtained in the kth iteration, and yk is
expressed as

yk = rk+1 − rk, (3.6)

where r is the residual (see Equation (3.1a) in Discrete Problem 2). The
BFGS method updated Hessian (3.5) is positive definite if the previous
iteration Hessian K̃k is positive definite and sTk yk > 0. To that end, in the
first iteration of every step, Kuφ and Kφu are explicitly set to zero.

3.3.2 Scaling the problematic Hessian block

In cases when the properties of the Hessian matrix block structure is known,
the Hessian K maybe additively decomposed into a well-posed part Kw and
a problematic part Kp. This allows the scaling of the problematic part of the
Hessian in order to achieve favourable properties for the Newton-Raphson
method convergence. Such techniques are popular in the fluid mechanics
literature [79–81]. In the context of the phase-field fracture model, Wick [78]
proposed the Hessian decomposition

K̃ =

[
Kuu 0

Kφu Kφφ

]
︸ ︷︷ ︸

Well-posed, Kw

+ω

[
0 Kuφ

0 0

]
︸ ︷︷ ︸

Problematic, Kp

, (3.7)

3 acronym for the contributors Broyden, Fletcher, Goldfarb, Shanno
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where a heuristically computed scalar ω scales the problematic Hessian
block Kp. Explicitly setting ω = 1 results in the conventional Newton-
Raphson (full-NR) method, which does not converge when the phase-field
φ ≈ 0.4. On the other hand, setting ω = 0 eliminates the problematic Kuφ

Hessian block, resulting in a convergent method. However, with the latter
choice, some Hessian information is lost. In particular, when φ < 0.4, the
Hessian is still positive definite and eliminating the block Kuφ may result
in slow convergence behaviour.

Proposed modification

A modification to Wick’s Hessian scaling method [78] is proposed. Instead of
working with the Hessian for the entire finite element mesh, one can modify
the integration point Hessian contributions. Similar to (3.7), a decomposition
for an integration point Hessian Kip is expressed as

Kip =

[
Kuu 0

Kφu Kφφ

]
ip︸ ︷︷ ︸

Well-posed, Kw

+ω

[
0 Kuφ

0 0

]
ip︸ ︷︷ ︸

Problematic, Kp

. (3.8)

When the phase-field φ ⩽ 0.4, the convergent full-NR method is adopted
by setting ω = 1. However, when the phase-field grows beyond 0.4, in the
corresponding integration points, the Hessian block Kuφ is eliminated using
ω = 0. Therefore, unlike Wick’s Hessian scaling method, the information
pertaining to the Hessian block Kuφ is removed only for fracturing elements
with φ > 0.4.

3.3.3 Adding multiples of identity matrix

An indefinite Hessian matrix K may also be modified into a positive definite
one, upon adding multiples of the identity matrix [143]. Mathematically,
this operation may be stated as

K̃ = K +ωI, (3.9)

where, ω is a scaling parameter. However, computing ω is not trivial.
One requires an initial guess, and repetitive iterative efforts either through
Eigenvalue or Cholesky decomposition to ensure that K̃ is positive definite.
This is due to the fact that the eigenvalues of K̃ cannot be related to the
eigenvalues of K and ωI, since they do not have the same eigenvectors.

In the context of phase-field fracture models, Lampron, Therriault, and
Lévesque [82] adopted this technique. Starting with an initial guess, ω
is updated based on eigenvalue decomposition on the global Hessian,
performed by the Pardiso solver. However, eigenvalue decomposition4 is

4 using the Jacobi iterative method
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expensive and scales O(n3), n being the size of the Hessian matrix. As such,
this method is not used in this thesis.

3.3.4 Integration point Hessian eigenvalue modification

Integration point Hessians are much smaller in size, compared to the Hes-
sian for the entire finite element mesh. As such, its eigenvalue decomposition
is also cheaper. Using this fact, a novel Hessian modification technique is
proposed in this section. Starting with an integration point Hessian matrix
Kip, its eigenvalue decomposition is carried out. Thereafter, the negative
eigenvalues are replaced with its absolute values abs(·). This results in a
modified integration point Hessian matrix, computed as

Kip = P abs(Λ) PT , (3.10)

where, P and Λ are matrices containing the eigenvectors and eigenvalues
(in a diagonal representation), respectively.

From the numerical experiment on the tapered bar problem, it is evident
that an integration point Hessian Kip is positive definite until the phase-
field reaches a value ≈ 0.4. Therefore, the modification (3.10) can be carried
out only for those integration points where the phase-field has exceeded
0.4. With this approach, the number of eigenvalue decomposition required
is limited to integration points where the fracture localizes.

3.3.5 Revisiting the tapered bar tension test

Figure 3.4 presents the load-displacement curves obtained using the Hessian
modification techniques in Section 3.3. The step-size is set to 10−4 [mm]
and the iteration terminating tolerance is 10−4. In the figure, the black curve
is the reference solution obtained using the dia-NR variant of the Newton-
Raphson method (red curve in Figure 3.2b). The similarity of the curves
in Figure 3.4 demonstrates the efficacy of the Hessian modification tech-
niques (BFGS, scaling of the problematic Hessian block, Hessian eigenvalue
modification) in the context of the phase-field fracture model.

3.4 arc-length method with fracture energy constraint

The arc-length method emerged from the pioneering efforts of Wempner
[86], Riks [87, 88] and Crisfield [89] as a solution technique intended to
navigate through complex equilibrium paths with limit points5. It deviates
from the conventional construct of the incremental iterative approach, where
the (Dirichlet or Neumann) loading increments are prescribed by the user
either explicitly or through some adaptive time-stepping scheme. The arc-
length method considers the loading parametrized by a scalar variable ζ as

5 limit points are coordinates in the load-displacement space where the load/displacement
increments change sign
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Figure 3.4: Figure presents the load-displacement curves obtained for the tapered bar tension test using
the diagonal only variant of the Newton-Raphson (dia-NR) method, the BFGS method,
scaling of the problematic Hessian block (Hessian scaling), and the Hessian eigenvalue
correction method (Eigen correction).

an additional unknown. Thereafter, the equilibrium equation assumes the
form

fint − ζ f̂ext = 0, (3.11)

for a Neumann-type loading with f̂ext representing the normalized external
force vector. In the case of Dirichlet-type loading, the equilibrium equation
is given by

fint + ζK âp = 0, (3.12)

with âp representing the normalized Dirichlet boundary values, and K
the Hessian matrix. Nevertheless, due to extra unknown ζ, an additional
equation is required to retain the determinate nature of the system of
equations. This additional equation is often referred to as the arc-length
constraint or path-following equation.

3.4.1 Arc-length constraint equation

Several arc-length constraint equations have been proposed since the in-
ception of the arc-length method in [86]. A generic constraint equation for
geometrically nonlinear problem may be formulated as

garc(∆u, ∆ζ, ∆s) := ∆uT ∆u +ψ∆ζ f̂Text f̂ext −∆s = 0, (3.13)

where, ∆s represents the arc-length, and ψ is a user-defined scalar. Choosing
ψ = 0 yields the cylindrical arc-length constraint equation, while ψ = 1

and ψ > 1 result in the spherical and elliptic variants, respectively. For a
comprehensive review of these variants, the reader is referred to [150, 151].
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Furthermore, in the context of the phase-field fracture model, the con-
straint equation (3.13) does not perform well. The reason lies in the local-
ization of the deformation into narrow bands, which renders controlling
the solution through a global constraint inadequate [59]. For such cases,
the energy release rate based arc-length constraint equation is proposed by
Verhoosel, Remmers, and Gutiérrez in [91]. Therein, the constraint equation
is stated as

garc(∆u,∆ζ,∆s) :=
1

2
[f̂ext]T

(
ζn∆u −∆ζun

)
−∆s = 0, (3.14)

where, the subscript n corresponds to the last converged step. The energy
release rate-based arc-length constraint equation has been adopted for the
phase-field fracture models in [92, 93], albeit only for a limited set of brittle
fracture problems.

3.4.2 Fracture energy-based constraint

In this thesis, a generic fracture energy-based constraint equation is pro-
posed for the phase-field fracture model, encompassing both brittle and
quasi-brittle fracture. To that end, the fracture surface energy is extracted
from the phase-field fracture model energy functional (2.19). The fracture
surface energy, Ψfrac is expressed as

Ψfrac(φ) =

∫
Ω

Gc

cwl

(
w(φ) + l2|∇φ|2) dΩ. (3.15)

For an explanation of the different terms and coefficients in the above
equation, the reader is referred to Section 2.2.1 in Chapter 2. The incremental
form of the fracture surface energy is expressed as

∆Ψfrac(φ,∆φ) =
∫
Ω

Gc

cwl

(
w ′(φ)∆φ+ 2l2∇φ ·∇∆φ) dΩ, (3.16)

which allows one to construct an arc-length constraint equation, limiting
the increment in the fracture surface energy ∆Ψfrac to the arc-length ∆s.
Mathematically, the constraint equation is expressed as

garc(φ,∆φ) := ∆Ψfrac(φ,∆φ) −∆s = 0. (3.17)

Equipped with the arc-length constraint equation (3.17), the phase-field
Discrete Problem 2 assumes the form:
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Discrete Problem 5. Compute the solution update sk+1 = {∆ũ ; ∆φ̃ ; ∆ζ̃}
for the current iteration k+ 1 using

Kuu Kuφ Kuζ

Kφu Kφφ Kφζ

Kζu Kζφ Kζζ


k︸ ︷︷ ︸

Stiffness matrix, Kk


∆ũ

∆φ̃

∆ζ̃


k+1︸ ︷︷ ︸

sk+1

=


fext,u

0

0


i

−


fint,u

fint,φ

garc


k︸ ︷︷ ︸

Residual, rk

,

(3.18a)

and update the solution as
ũ

φ̃

ζ̃


k+1

=


ũ

φ̃

ζ̃


k

+


∆ũ

∆φ̃

∆ζ̃


k+1

, (3.18b)

until the norm of the residual is sufficiently small. Furthermore, the stiffness
matrix components are given by

Kuu = A

∫
Ωel

[Bu]T
(
g(φ)

∂σ+

∂ϵ
+
∂σ−

∂ϵ︸ ︷︷ ︸
D

)
[Bu] dΩ,

Kuφ = A

∫
Ωel

[Bu]T
(
g ′(φ)σ+

)
[Nφ] dΩ,

Kuζ = −f̂ext,

Kφu = A

∫
Ωel

[Nφ]T
(
∂H

∂ϵ

)
[Bu] dΩ,

Kφφ = A

∫
Ωel

[Bφ]T
(
Gcl

cw

)
[Bφ]

+ [Nφ]T
(
Gc

cwl
w ′′(φ) + g ′′(φ)H

)
[Nφ] dΩ,

Kφζ = Kuζ = Kζζ = 0,

Kζφ = A

∫
Ωel

(
[Nφ]T

Gc

cwl
(w ′′(φ)∆φ+w ′(φ))

+ [Bφ]T
Gcl

cw
(∇∆φ+∇φ)

)
dΩ,

(3.18c)

and the internal force vector components are computed as



50 monolithic solution techniques

Discrete Problem 5 (continued)

fint,u = A

∫
Ωel

[Bu]T
(
g(φ)σ+ +σ−

)
dΩ,

fint,φ = A

∫
Ωel

[Bφ]T
(
Gcl

cw
∇φ

)
+ [Nφ]T

(
Gc

cwl
w ′(φ) + g ′(φ)H

)
dΩ,

garc = A

∫
Ωel

( Gc

cwl
(w ′(φ)∆φ+ 2l2∇φ ·∇∆φ

)
dΩ−∆s.

(3.18d)

Note that A is an assembly operator that maps element contributions to their
global counterparts. Furthermore, the external force vector fext,u = ζk f̂ext.
The material stiffness matrix D depends on the chosen strain energy density
split (see Table 2.4). The history variable H is defined in (2.24). ■

It is important to note that the Hessian matrix K in the phase-field
fracture Discrete Problem 5 is sparse, since the matrix blocks Kφζ, Kuζ and
Kζζ are equal to zero. This could lead to a poorly conditioned system of
equations or a nearly singular Hessian matrix [152]. Setting Kζζ = κ, where
κ > 0 circumvents these issues, however, at the cost of slowing down the
convergence rate.

Another way of tackling the sparsity of the Hessian matrix K in the phase-
field fracture Discrete Problem 5 is through reformulation of the arc-length
constraint equation (3.17). To that end, the variational equation pertaining
to phase-field evolution (see Equation (2.25b) from Variational Problem 3 in
Chapter 2) is re-stated,

E ′(u,φ; δφ) =
∫
Ω

(
g ′(φ)H+

Gc

cw l
w ′(φ)

)
δφ dΩ

+

∫
Ω

Gcl

cw
∇φ ·∇δφ dΩ = 0.

(3.19)

Thereafter, assuming the phase-field test function δφ = ∆φ, the following
expression is obtained,

∆Ψfrac = −

∫
Ω
g ′(φ)H∆φdΩ, (3.20)

using the relation for ∆Ψfrac defined in (3.16). This allows the formulation
of an alternative arc-length constraint equation, given by

garc(φ, u) :=
∫
Ω
g ′(φ)H∆φdΩ+∆s = 0. (3.21)

Using the constraint equation (3.21), an alternative phase-field Discrete
Problem is formulated as follows:
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Discrete Problem 6. Compute the solution update sk+1 = {∆ũ ; ∆φ̃ ; ∆ζ̃}
for the current iteration k+ 1 using

Kuu Kuφ Kuζ

Kφu Kφφ Kφζ

Kζu Kζφ Kζζ


k︸ ︷︷ ︸

Stiffness matrix, Kk


∆ũ

∆φ̃

∆ζ̃


k+1︸ ︷︷ ︸

sk+1

=


fext,u

0

0


i

−


fint,u

fint,φ

garc


k︸ ︷︷ ︸

Residual, rk

,

(3.22a)

and update the solution as
ũ

φ̃

ζ̃


k+1

=


ũ

φ̃

ζ̃


k

+


∆ũ

∆φ̃

∆ζ̃


k+1

, (3.22b)

until the norm of the residual is sufficiently small. Furthermore, the stiffness
matrix components are given by

Kuu = A

∫
Ωel

[Bu]T
(
g(φ)

∂σ+

∂ϵ
+
∂σ−

∂ϵ︸ ︷︷ ︸
D

)
[Bu] dΩ,

Kuφ = A

∫
Ωel

[Bu]T
(
g ′(φ)σ+

)
[Nφ] dΩ,

Kuζ = −f̂ext,

Kφu = A

∫
Ωel

[Nφ]T
(
∂H

∂ϵ

)
[Bu] dΩ,

Kφφ = A

∫
Ωel

[Bφ]T
(
Gcl

cw

)
[Bφ]

+ [Nφ]T
(
Gc

cwl
w ′′(φ) + g ′′(φ)H

)
[Nφ] dΩ,

Kφζ = Kζζ = 0,

Kζu = A

∫
Ωel

[Bu]T g ′(φ)∆φσ+ dΩ,

Kζφ = A

∫
Ωel

(
[Nφ]T

(
g ′′(φ)∆φ+ g ′(φ)

)
HdΩ.

(3.22c)

and the internal force vector components are computed as
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Discrete Problem 6 (continued)

fint,u = A

∫
Ωel

[Bu]T
(
g(φ)σ+ +σ−

)
dΩ,

fint,φ = A

∫
Ωel

[Bφ]T
(
Gcl

cw
∇φ

)
+ [Nφ]T

(
Gc

cwl
w ′(φ) + g ′(φ)H

)
dΩ,

garc = A

∫
Ωel

(
g ′(φ)∆φH

)
dΩ+∆s,

(3.22d)

Note that A is an assembly operator that maps element contributions to their
global counterparts. Furthermore, the external force vector fext,u = ζk f̂ext.
The material stiffness matrix D depends on the chosen strain energy density
split (see Table 2.4). The history variable H is defined in (2.24). ■

Compared to Discrete Problem 5, the Discrete Problem 6 results in com-
paratively less sparse Hessian matrix K due to the non-zero block Kζu. As
such, better conditioning properties is expected.

3.4.3 Implementation caveats

This section deals with the implementation caveats pertaining to the arc-
length method.

Singular Hessian

The Hessian K pertaining to the arc-length method (see Discrete Problems 5
and 6) would be singular if adequate constraints are not enforced, and also
when the solution increment {∆ũ ; ∆φ̃ ; ∆ζ̃} is zero. In this thesis, adequate
constraints are always enforced on all problems. Therefore, the focus on the
second source of a singular Hessian, the zero solution increment.

A zero solution increment is encountered in two scenarios, (i) at the start
of an analysis from an undeformed state, and (ii) at the first iteration of
every step. The first scenario is circumvented upon starting an analysis
with the incremental iterative approach instead of the arc-length method
(i.e., Discrete Problem 2 instead of Discrete Problem 5 or 6). As long as the
incremental iterative approach is used, the zero solution increment poses
no threat of singularity to the Hessian. Once the switch is made to the arc-
length either when a limit point is encountered or through a user-defined
criterion, the Hessian at the first iteration of every step is singular due to a
zero solution increment. At the first iteration, the previous step (converged)
solution is set to the current solution, as such the solution increment is zero.
In order to circumvent this issue, the true solution increment is replaced
by an increment computed as the difference between the two previous step
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converged solution. This results in a non-zero solution increment, and then
the Hessian is not singular anymore.

Switching between incremental iterative approach and the arc-length method

In the previous discussion on singular Hessian, it is established that an
analysis starts with the incremental iterative approach, i.e., Discrete Problem
2. The switch to the arc-length method is made when the conventional
Newton-Raphson method (full-NR) fails to converge. However, user-defined
switch criterion may also be set up. One such switch criterion is proposed,
based on a fracture energy threshold Ψfrac,th. The fracture energy threshold
may be computed using the expression

Ψfrac,th =
Gc

cwl
w(0.4)Velem, (3.23)

where, w(0.4) indicates the locally dissipated fracture energy function eval-
uated using phase-field φ = 0.4, and Velem is the volume of the smallest
element in the finite element mesh.

Furthermore, a switch from the arc-length method can also be made
when the load increment ∆ζ is positive. A positive load increment is usually
indicative of a well-posed Hessian, possibly positive definite. Therefore, the
conventional Newton-Raphson method (full-NR) is expected to converged.

Adaptive modification of the arc-length

Another key aspect pertaining to the arc-length method is the initial value of
the arc-length ∆s (see Discrete Problems 5 and 6) and adaptive modifications
thereof. When the switch is made from an incremental iterative approach
to the arc-length method, in this thesis, ∆s is set as the fracture energy
dissipated in the previous step, Ψfrac,n. Although, this initial value of
∆s may be conservatively small, it allows a smooth transition from the
incremental iterative approach to the arc-length method.

Furthermore, during the course of the analysis with the arc-length method,
the arc-length ∆s is modified based on the number of iterations required
for convergence (iiter) and its user-defined optimum value (optIter). The
arc-length for a new step, say n+ 1 is computed at the end of the previous
step n as

∆sn+1 =

∆sn, ∗1.2 if iiter < optIter

∆sn ∗ 0.50.25(iiter−optIter) otherwise.
(3.24)

3.4.4 Revisiting the tapered bar tension test

Figure 3.5 presents the load-displacement curves obtained using the dia-NR
method (reference solution from Figure 3.2b) and the arc-length method.



54 monolithic solution techniques

Both methods predict the same peak load. Post peak, the arc-length method
follows a different equilibrium path tracing a snap-back behaviour.
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Figure 3.5: Figure presents the load-displacement curves obtained for the tapered bar tension test using
the diagonal only variant of the Newton-Raphson (dia-NR) method and the arc-length
(Arc-len) method.

3.5 numerical experiments

In this section, numerical experiments are carried out on benchmark brittle
and quasi-brittle fracture problems using the monolithic solution techniques,
developed in this chapter. The set of problems comprises of the single edge
notched specimen under tension, and under shear [37], the Winkler L-panel
experiment [153], and the concrete beam three point bending experiment
carried out by Rots [154]. The objective is two-fold. First, the efficacy of the
monolithic solution techniques is investigated in Section 3.5.1. Thereafter,
based on numerical experiments on the single edge notched specimen under
tension, the computational efficiency of the solution techniques is assessed
in Section 3.5.2.

3.5.1 Benchmark problems

The benchmark problems comprising of the single edge notched specimen
under tension, and under shear [37], the Winkler L-panel experiment [153],
and the concrete beam three point bending experiment carried out by Rots
[154] are presented in this section. For each problem, the geometry, loading
conditions as well as the additional model parameters are presented in the
respective sub-sections. All geometries are discretized using three-noded
triangular elements, and a single integration point is adopted for numerical
integration. In all cases, the phase-field distribution at the final step of
the analysis, and pertinent load-displacement curves obtained from the
different monolithic solution techniques are reported.
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3.5.1.1 Single Edge Notched specimen under Tension (SENT)

The single edge notched specimen introduced by Miehe, Hofacker, and
Welschinger [37] has been studied extensively under tensile and shear
loading in the phase-field fracture literature. The geometry consists of a unit
square (in mm) embedded with a horizontal notch, midway along height
and equal to half of the edge length as shown in Figure 3.6. The notch is
modelled explicitly in the finite element mesh. A quasi-static loading is
applied at the top boundary in the form of prescribed displacement in the
vertical (y) direction. The increment for the first 52 steps is ∆u = 1e−4 [mm],
following which it is changed to 5e− 6 [mm]. The smaller increments are
adopted to capture the post peak-load brittle fracture response. However, for
the arc-length method, the increments are obtained as part of the solution,
since the dissipation is prescribed at every step instead. Furthermore, the
bottom boundary of the SENT specimen remains fixed. Additional model
parameters required for the simulation are presented in Table 3.2.

∆u

Figure 3.6: SENT specimen

Parameters Value [Units]

Fracture Model AT2

Energy Split No Split

E0 210.0 [GPa]

ν 0.3 [-]

Gc 2.7 [N/mm]

l 1.5e-2 [mm]

optIter 10 [-]

Table 3.2: Model parameters

Figure 3.7a presents the phase-field fracture distribution at the final step
of the analysis. The fracture occurs as a mode I phenomenon, wherein the
initial crack introduced in the mesh extends with no change in the direc-
tion. The load-displacement curves obtained using the different monolithic
solution techniques are presented in Figure 3.7b. The arc-length method is
able to predict snap-back responses beyond the peak load, since it allows
the relaxation of the top boundary displacement as long as the specimen
dissipates energy. The latter is ensured using the fracture energy-based
arc-length constraint (3.21). On the contrary, in the incremental iterative
solution techniques (BFGS, dia-NR, and Hessian scaling), the displacement
increments are fixed. As such, snap-back responses are not achieved. Fur-
thermore, among these solution techniques, the Hessian scaling method
predicts comparatively brittle response with a straight drop in the load,
while the BFGS and the dia-NR methods exhibits some artificial ductility.
This behaviour is attributed to the iteration terminating tolerance. A toler-
ance 10−4 is not sufficient enough for these methods. On decreasing the
tolerance to 10−6, a similar response (not presented in the Figure 3.7b) as
the Hessian scaling method may be obtained, as shown later in Section 3.5.2.
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Figure 3.7: Figure (a) presents the phase-field distribution in the single edge notched specimen under
tension at the final step of the analysis. Figure (b) presents the respective load-displacement
curves obtained using the monolithic solution techniques, arc-length (Arc-len) method,
BFGS method, diagonal only variant of the Newton-Raphson (dia-NR) method, and Hessian
scaling method.

3.5.1.2 Single Edge Notched specimen under Shear (SENS)

The single edge notched specimen in the previous section is loaded horizon-
tally along the top edge as shown in Figure 3.8 for a shear test. The relevant
model parameters are presented in Table 3.3, where a spectral decomposi-
tion based energy split [37] is adopted to capture the tension-compression
asymmetric response. A quasi-static loading is applied to the top boundary
in the form of prescribed displacement increment ∆u = 1e− 4 [mm] for the
first 85 steps, following which it is changed to 1e− 5 [mm]. Furthermore,
the bottom boundary remains fixed, and roller supports are implemented
in left and right edges restricting the vertical displacement. Similar to the
SENT numerical experiment, for the arc-length method, the displacement
increments are obtained as part of the solution, since the dissipation is
prescribed at every step instead.

∆u

Figure 3.8: SENS specimen

Parameters Value [Units]

Fracture Model AT2

Energy Split Spectral [37]

E0 210.0 [GPa]

ν 0.3 [-]

Gc 2.7 [N/mm]

l 1.5e-2 [mm]

optIter 10 [-]

Table 3.3: Model parameters

Figure 3.9a presents the phase-field fracture distribution at the final step of
the analysis. The fracture occurs as a combined mode I and II phenomenon.
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The initial crack introduced in the mesh extends in a curvilinear fashion
until it reaches the bottom edge, whereupon it propagates horizontally. The
load-displacement curves obtained using the different monolithic solution
techniques are presented in Figure 3.9b. Similar to the numerical exper-
iments on the SENT specimen, here too, the arc-length method predicts
snap-back behaviour beyond the peak load. Again, one can attribute this
to arc-length method construct, where relaxation of the displacement is
allowed and fracture energy-based arc-length constraint (3.21) is prescribed.
The Hessian scaling method traces a similar response to that observed
with the arc-length method, apart from the snap-back responses. The BFGS
method and the dia-NR method, however, predicts a comparatively duc-
tile response compared to the arc-length method and the Hessian scaling
method. Similar to the SENT numerical experiment, one can argue the in-
sufficiency of the iteration terminating tolerance 10−4. Setting the tolerance
to 10−6 eliminates this artificial ductile behaviour.
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Figure 3.9: Figure (a) presents the phase-field distribution in the single edge notched specimen under
shear at the final step of the analysis. Figure (b) presents the respective load-displacement
curves obtained using the monolithic solution techniques, arc-length (Arc-len) method,
BFGS method, diagonal only variant of the Newton-Raphson (dia-NR) method, and Hessian
scaling method.

3.5.1.3 Winkler L-panel

Experiments on a concrete L-shaped panel was conducted by Winkler
[153] in 2001, and the range of load-displacement curves as well as the
observed fracture pattern was reported. Since then, in several works [2,
155] on fracture modelling, the experiment was adopted as a benchmark
case. Figure 3.10 shows the geometry as well as the loading conditions for
the L-panel numerical experiment. The longer edges of the panel are 500
[mm] and the smaller edges are 250 [mm]. The relevant model parameters
are presented in Table 3.4. The loading is applied on the edge marked
in blue, 30 [mm] in length, and is in the form of displacement increment
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∆u = 1e− 3 [mm]. The bottom edge remains fixed. Furthermore, for the
arc-length method, one may note that dissipation is prescribed instead of
displacement increments.

∆u

Figure 3.10: Winkler L-panel

Parameters Value [Units]

Fracture Model Quasi-Brittle

Energy Split Spectral [37]

Softening Cornellisen et. al. [70]

E0 2.0e4 [MPa]

ν 0.18 [-]

ft 2.5 [MPa]

Gc 0.130 [N/mm]

l 10 [mm]

optIter 10 [-]

Table 3.4: Models parameters

Figure 3.11a presents the phase-field fracture distribution at the final step
of the analysis. It is in agreement with the experimentally observed fracture
pattern by Winkler [153]. The load-displacement curves obtained using the
different monolithic solution techniques are presented in Figure 3.11b. All
curves are similar and lie in the shaded region of experimentally observed
load-displacement curves.
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Figure 3.11: Figure (a) presents the phase-field distribution in the L-panel specimen under shear at
the final step of the analysis. Figure (b) presents the respective load-displacement curves
obtained using the monolithic solution techniques, arc-length (Arc-len) method, BFGS
method, diagonal only variant of the Newton-Raphson (dia-NR) method, and Hessian
scaling method. The experimental range from Winkler [153] is represented by the shaded
region.

3.5.1.4 Concrete beam three-point bending

A three-point bending experiment was conducted by Rots [154] on a notched
concrete beam. The beam has dimensions 450× 100 [mm2], with a notch
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5× 50 [mm2]. A schematic of the beam along with the loading conditions
is presented in Figure 3.12. The relevant model parameters are presented
in Table 3.5. The loading is applied on a node on the top edge marked in
the form of displacement increment ∆u = 1e− 3 [mm]. The bottom left
corner is fixed, while a roller support is added on the bottom right edge.
Furthermore, for the arc-length method, one may note that dissipation is
prescribed instead of displacement increments.

∆u

Figure 3.12: Three point bending

Parameters Value

Fracture Model Quasi-Brittle

Energy Split Spectral [37]

Softening Cornellisen et. al. [70]

E0 2e4 [MPa]

ν 0.2 [-]

ft 2.4 [MPa]

Gc 0.113 [N/mm]

l 2.5 [mm]

optIter 10 [-]

Table 3.5: Model parameters

Figure 3.13a presents the phase-field fracture distribution at the final step
of the analysis. It is in agreement with the experimentally observed fracture
pattern by Rots [154]. The load-displacement curves obtained using the
different monolithic solution techniques are presented in Figure 3.13b. The
arc-length method estimates a higher peak-load compared to the incremen-
tal iterative methods (BFGS, dia-NR and Hessian scaling). However, the
peak loads are within the experimentally observed range (shaded region).
The post-peak response differs from the experimental range due to the
calibration of the Cornellisen et. al. softening law [70] carried out in [2] for
the phase-field fracture model. Re-calibration for better a experimental fit is
possible, however, it is not carried out in this thesis.

3.5.2 Computational efficiency

This section presents a study on the computational efficiency of the mono-
lithic solution techniques, discussed earlier in this chapter. The total and
average iterations required to achieve convergence as well as the CPU time
are considered as efficiency measures. The numerical experiments are lim-
ited to the single edge notched specimen under tension (SENT), which is
discretized using 13204 3-noded triangular elements, resulting 6616 nodes
and 19785 unconstrained degrees of freedom. Furthermore, the iteration
terminating tolerances are varied as 10−4, 10−6 and 10−8. The simulations
are carried out on the HPC27 cluster at the Delft University of Technology,
The Netherlands. Four cores are utilized on Intel(R) Xeon(R) CPU E5-1620
v4 processors for multi-threaded assembly of the stiffness matrix and the
force vectors. The linear problem in every iteration is solved using the
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Figure 3.13: Figure (a) presents the phase-field distribution in the three-point bending specimen at
the final step of the analysis. Figure (b) presents the respective load-displacement curves
obtained using the monolithic solution techniques, arc-length (Arc-len) method, BFGS
method, diagonal only variant of the Newton-Raphson (dia-NR) method, and Hessian
scaling method. The experimental range from Rots [154] is represented by the shaded
region.

shared memory Pardiso solver from Intel’s oneAPI Math Kernel Library
[64].

Solution technique tol Steps Total Iters. Avg. Iters. CPU time [s]

Arc-length
10−4 265 1668 6.29 1357.0

10−6 265 1763 6.65 1719.0

10−8 312 2554 8.18 1637.0

dia-NR
10−4 251 5938 23.66 6638.0

10−6 251 13283 52.92 11580.0

10−8 251 30958 123.34 23630.0

BFGS
10−4 251 5938 23.66 6701.0

10−6 251 13284 52.92 11740.0

10−8 251 30958 123.34 24720.0

Hessian

scaling

10−4 251 3473 13.84 2450.0

10−6 251 6042 24.07 4233.0

10−8 251 12993 51.77 8784.0

Table 3.6: Table presents the total numbers of steps and iterations, average iterations and CPU time (in
seconds) for the SENT numerical experiment with different monolithic solution techniques
and varying iteration terminating tolerances. For the arc-length method, the total iterations
also include those from steps that failed to converge.

Table 3.6 presents the efficiency measures adopted for the different mono-
lithic solution techniques. The arc-length method outperforms all other
methods in terms of (total and average) iterations required for convergence,
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and consequently the CPU time. It is important to note that the arc-length
method has been implemented using the Sherman-Morisson formula [156],
thus requiring two linear solves for each iteration. Further reduction in
the CPU time may be achieved upon using a linear solver with multiple
right-hand sides.

Among the incremental iterative methods (dia-NR, BFGS and Hessian
scaling), the Hessian scaling method outperforms the rest. The reason being
it retains more information of the true Hessian (global tangent stiffness
matrix) compared to the dia-NR and BFGS methods. The problematic
Hessian block Kuφ is removed only for integration points with phase-field
above 0.4. This leads to a better convergence behaviour, thereby reducing the
CPU time. The dia-NR method and the BFGS method are both secant-based
solution techniques, demonstrating similar performance.

Beside the efficiency measures for the different monolithic solution tech-
niques, the convergence of the load-displacement curves w.r.t. the iteration
terminating tolerance is also an important aspect. It is particularly worth
investigating given the difference in the load-displacement curves observed
with the BFGS method and dia-NR method compared to the Hessian scaling
method for the same tolerance 10−4 (see Figure 3.7b in Section 3.5.1.1).
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(d) Hessian scaling method

Figure 3.14: Figure (a,b,c,d) presents the set of load-displacement curves obtained using the arc-length
method, diagonal only variant of the Newton-Raphson (dia-NR) method, BFGS method and
the Hessian scaling method, respectively. In each figures, the individual curves correspond
to the choice of iteration terminating tolerance, varied as 10−4, 10−6 and 10−8.
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Figure 3.14 presents the set of load-displacement curves obtained using
the arc-length method, diagonal variant of the Newton-Raphson method
(dia-NR), BFGS method, and the Hessian scaling method. For the arc-
length method and the Hessian scaling method, the load-displacement
curves are similar, irrespective of the chosen tolerances, thereby indicating
a convergence. However, in the case of the BFGS method and dia-NR
method, a tolerance of 10−4 yields a different post-peak response in the
load-displacement curve, exhibiting an artificial ductility. On choosing
stricter tolerances 10−6 and 10−8, a convergence of the load-displacement
curve is obtained.



4
VA R I AT I O N A L LY C O N S I S T E N T F R A C T U R E
I R R E V E R S I B I L I T Y

This chapter deals with the computational methods for enforcing the fracture
irreversibility constraint in phase-field fracture models. The fracture irreversibility
constraint manifests in the form of variational inequality with restrictive test and
trial spaces. Section 4.1 presents the pertinent equations and the implementation
caveats.

A novel micromorphic phase-field fracture model is proposed in Section 4.2 for
pointwise treatment of fracture irreversibility in a variationally consistent fashion.
Thereafter, the arc-length method presented in the previous chapter is extended to
the micromorphic phase-field fracture model. This is followed by a set of numerical
experiments and pertinent discussion in Section 4.4.

4.1 variational inequality and implementation caveats

The phase-field fracture model entails a variational inequality formulation.
The inequality formulation stems from the minimization of its energy
functional (2.19) in conjunction with the fracture irreversibility constraint
φ̇ ⩾ 0. Here and throughout this thesis, φ is the phase-field variable
representing fracture. The variational equations following the minimization
along with pertinent trial and test spaces results in the Variational Problem
5. Herein, the phase-field evolution equation (4.1b) is observed to be a
variational inequality, with a restrictive trial and test space (4.2b).

Variational Problem 5. Find (u, φ) ∈ U × P such that

E ′(u,φ; δu) =
∫
Ω

(
g(φ)

∂Ψ+(ϵ[u])
∂ϵ

+
∂Ψ−(ϵ[u])

∂ϵ

)
: ϵ[δu] dΩ

−

∫
ΓuN

tup · δu dΓ = 0 ∀ δu ∈ U0,
(4.1a)

E ′(u,φ; φ̂) =
∫
Ω

(
g ′(φ)Ψ+(ϵ[u]) +

Gc

cw l
w ′(φ)

)
(φ̂−φ) dΩ

+

∫
Ω

Gcl

cw
∇φ ·∇(φ̂−φ) dΩ ⩾ 0 ∀ φ̂ ∈ P,

(4.1b)

using pertinent time-dependent Dirichlet boundary conditions up on ΓuD
and φp on ΓφD, and Neumann boundary condition tup on ΓuN. The trial and
test spaces are defined as

U = {u ∈ [H1(Ω)]dim|u = up on ΓuD}, (4.2a)

63
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Variational Problem 5 (continued)

P = {φ ∈ [H1(Ω)]|φ ⩾ nφ|φ = φp on ΓφD}, (4.2b)

U0 = {u ∈ [H1(Ω)]dim|u = 0 on ΓuD}. (4.2c)

In (4.2b), the left superscript n refers to the previous time-step. ■

Transforming the inequality-based continuous Variational Problem 5 into
a discrete problem using the finite element method is a challenging task. Tra-
ditionally, the finite element method is suited to equality-based equations,
and offers no support in enforcing a solution to remain in a feasible region
defined by inequality constraints. Therefore, the approach towards solv-
ing inequality-based variational problems is to combine the finite element
method with constrained optimization techniques. Some of these tech-
niques adopted for the phase-field fracture model include penalty method
[32], augmented Lagrangian method [157], interior point method [35], and
primal-dual active set method [34]. Under certain assumptions, discussed
in the respective articles, these techniques offer equivalent equality-based
formulations for the inequality-based continuous Variational Problem 5.
In an alternative approach, some heuristic methods are also proposed for
enforcing fracture irreversibility. They include the history variable approach
[37] and the ‘Crack-Set’ method [21, 22, 158]. In this thesis, the penalty
method and the history variable approach are discussed, owing to their
popularity in the phase-field fracture modelling community.

Penalty method

The penalty method is proposed by Gerasimov and De Lorenzis in [32]
as an equivalent equality-based reformulation of the Variational Problem
5. To that end, the energy functional (2.19) and the fracture irreversibility
constraint φ̇ ⩾ 0 are expressed as

E(u,φ) =
∫
Ω
g(φ)Ψ+(ϵ[u]) dΩ +

∫
Ω
Ψ−(ϵ[u]) dΩ −

∫
ΓuN

tup · u dΓ

+

∫
Ω

Gc

cw

(
w(φ)

l
+ l|∇φ|2

)
dΩ+

∫
Ω

η

2
⟨nφ−φ⟩2+ dΩ,

(4.3)

where, nφ represents the phase-field from the previous converged step.
Theoretically, when η −→ ∞, the fracture irreversibility constraint φ̇ ⩾ 0 is
satisfied. The corresponding Variational Problem is stated as follows:
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Variational Problem 6. Find (u, φ) ∈ U × P such that

E ′(u,φ; δu) =
∫
Ω

(
g(φ)

∂Ψ+(ϵ[u])
∂ϵ

+
∂Ψ−(ϵ[u])

∂ϵ

)
: ϵ[δu] dΩ

(4.4a)

−

∫
ΓuN

tup · δu dΓ = 0 ∀ δu ∈ U0,

E ′(u,φ; δφ) =
∫
Ω

(
g ′(φ)Ψ+(ϵ[u]) +

Gc

cw l
w ′(φ)

)
δφ dΩ (4.4b)

+

∫
Ω

Gcl

cw
∇φ ·∇δφ dΩ

−

∫
Ω
η ⟨nφ−φ⟩+ δφ dΩ = 0 ∀ δφ ∈ P0,

using pertinent time-dependent Dirichlet boundary conditions up on ΓuD
and φp on ΓφD, and Neumann boundary condition tup on ΓuN. The trial and
test spaces are defined as

U = {u ∈ [H1(Ω)]dim|u = up on ΓuD}, (4.5a)

P = {φ ∈ [H1(Ω)]|φ = φp on ΓφD}, (4.5b)

U0 = {u ∈ [H1(Ω)]dim|u = 0 on ΓuD}, (4.5c)

P0 = {φ ∈ [H1(Ω)]|φ = 0 on ΓφD}. (4.5d)

■

The equality-based Variational Problem 6 is equivalent to the inequality-
based Variational Problem 5 only when η −→ ∞. However, Gerasimov and
De Lorenzis introduced the notion of a user-prescribed tolerance TOLir on
the fracture irreversibility constraint. Based on the choice of TOLir, a lower
bound for the penalty parameter was proposed as

η(TOLir) =


Gc

l

27

64 TOL2ir
AT1 model,

Gc

l

(
1

TOL2ir
− 1

)
AT2 model.

(4.6)

From the above expression, it is clear that the penalty parameter scales
inversely w.r.t the square of the fracture irreversibility constraint tolerance.
Such an expression does have an influence on the ill-conditioning of the
system of equation. For instance, when TOLir = 1e−4, the penalty parameter
η assumes value ≈ 108Gc/l. A further issue, albeit minor pertains to the
lack of a penalty parameter expression for quasi-brittle fracture models.
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History variable approach

The history variable approach is a heuristic method to enforce fracture
irreversibility. It is proposed by Miehe, Hofacker, and Welschinger [37],
where the fracture driving energy Ψ+ is postulated as the source term,
driving the evolution of the phase-field. Thereafter, fracture irreversibility
is enforced through an irreversibility constraint on Ψ+. To that end, Miehe,
Hofacker, and Welschinger introduced an integration point variable, referred
to as the ‘history variable’, defined as

H = max
{
nH,Ψ+(ϵ[u])

}
, (4.7)

where n refers to the previous time-step. Finally, Ψ+ in the phase-field
evolution equation (4.1b) is replaced with H. This transforms the phase-
field evolution equation to an equality with relaxed trial and test spaces, as
shown in Variational Problem 7.

Variational Problem 7. Find (u, φ) ∈ U × P such that

E ′(u,φ; δu) =
∫
Ω

(
g(φ)

∂Ψ+(ϵ[u])
∂ϵ

+
∂Ψ−(ϵ[u])

∂ϵ

)
: ϵ[δu] dΩ

(4.8a)

−

∫
ΓuN

tup · δu dΓ = 0 ∀ δu ∈ U0,

E ′(u,φ; δφ) =
∫
Ω

(
g ′(φ)H+

Gc

cw l
w ′(φ)

)
δφ dΩ (4.8b)

+

∫
Ω

Gcl

cw
∇φ ·∇δφ dΩ = 0 ∀ δφ ∈ P0,

using pertinent time-dependent Dirichlet boundary conditions up on ΓuD
and φp on ΓφD, and Neumann boundary condition tup on ΓuN. The trial and
test spaces are defined as

U = {u ∈ [H1(Ω)]dim|u = up on ΓuD}, (4.9a)

P = {φ ∈ [H1(Ω)]|φ = φp on ΓφD}, (4.9b)

U0 = {u ∈ [H1(Ω)]dim|u = 0 on ΓuD}, (4.9c)

P0 = {φ ∈ [H1(Ω)]|φ = 0 on ΓφD}. (4.9d)

The history variable H is defined in (4.7). ■

The history variable approach, however, results in the loss of variational
consistency. In particular, the energy functional (2.19) is not recovered
from the variational equations (4.8a) and (4.8b). Furthermore, De Lorenzis
and Gerasimov reported an over-estimation of the fracture surface en-
ergy with the history-variable approach (see Figures 7 and 9 in [28]). The
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over-estimated fracture surface energy manifests in an increased fracture
bandwidth (see Figures 8 and 10 in [28]).

4.2 a micromorphic phase-field fracture model

In this section, a micromorphic phase-field fracture model is developed as
an alternative implementation of the variational inequality (4.1b). To that
end, the phase-field fracture energy functional (2.19) is extended in the
spirit of micromorphic approach proposed by Forest in [159]. Thereafter,
minimizing the energy functional reveals the local nature of the phase-
field evolution equation, allowing a pointwise treatment of the fracture
irreversibility constraint with system-level precision.

4.2.1 The energy functional

The energy functional for the micromorphic phase-field fracture model is
expressed as

E(u,φ,d) =
∫
Ω
g(φ)Ψ+(ϵ[u]) dΩ +

∫
Ω
Ψ−(ϵ[u]) dΩ −

∫
ΓuN

tup · u dΓ

+

∫
Ω

Gc

cw

(
w(φ)

l
+ l|∇d|2

)
dΩ︸ ︷︷ ︸

fracture surface energy

+

∫
Ω

η

2
(φ− d)2 dΩ︸ ︷︷ ︸

interaction energy

,

(4.10)

resulting in a three-field problem with the displacement u, phase-field φ,
and a newly introduced micromorphic variable d. Compared to the original
phase-field fracture model energy functional (2.19), the micromorphic vari-
ant (4.10) introduces two changes. First, the gradient of the phase-field ∇φ
in the fracture surface energy is replaced by a gradient of the micromorphic
variable ∇d. Thus, the regularity requirements on the phase-field w.r.t. the
existence of its derivatives is circumvented. In other words, the phase-field
becomes a local quantity. The second change in the micromorphic variant
is the additional interaction term, penalizing the difference between the
phase-field and the micromorphic variable. Thus, when η −→ ∞, φ = d and
the original phase-field fracture model energy functional (2.19) is recovered.

4.2.2 Variational equations

The set of variational equations for the micromorphic phase-field fracture
model is obtained upon minimizing the energy functional (4.10) w.r.t its
solution fields, the vector-valued displacement u, and the scalar-valued
phase-field φ and micromorphic variable d. With appropriately defined



68 variationally consistent fracture irreversibility

test and trial Sobolev1 spaces H1 and the fracture irreversibility constraint
φ̇ ⩾ 0, the complete variational problem assumes the following form:

Variational Problem 8. Find (u, φ, d) ∈ U × P × D such that

E ′(u,φ,d; δu) =
∫
Ω

(
g(φ)

∂Ψ+(ϵ[u])
∂ϵ

+
∂Ψ−(ϵ[u])

∂ϵ

)
: ϵ[δu] dΩ

−

∫
ΓuN

tup · δu dΓ = 0 ∀ δu ∈ U0, (4.11a)

E ′(u,φ,d; φ̂) =
∫
Ω

(
g ′(φ)Ψ+(ϵ[u]) +

Gc

cw l
w ′(φ)

)
(φ̂−φ) dΩ

+

∫
Ω
η(φ− d)(φ̂−φ) dΩ ⩾ 0 ∀ φ̂ ∈ P, (4.11b)

E ′(u,φ,d; δd) =
∫
Ω

2Gcl

cw
∇d ·∇δd dΩ

−

∫
Ω
η(φ− d)δd dΩ = 0 ∀ δd ∈ D0, (4.11c)

using pertinent time-dependent Dirichlet boundary conditions up on ΓuD
and dp on ΓdD, and Neumann boundary condition tup on ΓuN. The trial and
test spaces are defined as

U = {u ∈ [H1(Ω)]dim|u = up on ΓuD}, (4.12a)

P = {φ ∈ [H1(Ω)]|φ ⩾ nφ|φ = φp on ΓφD}, (4.12b)

D = {d ∈ [H1(Ω)]|d = dp on ΓdD}, (4.12c)

U0 = {u ∈ [H1(Ω)]dim|u = 0 on ΓuD}, (4.12d)

D0 = {d ∈ [H1(Ω)]|d = 0 on ΓdD}. (4.12e)

In (4.12b), the left superscript n refers to the previous time-step. ■

The phase-field evolution equation (4.11b) corresponding to the micromor-
phic phase-field fracture model remains a variational inequality. However,
the regularity requirement on the phase-field is reduced due to the absence
of its derivatives. Therefore, (4.11b) may be assumed to hold pointwise in
the computational domain Ω, without the loss of generality. In other words,
it is possible to compute the phase-field φ at the integration points as the
root(s) of the equation,

g ′(φ)Ψ+(ϵ[u]) +
Gc

cwl
w ′(φ) + η(φ− d) = 0. (4.13)

Thereafter, the fracture irreversibility constraint as well as the upper bound
are enforced as nφ < φ < 1 with system-level precision. The ability to com-

1 A function u for which
∫
Ω(u)2 + (∇u)2 < ∞, belongs to Sobolev space of degree one,

denoted by H1. For more on function spaces, the reader is referred to [31].
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pute the phase-field at integration points reduces the three-field Variational
Problem 8 into an equivalent two-field Variational Problem 9.

Variational Problem 9. With phase-field φ computed using (4.13), find
(u, d) ∈ U × D such that

E ′(u,d; δu) =
∫
Ω

(
g(φ)

∂Ψ+(ϵ[u])
∂ϵ

+
∂Ψ−(ϵ[u])

∂ϵ

)
: ϵ[δu] dΩ

−

∫
ΓuN

tup · δu dΓ = 0 ∀ δu ∈ U0, (4.14a)

E ′(u,d; δd) =
∫
Ω

2Gcl

cw
∇d ·∇δd dΩ

−

∫
Ω
η(φ− d)δd dΩ = 0 ∀ δd ∈ D0, (4.14b)

using pertinent time-dependent Dirichlet boundary conditions up on ΓuD
and dp on ΓdD, and Neumann boundary condition tup on ΓuN. The trial and
test spaces are defined as

U = {u ∈ [H1(Ω)]dim|u = up on ΓuD}, (4.15a)

D = {d ∈ [H1(Ω)]|d = dp on ΓdD}, (4.15b)

U0 = {u ∈ [H1(Ω)]dim|u = 0 on ΓuD}, (4.15c)

D0 = {d ∈ [H1(Ω)]|d = 0 on ΓdD}. (4.15d)

■

Furthermore, the integration point phase-field evolution equation (4.13)
may be linear or nonlinear. It depends on the chosen degradation function
g(φ) and the locally dissipated fracture energy function w(φ) (see Tables
2.1 and 2.3 in Chapter 2 for possible options). In the case of brittle AT1 and
AT2 models, closed form expressions for the phase-field are obtained as

φ(ϵ[u],d) =


min

(
max

(
2Ψ+ + ηd

2Ψ+ + η+ Gc

l

, nφ
)

, 1

)
AT1 model,

min

(
max

(
2Ψ+ + ηd

2Ψ+ + η+ Gc

l

, nφ
)

, 1

)
AT2 model.

(4.16)

This is a consequence of linear/quadratic functions g(φ) and w(φ). How-
ever, for quasi-brittle fracture models, g(φ) is a rational fraction. Therefore,
the phase-field evolution equation (4.13) becomes nonlinear, and is solved
using the Newton-Raphson method.



70 variationally consistent fracture irreversibility

4.3 monolithic solution techniques

The Variational Problem 9 is non-convex, which results in a poor conver-
gence of the Newton-Raphson method (full-NR). Similar to the phase-field
fracture model, the non-convex nature is attributed to the degraded strain
energy density g(φ)Ψ+. In order to investigate the performance of the
Newton-Raphson method, the Variational Problem 9 is discretized using the
Finite Element Method (FEM), following the procedure explained in Section
2.1. The derivation is skipped here for brevity, instead the micromorphic
phase-field fracture Discrete Problem 7 is presented.

Discrete Problem 7. With phase-field φ evaluated using (4.13), compute
the solution update sk+1 = {∆ũ ; ∆d̃} for the current iteration k+ 1 using

[
Kuu Kud

Kdu Kdd

]
k︸ ︷︷ ︸

Stiffness matrix, Kk

{
∆ũ

∆d̃

}
k+1︸ ︷︷ ︸

sk+1

=

{
fext,u

fext,d

}
i

−

{
fint,u

fint,d

}
k︸ ︷︷ ︸

Residual, rk

, (4.17a)

and update the solution as{
ũ

d̃

}
k+1

=

{
ũ

d̃

}
k

+

{
∆ũ

∆d̃

}
k+1

, (4.17b)

until the norm of the residual is sufficiently small. The stiffness matrix
components are given by,

Kuu = A

∫
Ωel

[Bu]T
(
g(φ)

∂σ+

∂ϵ
+
∂σ−

∂ϵ︸ ︷︷ ︸
D

−g ′(φ)σ+(ϵ[u])
∂φ

∂ϵ

)
[Bu] dΩ,

Kud = A

∫
Ωel

[Bu]T
(
g ′(φ)σ+∂φ

∂d

)[
Nd
]
dΩ,

Kdu = A

∫
Ωel

[
Nd
]T (

− η
∂φ

∂d

)
[Bu] dΩ,

Kdd = A

∫
Ωel

([
Bd
]T (Gcl

cw

)[
Bd
]

+
[
Nd
]T ( Gc

cwl
w ′′(φ) + η− η

∂φ

∂d

)[
Nd
])

dΩ,

(4.17c)

and the internal force vector components are computed as



4.3 monolithic solution techniques 71

Discrete Problem 7 (continued)

fint,u = A

∫
Ωel

[Bu]T
(
g(φ)σ+ +σ−

)
dΩ,

fint,d = A

∫
Ωel

([
Bd
]T (Gcl

cw
∇φ

)
+
[
Nd
]T
η(φ− d)

)
dΩ.

(4.17d)

Note that A is an assembly operator that maps element contributions to
their global counterparts. Furthermore, the external force vectors fext,u and
fext,d are considered equal to zero. The material stiffness matrix D depends
on the chosen strain energy density split (see Table 2.4). ■

Revisiting the tapered bar tension test

In this section, the tapered bar tension test introduced in Section 3.1.2 of
Chapter 3 is revisited in the context of the micromorphic phase-field fracture
model. For the geometry and other model parameters, the reader is referred
therein.
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Figure 4.1: Figure (a) presents the phase-field distribution in the tapered bar, when the Newton-Raphson
(full-NR) method breaks down (top) and the failure mode obtained with the diagonal only
variant of the Newton-Raphson (dia-NR) method (bottom). Figure (b) presents the respective
load-displacement curves. The black dot represents the last converged step for the full-NR.

Figure 4.1a (top) presents the phase-field distribution corresponding to
the last converged step, obtained with the Newton-Raphson method (full-
NR). Therein, the maximum value of the phase-field is ≈ 0.4. From the
load-displacement curve (in black), presented in Figure 4.1b, it is evident
that the full-NR does not converge for the entire loading path. The black dot
represents the last converged step. Similar to the phase-field fracture model,
an eigenvalue decomposition of the Hessians (stiffness matrices) generated
in the non-converged step reveals dominant negative eigenvalues in terms
of magnitude. This proves the Hessian being indefinite when the phase-
field reaches ≈ 0.4. During the iterative process, the indefinite Hessian
generates a sequence of solution updates not of descent direction, which
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results in divergence of the full-NR method. However, on setting the off-
diagonal Hessian (stiffness matrix) blocks Kud and Kdu explicitly to zero,
convergence is achieved for the entire loading path (see red curve in Figure
4.1b). The convergent behaviour is attributed to the positive definiteness of
the Hessian. For a relevant discussion, the reader is referred to Section 3.1.3.

The monolithic solution techniques developed for the phase-field fracture
model in Chapter 3 may be extended to the micromorphic variant in a
straight-forward fashion. However, among these techniques, the arc-length
method is adopted in this chapter, motivated by its superior performance.

4.3.1 Arc-length method with fracture energy constraint

The arc-length method with fracture energy constraint has been introduced
in Section 3.4, albeit in the context of the phase-field fracture model. Its
extension to the micromorphic phase-field fracture model only requires
redefining the fracture energy.

4.3.1.1 Fracture energy-based constraint

The fracture energy-based arc-length constraint equation is re-stated from
(3.17),

garc := ∆Ψfrac −∆s = 0, (4.18)

where, ∆Ψfrac and ∆s represent the incremental fracture energy and the
arc-length, respectively. Note that function arguments are excluded, since
the fracture energy requires redefinition in the context of the micromorphic
phase-field fracture model.

The incremental fracture energy for the phase-field fracture model (3.20)
is expressed as

∆Ψfrac = −

∫
Ω
g ′(φ)H∆φdΩ, (4.19)

where, H is the history variable associated with the Variational Problem
3. However, for the micromorphic phase-field fracture model, there is no
notion of history variable. Therefore, the history variable H is replaced
with the fracture driving energy Ψ+(ϵ[u]). With this change, and assuming
φ ≈ d, the incremental fracture energy is given by

∆Ψfrac(ϵ[u],d, nd) = −

∫
Ω
g ′(d)Ψ+(ϵ[u])∆ddΩ. (4.20)

The assumption φ ≈ d holds for a sufficiently high interaction parameter η.
Finally, the fracture energy based arc-length constraint is stated as

garc := −

∫
Ω
g ′(d)Ψ+(ϵ[u])∆ddΩ−∆s = 0. (4.21)
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Augmented with the arc-length constraint equation (4.21), the micromorphic
phase-field fracture Discrete Problem 7 attains the following form:

Discrete Problem 8. Compute the solution update sk+1 = {∆ũ ; ∆φ̃ ; ∆ζ̃}
for the current iteration k+ 1 using

Kuu Kud Kuζ

Kdu Kdd Kdζ

Kζu Kζd Kζζ


k︸ ︷︷ ︸

Stiffness matrix, Kk


∆ũ

∆d̃

∆ζ̃


k+1︸ ︷︷ ︸

sk+1

=


fext,u

0

0


i

−


fint,u

fint,d

garc


k︸ ︷︷ ︸

Residual, rk

, (4.22a)

and update the solution as
ũ

d̃

ζ̃


k+1

=


ũ

d̃

ζ̃


k

+


∆ũ

∆d̃

∆ζ̃


k+1

, (4.22b)

until the norm of the residual is sufficiently small. Furthermore, the stiffness
matrix components are given by,

Kuu = A

∫
Ωel

[Bu]T
(
g(φ)

∂σ+

∂ϵ
+
∂σ−

∂ϵ︸ ︷︷ ︸
D

−g ′(φ)σ+(ϵ[u])
∂φ

∂ϵ

)
[Bu] dΩ,

Kud = A

∫
Ωel

[Bu]T
(
g ′(φ)σ+∂φ

∂d

)[
Nd
]
dΩ,

Kuζ = −f̂ext,

Kdu = A

∫
Ωel

[
Nd
]T (

− η
∂φ

∂d

)
[Bu] dΩ,

Kdd = A

∫
Ωel

([
Bd
]T (Gcl

cw

)[
Bd
]

+
[
Nd
]T ( Gc

cwl
w ′′(φ) + η− η

∂φ

∂d

)[
Nd
])

dΩ,

Kdζ = Kζζ = 0,

Kζu = A

∫
Ωel

[Bu]T g ′(φ)∆φσ+ dΩ,

Kζd = A

∫
Ωel

[Nφ]T
(
g ′′(d)∆d+ g ′(d)

)
Ψ+ dΩ,

(4.22c)

and the internal force vector components are computed as
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Discrete Problem 8 (continued)

fint,u = A

∫
Ωel

[Bu]T
(
g(φ)σ+ +σ−

)
dΩ,

fint,d = A

∫
Ωel

([
Bd
]T (Gcl

cw
∇φ

)
+
[
Nd
]T
η(φ− d)

)
dΩ,

garc = A

∫
Ωel

(
g ′(d)∆dΨ+

)
dΩ+∆s.

(4.22d)

Note that A is an assembly operator that maps element contributions to their
global counterparts. Furthermore, the external force vector fext,u = ζk f̂ext.
The material stiffness matrix D depends on the chosen strain energy density
split (see Table 2.4). ■

4.3.2 Implementation caveats

The use of arc-length method for the micromorphic phase-field fracture
model entails similar implementation caveats compared to the phase-field
fracture model. These are, possible singular Hessian, switching between the
incremental iterative approach and the arc-length method, and adaptive
modification of the arc-length ∆s. They have been addressed in Section
3.4.3.

An additional caveat solely related to the micromorphic phase-field frac-
ture model is the assumption φ ≈ d in the arc-length constraint (4.21). For
a sufficiently high interaction parameter η, the assumption holds and the
incremental fracture energy is correctly computed. In other cases, the incre-
mental fracture energy is underestimated. In the absence of an analytical
expression for η, a set of numerical experiments are conducted in the next
section to establish its lower bound.

4.4 numerical experiments

In this section, numerical experiments are carried out on benchmark brittle
and quasi-brittle fracture problems using the micromorphic phase-field
fracture model (see Discrete Problem 8). The problems are introduced in
Section 3.5. For information on the geometry and other model parameters,
the reader is referred to therein. The set of benchmark problems comprise
of the Single Edge Notched specimen under tension, and under shear [37],
concrete three point bending experiment [154], and the Winkler L-panel
experiment [153]. The objective of the numerical experiments is three-fold.
First, the influence of the interaction parameter η on the phase-field regu-
larization and consequently the load-displacement curve are investigated.
Thereafter, a comparison of the micromorphic phase-field fracture model
is carried out with the history variable-based phase-field formulation (see
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Discrete Problem 6). Finally, the efficacy of the micromorphic model is
demonstrated.

All problems are solved using the arc-length method with fracture energy-
based constraint (see Discrete Problem 8). The iterative procedure is termi-
nated when an error measure defined as ratio of the norm of the residual
in the current iteration to that of the first iteration is less than 10−4. Fur-
thermore, the linear problem in every iteration is solved using the shared
memory Pardiso solver from Intel’s oneAPI Math Kernel Library [64].

4.4.1 Influence of interaction parameter

The influence of the interaction parameter η (see Discrete Problem 8) on the
fracture topology is investigated through a parametric study. To that end,
the interaction parameter η is parametrized as

η = β
Gc

l
, (4.23)

where, β = 50, 500, 1000 is a user-defined scalar. Thereafter, using the dif-
ferent β values, numerical experiments are carried out on the Single Edge
Notched specimen under Tension (SENT). The SENT specimen is chosen due
to the straight fracture profile, which makes it easier to obtain a symmetric
phase-field profile any cross-section perpendicular to the fracture.

Figure 4.2a presents the load-displacement curves for the SENT numerical
experiment using β = 50, 500, 1000. While β = 500 and 1000 yield similar
curves, the response from β = 50 is different. The different response with
β = 50 is attributed to insufficient regularization, φ ̸≈ d. Figures 4.2b, 4.2c
and 4.2d establish this reasoning. In these figures, the phase-field φ and
the micromorphic variable d across a vertical cross-section at an offset 0.25
[mm] from the initial notch are plotted for β = 50, 500, 1000, respectively.
For β = 50, the maximum value of the micromorphic value is ≈ 0.85,
hence, phase-field values beyond 0.85 are not regularized. However, for
β = 500, 1000, the regularization is sufficient i.e., φ ≈ d. Therefore, the
corresponding load-displacement curves are similar. In the subsequent part
of this chapter, all numerical experiments are carried out using β = 500.

4.4.2 Comparison with history variable approach

Following De Lorenzis and Gerasimov’s study [28] reporting an over-
estimation of the fracture energy with the history variable approach, a
comparison is made with the micromorphic phase-field fracture model. Sim-
ilar to the previous section, the SENT specimen is chosen for the numerical
experiments. Furthermore, for both approaches, micromorphic and history
variables, the iteration terminating tolerance is set to 10−4, and the linear
problem in every iteration is solved using the shared memory Pardiso solver
from Intel’s oneAPI Math Kernel Library [64].
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(b) Fracture profile, β = 50
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(c) Fracture profile, β = 500
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Figure 4.2: Figure (a) presents the load-displacement curves obtained using β = 50,500,1000. Figures
(b,c,d) presents the fracture profile (phase-field φ and micromorphic variable d) across a
vertical cross-section at an offset 0.25 [mm] from the initial notch. The profiles correspond
to the last step in the analysis.
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Figure 4.3: Figure (a) presents the load-displacement curves obtained using the micromorphic phase-
field fracture model (micro) and the history variable based phase-field fracture model (hist).
Figures (b) presents the fracture profile (phase-field φ and micromorphic variable d) across
a vertical cross-section at an offset 0.25 [mm] from the initial notch. The profiles correspond
to the last step in the analysis.

Figure 4.3a presents the load-displacement curves obtained using the
micromorphic phase-field fracture model (micro) and the history variable
based phase-field fracture model (hist). The history variable approach es-
timates a higher peak, and the post-peak branch descends at a further
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displacement, compared to the micromorphic model. This points to a higher
energy expended with the history variable, an observation also reported by
De Lorenzis and Gerasimov [28] (see Figure 9 in [28]). Furthermore, one
may also notice the widening of the phase-field localization band with the
history variable in Figure 4.3b. Similar observations are also reported by
De Lorenzis and Gerasimov [28], albeit for the single edge notched specimen
under shear (see Figures 8 and 10 in [28]). The micromorphic phase-field
fracture model predicts a narrow phase-field fracture bandwidth, compared
to the history variable approach.

4.4.3 Efficacy

The efficacy of the micromorphic phase-field fracture model is demonstrated
in this section. To that end, numerical experiments are carried out on
the remaining benchmark problems from Section 3.5.1. They comprise of
single edge notched specimen under under shear [37], the Winkler L-panel
experiment [153], and the concrete three point bending experiment carried
out by Rots [154]. For details on the geometry, loading conditions, and
model parameters, the reader is referred to Section 3.5.1.

All numerical experiments are conducted using the arc-length method
(see Discrete Problem 8). The iteration terminating tolerance is set to 10−4,
and the linear problem in every iteration is solved using the shared memory
Pardiso solver from Intel’s oneAPI Math Kernel Library [64].
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Figure 4.4: Figure (a) presents the phase-field distribution in the single edge notched specimen under
shear at the final step of the analysis. Figure (b) presents the respective load-displacement
curves obtained using the arc-length method.

Figure 4.4a presents the phase-field distribution at the final step of the
analysis for the SENS specimen. The corresponding load-displacement curve
is presented in Figure 4.4b. These results are obtained using β = 500 and
are similar to that obtained for the conventional phase-field fracture model
in Figures 3.9a and 3.9b.
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Figure 4.5: Figure (a) presents the phase-field distribution in the L-panel specimen under shear at the
final step of the analysis. Figure (b) presents the respective load-displacement curve obtained
using the arc-length method. The experimental range from Winkler [153] is represented by
the shaded region.
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Figure 4.6: Figure (a) presents the phase-field distribution in the three-point bending specimen at
the final step of the analysis. Figure (b) presents the respective load-displacement curves
obtained using the arc-length method. The experimental range from Rots [154] is represented
by the shaded region.

Figure 4.5a presents the phase-field distribution at the final step of the
analysis for Winkler L-panel specimen. The corresponding load-displacement
curve is presented in Figure 4.5b. These results are obtained using β = 500,
and are in agreement with the experimentally observed fracture pattern
and the load-displacement curves (shaded region). One may also notice a
similar agreement for the three-point bending experiments, whose phase-
field distribution is presented in Figure 4.6a and load-displacement curve
in Figure 4.6b.
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C O M P U TAT I O N A L M O D E L L I N G O F F R A C T U R E S I N
P O R O U S M E D I A

Development of numerical frameworks to model fractures in porous
media (Research Objective 3).





5
H Y D R AU L I C F R A C T U R I N G

This chapter presents a phase-field fracture model for hydraulic fracturing and
a novel time-increment based arc-length solution technique. The reader is first
introduced to the state-of-the-art and current limitations in hydraulic fracture
models in Section 5.1. This is followed by the phase-field hydraulic fracture model
and the arc-length method in Sections 5.2 and 5.3, respectively. Finally, Section 5.4
concludes this chapter concludes with a set of numerical experiments and pertinent
discussion.

5.1 state of the art and limitations

Hydraulic fracturing (or fracking) is a process where a fluid (consisting of
water, proppant and other chemical additives) is injected into wellbore(s) to
extract petroleum and natural gas from underground shale reservoirs. Mod-
elling the fracking process using the conventional finite element method
on a fixed mesh is not possible. As such, Secchi, Simoni, and A. Schrefler
introduced re-meshing techniques for modelling fracking in [160, 161]. Later,
the eXtended Finite Element Method (XFEM) [15, 16] was adopted as it
augments the space of shape functions with special enrichment functions
capable of reproducing discontinuous and singular elastic fields associated
with a fracture. The enrichment functions are dynamically incorporated
into the model as the fracture propagates. The early developments of XFEM
modelling of hydraulic fracturing was carried out by Gordeliy and Peirce
[162–164]. Later studies involved the extension towards a three-dimensional
framework [165], anisotropic modelling of the shale reservoir [166], interac-
tion of new fractures with existing natural fractures [167], and investigations
into the fracture/pore mass exchange [168] to cite a few. In an alternative
approach, the Cohesive Zone Model (CZM) [12–14] was adopted in [169–
171] to model hydraulic fracturing. Nevertheless, these discrete fracture
modelling techniques (XFEM and CZM) require fracture tracking algorithm,
re-meshing, and dynamic insertion of enriched shape functions/cohesive
elements. For complex fracture topologies (branching, kinking and merging
of fractures), the aforementioned requirements may be prohibitively tedious.

The phase-field fracture model [20–22] circumvents the tedious require-
ments of the discrete fracture models. As such, it has been adopted for
a wide range of fracture problems, including hydraulic fracturing. The
pioneering works in phase-field hydraulic fracture model was carried out
by Mikelic, Wheeler, Wick, and Wollner [36, 38, 39, 172]. Thereafter, several
variants [40, 41, 49, 173–178] have been proposed, largely differing in the
degradation of the poroelastic energy, and delineation of the bulk reservoir
and the fractured domains.
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In the context of the degradation of the poroelastic energy (see Equation
(2.33)), there is a lack of consensus w.r.t. the degradation of the fluid pressure
term, p2

2M . Zhou, Zhuang, and Rabczuk [176], and Heider and Sun [49]
proposed that the phase-field based degradation be applied only on the
solid skeleton. However, with this approach, the stress continuity across the
fracture is not guaranteed for Biot coefficient not equal to one.

In addition to a suitable poroelastic energy definition, a proper repre-
sentation of the fluid flow within the fracturing domain is necessary for
obtaining the correct fluid pressure [173]. The fluid pressure plays a key role
in driving solid skeleton deformation and the development (initiation and
propagation) of the fracture(s) in a porous medium. In a porous medium,
such as rock or soil, the fluid flow is laminar, both in the bulk reservoir and
in the fractures. However, the flow type is different. In the bulk reservoir,
the fluid permeates through the interconnected pores, and is represented
by the Darcy’s law. However, in a fracture, the fluid flow is idealized as
a laminar flow between fixed parallel plates, adhering to a Poiseuille law.
Therefore, it is important to delineate the bulk reservoir and the fractures
in a computational domain. In discrete fracture models (e.g., XFEM [15,
16, 179], CZM [14]), the delineation is present in the model by construct.
However, in phase-field fracture models, the fracture is represented by a
localized band of finite width. Therefore, the delineation of the fracture from
the bulk reservoir is rather heuristic, and is based on a threshold phase-field
value [49, 176]. The phase-field based delineation of bulk reservoir and
fracture domains has reached a common consensus. As such, it is adopted
in this thesis.

Despite the aforementioned developments in phase-field hydraulic frac-
ture models, a robust and computationally efficient solution strategy does
not exist yet. Most phase-field hydraulic fracture simulations are either car-
ried out using the alternate minimization method [21, 22] or the extrapolation-
based Newton-Raphson method [34]. Although, both methods are robust
due their convexification assumptions, they exhibit severe time step-size de-
pendency. Moreover, the alternate minimization method is known to require
thousands of iterations to converge during a fracture propagation step. This
motivates the development of an alternative, robust and computationally
efficient solution technique in the form of a novel arc-length method. The
method is presented in Section 5.3, however, prior to that, the phase-field
hydraulic fracture model is presented in Section 5.2.

5.2 phase-field hydraulic fracturing model

The phase-field hydraulic fracture model consists of an energy functional (ac-
counting for deformation of the skeleton and fracture at fixed pressure/wa-
ter content) and a governing equation pertaining to the conservation of
mass. The model is developed within a small strain framework. The relevant
foundational concepts in phase-field fracture modelling and poromechanics
are presented earlier in Section 2.2.1 and 2.3, respectively.
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5.2.1 The energy functional

The poroelastic phase-field fracture energy functional is a combination
of the linear elastic phase-field fracture energy functional (2.19) and the
poroelastic energy functional (2.33). Assuming the presence of only one
type of fluid, i.e., water in the pore space (p = pw), the energy functional is
stated as

E(u,pw,φ) =
∫
Ω
g(φ)Ψ+(ϵ[u]) dΩ +

∫
Ω
Ψ−(ϵ[u]) dΩ

−

∫
Ω
αpw∇ · u dΩ−

∫
Ω

p2w
2M

dΩ−

∫
ΓuN

tup · u dΓ

−

∫
Ω

b · u dΩ+

∫
Ω

Gc

cw

(
w(φ)

l
+ l|∇φ|2

)
dΩ.

(5.1)

In the above energy functional, the strength and stiffness solid skeleton is
reduced with a phase-field based degradation function g(φ). The energetic
term associated with the water pressure is assumed unaffected by the
fracture, as such no degradation function is attached [49, 176]. You and
Yoshioka [42] reported that such a construct guarantees stress continuity
across a fracture only in case the Biot coefficient α = 1. Therefore, in this
chapter, all numerical experiments are conducted with α = 1. Furthermore,
the body force b (such as gravity) and external mechanical traction tup are
neglected, following the practice in hydraulic fracture modelling [36, 38, 39,
172]. With these modifications, the energy functional (5.1) attains the form

E(u,pw,φ) =
∫
Ω
g(φ)Ψ+(ϵ[u]) dΩ +

∫
Ω
Ψ−(ϵ[u]) dΩ

−

∫
Ω
αpw∇ · u dΩ−

∫
Ω

p2w
2M

dΩ

+

∫
Ω

Gc

cw

(
w(φ)

l
+ l|∇φ|2

)
dΩ.

(5.2)

It is important to note that the water pressure pw is obtained from the
conservation of mass equation. As such, the first variation of the energy
functional is carried out only w.r.t., the displacement u and the phase-field
φ.

Remark 5. The body force b (such as gravity) and external mechanical
traction tup may be retained in the energy functional (5.2) if generality is
desired. However, for the benchmark problems addressed in this thesis, they
are not required.
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5.2.2 Conservation of mass

The conservation of mass applies to the solid skeleton mass and the fluid
(fluid and gas) mass. From the mathematical developments in Section 2.3.2,
the conservation of solid skeleton mass in conjunction with that fluid mass
yields the water transport equation (2.52), re-stated below,

[
(α−n)CsS

2
w +nSwCw

]
∂pw

∂t
+ (α−n)CsSwSg

∂pg

∂t

+

[
(α−n)CsSw(pw − pg) +n

]
∂Sw

∂t
+αSw

∂ϵvol
∂t

−∇ ·
[
krw

kiI
µw

(∇pw − ρwg)

]
= 0.

(5.3)

For a detailed derivation of the above equation, the reader is referred to the
Section 2.3.2. It is observed that the water transport equation (5.3) presents
a general case of partially saturated porous medium. However, in the case
of hydraulic fracture, the pore space is assumed to be always fully saturated
with water. This results in Sw = krw = 1 and ∂Sw

∂t = 0. This eliminates the
gas phase, i.e., pg = 0 and ∂pg

∂t = 0. Furthermore, the effect of gravity in
the Darcy’s law is ignored. With these assumptions, the water transport
equation (5.3) assumes the form

[
(α−n)Cs +nCw

]
︸ ︷︷ ︸

1
M

∂pw

∂t
+α

∂ϵvol
∂t

−∇ ·
[
kiI
µw︸︷︷︸
Keff

∇pw
]
= 0.

(5.4)

In the absence of fracture dependent coefficients, the above equation is
suitable only for poroelasticity. In order to extend towards hydraulic fracture,
fracture dependent coefficients are introduced in the subsequent part of this
section. To that end, the bulk and fractured regions of any specimen are
determined using a threshold phase-field, φ = 0.8. Poroelastic (constant)
coefficients are used for the bulk region, i.e., φ < 0.8. In the fracturing
region, i.e., φ ⩾ 0.8, the fracture dependent coefficients are introduced
using an interpolation function. The interpolation function h(φ, ϵvol[u]) is
defined as

h(φ, ϵvol[u]) = 25H (ϵvol[u]) ⟨φ− 0.8⟩2+, (5.5)

where, the heaviside function H (ϵvol[u]) is used as an indicator for open
cracks. The interpolation function assumes a value zero at φ = 0.8 and
reaches 1 for φ = 1. This allows defining any coefficient, say X, as

X = Xb + h(φ, ϵvol[u])
(
Xf −Xb

)
, (5.6)

where subscripts b and f indicate bulk and fracture, respectively.



5.2 phase-field hydraulic fracturing model 85

Biot coefficient

The Biot coefficient α accounts for the interaction of the solid skeleton and
the water pore pressure. In this chapter, α is set to 1, a choice made by
Mikelić, Wheeler, and Wick [38] in their numerical experiments. However,
it is important to note that Biot coefficient is formally expressed as

α = 1−Cs/C, (5.7)

for linear isotropic material, with Cs and C as compressibility of the solid
grains and porous medium, respectively [180].

Porosity

The porosity n in the water transport equation (5.4) refers to the initial
porosity of the porous medium [112]. You and Yoshioka [42] proposed
increasing the initial porosity n to 1 for a fully developed fracture φ =

1. However, one may argue that the changes in the porosity is already
incorporated in the water transport equation (5.4) through the relation
(2.42) (see Section 2.3.2. Based on this reasoning, the initial porosity is not
tampered with in any of the numerical experiments.

Biot modulus

The Biot modulus of a linear elastic isotropic porous material is expressed
as

1

M
= (α−n)Cs +nCf. (5.8)

Following the choice of constant Biot coefficient α and initial porosity n, the
Biot modulus also remains constant for all numerical experiments in this
chapter.

Permeability

The permeability matrix Keff in the water transport equation (5.4) is con-
stant, thereby ignoring possible enhancement due to fracturing of a porous
medium. In order to introduce a permeability matrix that transitions from a
intact material state to a fractured state, bulk permeability Kb and fracture
permeability Kf are introduced.

The bulk isotropic permeability of an intact porous medium is stated as

Kb =
κi
µw

I, (5.9)
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where, κi and µw represent the intrinsic permeability of the porous medium
and the dynamic viscosity of water, respectively. Witherspoon et al. [181]
proposed the isotropic fracture permeability Kf expression,

Kf =
w2

f

12
I, (5.10)

with fracture aperture wf. For discrete fracture models like XFEM and CZM,
the fracture aperture is obtained as a solution of the system of equations.
However, for phase-field fracture model, the fracture is represented in a
diffused (smeared) sense. As such, the fracture aperture is computed as a
post-processing step from the solution fields (displacement u and phase-field
φ). Miehe, Mauthe, and Teichtmeister [182] presented an approximation of
the fracture aperture as

wf := ⟨hel(1+ nφ · ϵ[u] · nφ)⟩+, with nφ ≈ ∇φ
|∇φ| (5.11)

and the characteristic element size hel. However, Chukwudozie, Bourdin,
and Yoshioka [183] reported two issues with the normal direction to the
fracture nφ computed using the gradient of the phase-field ∇φ. The gra-
dient of the phase-field ∇φ deviates from the normal direction at the tip
of the fracture. Also, ∇φ is not defined at fully developed fractures, i.e.,
φ = 1. Therefore, an alternative expression for nφ is stated as

nφ ≈ Pmax

|Pmax|
(5.12)

where, Pmax is the eigenvector corresponding to the maximum eigenvalue
of the strain tensor. Having obtained expressions for the bulk permeability
Kb and the fracture permeability Kf, the effective permeability Keff is
defined using the phase-field based interpolation function h(φ, ϵvol) as

Keff(φ, ϵvol[u]) = Kb + h(φ, ϵvol[u])
(

Kf − Kb

)
. (5.13)

Remark 6. The computation of anisotropic fracture permeability may be
carried out as

Kf =
w2

h

12

(
I − nφ ⊗ nφ

)
. (5.14)

However, in this chapter, the fracture permeability is assumed to be isotropic.
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Darcy to Poiseuille flow transition in water transport equation

Incorporating fracture dependent permeability (5.13) in the water transport
equation (5.4), one obtains

[(
α−n

)
Cs +nCw

]
︸ ︷︷ ︸

1
M

∂pw

∂t
+α

∂ϵvol
∂t

−∇ ·
[

Keff(φ, ϵvol)∇pw
]
= 0.

(5.15)

The above equation allows a transition from a Darcy flow in the bulk
intact material to a Poiseuille type flow in the diffused fracture region.
Through simple mathematical derivation, one can deduce the recovery
of the poroelastic water transport equation (5.4) upon closing of fracture
(ϵvol < 0).

5.2.3 Variational equations

The set of variational equations for the phase-field hydraulic fracture model
is obtained through a two-fold process. First, the momentum balance and the
phase-field evolution equations are obtained upon minimizing the energy
functional (5.2) w.r.t., the vector-valued displacement u and the scalar-
valued phase-field φ. Thereafter, the water transport variational equation is
obtained through Backward Euler substitution of the time derivatives and a
subsequent integration with a test function δpw over the domain Ω. With
appropriate test and trial spaces, and the fracture irreversibility constraint
φ̇ > 0, the Variational Problem 10 is obtained. For brevity, the function
arguments (φ, ϵvol) in Keff are dropped. Furthermore, the Cauchy stress
σ±[u] = ∂Ψ±[u]

∂ϵ is introduced.
The Variational Problem 10 entails a saddle point problem, requiring

a careful choice of trial and test functions for the displacement and the
water pressure to guarantee a unique solution continuously depending
on the input data. The sufficient condition ensuring this uniqueness is
established in the computational mechanics literature as the Ladyzhen-
skaya–Babuška–Brezzi (LBB) condition. In order to fulfill the LBB condition,
quadratic trial and test functions are chosen for the displacement field, while
the pressure field remains linear. In the discrete sense, such a choice is re-
ferred to as the Taylor and Hood element [184] following their contribution.
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Variational Problem 10. Find (u, φ, pw) ∈ U × P × Q such that

E ′(u,pw,φ; δu) =
∫
Ω

(
g(φ)σ+[u] +σ−[u]

)
: ϵ[δu] dΩ

−

∫
Ω
αpw I : ϵ[δu] dΩ = 0 ∀ δu ∈ U0, (5.16a)

E ′(u,pw,φ; φ̂) =
∫
Ω

(
g ′(φ)Ψ+(ϵ[u]) +

Gc

cw l
w ′(φ)

)
(φ̂−φ) dΩ

+

∫
Ω

Gcl

cw
∇φ ·∇(φ̂−φ) dΩ ⩾ 0 ∀ φ̂ ∈ P,

(5.16b)

∫
Ω

( 1
M

pw − npw

∆t
+α

ϵvol −
nϵvol

∆t

)
δpw dΩ

+

∫
Ω

∇δpw Keff∇pw dΩ

=

∫
Γ
pw

N

q δpw dΓ ∀ δpw ∈ Q, (5.16c)

using pertinent time-dependent Dirichlet boundary conditions up on ΓuD,
φp on ΓφD and ppw on Γpw

D , and Neumann boundary condition q on Γpw

N .
The trial and test spaces are defined as

U = {u ∈ [H2(Ω)]dim|u = up on ΓuD}, (5.17a)

P = {φ ∈ [H2(Ω)]|φ ⩾ nφ|φ = φp on ΓφD}, (5.17b)

Q = {pw ∈ H1(Ω)|pw = ppw on Γpw

D }, (5.17c)

U0 = {u ∈ [H2(Ω)]dim|u = 0 on ΓuD}, (5.17d)

Q0 = {pw ∈ H1(Ω)|pw = 0 on Γpw

D }. (5.17e)

In (5.17b), the left superscript n refers to the previous time-step. ■

The fracture irreversibility constraint φ̇ ⩾ 0 manifests in the form of vari-
ational inequality phase-field evolution equation (5.16b) with a restricted
trial/test space (5.17c) in the Variational Problem 10. However, the Finite
Element Method (FEM) does not offer support in implementing such restric-
tive trial/test spaces. Therefore, the variational inequality is transformed
in an equivalent equality using the history variable approach, proposed by
Miehe, Hofacker, and Welschinger [37]. This results in an equality-based
phase-field hydraulic fracture Variational Problem 11.
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Variational Problem 11. Find (u, φ, pw) ∈ U × P × Q such that

E ′(u,pw,φ; δu) =
∫
Ω

(
g(φ)σ+[u] +σ−[u]

)
: ϵ[δu] dΩ

−

∫
Ω
αpw I : ϵ[δu] dΩ = 0 ∀ δu ∈ U0, (5.18a)

E ′(u,pw,φ; δφ) =
∫
Ω

(
g ′(φ)H+

Gc

cw l
w ′(φ)

)
δφ dΩ

+

∫
Ω

Gcl

cw
∇φ ·∇δφ dΩ = 0 ∀ δφ ∈ P0,

(5.18b)

∫
Ω

( 1
M

pw − npw

∆t
+α

ϵvol −
nϵvol

∆t

)
δpw dΩ

+

∫
Ω

∇δpw Keff∇pw dΩ

=

∫
Γ
pw

N

q δpw dΓ ∀ δpw ∈ Q, (5.18c)

using pertinent time-dependent Dirichlet boundary conditions up on ΓuD
andφp on ΓφD, and Neumann boundary condition tup on ΓuN. The superscript
n in the above equation indicates the previous (pseudo) time-step. the The
trial and test spaces are defined as

U = {u ∈ [H2(Ω)]dim|u = up on ΓuD}, (5.19a)

P = {φ ∈ [H2(Ω)]|φ = φp on ΓφD}, (5.19b)

Q = {pw ∈ H1(Ω)|pw = ppw on Γpw

D }, (5.19c)

U0 = {u ∈ [H2(Ω)]dim|u = 0 on ΓuD}, (5.19d)

P0 = {φ ∈ [H2(Ω)]|φ = 0 on ΓφD}, (5.19e)

Q0 = {pw ∈ H1(Ω)|pw = 0 on Γpw

D }. (5.19f)

In (5.18b), the left superscript n refers to the previous time-step. The history
variable H in (5.18b) is defined in (2.24). ■

The equality-based phase-field hydraulic fracture Variational Problem 11
with the history variable is pursued despite its variational inconsistency.
The focus in this chapter is on solving the non-convex problem, instead of
the variational inconsistency. It is established in Chapter 3 that the Newton-
Raphson method performs poorly for the phase-field fracture model. Among
the different techniques presented in Chapter 3, the arc-length method offers
the best performance in terms of iterations required to achieve convergence.
Therefore, in this chapter, a novel extension of the arc-length method for
the phase-field hydraulic fracture model is pursued.
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5.3 arc-length method

The arc-length method presented in Chapter 3 scales a unit external force
with a scalar load factor. The load factor is an additional unknown in
the system of equations1, corresponding to a path-following/arc-length
constraint equation (see Section 3.4.1). Such a construct is suitable for
mechanically driven problems presented in Section 3.5, where the external
load varies in the load-displacement space. However, hydraulic fracturing
problems are typically driven by a constant external force (water flux, q
in Variational Problem 11). As such, scaling operations are not required
and the notion of a scalar load factor is rendered unusable. This motivates
the need for an alternative design of the arc-length method, suitable for
problems with constant external force.

A constant external force arc-length method is developed in this section.
To that end, the notion of load factor is discarded. Instead, the time step-size
∆t is considered as the additional unknown augmenting the solution space
(displacement, water pressure and phase-field). Thereafter, a fracture energy-
based arc-length constraint equation (see Section 3.4.1) is introduced to
maintain the determinacy of the system of equations. The resulting problem
statement is: find displacement, water pressure, phase-field and the time-
step size for a constant flux and prescribed fracture energy. Following the
approach in Section 3.4.2, the fracture energy constraint equation for the
hydraulic fracturing problem is expressed as

garc(u,φ) :=
∫
Ω
g ′(φ)Ψ+(ϵ[u])∆φdΩ+∆s = 0, (5.20)

with the arc-length ∆s.

5.3.1 Finite element discretized equations

The finite element discretized equations for the phase-field hydraulic fractur-
ing model are derived using the procedure explained in Section 2.1. To that
end, the Variational Problem 11 in conjunction with the arc-length constraint
5.20 is identified as the point of departure from a continuous problem to a
discrete one. The detailed derivation is skipped for brevity, instead the the
phase-field hydraulic fracture Discrete Problem 9 is presented. Note that the
terms stiffness matrix and residual are used for the Hessian and the Jacobian
of the energy functional, respectively.

1 Finite element discretized equations in the context of this thesis.
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Discrete Problem 9. Compute the solution update vector sk+1 =

{∆ũ ;∆p̃w ; ∆φ̃ ; ∆t̃} for the current iteration k+ 1 using


Kuu Kupw Kuφ Ku∆t

Kpwu Kpwpw Kpwφ Kpw∆t

Kφu Kφpw Kφφ Kφ∆t

K∆tu K∆tpw K∆tφ K∆t∆t


︸ ︷︷ ︸

Stiffness matrix, Kk


∆ũ

∆p̃w

∆φ̃

∆t̃

︸ ︷︷ ︸
sk+1

=


0

fext,pw

0

0

−


fint,u

fint,pw

fint,φ

garc

︸ ︷︷ ︸
Residual, rk

,

(5.21a)

and update the solution,
ũ

p̃w

φ̃

∆t


k+1

=


ũ

p̃w

φ̃

∆t


k

+


∆ũ

∆p̃w

∆φ̃

∆t̃


k+1

, (5.21b)

until the norm of the residual is sufficiently small. The stiffness matrix
components are given by,

Kuu = A

∫
Ωel

[Bu]T
(
g(φ)

∂σ+

∂ϵ
+
∂σ−

∂ϵ︸ ︷︷ ︸
D

)
[Bu] dΩ,

Kuφ = A

∫
Ωel

[Bu]T
(
g ′(φ)σ+

)
[Nφ] dΩ,

Kupw = A

∫
Ωel

[Bu]T
(
−αIv

)
[Npw ] dΩ,

Ku∆t = 0,

Kpwu = −
1

∆t
[Kupw ]T ,

Kpwpw = A

∫
Ωel

[Bpw ]T Keff [Bpw ]

+ [Npw ]T
1

M
[Npw ] dΩ, (5.21c)

Kpwφ = A

∫
Ωel

[Bpw ]T
∂Keff

∂φ
[Nφ]

+ [Npw ]T
∂(1/M)

∂φ

(pw − npw

∆t

)
[Nφ]

+ [Npw ]T
∂α

∂φ

(ϵvol − nϵvol
∆t

)
[Nφ] dΩ,

Kpw∆t = −A

∫
Ωel

[Npw ]T
1

M

(pw − npw

∆t2

)
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Discrete Problem 9 (continued)

− [Npw ]T α
(ϵvol − nϵvol

∆t2

)
dΩ,

Kφu = [Kuφ]T if Ḣ > 0, else 0,

Kφpw = 0,

Kφφ = A

∫
Ωel

[Bφ]T
(
Gcl

cw

)
[Bφ]

+ [Nφ]T
(
Gc

cwl
w ′′(φ) + g ′′(φ)

∂H

∂ϵ

)
[Nφ] dΩ,

Kφ∆t = 0,

K∆tu = A

∫
Ωel

g ′(φ)∆φσ+ [Bu] dΩ,

K∆tφ = A

∫
Ωel

[Nφ]
(
g ′′(φ)∆φ+ g ′(φ)

)
Ψ+ dΩ,

K∆tpw = K∆t∆t = 0,

and the internal force vector components are computed as

fext,pw = A

∫
ΓN,el

[Npw ]T q dΓ ,

fint,u = A

∫
Ωel

[Bu]T
(
g(φ)σ+ +σ− −αpwIv

)
dΩ,

fint,φ = A

∫
Ωel

[Bφ]T
Gc l

cw
∇φ

+ [Nφ]T
(
g ′(φ)H+

Gc

cw l
w ′(φ)

)
dΩ, (5.21d)

fint,pw = A

∫
Ωel

[Bpw ]T (Keff∇pw)

+ [Npw ]T
(
1

M

pw − npw

∆t
+α

ϵvol −
nϵvol

∆t

)
dΩ,

garc = A

∫
Ωel

(
g ′(φ)∆φΨ+

)
dΩ+∆s.

Note that A is an assembly operator that maps element contributions to
their global counterparts. Furthermore, Iv is the Voigt representation of the
identity matrix, the left superscript n refers to the previous time step, and
H is the heaviside function. The material stiffness matrix D depends on the
chosen strain energy density split (see Table 2.4). The history variable H is
defined in (2.24). ■
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5.3.2 Implementation caveats

The implementation caveats pertaining to a singular stiffness matrix (Hes-
sian), switching between incremental iterative approach and the arc-length
method, and adaptive modification of the arc-length ∆s are presented in
Section 3.4.3. The reader is referred to therein for more details.

5.4 numerical experiments

In this section, numerical experiments are carried out on three benchmark
hydraulic fracturing problems, previously studied by Mikelić, Wheeler, and
Wick [38]. For all problems, the geometric specimen is a square (2× 2 [m2])
embedded with varying number of initial fracture(s), as shown in Figure
5.1.

Fixed displacements, Zero flux
Crack, Fluid injected, qp

Figure 5.1: Specimen with single, double and triple initial frac-
tures (SNF, DNF, TNF)

Parameters Value [Units]

Fracture Model AT2

Energy Split Spectral [37]

E0 1 [GPa]

ν 0.2 [-]

Gc 1 [N/m]

l 5e-2 [m]

α 1.0 [-]

n 0.3 [-]

ki,b 1e-12 [m2]

µf 1e-3 [Pa s]

Ks 1 [GPa]

Kf 40 [MPa]

qp 0.01 [m/s]

optIter 10 [-]

Table 5.1: Model parameters

The three benchmark hydraulic fracturing problems are designed to
exhibit an increasing complexity of the fracture topology. The Single Natural
Fracture (SNF) specimen contains a single initial fracture, 0.4 [m] in length
and is located midway along the height. On injecting water into the fracture,
the fracture is expected to propagate horizontally. The Double Natural
Fracture (DNF) specimen adds a vertical initial fracture of length 1 [m],
at an x-offset 0.6 [m] from the centre of the specimen. A fracture merging
event is expected upon injection of water in the existing fractures. Finally,
the Triple Natural Fracture (TNF) adds an inclined fracture to the DNF
specimen. The newly introduced fracture is a line segment from coordinates
(-0.8,-0.3) to (-0.3,-0.8) assuming the axes origin placed at the centre of the
specimen. The injection of water into the existing fractures would lead to
two competing fracture merging events. The SNF, DNF and TNF specimens
share the same model parameters, presented in Table 5.1.
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The objective of the numerical experiments of the SNF, DNF and TNF
hydraulic fracturing problems is two-fold. First, the problems are simulated
using the arc-length method described in Section 5.3 with a fixed iteration
terminating tolerance 10−4. The fracture topology and pressure distribution
is then reported along the observed fluid lag phenomenon. Thereafter, the
efficiency of the arc-length method is investigated for the same problems
using different tolerances.

Furthermore, contrary to the test and trial spaces established in the
Variational Problem 11, the SNF, DNF and TNF specimens are discretized
with 3-noded constant strain elements for computational efficiency. This
choice is justified in Appendix A, where a comparison is carried out with
results obtained using Taylor and Hood elements [184].

5.4.1 Benchmark problems

The numerical experiments on the SNF, DNF and TNF specimens are
conducted using the arc-length method described in Section 5.3. The iterative
procedure in every step is terminated when the error defined as the ratio of
the norm of the residual in the current iteration to that of the first iteration is
less than 10−4. Furthermore, the linear problem in every iteration is solved
using the shared memory Pardiso solver from Intel’s oneAPI Math Kernel
Library [64].

The phase-field fracture topology in the SNF specimen presented in
Figure 5.2 for different times (t = 0.01, 0.1 and 0.2 [s]) during the analysis.
The fracture topology is similar to that reported by Mikelić, Wheeler, and
Wick [38]. The fracture propagation occurs as mode I phenomenon2, a
consequence of choosing the spectral decomposition [37] of the strain energy
density. Although the specimen is not loaded mechanically, the constant rate
of influx results in tensile stress development at the fracture tips. Beyond a
certain critical stress, the initial fracture starts to propagate. This is evident
from the fracture topology observed at t = 0.1 and 0.2 in Figures 5.2b and
5.2c.

The water pressure in the SNF specimen is presented in Figure 5.3 for
the aforementioned times (t = 0.01, 0.1 and 0.2 [s]) during the analysis. The
pressure is uniform in the bulk intact material3. In the fracturing region,
the water pressure localizes with higher values compared to that observed
in the bulk intact material. The localization of pressure is attributed to
the increased in permeability in the fracturing region, computed using
Witherspoon et al.’s relation (5.10) [181].

A careful look into Figure 5.3 reveals a negative water pressure devel-
opment at the fracture tips. For more clarity, the water pressure along the
fracture is presented in Figure 5.4. Secchi and Schrefler [161] describes this
phenomenon as ‘fluid lag’, which arises due to a high fracture propagation
velocity for a given permeability. In such a scenario, the water is not able

2 Mode I fracture is also referred to as the opening mode.
3 Bulk intact material corresponds to region with phase-field φ ≈ 0.
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0 0.5 1
φ [-]

(a) t = 0.01 [s] (b) t = 0.1 [s] (c) t = 0.2 [s]

Figure 5.2: Figures (a-c) present the distribution of the phase-field variable at the different times during
the analysis of the Single Natural Fracture (SNF) specimen.

−0.004 0.09
pw [MPa]

(a) t = 0.01 [s] (b) t = 0.1 [s] (c) t = 0.2 [s]

Figure 5.3: Figures (a-c) present the distribution of the water pressure at the different times during the
analysis of the Single Natural Fracture (SNF) specimen.

to flow quickly enough to occupy the fracture space. Investigations into
the fluid lag phenomenon is beyond the scope of this thesis. The reader is
referred to Detournay and Garagash [185], instead.
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Figure 5.4: Figure presents the water pressure profile in the Single Natural Fracture (SNF) specimen
along the fracture at different times (t = 0.01, 0.1 and 0.2 [s]).

Figure 5.5 presents the phase-field fracture topology observed at different
times (t = 0.01, 0.026 and 0.044 [s]) during the hydraulic fracturing analysis.
The fracture topology is similar to that reported by Mikelić, Wheeler, and
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0 0.5 1
φ [-]

(a) t = 0.01 [s] (b) t = 0.026 [s] (c) t = 0.044 [s]

Figure 5.5: Figures (a-c) present the distribution of the phase-field variable at the different times during
the analysis of the Double Natural Fracture (DNF) specimen.

−0.02 0.07
pw [MPa]

(a) t = 0.01 [s] (b) t = 0.026 [s] (c) t = 0.044 [s]

Figure 5.6: Figures (a-c) present the distribution of the water pressure at the different times during the
analysis of the Double Natural Fracture (DNF) specimen.

Wick [38]. Similar to the SNF specimen, the fracture propagation occurs as
mode I phenomenon, a consequence of choosing the spectral decomposi-
tion [37] of the strain energy density. However, DNF specimen exhibits a
comparatively complex fracture merging behaviour. The arc-length method
is able to capture this unstable fracture growth irrespective of the chosen
iteration terminating tolerance. Furthermore, the water pressure distribu-
tion is presented in Figure 5.6. Similar to the SNF specimen, the fluid lag
phenomenon at the fracture tips as well as the localization of water pressure
are observed. Both observations are discussed in the context of the SNF
specimen, hence not repeated here.

Figure 5.7 presents the phase-field fracture topology at different times
(t = 0.01, 0.026 and 0.044 [s]) during the hydraulic fracturing analysis
of the TNF specimen. Unlike the SNF and DNF specimens, two fracture
merging events are observed. They are competing mechanisms from an
energy minimization perspective. The first fracture merging event occurs at
t = 0.026 seconds, when the initial horizontal fracture elongates and reaches
the vertical fracture. Thereafter, the horizontal fracture follows a curvilinear
path to merge with the inclined fracture at t = 0.044 second. Independent
of the chosen iteration terminating tolerance, the same fracture topology
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0 0.5 1
φ [-]

(a) t = 0.01 [s] (b) t = 0.026 [s] (c) t = 0.044 [s]

Figure 5.7: Figures (a-c) present the distribution of the phase-field variable at the different times during
the analysis of the Triple Natural Fracture (TNF) specimen.

−0.03 0.1
pw [MPa]

(a) t = 0.01 [s] (b) t = 0.026 [s] (c) t = 0.044 [s]

Figure 5.8: Figures (a-c) present the distribution of the water pressure at the different times during the
analysis of the Triple Natural Fracture (TNF) specimen.

is predicted by the arc-length method. Furthermore, the water pressure
distribution is presented in Figure 5.8. The fluid lag phenomenon and the
pressure localization are observed, similar to the SNF and DNF specimens.
The reason behind both observations is discussed earlier in context of the
SNF specimen.

5.4.2 Computational efficiency

This section presents a study on the computational efficiency of the arc-
length method, presented earlier in this chapter. The total and average
number of iterations required to achieve convergence as well as the CPU
time are considered as efficiency measures. The iteration terminating toler-
ances are varied as 10−4, 10−6 and 10−8. The simulations are carried out
on a Dell Latitude 7490 laptop. Five cores are utilized on Intel(R) Core(TM)
i7-8650U processors for multi-threaded assembly of the stiffness matrix and
the force vectors. The linear problem in every iteration is solved using the
shared memory Pardiso solver from Intel’s oneAPI Math Kernel Library
[64].
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Table 5.2 presents the efficiency measures obtained for the SNF, DNF
and TNF specimens. The total number of iterations as well as the average
iterations are reasonable given the complexity of the problems and the
non-convex nature of the phase-field fracture model. As expected, these
measures and consequently the CPU time for the simulation increases with
the strictness of the iteration terminating tolerances. One may also notice
the increasing trend in the number of steps required to reach the same
final simulated time. The reason for this behaviour is the fixed optimal
number of iterations optIter, set to 10 and maximum number of iterations
allowed to 25. With stricter tolerance, more iterations are required to achieve
convergence in a step. Consequently, the arc-length estimated to the next
step using (3.24) is smaller. This results in a higher number of steps required
to reach the same final simulated time.

Specimen (uDOFs) tol Steps Total Iters. Avg. Iters. CPU time [s]

SNF (28977)
10−4 146 759 5.20 1925.0

10−6 128 980 7.65 3379.0

10−8 158 1408 8.91 11150.0

DNF (87028)
10−4 56 342 6.11 2022.0

10−6 73 562 7.70 3074.0

10−8 151 1280 8.48 19640.0

TNF (86118)
10−4 67 437 6.52 3022.0

10−6 117 857 7.32 6060.0

10−8 275 2012 7.32 35427.0

Table 5.2: Table presents the total numbers of steps and iterations, average iterations and CPU time
(in seconds) for the SNF, DNF, TNF specimens simulated using the arc-length method with
varying iteration terminating tolerances. uDOFs is an abbreviation for unconstrained Degrees
of Freedom.

Furthermore, it is important to note that the arc-length method has been
implemented using the Sherman-Morisson formula [156], thus requiring
two linear solves for each iteration. Further reduction in the CPU time may
be achieved upon using a linear solver accommodating multiple right-hand
sides.



6
S O I L D E S I C C AT I O N C R A C K I N G

This chapter presents a phase-field fracture model for desiccation cracking in clayey
soil. The reader is first introduced to the early developments, the state-of-the-art and
limitations in soil desiccation modelling in Section 6.1. This is followed by the phase-
field soil desiccation fracture model in Section 6.2, where a novel energy functional
is developed. Finally, Section 6.3 concludes this chapter with a set of numerical
experiments conducted using monolithic solution techniques from Chapter 3 and
presents the relevant discussion.

6.1 state of the art and limitations

Desiccation cracking of soil is an ubiquitous complex natural phenomenon
observed in near-surface earth soils. The cracking is driven by the loss of
soil moisture content, and subsequent inhomogeneous shrinkage. The inho-
mogeneous shrinkage induces tensile stresses in the soil, resulting in crack
formation once the tensile strength is exceeded [186, 187]. As explained
in Chapter 1, an in-depth understanding of the desiccation phenomenon
is of paramount importance to several disciplines such as agricultural
engineering, mining and resource engineering, geotechnical engineering,
geo-environmental engineering, transport engineering, and soil science. Ex-
perimental investigations aimed at understanding the desiccation cracking
phenomenon commenced as early as 1917. Kindle [188] carried out drying
experiments on clay soil samples, and concluded that soil composition
and tenacity ‘very materially’ affects the crack spacing. Corte and Higashi
[189] demonstrated the influence of sample thickness on the crack patterns
and crack spacing based on indoor experiments on laboratory-made sam-
ples. Later studies established the role of several other factors, such as
temperature [186], relative humidity [190], vegetation cover [191], mineral
composition [192], salt content [193, 194], wetting and drying cycles [195,
196], to cite a few. The aforementioned factors and their interplay make
desiccation cracking a complex multiphysics problem. However, in compu-
tational modelling of soil desiccation cracking not all factors are taken into
account at once.

The computational modelling of desiccation cracking began with the
Linear Elastic Fracture Mechanics (LEFM) [10, 11] based model, introduced
by Lachenbruch [43]. Later, Morris, Graham, and Williams [197] adopted
LEFM to propose an analytical relation for crack depth. Konrad and Ayad
[198] also adopted the LEFM approach to obtain crack spacing, however,
their model was unable to predict the crack spacing observed in the field
experiments. The applicability of the LEFM approach was challenged by
Amarasiri and Kodikara [199]. Their argument was that the LEFM assump-

99
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tion of infinite stress at the crack tip is not realistic for soils exhibiting
a limited tensile strength and display significant plastic behavior around
the crack process zone. Instead of LEFM, the use of Cohesive Zone Model
(CZM) was proposed. In a subsequent work, Amarasiri, Costa, and Kodikara
[200] presented the CZM relevant material properties for the Werribee clay,
Australia. Thereafter, the numerical modelling of desiccation cracking was
carried out in [45–47] using the ‘distinct element method’ [201] on a range of
specimens, including both rectangular and annular shapes1. The distinct
element method models the soil sample as an assembly of blocks separated
by deformable planes. This limits the method to cases where the material
and fracture topology is simple (for instance, homogeneous material ex-
hibiting a straight crack). In an alternative approach, Pouya et al. [202]
adopted the CZM within the Finite Element Method (FEM) framework
for modelling desiccation cracking. However, discrete fracture modelling
techniques (e.g, CZM [12–14], XFEM [15, 65, 179] or Mesh fragmentation
methods [203]) require either a priori knowledge of the crack path or crack
tracking algorithms and dynamic insertion of enriched shape functions/co-
hesive elements. For complex fracture topologies (branching, kinking and
merging of fractures), a priori knowledge of crack path is not available and
crack tracking algorithms may be prohibitively tedious. This has led to shift
in crack modelling techniques from discrete models to smeared/diffused
models [28].

The phase-field fracture model, pioneered by Francfort and Marigo [20] is
a smeared crack/fracture modelling technique that has grown in popularity
over the past two decades. The model circumvents the need for a priori
knowledge of the crack path, tedious crack tracking algorithms, and ad hoc
fracture criterion associated with the discrete models. As such, it has been
widely adopted for many engineering applications, including desiccation
cracking.

Cajuhi, Sanavia, and De Lorenzis [48] developed the first2 phase-field frac-
ture model for desiccation cracking of clayey soil. Using the mixture theory
[111], the soil was modelled as a biphasic continua3 undergoing an isother-
mal moisture loss. The pertinent system of equations followed from the
extension of the LEFM phase-field fracture model (see Variational Problem
3 in Chapter 2) towards partially saturated porous media, and incorporating
a water transport equation (similar to (2.52)). Hydro-mechanical coupling
was incorporated in the form of gravimetric water content dependent elas-
tic modulus and tensile strength. The corresponding phenomenological
relations were adopted from Stirling [204]. The resulting model was able
to predict the desiccation cracks experimentally observed by Peron et al.
[205]. However, the numerical experiments demonstrated a nearly uniform
suction distribution (see Figure 8 in [48]), a consequence of using constant
coefficients in the water transport equation. From the perspective of the

1 Annular specimens are used for restrained ring tests.
2 To the author’s knowledge
3 A biphasic soil continua comprises of solid grains and pore water.
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physically observed reality, one may argue that desiccation cracks create
additional surfaces which aids the loss of the soil moisture content. Conse-
quently, the suction in the cracks is expected to be higher than the intact
material. Furthermore, in the numerical experiments, Cajuhi, Sanavia, and
De Lorenzis [48] adopted an explicit staggered solution technique, limiting
the maximum number of staggered iterations to 10 [206]. Based on the ex-
perience of the author of this thesis and numerical experiments conducted
by Kristensen and Martínez-Pañeda [85], 10 staggered iterations are not
sufficient to obtain an acceptable4 converged solution during the critical
stages of fracture initiation and propagation.

In a later development, Heider and Sun [49] extended the fidelity of
Cajuhi, Sanavia, and De Lorenzis’s phase-field desiccation cracking model
[48]. The soil was modelled as a triphasic continua5 and fracture dependent
permeability was integrated using an anisotropic variant of Witherspoon et
al.’s cubic law [181]. Furthermore, postulating the rupture of water bridges
between the soil micro-granulates during desiccation cracking, the suction
was incorporated in the fracture driving energy. This reasoning is supported
by Shin and Santamarina’s experimental studies [207], where the authors
reported fracture initiation due to rupture of the water bridges. The fracture
occurred locally at tips of the flaws while the soil remained close to full satu-
ration. Further experimental evidence of the role of suction in the fracturing
process was presented by Kodikara and Costa [208]. Therein, the authors
observed the fracturing phenomenon despite the soil specimen undergoing
compressive stresses. Similar to Cajuhi, Sanavia, and De Lorenzis’s model
[48], Heider and Sun’s desiccation cracking model [49] was able to quali-
tatively predict the cracks observed by Peron et al. [205]. However, unlike
the former, the latter model demonstrates increased suction in the cracks,
a consequence of adopting a fracture dependent permeability relation. De-
spite the improvements in fidelity, Heider and Sun’s desiccation cracking
model [49] lacks variational consistency. The set of variational equations
was not derived from an energy functional, rather postulated as strong
form equations. The loss of variational consistency follows from using a
volumetric-deviatoric strain energy density decomposition (Amor, Marigo,
and Maurini’s decomposition in Table 2.4) in conjunction with a smooth
Rankine stress-based fracture energy definition. Moreover, the numerical ex-
periments were conducted using the staggered solution technique, adopting
an iteration terminating tolerance of 2 · 10−3 for the norm of the phase-field
increments. In each block problem, the Newton-Raphson method was used
with the maximum number of iterations set to 40. The explicit limit on
the Newton-Raphson iterations and the coarse tolerance on the phase-field
increments does not guarantee an acceptable converged solution. In such

4 Acceptability of a numerical solution is problem dependent. In this thesis, an acceptable
solution is one when a residual or solution-based iteration terminating tolerance of 10−3 is
met.

5 A triphasic soil continua comprises of solid grains, pore water and air.
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a scenario, the numerical solution exhibits an ‘artificial ductility6’ due to
accumulation of errors from the previous steps in the analysis.

The early developments in phase-field desiccation cracking models [48,
49] shows the lack of consensus in the formulation of the strain energy
density functional. Recently, Luo, Sanavia, and De Lorenzis [50] addressed
this gap. The authors proposed two families of desiccation cracking models,
based on Amor, Marigo, and Maurini’s volumetric-deviatoric decomposition
[72] of the effective strain and total strain7 energy densities, respectively.
Through analytical studies, the total strain variant was shown to exhibit
a mixed mode (both I and II) fracturing phenomenon, while the effective
strain variant is limited to mode II. Furthermore, the authors presented
the inability of Miehe, Hofacker, and Welschinger’s spectral decomposition
approach [37] in simulating desiccation cracking. Only for the total strain
based energy functional, a critical pore water pressure exists, which induces
localization of the phase-field. Luo, Sanavia, and De Lorenzis’s study [50]
provides a rigorous assessment of the energy functional constructs for phase-
field desiccation cracking model, w.r.t. fracture modes, homogeneous and
bifurcated solutions.

The phase-field desiccation cracking models developed so far [48–51],
consider clayey soils as a brittle material. This modelling choice is not yet
supported by experimental investigations for clayey soil close to full sat-
uration. On the contrary, Amarasiri, Costa, and Kodikara [200] presented
experimental evidence of quasi-brittle behaviour of clayey soil and deter-
mined cohesive zone model properties adopting a linear softening law.
Barani, Mosallanejad, and Sadrnejad [209] performed a similar study, albeit
with bilinear and trilinear softening laws. In another study, Lakshmikantha,
Prat, and Ledesma [210] obtained the length of the fracture process zone in
clayey soils in the range 20 to 500 millimeters. As such, there is a need to
develop and investigate quasi-brittle phase-field fracture models [2] in the
context of desiccation cracking of clayey soil.

Another aspect, still elusive to the phase-field desiccation cracking mod-
els, is the development of robust and computationally efficient solution
techniques. The studies [48–51] carried out so far, have adopted the stag-
gered solution technique. The development and assessment of monolithic
solution techniques for phase-field desiccation cracking still remains an
open research question.

In this chapter, a novel unified phase-field desiccation cracking model
is developed, capable of exhibiting both brittle and quasi-brittle fracturing
phenomenon. To this end, Wu’s unified phase-field model [2] is adopted.
The fracture driving energy is assumed to contain the effective (drained)
solid skeleton strain energy as well as a part of water pressure energetic
term affecting the solid skeleton. This approach may be considered as a

6 Artificial ductility due to the staggered solution technique delays the fracture propagation.
See Figure 4 in Kristensen and Martínez-Pañeda [85], where the delayed fracture propagation
over-estimates the specimen displacement at failure.

7 Total strain is defined as, ϵtot = ϵ− pw

3K I. Here, pw is the water pressure and K represents
bulk modulus of the porous medium.
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midway proposition with the effective and total strain based models as
extremities. Furthermore, motivated by fidelity enhancements in [49], the
intrinsic permeability is computed using Witherspoon et al.’s cubic law
[181] in the fractured material zones. Finally, the numerical experiments
are carried out using the monolithic solution techniques discussed earlier
in this thesis (see Chapter 3). This facilitates an investigative study of the
efficacy of these techniques in the context of soil desiccation cracking, a
multiphysics problem.

6.2 phase-field desiccation cracking model

The phase-field desiccation cracking model consists of an energy func-
tional (accounting for deformation of the skeleton and fracture at fixed
pressure/water content) and a governing equation pertaining to the conser-
vation of solid and water mass. The model is developed within a small strain
framework. Unlike the hydraulic fracturing model developed in Chapter 5,
the phase-field desiccation cracking model accounts for variable saturation.
The relevant foundational concepts in phase-field fracture modelling and
poro-mechanics are presented earlier in Section 2.2.1 and 2.3.

6.2.1 The energy functional(s)

The poroelastic phase-field fracture energy functional is a combination of the
linear elastic phase-field fracture energy functional (2.19) and the poroelastic
energy functional (2.33). Assuming the presence of only one type of fluid,
i.e., water in the pore space with variable saturation Sw (p := Sw pw), an
energy functional is constructed as

E1(u,pw,φ) =
∫
Ω
g(φ)Ψ+(ϵ[u]) dΩ +

∫
Ω
Ψ−(ϵ[u]) dΩ

−

∫
Ω
αSw pw∇ · u dΩ−

∫
Ω

(Sw pw)2

2M
dΩ

−

∫
Ω

b · u dΩ+

∫
Ω

Gc

cw

(
w(φ)

l
+ l|∇φ|2

)
dΩ.

(6.1)

In the above energy functional, the strength and stiffness of the solid skeleton
is reduced with the phase-field degradation function g(φ). The energy
terms associated with the water pressure are assumed unaffected by the
fracture, similar to the hydraulic fracturing energy functional (5.1). As
such, no degradation function is attached to these terms. Furthermore, the
external mechanical traction tup is absent, since the desiccation cracking
phenomenon is driven by an outflux of the water content. Furthermore,
unlike the hydraulic fracturing model, the body force b due to the self-
weight of the soil is considered in the desiccation cracking model. The force
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b is defined as the sum of the water content and solid skeleton weights. It
is expressed as

b =
(
nSwρw + (1−n)ρs

)
g, (6.2)

where, n is the porosity, and ρw and ρs represent the densities of water
and the solid skeleton, respectively. The acceleration due to gravity g is
expressed as a vector with the only non-zero entry in the direction of the
gravity.

Remark 7. The governing equations in Cajuhi, Sanavia, and De Lorenzis’s
phase-field desiccation cracking model [48] may be obtained from the energy
functional (6.1). Note that in [48], the governing equations were postulated
directly in the strong form.

Motivated by the experimental studies [207, 208] establishing the role of
suction in desiccation cracking of soil close to full saturation, one may con-
struct an alternative energy functional incorporating the positive energetic
contribution of the suction in fracture initiation and propagation. To that
end, when suction is encountered in conjunction with a positive volumetric
strain (∇ · u > 0), the degradation function g(φ) is attached to the term
αSw pw∇ · u. With this change, the energy functional E1 (6.1) attains the
form

E2(u,pw,φ) =
∫
Ω
g(φ)Ψ+(ϵ[u]) dΩ +

∫
Ω
Ψ−(ϵ[u]) dΩ

−

∫
Ω
h(φ)αSw pw∇ · u dΩ−

∫
Ω

(Sw pw)2

2M
dΩ

−

∫
Ω

b · u dΩ+

∫
Ω

Gc

cw

(
w(φ)

l
+ l|∇φ|2

)
dΩ,

(6.3)

where, an additional degradation function h(φ) is defined as

h(φ) =

g(φ), if pw < 0 and ∇ · u > 0

1, otherwise.
(6.4)

Remark 8. It is important to note that the energy functionals E1 (6.1) and
E2 (6.3) would yield identical numerical results if the soil specimen remains
entirely under compression.
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The phase-field desiccation cracking model energy functionals E1 (6.1)
and E2 (6.3) are constructed in the ‘effective strain8’ space. With this approach,
the degradation function operates on the solid skeleton strain energy den-
sity. Analytical studies conducted by Luo, Sanavia, and De Lorenzis [50]
show that such models exhibit solely a mode II fracturing phenomenon.
Alternatively, when the energy functional is constructed in the total strain
space, a mixed (both, I and II) mode fracturing phenomenon is observed
[50].

A total strain space phase-field energy functional for the soil desiccation
cracking phenomenon may be constructed following Heider and Sun [49]
or Luo, Sanavia, and De Lorenzis [50]. In the context of partial saturated
porous media, the total strain, say, ϵtot is defined as

ϵtot[u,pw] := ϵ[u] −αSw
pw

3K
I, (6.5)

where, K is the bulk modulus of the porous medium. Incorporating (6.5) in
the energy functional E1 (6.1) together with re-arrangement of the terms
yields

E3(u,pw,φ) =
∫
Ω
g(φ)Ψ+

tot(ϵtot[u,pw]) dΩ +

∫
Ω
Ψ−
tot(ϵtot[u,pw]) dΩ

−

∫
Ω

(α2

K
+
1

M

)(Sw pw)2

2
dΩ

−

∫
Ω

b · u dΩ+

∫
Ω

Gc

cw

(
w(φ)

l
+ l|∇φ|2

)
dΩ.

(6.6)

Unlike the energy functionals E1 (6.1) and E2 (6.3) constructed in the effec-
tive strain space, the degradation function g(φ) in E3 operates on the total
strain energy density instead of the solid skeleton strain energy density.
Furthermore, the total strain defined in (6.5) may attain positive values due
to suction (pw < 0) even though the effective strain ϵ[u] is compressive. This
net positive total strain contributes to a mode I fracturing phenomenon. For
detailed analytical proof of the same, the reader is referred to Section 4.2 in
[50]. Note that the total strain is referred to as ‘effective strain’ therein.

Remark 9. The total strain space energy functional (Equation 30) in [50]

excludes the contribution 1
M

(Sw pw)2

2
. For the system of equations solved

for the displacement u, water pressure pw, and the phase-field φ, there is
no consequence. However, in the context of computing the water content,

8 Effective strain refers to the strain in the solid skeleton in a porous material.
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Remark 9 (continued)

exclusion of the aforementioned term in the energy functional yields an
incorrect expression.

The total strain and effective strain space approaches may be considered
as extremities in the construction of an energy functional for soil desiccation
cracking. With this argument, a novel energy functional is proposed, which
lies in between the effective and total strain space approaches. To that end,
a new strain measure, say, solid strain ϵsld is defined as

ϵsld[u,pw] := ϵ[u] − (α−n)Sw
pw

3K
I. (6.7)

The term (α−n) in the solid strain ϵsld represents the fraction of the water
pressure affecting the solid skeleton, where n is the porosity of the porous
medium. The use of the solid strain ϵsld implies that the total Cauchy stress
is computed as

σ(ϵsld[u],pw) = σsld(ϵsld[u],pw) −nSw pw I. (6.8)

With this choice, the corresponding energy functional is constructed as,

E4(u,pw,φ) =
∫
Ω
g(φ)Ψ+

sld(ϵsld[u,pw]) dΩ +

∫
Ω
Ψ−
sld(ϵsld[u,pw]) dΩ

−

∫
Ω
nSw pw∇ · u dΩ−

∫
Ω

(
(α−n)2

K
+
1

M

)
(Sw pw)2

2
dΩ

−

∫
Ω

b · u dΩ+

∫
Ω

Gc

cw

(
w(φ)

l
+ l|∇φ|2

)
dΩ.

(6.9)

6.2.2 Conservation of mass

The conservation of mass applies to the solid skeleton mass as well as
the fluid (water and gas) mass. The pertinent detailed derivations are
presented in Section 2.3.2. From the mathematical developments therein,
the conservation of the solid skeleton mass in conjunction with that of the
fluid mass yields the water transport equation (2.52), re-stated below,
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[
(α−n)CsS

2
w +nSwCw

]
∂pw

∂t
+ (α−n)CsSwSg

∂pg

∂t

+

[
(α−n)CsSw(pw − pg) +n

]
∂Sw

∂t
+αSw

∂ϵvol
∂t

−∇ ·
[
krw

kiI
µw

(∇pw − ρwg)

]
= 0.

(6.10)

A similar equation is also obtained for the gas transport (see (2.53) in Section
2.3.2). However, in the context of two-phase modelling of porous media,
the gas is assumed to be at constant atmospheric pressure, i.e., pg = 0 and
∂pg

∂t = 0. Consequently, the gas transport equation is eliminated from the
system of equations. Thus, the water transport equation (6.10) attains a
simplified form,

[
(α−n)CsS

2
w +nSwCw

]
∂pw

∂t

+

[
(α−n)CsSwpw +n

]
∂Sw

∂t
+αSw

∂ϵvol
∂t

−∇ ·
[
krw

kiI
µw︸︷︷︸
Keff

(∇pw − ρwg)

]
= 0.

(6.11)

Remark 10. Unlike the hydraulic fracturing model, the water transport
equation for soil desiccation cracking (6.11) incorporates the prospect of
variable saturation. The saturation is a state variable depending on the
suction pressure, i.e., the difference between the gas and water pressure.
This enhanced model fidelity is required, given the role of suction in the
development of desiccation cracks in soil [207, 208].

The water transport equation (6.11) in its current form does not incorpo-
rate any fracture dependent coefficients. Similar to the approach adopted
for hydraulic fracture modelling in Chapter 5, one may introduce fracture
dependent coefficients. Thereafter, any coefficient, say χ is expressed as

X = Xb + h(φ)
(
Xf −Xb

)
, (6.12)

where subscripts b and f indicate bulk and fracture, respectively. The phase-
field dependent interpolation function h(φ) is defined as

h(φ) = 25 ⟨φ− 0.8⟩2+. (6.13)
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The interpolation function assumes a value zero until φ = 0.8 and reaches
1 for φ = 1. Having defined a way to introduce fracture dependent coeffi-
cients in the water transport equation (6.11), the individual coefficients are
addressed in the latter part of this section.

Biot coefficient

The Biot coefficient α accounts for the interaction of the solid skeleton and
the water pore pressure. For linear isotropic materials, it is given by

α = 1−Cs/C, (6.14)

where, Cs and C represent the compressibility of the solid grains and
porous medium, respectively [180]. In the context of soil, the solid grains
are assumed nearly incompressible. This yields α = 1, a choice made
throughout this chapter.

Porosity

The porosity n in the water transport equation (6.11) refers to the initial
porosity of the porous medium [112]. For hydraulic fracturing, You and
Yoshioka [42] proposed increasing the initial porosity n to 1 for a fully
developed fracture φ = 1. However, one may argue that the change in
the porosity is already incorporated in the water transport equation (6.11)
through the relation (2.42) (see Section 2.3.2. Based on this reasoning, the
initial porosity is not tampered with in this chapter.

Biot modulus

The Biot modulus of a linear elastic isotropic porous material is expressed
as

1

M
= (α−n)Cs +nCf. (6.15)

For the numerical experiments on soil desiccation cracking, the Biot modulus
is not required since the term 1

M
(Sw pw)2

2 does not enter any of the governing
variational equations (presented later in Section 6.2.3).

Permeability

The permeability matrix Keff in the water transport equation (6.11) corre-
sponds to an intact bulk material state. In order to account for an enhance-
ment of the permeability due to fracture, the notion of bulk and fracture
permeability is introduced, adopting a dual permeability approach [211,
212]. Thereafter, the bulk permeability matrix is defined as
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Kb =
κi
µw

I, (6.16)

where, κi and µw represent the intrinsic permeability of the porous medium
and the dynamic viscosity of water, respectively. The fracture permeability
is computed using the cubic law proposed by Witherspoon et al. [181]. For
an isotropic material, the fracture permeability is expressed as

Kf =
w2

f

12
I, (6.17)

with fracture aperture wf. Unlike discrete fracture models like XFEM and
CZM, the fracture aperture is not readily available as a solution of the system
of equations. Therefore, the fracture aperture is computed in approximated
sense following Miehe, Mauthe, and Teichtmeister [182] as

wf := ⟨hel(1+ nφ · ϵ[u] · nφ)⟩+, with nφ ≈ Pmax

|Pmax|
, (6.18)

where, hel is the characteristic element size, and Pmax is the eigenvector
corresponding to the maximum eigenvalue of the strain tensor. Having
obtained expressions for the bulk permeability Kb and the fracture perme-
ability Kf, the effective permeability Keff is defined using the phase-field
based interpolation function h(φ) as

Keff(φ) = Kb + h(φ)
(

Kf − Kb

)
. (6.19)

Remark 11. Heider and Sun [49] adopted an anisotropic fracture perme-
ability matrix, computed as

Kf =
w2

h

12

(
I − nφ ⊗ nφ

)
, (6.20)

in order to account for the preferential flow direction due to fracture. How-
ever, in this chapter, the fracture permeability is assumed isotropic. The
argument for this choice is that the preferential flow direction is dictated by
the localization orientation itself.

Soil-Water Retention Curve (SWRC)

The soil-water retention curve establishes the relationship between the
degree of saturation Sw and the water pressure head hw at equilibrium, i.e.,
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when the water is not moving in the specimen. The water pressure head is
computed as

hw(pw,pg) =
pg − pw
γw g

, (6.21)

where, γw and g represent the density of water and acceleration due to
gravity, respectively. Note that, in the context of two-phase soil modelling,
pg = 0.

The first SWRC was proposed by Buckingham [213] as early as 1907. Since
then, several other SWRCs were proposed by Gardner [115], Brooks [114]
and Van Genuchten [113]. For a comparison of these SWRCs, the reader
is referred to [214]. In this chapter, Van Genuchten’s retention model is
adopted given its popularity in the soil mechanics including desiccation
cracking (see [48–51]). The Van Genuchten relations are given by

Se =
Sw − Sr
Ss − Sr

=
(
1+[αVG|hw|]nVG

)−mVG

, withmVG = 1−1/nVG, (6.22)

where, αVG is a scalar fitting parameter denoting the air entry value, and
mVG, nVG are parameters related to the pore size distribution.

The SWRCs [113–115] proposed so far do not account for change in the
degree of saturation upon fracturing of soil specimen. In the context of
rock mechanics, Zhang and Fredlund [215] introduced two SWRCs, one
for the rock bulk matrix and the other for the fracture rock. The degree of
saturation is then computed from the two SWRCs as a weighted average of
the bulk and fractured volumes. The air entry value in the fractured rock
is less than that of the bulk rock. A similar model was also adopted by
Abbaszadeh, Houston, and Zapata [216] in the context of the San Diego
clay, USA. However, the authors also found that the cracked and intact clay
SWRCs merge at low suction values, governed by the width of the crack.
For this reason, in this chapter, the SWRC is considered unaffected by the
fracturing phenomenon.

Following the computation of the degree of saturation Sw from the SWRC,
the relative permeability krw is also determined. The simplest assumption
krw = Sw was adopted by Romm [217]. In later developments, compara-
tively sophisticated models were proposed by Fourar and Lenormand [218],
Corey [219] and Mualem [220]. In this chapter, Mualem’s expression for
relative permeability is adopted. The relative permeability is given by

krw =
√
Se

(
1−

[
1− (Se)

1
mVG

]mVG

)2

. (6.23)

All parameters on the right hand side of the above equation correspond to
Van Genuchten’s SWRC.
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Darcy to Poiseuille flow transition in water transport equation

Incorporating fracture dependent permeability (6.19) in the water transport
equation (6.11), one obtains

[
(α−n)CsS

2
w +nSwCw

]
︸ ︷︷ ︸

C1

∂pw

∂t

+

[
(α−n)CsSwpw +n

]
︸ ︷︷ ︸

C2

∂Sw

∂t
+αSw

∂ϵvol
∂t

−∇ ·
[
krw Keff(φ)(∇pw − ρwg)

]
= 0.

(6.24)

The above equation allows a seamless transition from a Darcy flow in
the intact soil material to a Poiseuille type flow in the diffused fractures,
based on the dual permeability model (6.19). All other coefficients and state
variables may also be expressed in a dual model approach similar to the
permeability. However, the need for incorporating these changes requires
either a theoretical reasoning (for instance, a micromechanical approach
[221]) or experimental evidence.

6.2.3 Variational equations

The set of variational equations for the phase-field desiccation cracking
model is obtained through a two-fold process. First, the momentum bal-
ance equation and the phase-field evolution equation are obtained upon
minimizing the energy functional (E1, E2, E3 or E4) w.r.t., the vector-valued
displacement u and the scalar-valued phase-field φ. Thereafter, the water
transport variational equation is obtained through Backward Euler substitu-
tion of the time derivatives and a subsequent integration with a test function
δpw over the domain Ω. The irreversibility of the phase-field is enforced
using the history-variable approach proposed by Miehe, Hofacker, and
Welschinger [37]. Due to the four different energy functionals introduced in
Section 6.2.1, four Variational Problems 12, 13, 14, and 15 are obtained.

Each of the aforementioned Variational Problems entails a saddle point
problem, requiring a careful choice of trial and test functions for the dis-
placement and the water pressure to guarantee a unique solution continu-
ously depending on the input data. The sufficient condition ensuring this
uniqueness is established in the computational mechanics literature as the
Ladyzhenskaya–Babuška–Brezzi (LBB) condition. In order to fulfill the LBB
condition, quadratic trial and test functions are chosen for the displacement
field, while the pressure field remains linear. In the discrete sense, such a
choice is referred to as the Taylor and Hood element [184] following their
contribution. Furthermore, quadratic trial and test functions are also chosen
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for the phase-field. This choice was also adopted in [48–50]. Finally, for
brevity, the function argument (φ) in Keff is dropped henceforth, and the
Cauchy stress definitions

σ±(ϵ[u]) =
∂Ψ±(ϵ[u])

∂ϵ
, (6.25)

σ±
tot(ϵ[u],pw) =

∂Ψ±
tot(ϵ[u],pw)

∂ϵ
, (6.26)

σ±
sld(ϵ[u],pw) =

∂Ψ±
sld(ϵ[u],pw)

∂ϵ
, (6.27)

are incorporated, wherever relevant. Variational Problem 12 corresponding
to the energy functional E1 assumes the form:

Variational Problem 12. Find (u, φ, pw) ∈ U × P × Q such that

E ′
1(u,pw,φ; δu) =

∫
Ω

(
g(φ)σ+(ϵ[u]) +σ−(ϵ[u])

)
: ϵ[δu] dΩ

−

∫
Ω
αSw pw I : ϵ[δu] dΩ = 0 ∀ δu ∈ U0,

(6.28a)

E ′
1(u,pw,φ; δφ) =

∫
Ω

(
g ′(φ)H+

Gc

cw l
w ′(φ)

)
δφ dΩ

+

∫
Ω

Gcl

cw
∇φ ·∇δφ dΩ = 0 ∀ δφ ∈ P0,

(6.28b)

∫
Ω

(
C1
pw − npw

∆t
+C2

Sw − nSw

∆t

)
δpw dΩ

+

∫
Ω
αSw

ϵvol −
nϵvol

∆t
δpw dΩ

+

∫
Ω

∇δpw krw Keff

(
∇pw − ρwg

)
dΩ

=

∫
Γ
pw

N

q δpw dΓ ∀ δpw ∈ Q, (6.28c)

using pertinent time-dependent Dirichlet boundary conditions up on ΓuD,
φp on ΓφD, and ppw on Γpw

D . The trial and test spaces are defined as

U = {u ∈ [H2(Ω)]dim|u = up on ΓuD}, (6.29a)

P = {φ ∈ [H2(Ω)]|φ = φp on ΓφD}, (6.29b)

Q = {pw ∈ H1(Ω)|pw = ppw on Γpw

D }, (6.29c)

U0 = {u ∈ [H2(Ω)]dim|u = 0 on ΓuD}, (6.29d)

P0 = {φ ∈ [H2(Ω)]|φ = 0 on ΓφD}, (6.29e)
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Variational Problem 12 (continued)

Q0 = {pw ∈ H1(Ω)|pw = 0 on Γpw

D }. (6.29f)

In (6.28c), the left superscript n refers to the previous time-step. The storage
coefficients C1 and C2 are defined in (6.24). The history variable H is
defined in (2.24). ■

The Variational Problem 13 corresponds to the energy functional E2. The
contribution of suction towards fracture driving energy is incorporated only
when positive volumetric strain is encountered. This results in the modified
definition of the history-variable H in (6.32).

Variational Problem 13. Find (u, φ, pw) ∈ U × P × Q such that

E ′
2(u,pw,φ; δu) =

∫
Ω

(
g(φ)σ+(ϵ[u]) +σ−(ϵ[u])

)
: ϵ[δu] dΩ

−

∫
Ω
h(φ)αSw pw I : ϵ[δu] dΩ = 0 ∀ δu ∈ U0,

(6.30a)

E ′
2(u,pw,φ; δφ) =

∫
Ω

(
g ′(φ)H+

Gc

cw l
w ′(φ)

)
δφ dΩ

+

∫
Ω

Gcl

cw
∇φ ·∇δφ dΩ = 0 ∀ δφ ∈ P0,

(6.30b)

∫
Ω

(
C1
pw − npw

∆t
+C2

Sw − nSw

∆t

)
δpw dΩ

+

∫
Ω
αSw

ϵvol −
nϵvol

∆t
δpw dΩ

+

∫
Ω

∇δpw krw Keff

(
∇pw − ρwg

)
dΩ

=

∫
Γ
pw

N

q δpw dΓ ∀ δpw ∈ Q, (6.30c)

using pertinent time-dependent Dirichlet boundary conditions up on ΓuD,
φp on ΓφD, and ppw on Γpw

D . The trial and test spaces are defined as

U = {u ∈ [H2(Ω)]dim|u = up on ΓuD}, (6.31a)

P = {φ ∈ [H2(Ω)]|φ = φp on ΓφD}, (6.31b)

Q = {pw ∈ H1(Ω)|pw = ppw on Γpw

D }, (6.31c)

U0 = {u ∈ [H2(Ω)]dim|u = 0 on ΓuD}, (6.31d)

P0 = {φ ∈ [H2(Ω)]|φ = 0 on ΓφD}, (6.31e)
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Variational Problem 13 (continued)

Q0 = {pw ∈ H1(Ω)|pw = 0 on Γpw

D }. (6.31f)

The interpolation function h(φ) is defined in (6.4).In (6.30c), the left super-
script n refers to the previous time-step. The storage coefficients C1 and C2

are defined in (6.24). The history variable H is defined as

H =

max
{
nH,Ψ+(ϵ[u]) −αSw pw ϵvol

}
, if pw < 0 and ∇ · u > 0

max
{
nH,Ψ+(ϵ[u])

}
, otherwise.

(6.32)

■

The Variational Problem 14 corresponds to the novel energy functional E3.
The contribution of suction towards fracture driving energy is incorporated
irrespective of the strain in the solid skeleton. To that end, the strain energy
densities are constructed in the total strain space, as in (6.6). Accordingly,
the history-variable H is defined in (6.35).

Variational Problem 14. Find (u, φ, pw) ∈ U × P × Q such that

E ′
3(u,pw,φ; δu) =

∫
Ω

(
g(φ)σ+

tot(ϵtot[u,pw])

+σ−
tot(ϵtot[u,pw])

)
: ϵ[δu] dΩ

= 0 ∀ δu ∈ U0, (6.33a)

E ′
3(u,pw,φ; δφ) =

∫
Ω

(
g ′(φ)H+

Gc

cw l
w ′(φ)

)
δφ dΩ

+

∫
Ω

Gcl

cw
∇φ ·∇δφ dΩ = 0 ∀ δφ ∈ P0,

(6.33b)

∫
Ω

(
C1
pw − npw

∆t
+C2

Sw − nSw

∆t

)
δpw dΩ

+

∫
Ω
αSw

ϵvol −
nϵvol

∆t
δpw dΩ

+

∫
Ω

∇δpw krw Keff

(
∇pw − ρwg

)
dΩ

=

∫
Γ
pw

N

q δpw dΓ ∀ δpw ∈ Q, (6.33c)
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Variational Problem 14 (continued)

using pertinent time-dependent Dirichlet boundary conditions up on ΓuD,
φp on ΓφD, and ppw on Γpw

D . The trial and test spaces are defined as

U = {u ∈ [H2(Ω)]dim|u = up on ΓuD}, (6.34a)

P = {φ ∈ [H2(Ω)]|φ = φp on ΓφD}, (6.34b)

Q = {pw ∈ H1(Ω)|pw = ppw on Γpw

D }, (6.34c)

U0 = {u ∈ [H2(Ω)]dim|u = 0 on ΓuD}, (6.34d)

P0 = {φ ∈ [H2(Ω)]|φ = 0 on ΓφD}, (6.34e)

Q0 = {pw ∈ H1(Ω)|pw = 0 on Γpw

D }. (6.34f)

In (6.33c), the left superscript n refers to the previous time-step. The storage
coefficients C1 and C2 are defined in (6.24). The history variable H is
defined as

H = max
{
nH, Ψ+

tot(ϵtot[u,pw])
}

. (6.35)

■

Finally, the Variational Problem 15 corresponds to the energy functional
E4. The contribution of suction towards fracture driving energy is incor-
porated irrespective of the strain in the solid skeleton, however, with a
different magnitude compared to the Variational Problem 14. Consequently,
the modified definition of the history-variable H in (6.38) is adopted.

Variational Problem 15. Find (u, φ, pw) ∈ U × P × Q such that

E ′
4(u,pw,φ; δu) =

∫
Ω

(
g(φ)σ+

sld(ϵsld[u,pw])

+σ−
sld(ϵsld[u,pw])

)
: ϵ[δu] dΩ

−nSw pw I : ϵ[δu] dΩ = 0 ∀ δu ∈ U0, (6.36a)

E ′
4(u,pw,φ; δφ) =

∫
Ω

(
g ′(φ)H+

Gc

cw l
w ′(φ)

)
δφ dΩ

+

∫
Ω

Gcl

cw
∇φ ·∇δφ dΩ = 0 ∀ δφ ∈ P0,

(6.36b)

∫
Ω

(
C1
pw − npw

∆t
+C2

Sw − nSw

∆t

)
δpw dΩ

+

∫
Ω
αSw

ϵvol −
nϵvol

∆t
δpw dΩ
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Variational Problem 15 (continued)

+

∫
Ω

∇δpw krw Keff

(
∇pw − ρwg

)
dΩ

=

∫
Γ
pw

N

q δpw dΓ ∀ δpw ∈ Q, (6.36c)

using pertinent time-dependent Dirichlet boundary conditions up on ΓuD,
φp on ΓφD, and ppw on Γpw

D . The trial and test spaces are defined as

U = {u ∈ [H2(Ω)]dim|u = up on ΓuD}, (6.37a)

P = {φ ∈ [H2(Ω)]|φ = φp on ΓφD}, (6.37b)

Q = {pw ∈ H1(Ω)|pw = ppw on Γpw

D }, (6.37c)

U0 = {u ∈ [H2(Ω)]dim|u = 0 on ΓuD}, (6.37d)

P0 = {φ ∈ [H2(Ω)]|φ = 0 on ΓφD}, (6.37e)

Q0 = {pw ∈ H1(Ω)|pw = 0 on Γpw

D }. (6.37f)

In (6.36c), the left superscript n refers to the previous time-step. The storage
coefficients C1 and C2 are defined in (6.24). The history variable H is
defined as

H = max
{
nH, Ψ+

sld(ϵsld[u,pw])
}

. (6.38)

■

6.2.4 Finite element discretized equations

The finite element discretized equations for the phase-field desiccation
cracking model are derived using the procedure explained in Section 2.1. To
that end, the Variational Problems 12, 13, 14, and 15 are identified as points
of departure from a continuous problem to a discrete one. The detailed
derivations are skipped for brevity. Instead the corresponding Discrete
Problems 10, 11, 12, and 13 are presented.
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Discrete Problem 10. Compute the solution update vector sk+1 =

{∆ũ ;∆p̃w ; ∆φ̃} for the current iteration k+ 1 using Kuu Kupw Kuφ

Kpwu Kpwpw Kpwφ

Kφu Kφpw Kφφ


︸ ︷︷ ︸

Stiffness matrix, Kk


∆ũ

∆p̃w

∆φ̃

︸ ︷︷ ︸
sk+1

=


0

fext,pw

0

−


fint,u

fint,pw

fint,φ

︸ ︷︷ ︸
Residual, rk

,

(6.39a)

and update the solution,
ũ

p̃w

φ̃


k+1

=


ũ

p̃w

φ̃


k

+


∆ũ

∆p̃w

∆φ̃


k+1

, (6.39b)

until the norm of the residual is sufficiently small. The stiffness matrix
components are given by,

Kuu = A

∫
Ωel

[Bu]T
(
g(φ)

∂σ+

∂ϵ
+
∂σ−

∂ϵ︸ ︷︷ ︸
D

)
[Bu] dΩ,

Kupw = −A

∫
Ωel

[Bu]T α
(
Sw +

∂Sw

∂pw
pw

)
Iv [Npw ] dΩ

−A

∫
Ωel

[Nu]T n
∂Sw

∂pw
ρw g [Npw ] dΩ

Kuφ = A

∫
Ωel

[Bu]T
(
g ′(φ)σ+

)
[Nφ] dΩ,

Kpwu =
1

∆t
A

∫
Ωel

[Npw ]T αSw Iv [Bu] dΩ,

Kpwpw = A

∫
Ωel

(
[Bpw ]T krw Keff [Bpw ]

+ [Bpw ]T
∂krw

∂pw
Keff

(
∇pw − ρw g

)
[Npw ]

+ [Npw ]T
(
C1 +

∂C1

∂pw
(pw − npw)

+C2
∂Sw

∂pw
+
∂C2

∂pw
(Sw − nSw)

)
[Npw ]

)
dΩ, (6.39c)

Kpwφ = A

∫
Ωel

[Bpw ]T krw
∂Keff

∂φ
(∇pw − ρw g) [Nφ]

Kφu = [Kuφ]T if Ḣ > 0, else 0,

Kφpw = 0,
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Discrete Problem 10 (continued)

Kφφ = A

∫
Ωel

(
[Bφ]T

(
Gcl

cw

)
[Bφ]

+ [Nφ]T
(
Gc

cwl
w ′′(φ) + g ′′(φ)

∂H

∂ϵ

)
[Nφ]

)
dΩ,

and the internal force vector components are computed as

fext,pw = A

∫
ΓN,el

[Npw ]T q dΓ ,

fint,u = A

∫
Ωel

[Bu]T
(
g(φ)σ+ +σ− −αSw pwIv

)
dΩ,

fint,φ = A

∫
Ωel

[Bφ]T
Gc l

cw
∇φ

+ [Nφ]T
(
g ′(φ)H+

Gc

cw l
w ′(φ)

)
dΩ, (6.39d)

fint,pw = A

∫
Ωel

(
[Bpw ]T Keff

(
∇pw − ρw g

)
+ [Npw ]T

1

∆t

(
C1(pw − npw) +C2(Sw − nSw)

+αSw (ϵvol −
nϵvol)

))
dΩ.

Note that A is an assembly operator that maps element contributions to
their global counterparts. Furthermore, Iv is the Voigt representation of the
identity matrix, the left superscript n refers to the previous time step, and
H is the heaviside function. The material stiffness matrix D depends on the
chosen strain energy density split (see Table 2.4). The history variable H is
defined in (2.24). ■
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Discrete Problem 11. Compute the solution update vector sk+1 =

{∆ũ ;∆p̃w ; ∆φ̃} for the current iteration k+ 1 using Kuu Kupw Kuφ

Kpwu Kpwpw Kpwφ

Kφu Kφpw Kφφ


︸ ︷︷ ︸

Stiffness matrix, Kk


∆ũ

∆p̃w

∆φ̃

︸ ︷︷ ︸
sk+1

=


0

fext,pw

0

−


fint,u

fint,pw

fint,φ

︸ ︷︷ ︸
Residual, rk

,

(6.40a)

and update the solution,
ũ

p̃w

φ̃


k+1

=


ũ

p̃w

φ̃


k

+


∆ũ

∆p̃w

∆φ̃


k+1

, (6.40b)

until the norm of the residual is sufficiently small. The stiffness matrix
components are given by,

Kuu = A

∫
Ωel

[Bu]T
(
g(φ)

∂σ+

∂ϵ
+
∂σ−

∂ϵ︸ ︷︷ ︸
D

)
[Bu] dΩ,

Kupw = −A

∫
Ωel

[Bu]T h(φ)α
(
Sw +

∂Sw

∂pw
pw

)
Iv [Npw ] dΩ

−A

∫
Ωel

[Nu]T n
∂Sw

∂pw
ρw g [Npw ] dΩ

Kuφ = A

∫
Ωel

[Bu]T
(
g ′(φ)σ+ − h ′(φ)αSw pw Iv

)
[Nφ] dΩ,

Kpwu =
1

∆t
A

∫
Ωel

[Npw ]T αSw Iv [Bu] dΩ,

Kpwpw = A

∫
Ωel

(
[Bpw ]T krw Keff [Bpw ]

+ [Bpw ]T
∂krw

∂pw
Keff

(
∇pw − ρw g

)
[Npw ]

+ [Npw ]T
(
C1 +

∂C1

∂pw
(pw − npw)

+C2
∂Sw

∂pw
+
∂C2

∂pw
(Sw − nSw)

)
[Npw ]

)
dΩ, (6.40c)

Kpwφ = A

∫
Ωel

[Bpw ]T krw
∂Keff

∂φ
(∇pw − ρw g) [Nφ]

Kφu = [Kuφ]T if Ḣ > 0, else 0,

Kφpw = 0,
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Discrete Problem 11 (continued)

Kφφ = A

∫
Ωel

(
[Bφ]T

(
Gcl

cw

)
[Bφ]

+ [Nφ]T
(
Gc

cwl
w ′′(φ) + g ′′(φ)

∂H

∂ϵ

)
[Nφ]

)
dΩ,

and the internal force vector components are computed as

fext,pw = A

∫
ΓN,el

[Npw ]T q dΓ ,

fint,u = A

∫
Ωel

[Bu]T
(
g(φ)σ+ +σ− − h(φ)αSw pwIv

)
dΩ,

fint,φ = A

∫
Ωel

[Bφ]T
Gc l

cw
∇φ

+ [Nφ]T
(
g ′(φ)H+

Gc

cw l
w ′(φ)

)
dΩ, (6.40d)

fint,pw = A

∫
Ωel

(
[Bpw ]T Keff

(
∇pw − ρw g

)
+ [Npw ]T

1

∆t

(
C1(pw − npw) +C2(Sw − nSw)

+αSw (ϵvol −
nϵvol)

))
dΩ.

Note that A is an assembly operator that maps element contributions to
their global counterparts. Furthermore, Iv is the Voigt representation of the
identity matrix, the left superscript n refers to the previous time step, and
H is the heaviside function. The material stiffness matrix D depends on the
chosen strain energy density split (see Table 2.4). The degradation function
h(φ) is defined in (6.4). The history variable H is defined as

H =

max
{
nH,Ψ+(ϵ[u]) −αSw pw ϵvol

}
, if pw < 0 and ∇ · u > 0

max
{
nH,Ψ+(ϵ[u])

}
, otherwise.

(6.40e)

■
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Discrete Problem 12. Compute the solution update vector sk+1 =

{∆ũ ;∆p̃w ; ∆φ̃} for the current iteration k+ 1 using Kuu Kupw Kuφ

Kpwu Kpwpw Kpwφ

Kφu Kφpw Kφφ


︸ ︷︷ ︸

Stiffness matrix, Kk


∆ũ

∆p̃w

∆φ̃

︸ ︷︷ ︸
sk+1

=


0

fext,pw

0

−


fint,u

fint,pw

fint,φ

︸ ︷︷ ︸
Residual, rk

,

(6.41a)

and update the solution,
ũ

p̃w

φ̃


k+1

=


ũ

p̃w

φ̃


k

+


∆ũ

∆p̃w

∆φ̃


k+1

, (6.41b)

until the norm of the residual is sufficiently small. The stiffness matrix
components are given by,

Kuu = A

∫
Ωel

[Bu]T
(
g(φ)

∂σ+
tot

∂ϵ
+
∂σ−

tot

∂ϵ︸ ︷︷ ︸
D

)
[Bu] dΩ,

Kupw = −A

∫
Ωel

[Bu]T
(
g(φ)

∂σ+
tot

∂pw
+
∂σ−

tot

∂pw

)
[Npw ] dΩ

−A

∫
Ωel

[Nu]T n
∂Sw

∂pw
ρw g [Npw ] dΩ

Kuφ = A

∫
Ωel

[Bu]T
(
g ′(φ)σ+

tot

)
[Nφ] dΩ,

Kpwu =
1

∆t
A

∫
Ωel

[Npw ]T αSw Iv [Bu] dΩ,

Kpwpw = A

∫
Ωel

(
[Bpw ]T krw Keff [Bpw ]

+ [Bpw ]T
∂krw

∂pw
Keff

(
∇pw − ρw g

)
[Npw ]

+ [Npw ]T
(
C1 +

∂C1

∂pw
(pw − npw)

+C2
∂Sw

∂pw
+
∂C2

∂pw
(Sw − nSw)

)
[Npw ]

)
dΩ, (6.41c)

Kpwφ = A

∫
Ωel

[Bpw ]T krw
∂Keff

∂φ
(∇pw − ρw g) [Nφ]

Kφu = [Kuφ]T if Ḣ > 0, else 0,
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Discrete Problem 12 (continued)

Kφpw = A

∫
Ωel

[Nφ]T
(
g ′(φ)

∂H

∂pw

)
[Nφ] dΩ, if Ḣ > 0, else 0

Kφφ = A

∫
Ωel

(
[Bφ]T

(
Gcl

cw

)
[Bφ]

+ [Nφ]T
(
Gc

cwl
w ′′(φ) + g ′′(φ)

∂H

∂ϵ

)
[Nφ]

)
dΩ,

and the internal force vector components are computed as

fext,pw = A

∫
ΓN,el

[Npw ]T q dΓ ,

fint,u = A

∫
Ωel

[Bu]T
(
g(φ)σ+

tot +σ−
tot

)
dΩ,

fint,φ = A

∫
Ωel

[Bφ]T
Gc l

cw
∇φ

+ [Nφ]T
(
g ′(φ)H+

Gc

cw l
w ′(φ)

)
dΩ, (6.41d)

fint,pw = A

∫
Ωel

(
[Bpw ]T Keff

(
∇pw − ρw g

)
+ [Npw ]T

1

∆t

(
C1(pw − npw) +C2(Sw − nSw)

+αSw (ϵvol −
nϵvol)

))
dΩ.

Note that A is an assembly operator that maps element contributions to
their global counterparts. Furthermore, Iv is the Voigt representation of the
identity matrix, the left superscript n refers to the previous time step, and
H is the heaviside function. The material stiffness matrix D depends on the
chosen strain energy density split (see Table 2.4). The history variable H is
defined as

H = max
{
nH, Ψ+

tot(ϵtot[u,pw])
}

. (6.41e)

■
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Discrete Problem 13. Compute the solution update vector sk+1 =

{∆ũ ;∆p̃w ; ∆φ̃} for the current iteration k+ 1 using Kuu Kupw Kuφ

Kpwu Kpwpw Kpwφ

Kφu Kφpw Kφφ


︸ ︷︷ ︸

Stiffness matrix, Kk


∆ũ

∆p̃w

∆φ̃

︸ ︷︷ ︸
sk+1

=


0

fext,pw

0

−


fint,u

fint,pw

fint,φ

︸ ︷︷ ︸
Residual, rk

,

(6.42a)

and update the solution,
ũ

p̃w

φ̃


k+1

=


ũ

p̃w

φ̃


k

+


∆ũ

∆p̃w

∆φ̃


k+1

, (6.42b)

until the norm of the residual is sufficiently small. The stiffness matrix
components are given by,

Kuu = A

∫
Ωel

[Bu]T
(
g(φ)

∂σ+
sld

∂ϵ
+
∂σ−

sld

∂ϵ︸ ︷︷ ︸
D

)
[Bu] dΩ,

Kupw = −A

∫
Ωel

[Bu]T
(
g(φ)

∂σ+
sld

∂pw
+
∂σ−

sld

∂pw

)
[Npw ] dΩ

−A

∫
Ωel

[Bu]T n
(
Sw +

∂Sw

∂pw
pw

)
Iv [Npw ] dΩ

−A

∫
Ωel

[Nu]T n
∂Sw

∂pw
ρw g [Npw ] dΩ

Kuφ = A

∫
Ωel

[Bu]T
(
g ′(φ)σ+

sld

)
[Nφ] dΩ,

Kpwu =
1

∆t
A

∫
Ωel

[Npw ]T αSw Iv [Bu] dΩ,

Kpwpw = A

∫
Ωel

(
[Bpw ]T krw Keff [Bpw ]

+ [Bpw ]T
∂krw

∂pw
Keff

(
∇pw − ρw g

)
[Npw ]

+ [Npw ]T
(
C1 +

∂C1

∂pw
(pw − npw)

+C2
∂Sw

∂pw
+
∂C2

∂pw
(Sw − nSw)

)
[Npw ]

)
dΩ, (6.42c)

Kpwφ = A

∫
Ωel

[Bpw ]T krw
∂Keff

∂φ
(∇pw − ρw g) [Nφ]
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Discrete Problem 13 (continued)

Kφu = [Kuφ]T if Ḣ > 0, else 0,

Kφpw = A

∫
Ωel

[Nφ]T
(
g ′(φ)

∂H

∂pw

)
[Nφ] dΩ, if Ḣ > 0, else 0

Kφφ = A

∫
Ωel

(
[Bφ]T

(
Gcl

cw

)
[Bφ]

+ [Nφ]T
(
Gc

cwl
w ′′(φ) + g ′′(φ)

∂H

∂ϵ

)
[Nφ]

)
dΩ,

and the internal force vector components are computed as

fext,pw = A

∫
ΓN,el

[Npw ]T q dΓ ,

fint,u = A

∫
Ωel

[Bu]T
(
g(φ)σ+

sld +σ−
sld −nSw pw Iv

)
dΩ,

fint,φ = A

∫
Ωel

[Bφ]T
Gc l

cw
∇φ

+ [Nφ]T
(
g ′(φ)H+

Gc

cw l
w ′(φ)

)
dΩ, (6.42d)

fint,pw = A

∫
Ωel

(
[Bpw ]T Keff

(
∇pw − ρw g

)
+ [Npw ]T

1

∆t

(
C1(pw − npw) +C2(Sw − nSw)

+αSw (ϵvol −
nϵvol)

))
dΩ.

Note that A is an assembly operator that maps element contributions to
their global counterparts. Furthermore, Iv is the Voigt representation of the
identity matrix, the left superscript n refers to the previous time step, and
H is the heaviside function. The material stiffness matrix D depends on the
chosen strain energy density split (see Table 2.4). The history variable H is
defined as

H = max
{
nH, Ψ+

sld(ϵsld[u,pw])
}

. (6.42e)

■

In order to guarantee a unique solution for the chosen input parameters
in the numerical experiments, the Discrete Problems 10, 11, 12 and 13 are
discretized using Taylor and Hood elements [184]. A Taylor and Hood
triangular element comprises of 6 nodes (3 vertices and 3 midway along
the element edges). The displacement and phase-field Degrees Of Freedom
(DOF) exist on all nodes, while the pressure DOFs are allocated only on
the 3 vertex nodes. Compared to the 3-noded triangular element (used in
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Chapters 3, 4 and 5), the Taylor and Hood is computationally expensive.
This is consequence of fulfilling the LBB condition, discussed earlier in
Section 6.2.3.

Remark 12. An alternative approach to fulfill the LBB condition is through
stabilization techniques that allows an equal order element for all solution
fields (displacement, water pressure and phase-field). Examples of stabiliza-
tion techniques include the Finite Calculus formulation [222], Fluid Pressure
Laplacian method [223, 224], Polynomial Pressure Projection (PPP) method
[225], and assumed strain finite element formulation [226, 227]. Besides
Gavagnin, Sanavia, and De Lorenzis’s PPP implementation for deviatoric
fractures [51], to the best of the author’s knowledge, the use of stabilization
techniques for damage and fracture problems is absent. Most stabilization
techniques are developed within the poro-elasticity framework.

6.3 numerical experiments

In this section, soil desiccation cracking numerical experiments are carried
out representative specimens. The objective is three-fold. Firstly, the role of
energy functional constructs in modelling of the fracturing phenomenon is
investigated in Section 6.3.1. Secondly, a parametric study exploring the role
of specimen thickness (Section 6.3.2), bulk intrinsic permeability (Section
6.3.3) and the fracture model (Section 6.3.4) in the fracturing process. A
comparison of the observed trends is made with those obtained experimen-
tally by Stirling, Glendinning, and Davie [228] and Peron et al. [205]. Finally,
in Section 6.3.5, the computational efficiency of the monolithic solution
techniques are discussed.

Two rectangular specimens are considered for the numerical experiments
and are shown in Figure 6.1. The smaller specimen measuring 50 [mm]
by 30 [mm] is embedded with a notch located midway on the top surface.
In order to force a single crack emanating from the notch, roller supports
constraint the left and right edges, while the bottom edge remains fixed.
The outflux of the water content takes places on the top edge. Next, the
larger specimen is a rectangular block measuring 300 [mm] in width while
the thickness H is varied. The specimen is devoid of any notches. Unlike
the smaller specimen, in this specimen, the displacements are constrained
in both directions on the left, right and bottom edges. The outflux of water
content takes place on the top edge. The geometry of the larger specimen
is inspired from Peron et al.’s desiccation cracking experiments [205]. Both
specimens are discretized using 6-noded Taylor and Hood elements [184]
The use of LBB condition violating 3-noded constant strain elements result
in orthogonal widening of fracture as shown in Appendix A.

In the context of material properties, the Lower Durham Boulder (LDB)
clay is adopted due to the thorough material characterization (composition
via XRD analysis, geo-technical classification, availability of mechanical
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and retention model parameters [204, 228]). The LDB clay was used in the
construction of the BIONICS full-scale trial embankment near Newcastle-
upon-Tyne in the United Kingdom [229, 230]. Stirling, Glendinning, and
Davie [228] proposed the relevant mechanical and retention model parame-
ters for numerical modelling of desiccation cracking. The Young’s modulus
E0 and the tensile strength ft were considered gravimetric water content
dependent. They are expressed as

E0 = 1770 · 106 e(−14wc) [Pa] (6.43)

ft = 228.85 · 103 e(−29.7wc) [Pa], (6.44)

where, the gravimetric water content wc is computed as

wc =
nSw

(1−n)γsp
, with soil specific gravity, γsp = 2.65. (6.45)

Using the above relations, water content dependent Griffith fracture tough-
ness Gc is given by

Gc =


6 l

E0

(
16 ft

9

)2

Brittle AT2

lchf2t

E0
Cohesive zone.

(6.46)

Additional model parameters adopted for the soil desiccation cracking
numerical experiments are presented in Table 6.1.

50 [mm] x 30 [mm]

300 [mm] x H [mm]

Fixed displacements, Zero flux
Roller support, Zero flux

Figure 6.1: Soil desiccation cracking specimens

Parameters Value [Units]

Fracture Model Varied (AT2, CZM-Linear)

Energy Split Vol-Dev [72]

ν 0.3 [-]

l 0.002 [m]

lch Varied [m]

α 1.0 [-]

n 0.5 [-]

ki,b Varied [m2]

µw 1e-3 [Pa s]

Cs 1e-10 [Pa]

Cw 4.54e-10 [Pa]

αVG 0.028 [m−1]

nVG 1.3 [-]

∆t 5 [s]

qp 6e-7 [m/s]

Table 6.1: Model parameters

Finally, the numerical experiments are carried out using the Hessian
scaling method (see Section 3.3.2). In adapting the method for the desiccation
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cracking Discrete Problems 10, 11, 12 and 13, the stiffness matrix block Kpwφ

is explicitly set to zero. Furthermore, the iterative procedure in every step is
terminated when the error defined as the ratio of the norm of the residual
in the current iteration to that of the first iteration is less than 10−4. The
shared memory Pardiso solver from Intel’s oneAPI Math Kernel Library
[64] is used to solve the linear problem in each iteration.

6.3.1 Choice of energy functional

The investigation into the role of energy functional constructs in soil desicca-
tion cracking is carried out using the small specimen with a single notch (see
Figure 6.1). The Discrete Problems 10, 11, 12 and 13 corresponding to the
energy functionals E1, E2, E3 and E4 are solved using the model parameters
presented in Table 6.1. The brittle AT2 fracture model is chosen for this
study, and the intrinsic permeability κi is set to 1e− 15 [m2]. Furthermore,
the effective permeability Keff (6.19) irrespective of fracture is explicitly
set to the bulk permeability Kb. This is done to highlight the development
of pressure localization in the fracture for the total strain-based energy
functional E3 without introducing a fracture permeability Kf > Kb. The
other energy functionals do not exhibit this pressure localization.

Figure 6.2 presents the phase-field distribution in the notched specimen at
the first instance of fracture propagation corresponding to the energy func-
tionals E1, E2, E3 and E4. It is observed that the energy functionals E1 and
E2 yield identical phase-field distributions. The reason being the specimen
remaining under compression throughout the simulation. Consequently,
there is no difference between E1 and E2 (cf. (6.1) and (6.3)).

0 0.5 1
φ [-]

(a) E1 and E2 , t = 1240 [s] (b) E3 , t = 1105 [s] (c) E4 , t = 1240 [s]

Figure 6.2: Figures (a-c) present the distribution of the phase-field variable pertinent to the energy
functionals E1, E2, E3 and E4 during the analysis of the small notched specimen. The time
stamp presented records the first instance of fracture propagation.

Figure 6.2 also presents another noticeable feature pertaining the choice
of energy functionals, i.e., the length of the fracture. At the first instance
of fracture propagation, E3 results in a complete fracture of the notched
specimen at 1105 seconds. This feature is attributed to the mixed (I and II)
mode fracturing phenomenon. The total volumetric strain shown in Figure
6.3b contributes to the fracturing phenomenon in addition to the deviatoric
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strain energy component. In energy functionals E1 and E2, the contribution
of the volumetric strain in the fracturing process is missing, due to its
compressive nature (see Figure 6.3a). However, for the energy functional
E4, the positive solid strain volumetric contribution ahead of the fracture
tip (see Figure 6.3c) contributes to the fracturing process. This explains
the increase in the fracture length for the E4 case, compared to E1 and E2.
However, compared to the total strain based energy functional E3, the E4
incorporates only a part of the suction in its computation of the volumetric
strain (cf. (6.5) and (6.7)). This explains the shorter fracture length observed
with E4 compared to the E3 case.

−0.046 −0.012
ϵvol [-]

(a) E1 and E2 , t = 1240 [s]

−0.0007 3.208
ϵtot,vol [-]

(b) E3 , t = 1105 [s]

−0.015 0.002
ϵsld,vol [-]

(c) E4 , t = 1240 [s]

Figure 6.3: Figures (a-c) present the distribution of the different volumetric strain measures pertinent to
the energy functionals E1, E2, E3 and E4 during the analysis of the small notched specimen.

−60 −10
pw [kPa]

(a) E1 and E2 , t = 1240 [s]

−2,000 −10
pw [kPa]

(b) E3 , t = 1105 [s]

−60 −10
pw [kPa]

(c) E4 , t = 1240 [s]

Figure 6.4: Figures (a-c) present the distribution of the water pressure with energy functionals E1, E2,
E3 and E4 during the analysis of the small notched specimen. The effective permeability
Keff (6.19) explicitly set to the bulk permeability Kb.

Figure 6.4 presents the water pressure distribution corresponding to the
phase-field distributions in Figure 6.2. Due to the effective permeability
Keff explicitly set to the bulk permeability Kb, the energy functionals E1,
E2 and E4 do not exhibit any localization of the water pressure. However,
in the case of the total strain-based energy functional E3, the water pressure
localizes in the fracture. This behaviour is attributed to the drop in saturation
levels from 100% to ≈ 70% in the fracture zone and subsequent change in
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the relative permeability. For E1, E2 and E4, the saturation level remains
close to 99% even in the fracture. Therefore, the pressure localization is not
observed. For these energy functionals, the localization of water pressure
is triggered upon enhancing the effective permeability Keff (6.19) with a
fracture permeability contribution Kf > Kb.

Figure 6.5 presents the water pressure distribution for the energy func-
tionals E1, E2 and E4 upon introducing a fracture permeability based on
Witherspoon et al.’s relation (6.17) [181]. Despite the saturation level remain-
ing close to 99% even in the fracture, the fracture permeability Kf > Kb

induces a localization in the water pressure.

−50 −20
pw [kPa]

(a) E1 and E2 , t = 1240 [s] (b) E4 , t = 1240 [s]

Figure 6.5: Figures (a-b) present the distribution of the water pressure with energy functionals E1, E2

and E4 during the analysis of the small notched specimen. The effective permeability Keff

(6.19) is enhanced with a fracture permeability Kf (6.17).

6.3.2 Effect of specimen thickness

The investigation into the effect of specimen thickness in soil desiccation
cracking is carried out using the long specimen devoid of notches (see
Figure 6.1). The specimen thickness is varied as H = 12.5 [mm] and 50

[mm].
Based on the numerical studies conducted by Stirling, Glendinning, and

Davie [228], material heterogeneity is incorporated by adopting a random
Gaussian distribution of the porosity. A standard deviation 5% of the mean
porosity is assumed. Furthermore, the numerical experiment is limited to
the Discrete Problem 13 (corresponding to the novel energy functional E4)
and the brittle AT2 fracture model. The intrinsic permeability κi is set to
1e− 15 [m2] and the other model parameters required for the analyses are
presented in Table 6.1. Note that the fracture permeability Kf is computed
using Witherspoon et al.’s relation (6.17) [181].

Figure 6.6 presents the phase-field distributions observed with varying
thickness of the long specimen. An increase in the specimen thickness from
12.5 [mm] to 50 [mm] led to a reduction in the number of cracks reaching
the bottom edge from 6 to 4 (excluding the detachment on the left and right
edges). Tollenaar, van Paassen, and Jommi [231] attributed this behaviour
partly to the desiccation rates, i.e., thinner specimen dries quickly. Scherer
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0 1
φ [-]

(a) H = 12.5 [mm], t = 5500 [s] (b) H = 50 [mm], t = 25000 [s]

Figure 6.6: Figures (a-b) present the phase-field distributions corresponding to varying thickness of the
specimen. The bulk intrinsic permeability κi is set to 1e− 15 [m2].

[232] stated that the drying fronts are irregular during the quicker drying
processes, contributing to the presence of more flaws, thereby leading to the
generation of more fractures. The specimen thickness dependent number of
desiccation cracks were reported in the experimental studies by Peron et al.
[205] and Tollenaar, van Paassen, and Jommi [231], albeit with a different
set of specimen geometries.

6.3.3 Effect of bulk intrinsic permeability

The investigation into the effect of bulk intrinsic permeability in soil desic-
cation cracking is carried out using the long specimen devoid of notches
(see Figure 6.1) with a fixed thickness H = 50 [mm]. The bulk intrinsic
permeability is varied as κi = 5e− 15 [m2] and 1e− 15 [m2]. Note that the
fracture permeability Kf is computed using Witherspoon et al.’s relation
(6.17) [181]. Similar to the previous section, material heterogeneity is in-
corporated by adopting a random Gaussian distribution of the porosity. A
standard deviation 5% of the mean porosity is assumed. Furthermore, the
numerical experiment is limited to the Discrete Problem 13 (corresponding
to the novel energy functional E4) and the brittle AT2 fracture model. The
other model parameters required for the analyses are presented in Table 6.1.

0 1
φ [-]

(a) κi = 5e− 15 [m2], t = 15000 [s] (b) κi = 1e− 15 [m2], t = 25000 [s]

Figure 6.7: Figures (a-b) present the phase-field distributions corresponding to varying bulk intrinsic
permeability κi. The specimen thickness is fixed at 50 [mm].

Figure 6.7 presents the phase-field distributions observed with varying
bulk intrinsic permeability for the long specimen with fixed thickness, 50
[mm]. Figure 6.7b corresponding to κi = 1e− 15 [m2] is the same as Figure
6.6b. On comparing with Figure 6.7a corresponding to κi = 5e− 15 [m2], it
is clear that an increase in the bulk intrinsic permeability leads to a reduction
in the number of cracks. Similar observations from numerical experiments
were also reported in [48, 49]. According to Stirling, Glendinning, and Davie
[228], a lower bulk intrinsic permeability reduces the ability of the water
to migrate from the specimen depth to the drying surface under capillary
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forces. Subsequently, it leads to the formation of the desiccated crust in an
accelerated fashion through multiple cracks.

6.3.4 Effect of fracture model type

The investigation into the effect of fracture model (brittle or quasi-brittle)
type in soil desiccation cracking is carried out using the long specimen
devoid of notches (see Figure 6.1) with a fixed thickness H = 50 [mm]. Two
fracture model types are considered in this study, brittle AT2 model and
the Cohesive Zone Model with Linear softening (CZM-Linear) model. For
the CZM-Linear model, Irwin’s characteristic length is varied as 50 [mm],
100 [mm] and 200 [mm]. These chosen values lies in the range 20 [mm] to
500 [mm] reported by Lakshmikantha, Prat, and Ledesma [210] for clayey
soils. Furthermore, the bulk intrinsic permeability κi is set to 1e− 15 [m2],
while the fracture permeability Kf is computed using Witherspoon et al.’s
relation (6.17) [181]. Similar to the previous section, material heterogeneity
is incorporated by adopting a random Gaussian distribution of the porosity.
A standard deviation 5% of the mean porosity is assumed. The numerical
experiment is limited to the Discrete Problem 13 (corresponding to the novel
energy functional E4). The additional model parameters required for the
analyses are presented in Table 6.1.

0 1
φ [-]

(a) Brittle AT2, t = 25000 [s] (b) CZM-Linear, lch = 50 [mm], t = 30000 [s]

(c) CZM-Linear, lch = 100 [mm], t = 50000 [s] (d) CZM-Linear, lch = 200 [mm], t = 80000 [s]

Figure 6.8: Figures (a-d) present the phase-field distributions corresponding to the different fracture
models, brittle AT2 and Cohesive Zone Model with Linear softening (CZM-Linear). The
specimen thickness is fixed at 50 [mm] and lch represents the fracture characteristic length.

Figure 6.8 presents the phase-field distributions observed with varying
fracture model types, namely the Brittle AT2 model and the Cohesive Zone
Model with Linear Softening (CZM-Linear). As observed earlier in Figures
6.7b and 6.6b, the Brittle AT2 model exhibits 4 cracks that reach the bottom
of the specimen (excluding the detachment on the left and right edges). A
similar observation is made with the CZM-Linear model using lch = 50

[mm]. The reason for this behaviour is that a vanishing lch asymptotically
recovers Griffith’s brittle fracture case [233]. However, as one opts for higher
values of lch, not only does the number of cracks reduced but also they
appear at a later time during the analyses (see Figures 6.8c and 6.8d). The
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behaviour is attributed to the higher Griffith’s fracture toughness Gc with
increasing lch through the relation (6.46).

6.3.5 Computational efficiency

This section presents a study on the computational efficiency of the Hessian
scaling method and the BFGS method in the context of the soil desiccation
cracking model. The relevant theoretical details of these methods are pre-
sented in Section 3.3.1 and 3.3.4, respectively. The total and average number
of iterations required to achieve convergence for the entire simulation and
the CPU time are considered as the efficiency measures. Furthermore, the it-
eration terminating tolerances are varied as 10−4 and 10−6. The simulations
are carried out on the Vera cluster at the Chalmers Centre for Computational
Science and Engineering. Five cores are utilized on Intel Xeon Gold 6130
processors with 15 GB RAM for multi-threaded assembly of the stiffness
matrix and the force vectors. The linear problem in every iteration is solved
using the shared memory Pardiso solver from Intel’s oneAPI Math Kernel
Library [64].

A single numerical experiment setup is chosen for the efficiency assess-
ment of the monolithic solution techniques. The long specimen devoid of
notches (see Figure 6.1) is chosen with dimensions 300 [mm] by 12.5 [mm].
The specimen is discretized using 2596 6-noded Taylor-Hood elements,
yielding 15278 Degrees of Freedom (DOFs) upon incorporating the neces-
sary Dirichlet boundary conditions. Moreover, similar to previous studies,
material heterogeneity is incorporated by adopting a random Gaussian
distribution of the porosity. A standard deviation 5% of the mean porosity
is assumed. The numerical experiment is limited to the Discrete Problem
13 (corresponding to the novel energy functional E4) and the brittle AT2
fracture model. The intrinsic permeability κi is set to 1e− 15 [m2] and the
other model parameters required for the analyses are presented in Table
6.1. Note that the fracture permeability Kf is computed using Witherspoon
et al.’s relation (6.17) [181]. Figure 6.6a presents the phase-field distribution
at 5500 seconds, which is the final time of the simulation.

Solution technique tol Steps (Failed) Total Iters. Avg. Iters. CPU time [hour]

BFGS
10−4 1108 (4) 39958 36.06 14.98

10−6 NC - - -

Hessian scaling
10−4 1104 (9) 46635 42.24 24.66

10−6 1116 (33) 183075 164.04 50.85

Table 6.2: Table presents the total numbers of steps and iterations, average iterations and CPU time (in
hours) for the soil desiccation cracking specimen, simulated using the BFGS and Hessian
scaling methods with varying iteration terminating tolerances. The failure to converge for the
entire simulation is indicated with NC (Not Converged).

Table 6.2 presents the computational efficiency measures obtained for the
soil desiccation cracking specimen. For the iteration terminating tolerance
10−4, the BFGS method performs better than the Hessian scaling method in
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terms of iterations required for convergence. The lesser number of iterations
also reflects in the CPU time expended for the simulation. However, upon
using a stricter tolerance 10−6, the BFGS method fails to achieve convergence
at the onset of fracture propagation in the specimen. On the contrary, the
Hessian scaling method converges for the entire simulation, demonstrating
a higher degree of robustness.





Part IV

M U LT I - S C A L E M O D E L L I N G O F F R A C T U R E S

Development of multi-scale techniques for homogenization of fractured
media (Research Objective 4).





7
A M U LT I - S C A L E F R A M E W O R K F O R P H A S E - F I E L D
F R A C T U R E M O D E L

This chapter presents a variationally consistent multi-scale phase-field fracture
model for materials exhibiting a hierarchy of length scales. The reader is first
introduced to the state of the art and the limitations of the current multi-scale
models in Section 7.1. Thereafter, the Variationally Consistent Homogenization
(VCH) technique (see Section 2.4.1) is used to develop a hierarchical two-scale
phase-field fracture model in Section 7.2. Therein, the coarse scale as well as the fine
scale (RVE) variational problems are presented. Numerical experiments on RVEs
are presented in Section 7.3. The chapter concludes with an academic FE2 problem
in Section 7.4, demonstrating solvability of the multi-scale equations in a coupled
sense.

7.1 state of the art and limitations

The phase-field fracture model has been employed for studying fracturing
phenomenon on a single scale, i.e., at the coarse/engineering scale of obser-
vation. This includes brittle fracture of glass [234], ductile fracture of metals
[235–237], quasi-brittle concrete fracture [238], fracture due to bending of
thin films [239], hydraulic fracturing [40, 41, 49, 173–178], soil desiccation
cracking [48, 49], and corrosion assisted cracking [240] to cite a few. In this
thesis as well, so far, the models and the numerical experiments are confined
to single scale studies (in Chapters 3 to 6). The application of the phase-field
fracture model in a multi-scale context is rather sparse. There has been a
few studies involving the resolved scale method (multi-scale finite element
method [52–54] and global-local method [241]) and upscaling/hierarchical
method [56, 57].

The resolved scale multi-scale modelling approach employs coarse and
fine scale physics in different parts of the computational domain. At the
interface between the scales, exchange of information is carried out. Among
the different types of resolved scale methods, Patil, Mishra, and Singh [52]
used the Multi-scale Finite Element Method (MsFEM) for brittle fracture
problems. The authors then extended their study for modelling failure in
composites [53], and for fractures in highly heterogeneous materials (matrix
with voids and/or inclusions) [54]. The MsFEM [119–122] embeds a fine
scale domain within a coarse scale element. The effect of the fine scale
features (voids, cracks and other heterogeneities) are then transferred onto
the coarse scale using multi-scale basis functions, computed numerically
on-the-fly. However, the MsFEM is applicable when the coarse scale and the
fine scale features are comparable in terms of the length-scale. If the fine
scale features are several orders of magnitude lower than the coarse scale in

137
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length-scale, the MsFEM fine scale problem may be prohibitively expensive.
Similar restrictions also apply to another resolved scale method, the global-
local method [123]. The global-local method was used in conjunction with
the phase-field fracture models by Gerasimov et al. [241].

Contrary to the resolved scale method, the upscaling/hierarchical multi-
scale modelling technique assumes a separation of scales between the coarse
scale and the fine scale. Based on averaging (homogenization) techniques
and statistical representativeness, smaller1 fine scale domain may be used.
He, Schuler, and Newell [56] adopted the Finite Element-Heterogeneous
Multi-scale Method (FE-HMM) for computing the coarse scale (homog-
enized) elastic stiffness tensor, accounting for fine scale pore structure.
However, fractures in the fine scale was not considered in the study. In
another study, Fantoni et al. [57] obtained homogenized responses of fine
scale microstructures with varying phase-field fracture values in an offline
phase. Thereafter, the coarse scale material response was computed using a
closed-form expression based on two-scale asymptotic homogenization and
interpolation of the phase-field variable. Such a method, however, requires
the computation of all possible fracturing scenarios in the fine scale. This
could be a prohibitively challenging task. An elegant alternative upscal-
ing/hierarchical multi-scale phase-field framework may be devised that
accounts for the pertinent physics on both the coarse and the fine scale. To
that end, the Variationally Consistent Homogenization (VCH) technique
[128] is adopted. The VCH technique has been adopted to develop hierar-
chical multi-scale frameworks to study porous media [242–246], chloride
diffusion in concrete [247], gradient-enhanced visco-plastic dissipative ma-
terials [248], computational homogenization of fine scale fracture modelled
with the eXtended Finite Element Method (XFEM) [249, 250], reinforced
concrete [251, 252], upscaling of chemo-mechanical and electro-chemical
properties of battery electrolyte [253, 254], and homogenization of plates
[255], to cite a few. However, the VCH technique has not yet been adopted
for phase-field fracture models.

7.2 multi-scale phase-field fracture model

A variationally consistent multi-scale phase-field fracture model is devel-
oped using the VCH technique. The important theoretical concepts pertinent
to the VCH techniques has been addressed earlier in Section 2.4.1. The Vari-
ational Problem 3 is used as the point of departure from the single fully
resolved scale analysis to a multi-scale one.

1 compared to that in the resolved scale methods
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7.2.1 Variational Multi-Scale (VMS) method

Let us consider the variational equations (2.25a, 2.25b) for the phase-field
fracture model excluding surface traction and body force,

∫
Ω

(
g(φ)

∂Ψ+(ϵ[u])
∂ϵ

+
∂Ψ−(ϵ[u])

∂ϵ

)
: ϵ[δu] dΩ = 0, (7.1a)

∫
Ω

(
g ′(φ)H(ϵ[uM+uS])+

Gc

cw l
w ′(φ)

)
δφdΩ+

∫
Ω

Gcl

cw
∇φ ·∇δφdΩ = 0.

(7.1b)

The Variational Multi-Scale (VMS) method admits an additive decomposi-
tion of the solution fields (u, φ) and the test functions (δu, δφ) as

u = uM + uS and δu = δuM + δuS, (7.2a)

φ = φM +φS and δφ = δφM + δφS. (7.2b)

Substituting (7.2a) and (7.2b) in (7.1a) and (7.1b) results in a set of coarse
scale variational equations,

∫
Ω

(
g(φM +φS)

∂Ψ+(ϵ[uM + uS])

∂ϵ
+
∂Ψ−(ϵ[uM + uS])

∂ϵ

)
︸ ︷︷ ︸

σ(φM+φS,ϵ[uM+uS])

: ϵ[δuM] dΩ = 0,

(7.3a)

∫
Ω

(
g ′(φM +φS)H(ϵ[uM + uS]) +

Gc

cw l
w ′(φM +φS)

)
︸ ︷︷ ︸

Υ(φM+φS,ϵ[uM+uS])

δφM dΩ

+

∫
Ω

Gcl

cw
∇(φM +φS)︸ ︷︷ ︸
Φ(φM+φS)

·∇δφM dΩ = 0,

(7.3b)

and a set of fine scale variational equations,

∫
Ω

(
g(φM +φS)

∂Ψ+(ϵ[uM + uS])

∂ϵ
+
∂Ψ−(ϵ[uM + uS])

∂ϵ

)
︸ ︷︷ ︸

σ(φM+φS,ϵ[uM+uS])

: ϵ[δuS] dΩ = 0,

(7.4a)
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∫
Ω

(
g ′(φM +φS)H(ϵ[uM + uS]) +

Gc

cw l
w ′(φM +φS)

)
︸ ︷︷ ︸

Υ(φM+φS,ϵ[uM+uS])

δφS dΩ

+

∫
Ω

Gcl

cw
∇(φM +φS)︸ ︷︷ ︸
Φ(φM+φS)

·∇δφS dΩ = 0.

(7.4b)

Note the shorthand expressions σ(φM+φS,ϵ[uM+uS]), Υ(φM+φS,ϵ[uM

+uS]) and Φ(φM +φS) in the above equations. Henceforth, they would
used wherever brevity is suited.

The coarse scale and fine scale variational equations operate over the en-
tire computational domain. However, further assumptions may be made on
the fine scale test functions δuS and δφS. Depending on their existence, the
fine scale variational equations may be localized to sub-domains, resulting
in a resolved scale method, similar to Patil, Mishra, and Singh [52]. However,
with the VCH technique, the fine scale test functions δuS and δφS instead
localize to the coarse scale integration points.

7.2.2 Homogenization of integrals

Upon localizing the fine scale test functions δuS and δφS to coarse scale
integration points, the fine scale domain becomes independent of the coarse
scale discretization. This allows the use of computational homogenization
technique [138–141], wherein the fine scale domain is only required to
contain sufficient statistical information to capture the fine scale physics.
For this reason, the fine scale domain is also referred to as microstructure,
RVE [125] or SVE [126]. Henceforth, the term RVE is used interchangeably
with fine scale domain. The RVE domain is represented using Ω□.

The computational homogenization technique allows restating the inte-
grands in the coarse scale and fine scale variational equations as averages
over the RVE domain (2.60). Using the shorthand expressions, the coarse
scale variational equations (7.3a, 7.3b) are restated as

∫
Ω

〈
σ(φM +φS,ϵ[uM + uS]) : ϵ[δuM]

〉
□

dΩ = 0, (7.5a)

∫
Ω

〈
Υ(φM +φS,ϵ[uM + uS])δφM

〉
□

dΩ

+

∫
Ω

〈
Φ(φM +φS) ·∇δφM

〉
□

dΩ = 0.

(7.5b)

Similarly, the fine scale variational equations (7.4a, 7.4b) assumes the form

∫
Ω

〈
σ(φM +φS,ϵ[uM + uS]) : ϵ[δuS]

〉
□

dΩ = 0, (7.6a)
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∫
Ω

〈
Υ(φM +φS,ϵ[uM + uS])δφS

〉
□

dΩ

+

∫
Ω

〈
Φ(φM +φS) ·∇δφS

〉
□

dΩ = 0.

(7.6b)

The fine scale variational equations (7.6a, 7.6b) may be simplified further,
since the test functions δuS and δφS are localized to every coarse scale
integration point. Therefore, there are no regularity requirements and the
fine scale variational equations (7.6a, 7.6b) may operate on individual RVE
domains attached to the coarse scale integration points, independent of each
other. The fine scale variational equations on individual RVE domains are
stated as

〈
σ(φM +φS,ϵ[uM + uS]) : ϵ[δuS]

〉
□
= 0, (7.7a)

〈
Υ(φM +φS,ϵ[uM + uS])δφS

〉
□

+
〈
Φ(φM +φS) ·∇δφS

〉
□
= 0.

(7.7b)

7.2.3 Prolongation

The prolongation operation in the VCH technique transfers information
from the coarse scale onto the fine scale. To that end, the VCH technique
assumes the presence of smooth coarse scale fields u(x), φ(x) ∀ x ∈ Ω. Their
corresponding coarse scale contributions uM and φM are obtained through
a Taylor series expansion about x,

uM(u, x, x) = u + u ⊗∇
∣∣
x︸ ︷︷ ︸

ϵ[u]

·[x − x] +H.O.T , (7.8a)

φM(φ, x, x) = φ+∇φ
∣∣
x · [x − x] +H.O.T . (7.8b)

where, H.O.T refers to higher order terms, which are ignored in first order
homogenization technique. Similar expressions are also obtained for the
corresponding test functions,

δuM(δu, x, x) = δu + δu ⊗∇
∣∣
x︸ ︷︷ ︸

ϵ[δu]

·[x − x] +H.O.T , (7.9a)

δφM(δφ, x, x) = δφ+∇δφ
∣∣
x · [x − x] +H.O.T , (7.9b)
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In equations (7.8a) and (7.9a), the skew symmetric part of the displacement
gradient is also ignored due to rigid body invariance. Furthermore, on
substituting (7.8a - 7.9b) in the coarse scale variational equations (7.5a, 7.5b),
and in conjunction with appropriately defined trial and test spaces, the
complete coarse scale problem is stated as:

Variational Problem 16. Find (u, φ) ∈ U × P such that

∫
Ω
σ : ϵ[δu] dΩ = 0 ∀ δu ∈ U

0, (7.10a)∫
Ω

(
Υ+Λ

)
·∇δφ dΩ+

∫
Ω
Φδφ dΩ = 0 ∀ δφ ∈ P

0, (7.10b)

using pertinent time-dependent Dirichlet boundary conditions up on ΓuD
and φp on ΓφD. The Neumann boundaries are assumed homogeneous (zero
traction). Furthermore, the terms in the integrands are defined as

σ =
〈
σ(φM +φS,ϵ[uM + uS])

〉
□

, (7.11a)

Υ = ⟨Υ⟩□, (7.11b)

Φ = ⟨Φ⟩□, (7.11c)

Λ = ⟨Φ(x − x)⟩□, (7.11d)

and the trial and test spaces are defined as

U = {u ∈ [H1(Ω)]dim|u = up on Γu
D}, (7.12a)

P = {φ ∈ [H1(Ω)]|φ = φp on ΓφD}, (7.12b)

U0 = {u ∈ [H1(Ω)]dim|u = 0 on Γu
D}, (7.12c)

P0 = {φ ∈ [H1(Ω)]|φ = 0 on ΓφD}. (7.12d)

Remark 13. The computational homogenization in this thesis is carried
out through averaging over the RVE volume domain. However, the VCH
framework offers the flexibility to use other homogenization measures, such
as averaging over a surface/boundary or even volume averaging over a
sub-domain of the RVE, such as the failure zone averaging technique [256].

7.2.4 Macro-homogeneity condition

The (Hill-Mandel) macro-homogeneity condition [129–131] establishes the
equivalence of virtual work between the coarse and fine scale. An outcome
of establishing the macro-homogeneity condition is the set of boundary
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conditions required to solve the fine scale variational equations. In the VCH
technique, the fine scale variational equations are presented in conjunction
with the macro-homogeneity conditions in canonical format [257]. For the
phase-field fracture model, the fine scale canonical problem is stated as:

Variational Problem 17. Find (u, φ, λu, λφ, µφ) ∈ U□ × P□ × T□ ×
Q□ × R such that

〈
σ(φ,ϵ[u]) : ϵ[δuS]

〉
□

−
1

|Ω□|

∫
Γ+
□

λu · JδuSK□ dΓ = 0 ∀ δu ∈ U□,

(7.13a)〈
Υ(φ,ϵ[u])δφS

〉
□
+
〈
Φ(φ) ·∇δφS

〉
□

−
1

|Ω□|

∫
Γ+
□

λφ · JδφSK□ dΓ

−
1

|Ω□|

∫
Ω□

µφδφS dΩ = 0 ∀ δφ ∈ P□,

(7.13b)

−
1

|Ω□|

∫
Γ+
□

δλu · JuK□ dΓ

= −
1

|Ω□|

∫
Γ+
□

δλu ⊗ JxK□ dΓ : ϵ ∀ δλu ∈ T□,

(7.13c)

−
1

|Ω□|

∫
Γ+
□

δλφ · JφK□ dΓ

= −
1

|Ω□|

∫
Γ+
□

δλφ ⊗ JxK□ dΓ ·∇φ ∀ δλφ ∈ Q□,

(7.13d)

− δµφ⟨φ⟩□ = −δµφφ ∀ δµφ ∈ R,
(7.13e)

with pertinent spaces

U□ :=

{
u ∈ [H1(Ω)]dim

∣∣∣∣ ∫
Ω□

u dΩ = 0 inΩ□

}
, (7.14a)

P□ :=

{
φ ∈ [H1(Ω)]1

}
, (7.14b)

T□ :=

{
λu ∈ [L2(Γ

+
□ )]dim

}
, (7.14c)

Q□ :=

{
λφ ∈ [L2(Γ

+
□ )]

}
. (7.14d)

The jump operator J•K□ in equations (7.13a - 7.13d) is defined as J•K□ =

•+−•−. Here, the superscripts + and − are indicative of the fine scale (RVE)
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Variational Problem 17 (continued)

boundaries with positive and negative outward normal vectors, respectively
(see Figure 7.1a). ■

A key property of the fine scale (RVE) canonical Variational Problem 17
is that it satisfies the macro-homogeneity condition by construct. In order
to obtain a proof of the same, let us assume δuS = u, δφS = φ, δλu = λu,
δλφ = λφ and δµφ = µφ. Thereafter, these expressions are substituted in
variational equations (7.13a - 7.13e), resulting in,

〈
σ(φ,ϵ[u]) : ϵ[u]

〉
□

−
1

|Ω□|

∫
Γ+
□

λu · JuK□ dΓ = 0 ∀ δu ∈ U□, (7.15a)〈
Υ(φ,ϵ[u])φ

〉
□
+
〈
Φ(φ) ·∇φ

〉
□

−
1

|Ω□|

∫
Γ+
□

λφ · JφK□ dΓ

−
1

|Ω□|

∫
Ω□

µφφ dΩ = 0 ∀ δφ ∈ P□, (7.15b)

−
1

|Ω□|

∫
Γ+
□

λu · JuK□ dΓ

= −
1

|Ω□|

∫
Γ+
□

λu ⊗ JxK□ dΓ : ϵ ∀ λu ∈ T□, (7.15c)

−
1

|Ω□|

∫
Γ+
□

λφ · JφK□ dΓ

= −
1

|Ω□|

∫
Γ+
□

λφ ⊗ JxK□ dΓ ·∇φ ∀ λφ ∈ Q□, (7.15d)

− µφ⟨φ⟩□ = −µφφ ∀ µφ ∈ R. (7.15e)

Upon subtracting (7.15c) from (7.15a), and (7.15d, 7.15e) from (7.15b), one
obtains

〈
σ(φ,ϵ[u]) : ϵ[u]

〉
□

=
1

|Ω□|

∫
Γ+
□

λu ⊗ JxK□ dΓ : ϵ, (7.16a)〈
Υ(φ,ϵ[u])φ

〉
□
+
〈
Φ(φ) ·∇φ

〉
□

=
1

|Ω□|

∫
Γ+
□

λφ ⊗ JxK□ dΓ ·∇φ+ µφφ. (7.16b)

The next step is to identify the Lagrange multipliers λu, λφ and µφ in terms
of the physical quantities σ, Υ and Λ. To that end, let us assume δuS = 1

and δφS = 1. Substituting these expressions in the variational equations
(7.13a) and (7.13b) yields
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〈
σ(φ,ϵ[u])

〉
□︸ ︷︷ ︸

σ

=
1

|Ω□|

∫
Γ+
□

λu ⊗ JxK□ dΓ , (7.17a)

〈
Φ(φ)

〉
□︸ ︷︷ ︸

Φ

= µφ. (7.17b)

Similarly, substituting δφS = [x − x] ·∇φ in (7.13b), the interpretation of
the Lagrange multiplier λφ is obtained as

〈
Υ(φ,ϵ[u])

〉
□︸ ︷︷ ︸

Υ

+
〈
Φ(φ) · [x − x]

〉
□︸ ︷︷ ︸

Λ

=
1

|Ω□|

∫
Γ+
□

λφ ⊗ JxK□ dΓ . (7.17c)

Finally, the sum of equations (7.16a, 7.16b) in conjunction with (7.17a -
7.17c) results in the macro-homogeneity condition,

〈
σ(φ,ϵ[u]) : ϵ[u]

〉
□
+
〈
Υ(φ,ϵ[u])φ

〉
□
+
〈
Φ(φ) ·∇φ

〉
□

= σ : ϵ+ (Υ+Λ) ·∇φ+Φφ. (7.18)

Remark 14. In subsequent sections, the proof of (Hill-Mandel) macro-
homogeneity condition for the RVE strong periodicity, Neumann and Dirich-
let problems is skipped, since these are special cases of the RVE canonical
Variational Problem 17.

7.2.5 Fine scale (RVE) Weak/Strong Periodicity problem

The fine scale (RVE) canonical Variational Problem 17 is presented in the
weak micro-periodicity format, a concept introduced by Larsson et al. [257].
The weak micro-periodicity format allows an independent discretization of
the Lagrange multipliers (λu, λφ) from those adopted for the displacement
and the phase-field.

From the canonical weak periodicity format, the strongly periodic varia-
tional problem is obtained upon choosing the same discretization for the
Lagrange multipliers (λu, λφ) as those adopted for the displacement and
the phase-field. Figure 7.1b presents such a scenario, where the black nodes
correspond to the displacement and the phase-field Degrees of Freedom
(DOFs), while the red nodes represent the Lagrange multiplier DOFs. How-
ever, such a discretization results in a singular problem, due to duplication
of constraint equations for nodes shared between the Lagrange multiplier
elements [249, 258]. It is possible to identify and eliminate the duplicate
constraint equations, however, the process is tedious and error-prone. Alter-
natively, one could augment the test and trial spaces for the displacement
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Ω□

Γ+□Γ−□

x

y

(a)

Γ+□

(b)

Figure 7.1: Figure (a) shows a 2D fine scale (RVE) domain with positive and negative boundaries, Γ+
□

and Γ−
□ . Figure (b) presents a discretization of the 2D RVE. The black circles indicate nodes

corresponding to displacement and phase-field dofs, while red circles represent nodes for
the Lagrange multipliers λu and λφ.

and phase-field DOFs with periodicity constraints. This results in the Varia-
tional Problem 18, whereby the Lagrange multipliers (λu, λφ) are eliminated
from the system of equations.

Variational Problem 18. Find (u, φ, µφ) ∈ U□ × P□ × R such that

〈
σ(φ,ϵ[u]) : ϵ[δuS]

〉
□
= 0 ∀ δu ∈ U□, (7.19a)〈

Υ(φ,ϵ[u])δφS
〉
□
+
〈
Φ(φ) ·∇δφS

〉
□

−
1

|Ω□|

∫
Ω□

µφδφS dΩ = 0 ∀ δφ ∈ P□, (7.19b)

− δµφ⟨φ⟩□ = −δµφφ ∀ δµφ ∈ R, (7.19c)

with pertinent spaces

U□(ϵ) :=
{

u ∈ [H1(Ω)]dim
∣∣∣∣ ∫
Ω□

u dΩ = 0 inΩ□

∣∣∣∣
u+ − u− = ϵ · [x+ − x−] on Γ+□

}
, (7.20a)

P□(∇φ) :=
{
φ ∈ [H1(Ω)]1

∣∣∣∣
φ+ −φ− = ∇φ · [x+ − x−] on Γ+□

}
. (7.20b)

The jump operator J•K□ in equations (7.13a - 7.13d) is defined as J•K□ =

•+−•−. Here, the superscripts + and − are indicative of the fine scale (RVE)
boundaries with positive and negative outward normal vectors, respectively
(see Figure 7.1a). ■
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7.2.6 Fine scale (RVE) Neumann problem

The fine scale (RVE) Neumann problem is obtained from the canonical weak
micro-periodicity Variational Problem 17 upon choosing the space for the
Lagrange multipliers T□ ∋ λu and Q□ ∋ λφ as

T□ :=

{
λu ∈ [L2(Γ

+
□ )]dim

∣∣∣∣ λu = σ · n on Γ□, σ ∈ Rdim×dim
sym

}
, (7.21a)

Q□ :=

{
λφ ∈ [L2(Γ

+
□ )]

∣∣∣∣ λφ = (Υ+Λ) · n on Γ□, (Υ+Λ) ∈ Rdim
}

.

(7.21b)

Here, σ and (Υ+Λ) are identified as dual quantities to the coarse scale
strain ϵ and phase-field gradient ∇φ, while n is the normal to the fine scale
(RVE) domain boundary. Using the spaces (7.21a, 7.21b) in the Variational
Problem 17, the Neumann Variational Problem 19 is obtained as follows:

Variational Problem 19. Find (u, φ, σ, Υ + Λ, µφ) ∈ U□ × P□ ×
Rdim×dim

sym × Rdim × R such that

⟨σ : ϵ[δuS]⟩□ −σ : ⟨ϵ[δuS]⟩□ = 0 ∀ δu ∈ U□, (7.22a)

⟨γ ·∇δφS⟩□ + ⟨ΦδφS⟩□
− (Υ+Λ) · ⟨∇δφ⟩□ − µφ⟨δφ⟩□ = 0 ∀ δφ ∈ P□, (7.22b)

− δσ : ⟨ϵ[u]⟩□ = −δσ : ϵ ∀ δσ ∈ Rdim×dim
sym ,

(7.22c)

− δ(Υ+Λ) · ⟨∇φ⟩□ = −δ(Υ+Λ) ·∇φ ∀ δ(Υ+Λ) ∈ Rdim,
(7.22d)

− δµφ⟨φ⟩□ = −δµφφ ∀ δµφ ∈ R, (7.22e)

using pertinent spaces

U□ :=

{
u ∈ [H1(Ω)]dim

∣∣∣∣ ∫
Ω□

u dΩ = 0 inΩ□, (7.23a)∫
Γ□

(u ⊗ n)skew dΓ = 0 on Γ□

}
,

P□ :=

{
φ ∈ H1(Ω)

}
. (7.23b)

■
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7.2.7 Fine scale (RVE) Dirichlet problem

The fine scale (RVE) Dirichlet problem arises from setting the fine scale
solution contributions uS and φS to zero on the boundary Γ□. This results
in the Dirichlet Variational Problem 20, defined as follows:

Variational Problem 20. Find (u, φ, µφ) ∈ U□ × P□ × R with

〈
σ(φ,ϵ[u]) : ϵ[δuS]

〉
□
= 0 ∀ δu ∈ U□, (7.24a)〈

Υ(φ,ϵ[u])δφS
〉
□
+
〈
Φ(φ) ·∇δφS

〉
□

−
1

|Ω□|

∫
Ω□

µφδφS dΩ = 0 ∀ δφ ∈ P□, (7.24b)

− δµφ⟨φ⟩□ = −δµφφ ∀ δµφ ∈ R, (7.24c)

with pertinent spaces

U□(ϵ) :=
{

u ∈ [H1(Ω)]dim
∣∣∣∣ ∫
Ω□

u dΩ = 0 inΩ□

∣∣∣∣
u± = ϵ · [x± − x] on Γ□

}
, (7.25a)

P□(φ,∇φ) :=
{
φ ∈ H1(Ω)

∣∣∣∣
φ± = φ+∇φ · [x± − x] on Γ□

}
, (7.25b)

U0
□ :=

{
u ∈ [H1(Ω)]dim

∣∣∣∣u± = 0 on Γ□

}
, (7.25c)

P0
□ :=

{
φ ∈ H1(Ω)

∣∣∣∣φ± = 0 on Γ□

}
. (7.25d)

■

7.2.8 Selective homogenization

The concept of selective homogenization is introduced to enable selective
upscaling of coarse scale quantities from the fine scale physics. As an
example, one could restrain the phase-field to live only on the fine scale
(choosing δφM = 0). Consequently, the coarse scale phase-field evolution
equation (7.10b) in Variational Problem 16 would cease to exist. The coarse
scale Variational Problem would assume the form
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Variational Problem 21. Find u ∈ U such that

∫
Ω
σ : ϵ[δu] dΩ = 0 ∀ δu ∈ U

0, (7.26a)

using pertinent time-dependent Dirichlet boundary condition up on ΓuD.
The Neumann boundaries are assumed homogeneous (zero traction). Fur-
thermore, the terms in the integrand is defined as

σ =
〈
σ(φM +φS,ϵ[uM + uS])

〉
□

, (7.27a)

and the trial and test spaces are defined as

U = {u ∈ [H1(Ω)]dim|u = up on Γu
D}, (7.28a)

U0 = {u ∈ [H1(Ω)]dim|u = 0 on Γu
D}. (7.28b)

■

Although the coarse scale phase-field evolution equation is eliminated, the
effect of fracture on the fine scale (RVE) domain is accounted for, in the
homogenized stress σ (see Equation (7.27a)). Furthermore, it is important
to note that the coarse scale Variational Problem 21 would exhibit mesh-
dependent response, in the absence of any regularization. For more on this
topic, the reader is referred to [259].

In an alternative approach, the fine scale phase-field evolution equation
may be eliminated, upon choosing δφS = 0. With this choice, the coarse
scale phase-field φ is assumed to be uniformly distributed over the fine
scale (RVE) domain. Furthermore, the need for introducing computational
homogenization on the coarse scale phase-field evolution is circumvented.
Instead, the single scale phase-field evolution equation (2.25b) from Varia-
tional Problem 3 is adopted. With these changes, the coarse scale Variational
Problem assumes the following form:

Variational Problem 22. Find (u, φ) ∈ U × P such that

∫
Ω
σ : ϵ[δu] dΩ = 0 ∀ δu ∈ U

0, (7.29a)

∫
Ω

Gc l

cw
∇φ ·∇δφ dΩ

+

∫
Ω

( Gc

cw l
w ′(φ) + g ′(φ)H

)
δφ dΩ = 0 ∀ δφ ∈ P

0, (7.29b)
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Variational Problem 22 (continued)

using pertinent time-dependent Dirichlet boundary conditions up on ΓuD
and φp on ΓφD. The Neumann boundaries are assumed homogeneous (zero
traction). Furthermore, the homogenized stress is defined as

σ =
〈
σ(φ,ϵ[uM + uS])

〉
□

, (7.30a)

and the trial and test spaces are defined as

U = {u ∈ [H1(Ω)]dim|u = up on Γu
D}, (7.31a)

P = {φ ∈ [H1(Ω)]|φ = φp on ΓφD}, (7.31b)

U0 = {u ∈ [H1(Ω)]dim|u = 0 on Γu
D}, (7.31c)

P0 = {φ ∈ [H1(Ω)]|φ = 0 on ΓφD}. (7.31d)

■

The upscaling/hierarchical multi-scale phase-field fracture models devel-
oped so far, by He, Schuler, and Newell [56] and Fantoni et al. [57] are close
variants of the Variational Problem 22.

7.3 fine scale (rve) numerical experiments

In this section, the numerical experiments on the fine scale (RVE) domains
are carried out. The role of RVE boundary conditions on the (homogenized)
coarse scale quantities is investigated. To that end, three different RVEs are
considered, with varying topological features, as shown in Figure 7.2. All
RVEs are unit squares (in mm).

(a) RVE with single fracture (b) RVE with stiff inclusions (c) RVE with random fractures

Figure 7.2: Figure showing the different RVEs used for the numerical experiments.

Figure 7.2a shows the simplest RVE with a homogeneous material distribu-
tion and an initial fracture. The RVE is symmetric w.r.t. the initial fracture
topology. The second RVE, shown in Figure 7.2b, presents a matrix with
randomly placed stiff inclusions (in blue). The inclusions close to the RVE
boundary are placed strategically such that they adhere to wall-periodicity.
Similar RVEs may be found in engineered materials such as fibre-reinforced
composites [260, 261]. Finally, Figure 7.2c presents an RVE with a homoge-
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neous material distribution with randomly placed initial defects (fractures).
It is important to note that the latter two RVEs do not exhibit symmetry
w.r.t. to material and fracture topology, respectively.

The material properties and other relevant model assumptions for the
RVEs in Figure 7.2 are presented in Table 7.1. The matrix material properties
remain same for all RVEs, while the inclusion material properties apply
only to the RVE in Figure 7.2b. Furthermore, the numerical experiments
are carried out in the commercial software COMSOL Multiphysics, where
the Variational Problems are directly modelled using the Weak Form PDE
interface.

Property Value

RVE 1 [mm] × 1 [mm], Plane strain

λmatrix, λinclusion 131.154 [GPa], 13100.154 [GPa]

µmatrix, µinclusion 80.769 [GPa], 8000.769 [GPa]

Gc,matrix, Gc,inclusion 2700 [N/m], 270000 [N/m]

l 1.5e-2 [mm]

max. element size l/2

Table 7.1: RVE geometric and material properties

7.3.1 Influence of fine scale (RVE) boundary conditions

The influence of the fine scale (RVE) boundary conditions is investigated
using the RVEs in Figure 7.2. All RVEs are driven only by a quasi-static
coarse scale strain loading in the horizontal direction (∆ϵxx = 1e− 5). The
coarse scale phase-field and its gradient are assumed to be non-existent,
following the selective homogenization strategy in Variational Problem 21.
The different boundary conditions, viz., Strongly Periodic (SPBC), Neumann
(NBC), and Dirichlet (DBC) follow from the Variational Problems 18, 19, 20.
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Figure 7.3: Figure showing homogenized stress-strain (x-direction) curves for the different RVEs.

Figure 7.3 presents the (homogenized) coarse scale stress-strain response
for the different RVEs with different boundary conditions (DBC, NBC,
SPBC). Each sub-figure corresponds to a single RVE, where the different
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curves represent the aforementioned boundary conditions. Based on these
sub-figures, it is possible to conclude that the effect of the phase-field,
thence dissipation is implicitly contained in the homogenized stress σ. The
phase-field evolution within an RVE manifests in the form of a softening
type stress-strain response. Also, for each RVE, the SPBC homogenized
stress-strain curve is bounded between that obtained using DBC and NBC.
This bounded behaviour has also been reported in [257]. Moreover, it is
possible to explain the individual homogenized stress-strain response for
each RVE using the phase-field fracture topology.

Figure 7.4 presents the phase-field fracture topology at the final step of the
analysis for the RVE with a single fracture. The topology remains the same
irrespective of the boundary conditions (DBC, NBC, SPBC). Consequently,
the homogenized stress-strain curves are similar, until the strain ϵxx ≈
7e− 3. At this point, the curve obtained using DBC starts to deviate and
demonstrates a stiffening response (evident from the horizontal plateau).
This stiff response is due to the DBC construct, where the fracture is not
allowed to reach the RVE boundary. Upon reaching the boundary, the
fracture spreads horizontally, parallel to the RVE boundary, as shown in
Figure 7.4a.

(a) DBC (b) NBC (c) SPBC

0

0.5 φ [-]

1

Figure 7.4: Figure showing phase-field distribution in the final time-step for the RVE with single fracture.

Figure 7.5 presents the phase-field fracture topology at the final step of the
analysis for the RVE with inclusions. Unlike the RVE with a single fracture,
here, the fracture topologies differ with boundary conditions. For the DBC,
the fracture does not penetrate the RVE boundary, thereby manifesting in a
stiff response (see red curve in Figure 7.3b). The SPBC and NBC curves are
similar as both circumvent the artificial stiffening at the RVE boundary, and
due to the similar amount of energy dissipated despite the difference in the
fracture topologies.

(a) DBC (b) NBC (c) SPBC
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Figure 7.5: Figure showing phase-field distribution in the final time-step for the RVE with stiff inclusions.
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(a) DBC (b) NBC (c) SPBC
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Figure 7.6: Figure showing phase-field distribution in the final time-step for the RVE with random
fractures.

Figure 7.6 presents the phase-field fracture topology at the final step of
the analysis for the RVE with random initial defects (fractures). The fracture
topologies differ with boundary conditions. For the DBC, the fracture does
not penetrate the RVE boundary, thereby manifesting in a stiff response
(see red curve in Figure 7.3c). In the case of the NBC, a widening of the
initial fractures on the RVE boundary is observed. Due to the enforcement
of an average stress/strain over the RVE domain, the NBC results in highly
localized deformation whenever the RVE boundary intersects a weaker
material or a defect (fracture). The SPBC is able to circumvent the stiffening
response exhibited by the DBC as well as the highly localized deformations
observed with the NBC.

Motivated by the numerical experiments on the fine scale (RVE) domains,
in the subsequent part of this chapter, the SPBC is used. The use of SPBC
has also been proposed by Sluis et al. [262] and Terada et al. [263].

7.3.2 Upscaling coarse scale quantities

This section concerns the upscaling of quantities relevant on the coarse scale
Variational Problem 16. These are σ, Φ and Υ+Λ, dual to the coarse scale
strain ϵ, phase-field φ and its gradient ∇φ, respectively. Contrary to the
numerical experiments conducted in the previous section, here, the RVE is
driven not only by the strain ϵ but also by the coarse scale phase-field φ and
its gradient ∇φ. This is a consequence of choosing coarse scale Variational
Problem 16 instead of the selective homogenization variant Variational
Problem 21.

Adopting the coarse scale Variational Problem 16 brings new challenges
for numerical experiments on an RVE. In addition to the quasi-static evolu-
tion of coarse scale strain ϵ, one also requires the evolution of the coarse
scale phase-field φ and its gradient ∇φ. Similar to the previous section,
the RVE is driven by a strain increment ∆ϵxx = 1e− 5. The coarse scale
phase-field φ is obtained artificially2 from the numerical experiments car-
ried out in the previous section. Homogenizing the phase-field in the RVE
with inclusions, φ evolution in Figure 7.7 is obtained.

2 Artificial in the sense that it is not obtained consistently from a coarse scale analysis.
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Figure 7.7: Figure showing homogenized phase-field φ as a function of the homogenized strain ϵxx for
the RVE with inclusion.

Finally, the coarse scale phase-field gradient is parametrized,

∇φ := αφ = [αx,αy]
Tβ(ϵxx), (7.32)

where αx [mm−1] and αy [mm−1] are constants, and β(ϵxx) is a function
depending on the coarse scale strain3. Based on the choice of αx and αy,
different parametrizations of the ∇φ are obtained. For instance, setting
αx = αy = 0 or β(ϵxx) = 0 results in ∇φ = 0. In this section, αy is set to
zero, while αx is varied as {0, 0.01, 0.1, 0.5, 1} [mm−1].

Figure 7.8 presents the upscaled/homogenized quantities pertinent to the
coarse scale. They have been defined earlier in (7.11a - 7.11d). Each curve in
every sub-figure is obtained for a chosen coarse scale phase-field gradient
∇φ, parametrized using (7.32). With this approach, the influence of the
coarse scale phase-field gradient on the coarse scale homogenized quantities
is investigated. The homogenized stress is presented as a function of the
coarse scale strain in Figure 7.8a. Here, the effect of coarse scale phase-field
gradient is negligible, since the curves appear to be overlapping. A similar
observation is made in Figure 7.8b for the coarse scale quantity Φ, which
represents the volume-average of the imbalance between the fracture driving
and the resisting forces, excluding the gradient effects. For both coarse scale
quantities, the objectivity w.r.t. the coarse scale phase-field gradient is due
to the phase-field fracture topology, which remains same as presented in
Figure 7.5c. Although, the phase-field fracture topology remains unchanged
as in Figure 7.5c, the coarse scale phase-field gradient influences the RVE
phase-field gradient in the vicinity of the fracture. This manifests in a coarse
scale phase-field gradient dependent response of its dual quantity Υ+Λ, as
shown in Figure 7.8c. A non-zero Υ+Λ regularizes the coarse phase-field,
as it provides an implicit length, based on the fine scale (RVE) features.

Remark 15. The contribution of Υ to the coarse scale quantity Υ+Λ is
presented in Figure 7.8d. On comparing Figures 7.8c and 7.8d, it is safe to

3 β can also be introduced as a time-dependent function
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Remark 15 (continued)

conclude that Λ may provide a dominant contribution, depending on the
fracture topology.
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Figure 7.8: Figure showing homogenized coarse scale quantities defined in (7.11a - 7.11d).

7.4 a multi-scale numerical experiment

In this section, a multi-scale numerical experiment is conducted, considering
both, a coarse scale domain and a fine scale (RVE) domain. As a consequence,
the coarse scale Variational Problem 16 or 21 and the fine scale Variational
Problem 18 are solved, simultaneously. A schematic of such a process is
present in Figure 7.9. Here, the coarse scale domain is a one-dimensional
(1D) bar, fixed on the left edge, while a displacement up is prescribed on the
right edge. Furthermore, every coarse scale integration point is associated
with a fine scale (RVE) domain Ω□. The communication between the coarse
scale and fine scale domains is represented by the set of dashed arrows in
Figure 7.9.



156 a multi-scale framework for phase-field fracture model

up*

ϵ

φ, ∇φ
σ

Φ, Υ+Λ

Ω□

(u,φ)

Figure 7.9: Figure showing a multi-scale problem schematic with a one-dimensional bar under uniaxial
tension and its corresponding two-dimensional RVE.

7.4.1 Multi-scale FE2 analysis

The multi-scale problem schematic in Figure 7.9 is popularly known as the
FE2 method. The term ‘FE2’ was coined by Feyel [141, 264] and relates to the
use the Finite Element Method (FEM) to solve both, the coarse scale problem
and the fine scale (RVE) problem. Algorithm 1 describes the communication
between the coarse scale and the fine scale in the FE2 context. Assuming
that the coarse scale problem is solved using the Newton-Raphson method,
one assembles a residual vector and a stiffness matrix for every iteration
within a loading step. The assembly is performed element-wise. For each
element, one extracts the solution fields (u and φ in this case), and computes
the coarse scale strain ϵ, phase-field φ and its gradient ∇φ, which drives
the RVE Variational Problem 18. The RVE problem is solved for its solution
fields (u and φ), and then the coarse scale dual quantities σ,Φ and Υ+Λ are
computed using Equations 7.11a - 7.11d. With the dual quantities, the coarse
scale integration point residual is computed. However, Newton-Raphson
method being a second-order optimization technique, one also requires the
stiffness matrix. For computing the stiffness matrix, the derivatives of σ, Φ
and Υ+Λ w.r.t. ϵ, φ and ∇φ are obtained using the perturbation method.
The perturbation factor adopted for ϵ, φ and ∇φ is 1e− 8.

Remark 16. In the absence of an open-source software capable of performing
an FE2 analysisa, the open-source FE2 software package openFE2 (https://
github.com/ritukeshbharali/openFE2) was developed. Here, the coarse
scale problem is solved in MATLAB, while the fine scale (RVE) problems are
solved in COMSOL Multiphysics (Version 5.5). Leveraging on the Parallel
Computing Toolbox in MATLAB, multiple RVE problems may be solved in
parallel. The comments in blue in Algorithm 1 presents the junctures where
the coarse scale problem in MATLAB communicates with the RVE problem
in COMSOL Multiphysics.

https://github.com/ritukeshbharali/openFE2
https://github.com/ritukeshbharali/openFE2
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Remark 16 (continued)

a At the time of performing this study in 2019.

Algorithm 1: For every coarse scale iteration in a time-step
Input: Coarse scale solution
Output: Coarse scale residual and stiffness matrix

1 for each element ielem in coarse domain mesh do
2 • Set element residual and stiffness matrix to zero
3 • Extract element solutions (uielem, φielem)
4 for each integration point do
5 • Compute ϵ, φ and ∇φ

/* Begin communication with RVE model in COMSOL Multiphysics */

6 • Solve RVE problem using SPBC (Variational Problem 18)
7 • Compute coarse scale quantities σ, Φ and Υ+Λ (see

Equations 7.11a - 7.11d)
8 • Perturb ϵ, φ and ∇φ, and solve RVE problem
9 • Compute perturbed coarse scale quantities σ, Φ and Υ+Λ

(see Equations 7.11a - 7.11d)
10 • Compute derivatives of σ, Φ and Υ+Λ w.r.t ϵ, φ and ∇φ

through forward difference.
11 • Discard perturbed quantities and send σ, Φ and Υ+Λ and

their derivatives to the coarse scale.
/* Ends communication with COMSOL Multiphysics */

12 • Compute integration point residual and stiffness matrix.

13 • Update element residual and stiffness matrix.
14 • Assemble global residual and stiffness matrix with element

contribution.

7.4.2 Coarse and fine scale geometry and material properties

The geometric and material properties of the coarse scale and fine scale
(RVE) domains are defined in this section. The coarse scale domain is a 4
meter long 1D bar, as shown in Figure 7.9. It is discretized using 4 elements
of equal length. The area of the 1D bar is assumed as unity for all elements
except the one highlighted in grey. For the highlighted element, the cross-
sectional area is reduced by 10%, in order to induce strain localization.

Each coarse scale integration point is associated with the same fine scale
(RVE) domain. The RVE domain is a unit square (in mm) embedded with an
initial single fracture. This RVE is chosen instead of the RVEs in Figures 7.2b
and 7.2c to reduce computational expense. The fracture propagation path in
the chosen RVE is simple and known a priori, allowing pre-refinement. This
reduces the computational expense compared to RVEs exhibiting complex
fracture topology, where uniform mesh is required. Furthermore, the goal
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in this thesis is to address the solvability of the FE2 problem with the
multi-scale phase-field fracture models developed in this chapter. Therefore,
numerical experiments with topologically complex RVEs are avoided.

7.4.3 Fully coupled model vs Selective homogenization

The solvability of the FE2 problem in Figure 7.9 is investigated using two
variants of the multi-scale phase-field fracture model. The first variant,
termed as ‘fully coupled FE2 model’ retains the momentum balance equa-
tion and the phase-field evolution equation on both the coarse scale and the
fine scale. The relevant coarse scale and fine scale problems are Variational
Problems 16 and 18, respectively. The second variant, addressed henceforth
as the ‘selective FE2 model’ discards the phase-field evolution equation on
the coarse scale. For this model, the relevant coarse scale and fine scale
Variational Problems are 21 and 18, respectively.

Figure 7.10 presents the load-displacement curves obtained using the fully
coupled and the selective FE2 models. A similar response is recorded until
the peak load, while the post-peak behaviours are different. The difference in
the post peak behaviour is attributed to the coarse scale phase-field evolution
equation in the fully coupled FE2, which provides a regularization of the
coarse scale phase-field. This coarse scale regularization is absent in the
selective FE2 model.
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Figure 7.10: Figure showing the coarse scale load-displacement curves for the fully coupled and selective
FE2 models. The colored markers represent coordinates, where the coarse scale integration
point phase-fields are presented in Figure 7.11.

The difference between the fully coupled and selective FE2 models lies in
coarse scale phase-field regularization. This aspect is emphasized through
Figure 7.11, where the coarse scale phase-field is represented through color
bar corresponding to coordinates marked in the load-displacement curves
in Figure 7.10. For the selective FE2 model, as the load-displacement curve
traverses through the post-peak regime, the coarse scale phase-field grows
only in one integration point, as shown in Figure 7.11a. This local behaviour
is expected due to the omission of the coarse scale phase-field evolution
equation, and has been already explained in Section 7.2.8. However, as ob-
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Figure 7.11: Figure showing the phase-field at the coarse scale Integration Points (IPs). The color in the
bars represent coordinates of the load-displacement curves in Figure 7.10.

served from Figure 7.11b, the fully coupled FE2 model result in coarse scale
phase-field regularized response as the load-displacement curve traverses
through the post-peak regime. The evolution of the coarse scale phase-field
is not limited to one integration point beyond the peak-load.
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E P I L O G U E

Concluding remarks of this thesis and future research directions.
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C O N C L U S I O N A N D O U T L O O K

Numerical methods and a multi-scale modelling framework have been
developed for the phase-field fracture model in this thesis. The numerical
methods are focused on solving the pertinent non-convex fracture problem
as well as enforcing the irreversibility of fracture(s) in a variationally consis-
tent fashion. To that end, robust and computationally efficient monolithic
solution techniques (arc-length method and Hessian scaling method) are
proposed to simulate fracturing in linear elastic and poro-elastic media.
A micromorphic variant of the phase-field fracture model is put-forth as
a variationally consistent way of enforcing fracture irreversibility point-
wise in a computational domain. The proposed monolithic techniques and
the micromorphic phase-field fracture model are tested on benchmark
problems, encompassing both brittle and quasi-brittle fracturing processes.
Furthermore, in the view of material heterogeneity, a variationally consis-
tent multi-scale phase-field fracture framework is developed. Fine scale
(micro-structural) material features such as material constituents, voids
and defects are explicitly modelled in a Representative Volume Element
(RVE), and engineering/coarse scale mechanical response is derived using
homogenization techniques. The novel numerical methods and multi-scale
framework is a step further towards robust, computationally efficient and
accurate modelling of fractures in engineering materials and structures.

new developments

The new developments are presented in the order of their appearance in
the thesis.

1. A fixed-point iterative correction of the extrapolated phase-field is pro-
posed for Heister, Wheeler, and Wick’s extrapolation-based monolithic
solution technique [34]. The original technique exhibits a step-size
dependent solution, which is eliminated with the correction step.
[Chapter 3.]

2. A Hessian scaling method has been developed, which operates on
integration point Hessians. Based on a threshold value of the integra-
tion point phase-field φ = 0.4, the problematic displacement phase-field
Hessian block is explicitly set to zero. [Chapter 3.]

3. Two path-following constraint equations have been proposed for use
in the arc-length method. The first equation adopts the incremental
fracture surface energy from the phase-field fracture energy functional.
The second approach is a reformulation of the first equation in terms

163
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of the degradation function and the fracture driving energy. [Chapter
3, published as Bharali et al. [265].]

4. A micromorphic phase-field fracture model has been developed for
variationally consistent enforcement of fracture irreversibility con-
straint. The model transforms the phase-field into a local variable,
thereby allowing a pointwise treatment of fracture irreversibility using
a max operator. A micromorphic field variable is introduced to ensure
regularization of the fracture. [Chapter 4, published as Bharali, Larsson,
and Jänicke [238].]

5. The arc-length method with fracture energy-based path-following
constraint is extended to the micromorphic phase-field fracture model.
[Chapter 4.]

6. A novel constant flux arc-length method has been developed for phase-
field hydraulic fracturing problems. The time-step size is considered
as the unknown instead of a load parameter. A load parameter scales
the external force (flux), and is not relevant for constant flux problems.
[Chapter 5.]

7. A novel energy functional is proposed for modelling soil desiccation
cracking incorporating the part of the water pressure propagating into
the solid skeleton in the fracture driving energy. [Chapter 6.]

8. Motivated by experimental studies in the literature, the energy func-
tional for soil desiccation cracking is developed in an unified sense
encompassing both brittle and quasi-brittle fracture. [Chapter 6.]

9. A variationally consistent hierarchical multi-scale phase-field fracture
framework has been developed for heterogeneous materials. Therein,
the momentum balance equation and the phase-field evolution equa-
tion exist in both coarse (engineering) and fine scales. [Chapter 7,
published as Bharali, Larsson, and Jänicke [1, 266].]

10. The notion of selective homogenization is introduced, where the phase-
field is forced to live only on the fine scale. This eliminates the coarse
scale phase-field evolution equation and results in the conventional
multi-scale approaches found in the literature. [Chapter 7, published as
Bharali, Larsson, and Jänicke [1, 266].]

11. Canonical fine scale (RVE) problem has been developed in a weak
micro-periodicity format. The set of equations satisfies the macro-
homogeneity condition a priori. Furthermore, it is shown that the RVE
strongly periodic, Neumann and Dirichlet problems are obtained as
special cases, based on appropriate choice of test and trial spaces.
[Chapter 7, published as Bharali, Larsson, and Jänicke [1, 266].]
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conclusion

The new developments (numerical methods and multi-scale framework) in
phase-field fracture modelling have been tested on benchmark problems
as well as on manufactured academic problems. From these numerical
experiments, the following conclusions are made:

1. The arc-length method with an incremental fracture energy based
path following constraint outperforms other monolithic solution tech-
niques (diagonal variant of Newton-Raphson method (dia-NR), BFGS
method and Hessian scaling method) in terms of (total and average)
iterations required for convergence. For an iteration terminating tol-
erance 10−4, the CPU time reported for the arc-length method is ≈ 5
times lower than the secant based method (dia-NR and BFGS methods)
and ≈ 1.8 times lower than the Hessian scaling method. For stricter
tolerance 10−8, the CPU time savings are factor ≈ 15 compared to
the secant based methods and ≈ 5 compared to the Hessian scaling
method. Based on this computational efficiency, the arc-length method
is recommended as a computationally efficient monolithic solution
technique for phase-field fracture models.

2. In scenarios where the displacement increments are meant to be pre-
scribed and not computed based on path-following constraints, the
Hessian scaling method is proposed as a computationally efficient
monolithic solution technique. Compared to secant (dia-NR and BFGS)
based methods it retains more information of the true Hessian, result-
ing in superior convergence and reduction in CPU time.

3. Both the arc-length method and the Hessian scaling method exhibits
superior convergence w.r.t. varying iteration terminating tolerance,
compared to secant based (dia-NR and BFGS) methods. For the single
edge notched specimen under tension, a tolerance 10−4 is sufficient
for the arc-length method and the Hessian scaling method. However,
for secant based methods, similar solution is achieved at a stricter
tolerance 10−6.

4. From an ease of implementation perspective, the Hessian scaling
method is easier to implement in existing finite element codes. The arc-
length method requires developing and integrating a new nonlinear
solver module.

5. The micromorphic phase-field fracture model is variationally consis-
tent w.r.t enforcing phase-field fracture irreversibility. The irreversibil-
ity constraint is treated pointwise on the integration point phase-field
variable with system-level precision. Unlike the history variable ap-
proach, a comparatively narrow phase-field profile is achieved. Thus,
the fracture energy is not over-estimated.
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6. The micromorphic phase-field model developed is unified in the sense
that it can be used for both brittle and quasi-brittle fracture problems.
The model offers flexibility in the choice of phase-field degradation
and local dissipation function. Furthermore, the interaction parameter
can be interpreted as a penalty parameter or as an additional material
parameter calibrated using experimental observations.

7. The micromorphic phase-field model can use the arc-length method
developed for the conventional phase-field fracture model in a straight-
forward fashion. No modelling changes are required. This also shows
the versatility, not only of the micromorphic model but also of the
arc-length method proposed earlier.

8. The constant flux arc-length method, developed for phase-field hy-
draulic fracturing, demonstrates computational efficiency and robust-
ness. For iteration terminating tolerances varied as 10−4, 10−6 and
10−8, convergence in every step is achieved in less than 25 iterations.
Most often, researchers adopt alternate minimization technique for
hydraulic fracturing, requiring thousands of iterations to converge. For
computational efficiency and robustness, the constant flux arc-length
method is recommended instead.

9. In soil desiccation modelling, the novel energy functional (that in-
corporates the part of the water pressure propagating into the solid
skeleton in the fracture driving energy) is a midway proposition be-
tween the energy functionals constructed in the effective strain and
total strain spaces. Numerical experiments performed in this thesis
corroborates this hypothesis.

10. Cohesive zone modelling of soil desiccation cracking within the phase-
field fracture framework qualitatively recovers the brittle fracture
behaviour for ‘low’ values of Irwin’s characteristic length. The choice
of the characteristic length affects both the number of cracks and
their time of propagation. The brittle AT2 model does not incorporate
Irwin’s characteristic length. As such, for greater flexibility in model
calibration, the cohesive zone approach is recommended.

11. The Hessian scaling method is recommended for modelling soil des-
iccation cracking due to its robustness. Numerical experiments con-
ducted in this thesis demonstrate its ability to converge for iteration
terminating tolerances up to 10−6. The BFGS method offers a greater
computational efficiency for a tolerance 10−4, but is not able to con-
verge for a stricter tolerance 10−6.

12. The variationally consistent hierarchical multi-scale phase-field frac-
ture framework is recommended for mechanical problems involving
heterogeneous materials. Unlike the previous multi-scale frameworks,
both stationary and propagating fractures on the fine scale accounts
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for the coarse/engineering scale mechanical response. On the engi-
neering scale, the fracture length-scale is implicitly contained through
the homogenized quantities.

13. The selective homogenization method is recommended to be used with
caution as it results in a local material response on the coarse/engi-
neering scale.

14. Finally, it is recommended to use strong periodicity fine scale (RVE)
problem since it circumvents artificial stiffening on the RVE bound-
ary as well as artificial softening when fractures intersect the RVE
boundary, observed with Dirichlet and Neumann RVE problems, re-
spectively.

future research directions

The numerical methods and the multi-scale phase-field fracture frame-
work developed in this thesis are tested on two-dimensional problems. The
extension towards three-dimensional problems may be carried out in a
straight-forward fashion. Unlike the discrete fracture models (CZM, XFEM),
the phase-field fracture model does not require any additional ad hoc crite-
rion for extension towards three-dimensional problems. However, modelling
three-dimensional problems would require iterative solvers (CG, GMRES
or others) and appropriate preconditioning techniques. Nevertheless, it
would be interesting to test computational efficiency and robustness of the
numerical methods in a three-dimensional setting.

The arc-length method in this thesis has been implemented using the
Sherman-Morisson formula. This results in two linear solves within a single
nonlinear iteration. Therefore, one might adopt solvers that operate on
multiple right hand sides to save even more computational time. Further-
more, the constant-flux variant of the arc-length method may be adopted
for other coupled mechanical-diffusion problems, such as heat transfer and
corrosion. This would establish its versatility and robustness across a series
of multiphysics problems.

In this thesis, the micromorphic phase-field fracture model is developed,
replacing the gradient of the phase-field with a gradient on the micro-
morphic variable. An alternative micromorphic model may be proposed,
replacing the phase-field in the entire fracture surface energy term with the
micromorphic variable. Thereafter, one may look into the performance of
the two variants for low values of the interaction parameter. Also, adapting
the micromorphic model for multiphysics problems open a plethora of
research avenues accompanied by possibly interesting challenges.

In the context of hydraulic fracture, a computationally efficient and robust
monolithic solution technique is developed. A logical next step would be
the transition from academic examples towards real-world data. Based on
geological exploration data, the layered rock structure including the natural
fractures may be modelled for realistic scenarios. For a given water flux (in-
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jection), the possibility of ground water contamination through leakage may
be estimated. Such a study would be linked to the United Nations Sustain-
ability Goal 6 (clean water and sanitation) and 12 (responsible consumption
and production).

A computationally efficient and robust monolithic solution technique still
elusive when it comes to soil desiccation modelling. Some of the monolithic
solution techniques developed in this thesis offers only a proof of solvability
through numerical experiments. However, there is scope to improve the
solution techniques to achieve higher rates of convergence. Furthermore,
in this thesis as well as in literature pertaining to phase-field desiccation
modelling, Taylor and Hood element is adopted to satisfy the LBB condition.
However, the Taylor and Hood element is computationally expensive due
to the additional degrees of freedom it introduces. Alternatively, one may
investigate the possibility of using stabilization techniques so that lower
equal order element may be used, thus reducing the computational cost.
In terms of model fidelity, enhancements may be introduced to match the
crack spacing, crack depth and the crack propagation in time with field
observations. This would enable slope stability assessments in dykes and
embankments in the view of increasing global temperatures due to climate
change.

The multi-scale phase-field fracture framework was tested using a sim-
ple academic problem, comprising of a two-dimensional RVE and a one-
dimensional bar on the coarse/engineering scale. Extension towards real-
world problems is possible but computationally prohibitively expensive.
One may require a lot of parallel computing resources. Alternatively, surro-
gate models using reduced order modelling techniques or machine learning
may be developed to reduce the computational cost.



Part VI

A P P E N D I X





A
T H E L A D Y Z H E N S K AYA – B A B U Š K A – B R E Z Z I ( L B B )
C O N D I T I O N F O R P O R O - M E C H A N I C S

This chapter investigates the effect of violating the Ladyzhenskaya–Babuška–Brezzi
(LBB) condition in poro-mechanics applications (hydraulic fracturing and soil
desiccation cracking problems). To that end, numerical experiments are conducted on
hydraulic fracturing and desiccation cracking specimens using 3-noded triangular
elements and 6-noded Taylor and Hood elements.

a.1 the lbb condition for stability and uniqueness

The Ladyzhenskaya–Babuška–Brezzi (LBB) condition is a sufficient condi-
tion that guarantees a unique solution continuously dependent on input
data for a given saddle point problem. For mathematical details pertain-
ing to the LBB condition, the reader is referred to the book ‘Mixed Finite
Element Methods and Applications’ by Boffi, Brezzi, Fortin, et al. [267].
Without delving into the rigorous mathematics, one may discretize a saddle
point problem, for instance in poro-mechanics (irrespective of the phase-
field), with a Taylor and Hood element [184] to fulfill the LBB condition.
The Taylor and Hood element adopts quadratic trial and test functions for
the displacement field, while the pressure field remains linear. A lower
order LBB fulfilling element is the Mini element [268], which is a 3-noded
triangular element embedded with a bubble function for the displacement
field. However, the Mini element entails modelling complexity pertaining
to the bubble function degree of freedom. As such, the Taylor and Hood
element is adopted in this thesis.

The LBB condition ensures the numerical stability for a saddle point
problem solution for a range of input data. For a given set of input data, one
may achieve a unique solution even without the use of LBB stable elements
such as the Taylor and Hood element [184] or the Mini element [268]. An
element with equal order test and trial functions for the displacement and
the pressure field may suffice. This aspect is investigated is the following
sections.

a.2 linear element vs taylor and hood element in hydraulic
fracturing

In this section, a hydraulic fracturing numerical experiment is carried out
on a Single Natural Fracture (SNF) specimen using 3-noded constant strain
elements and 6-noded Taylor and Hood elements. The specimen is intro-
duced earlier in Section 5.4.1. For details pertaining to geometry and model
parameters, the reader is referred to Figure 5.1 and Table 5.1.
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Figure A.1: Figures (a-c) present the distribution of the phase-field variable at the different times during
the analysis of the Single Natural Fracture (SNF) specimen with 6-noded Taylor and Hood
elements.

Figure A.1 presents the distribution of the phase-field in the SNF specimen
obtained at different simulation times using 6-noded Taylor and Hood
elements. On using a less computationally expensive 3-noded constant strain
element, the distribution of the phase-field remains the same. The water
pressure distribution obtained using 6-noded Taylor and Hood elements is
presented in Figure A.2. Similar pressure distribution is also obtained with
3-noded constant strain elements (see Figure 5.3).

−0.004 0.09
pw [MPa]

(a) t = 0.01 [s] (b) t = 0.1 [s] (c) t = 0.2 [s]

Figure A.2: Figures (a-c) present the distribution of the water pressure at the different times during
the analysis of the Single Natural Fracture (SNF) specimen with 6-noded Taylor and Hood
elements.

In the context of computational expense, the 6-noded Taylor and Hood
element introduces additional degrees of freedom due to the higher or-
der displacement and phase-field test and trial functions. This leads to
higher computational cost compared to the 3-noded constant strain element,
observed from the CPU time required for the simulation in Table A.1.
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Element type (uDOFs) tol Steps Total Iters. Avg. Iters. CPU time [s]

Constant strain (28977)
10−4 146 759 5.20 1925.0

10−6 128 980 7.65 3379.0

10−8 158 1408 8.91 11150.0

Taylor and Hood (94870)
10−4 163 1222 7.49 8552.0

10−6 200 1528 7.64 10887.0

10−8 244 2210 9.06 45236.0

Table A.1: Table presents the total numbers of steps and iterations, average iterations and CPU time (in
seconds) for the SNF specimen simulated using the arc-length method with varying iteration
terminating tolerances and element type. uDOFs is an abbreviation for unconstrained Degrees
of Freedom.

a.3 linear element vs taylor and hood element in soil des-
iccation cracking

In this section, a soil desiccation cracking numerical experiment is carried
out on a notched specimen using 3-noded constant strain elements and
6-noded Taylor and Hood elements. The specimen is introduced earlier
in Section 5.4.1. The energy functional E4 and its corresponding Discrete
Problem 13 is adopted for this study. For details pertaining to geometry and
model parameters, the reader is referred to Figure 6.1and Table 6.1.

0 0.5 1
φ [-]

(a) Constant strain element, t = 1810 [s] (b) Taylor and Hood element, t = 1240 [s]

Figure A.3: Figures (a-b) present the distribution of the phase-field variable pertinent to the energy
functional E4. The sub-figures correspond to the 3-noded constant strain element and the
6-noded Taylor and Hood element, respectively.

Figure A.3 presents the distribution of the phase-field in the notched soil
specimen obtained using the 3-noded constant strain element and the 6-
noded Taylor and Hood element. For both elements, the phase-field variable
interpolation order follows that of the displacement field. Unlike the LBB
stable Taylor and Hood element, the constant strain element results in
an orthogonal widening of the fracture. The orthogonal widening of the
fracture remains on further refining the mesh with the 3-noded constant
strain elements. This justifies that Taylor and Hood element outperforms
the lower order 3-noded constant strain element.
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