
How Do Different Types of Testing Goals Affect Test Case Design?

Downloaded from: https://research.chalmers.se, 2024-04-17 14:19 UTC

Citation for the original published paper (version of record):
Istanbuly, D., Zimmer, M., Gay, G. (2023). How Do Different Types of Testing Goals Affect Test
Case Design?. Testing Software and Systems. ICTSS 2023. Lecture Notes in Computer Science, vol
14131.. http://dx.doi.org/10.1007/978-3-031-43240-8_7

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)



How Do Different Types of Testing Goals Affect
Test Case Design? ⋆

Dia Istanbuly, Max Zimmer, and Gregory Gay[0000−0001−6794−9585]

Chalmers | University of Gothenburg, Gothenburg, Sweden
(gusistdi, gusmaxzi)@student.gu.se, greg@greggay.com

Abstract. Test cases are designed in service of goals, e.g., functional
correctness or performance. Unfortunately, we lack a clear understand-
ing of how specific goal types influence test design. In this study, we
explore this relationship through interviews and a survey with software
developers, with a focus on identification and importance of goal types,
quantitative relations between goals and tests, and personal, organiza-
tional, methodological, and technological factors.
We identify nine goal types and their importance, and perform further
analysis of three—correctness, reliability, and quality. We observe that
test design for correctness forms a “default” design process that is mod-
ified when pursuing other goals. For the examined goal types, test cases
tend to be simple, with many tests targeting a single goal and each test
focusing on 1–2 goals at a time. We observe differences in testing prac-
tices, tools, and targeted system types between goal types. In addition,
we observe that test design can be influenced by organization, process,
and team makeup. This study provides a foundation for future research
on test design and testing goals.

Keywords: Software Testing, Test Design, Testing Goals, Functional
Testing, Non-Functional Testing

1 Introduction

Software testing is a process where input is applied to a system-under-test (SUT)
and observations of the reaction to the input are used to verify that the SUT
operates correctly [19]. It is the most common verification technique, and can be
conducted in many forms and at different levels of granularity within the code of
the SUT [4]. Testers may write test cases before or after writing the code-under-
test [20], and according to different personal problem-solving models [9, 12].

Unifying all testing approaches, practices, and technologies is that tests are
designed in service of goals. These goals can vary in nature and type—for ex-
ample, a test might be written to verify functional requirements, to show that
known security risks are mitigated, or to ensure that performance thresholds are
met [17]. The nature of problem-solving implies that developers must have goals
⋆ Support provided by Software Center Project 30: “Aspects of Automated Testing”.



2 D. Istanbuly et al.

that they wish to achieve through the act of designing tests, even if those goals
are not explicitly enumerated in requirements or other documentation [9, 18].

Despite the prominence of testing as a development practice, we lack a clear
understanding of how specific types of testing goals influence the practice of
test design. For example, Enoiu et al. proposed a model of test case design as a
problem solving process [9]. This model makes it clear that tests are designed to
show the attainment of specific goals, but does not discuss what common types
of goals are, or how different goal types could influence this process.

The purpose of this research is to explore the types of goals that testers pur-
sue and the influence of these goal types on the process that developers follow to
design tests that assess attainment of those goals. Understanding the relation-
ship between test case design and different types of testing goals could provide
benefits to both researchers and practitioners. For example, such understanding
enables characterization of test design practices and the ability to offer clear guid-
ance to developers creating tests for specific types of goals—potentially leading
to improved effectiveness or efficiency of the testing process. In addition, charac-
terization of design practices can benefit automated test generation, potentially
leading to the development of more human-like generation tools [8, 11].

In particular, we are interested in the exploring the types of goals pursued,
the relative importance of different goal types, quantitative relations between
goal types and test cases—tests-per-goal and goals-per-test—and personal, or-
ganizational, methodological, and technological factors that may influence the
relationship between goal types and the test design process. To address these
topics, we have conducted a series of interviews with software developers in vari-
ous domains and of varying experience. Thematic analysis of the interviews was
then used to develop a survey for wider distribution.

Based on analyses of the interview and survey responses, we have identified
nine goal types, including correctness, reliability, performance, quality, security,
customer satisfaction, risk management, improving maintenance cost, and pro-
cess improvement. Correctness was ranked most important, followed by reliabil-
ity and security. Customer satisfaction and maintenance cost were seen as least
important, but were still valued.

We focused on correctness, reliability, and quality for analysis. Test design for
correctness forms a “default” design process, which is followed in a modified form
for other goals. For all three goal types, several tests are needed to assess goal
attainment, and tests focus on 1–2 goals at a time. Testers often start the de-
sign process following pre-existing patterns (e.g., using past tests as templates).
We also make observations regarding differences in testing practices and tools
employed during test design for these three goal types. We further observe that
test design can be influenced by process, organization, and team structure.

This study provides a foundation for future research on test case design and
testing goals, and enables deeper modeling of test design as a cognitive problem-
solving process. To help enable future research, we also make our thematic in-
terview coding and survey responses available1.
1 Available at https://doi.org/10.5281/zenodo.8106998.

https://doi.org/10.5281/zenodo.8106998


How Do Different Types of Testing Goals Affect Test Case Design? 3

2 Background
During software testing, input is applied to the SUT and the resulting output and
other observations are captured [19]. These observations are compared to em-
bedded expectations, called test oracles, to determine whether the SUT operated
within expectations. Oracles often directly reflect the goals of test creation [2].

Testing can take place at multiple levels of granularity [19]. At the lowest
level, unit tests examine small code elements in isolation with dependencies sub-
stituted for “mock” (static) results [21]. During integration testing, dependent
units are combined. Then, during system testing, high-level functionality is in-
voked through interfaces. Tests can be written at all three levels as executable
code, using frameworks such as JUnit, PyTest, or Postman [21].

Testing can also be performed manually. This is common during exploratory
testing—where humans perform ad-hoc testing based on “tours” [24]—and ac-
ceptance testing—where customers offer feedback [22]. Tests are often written
after code has been developed. However, test-driven development advocates for
test creation before code development [14].

3 Related Work
Enoiu et al. hypothesized that our understanding of test design practices could
be improved by formulating test design as a cognitive problem solving model [9].
Their exploratory work proposes that testers follow a seven stage process, in-
cluding identification and definition of testing goals, knowledge analysis, strategy
planning, information and resource organization, progress monitoring, and eval-
uation. Their research provides inspiration. In particular, we focus on the goal
aspect of this model—filling in gaps in our understanding of the goals that testers
focus on and how those goals influence test design. Our findings complement,
and could lead to elaborations, in this model—as well as in other research that
examines testing as a cognitive process, e.g., Aniche et al.’s framework for how
developers approach test design [1] or Hale et al.’s cognitive model of how devel-
opers choose, implement, and evaluate debugging rules and strategies [12,13].

There has been limited research on how developers approach test case de-
sign in practice [9]. For example, Garousi et al. surveyed software developers to
examine techniques, tools, methods, and metrics used in test design [10]. They
observed that the usage of JUnit and IBM Rational testing tools have been over-
taken by NUnit and web application tools. They also observed that organizations
were still slow to adopt test-driven development. Eldh et al. asked experts to re-
view 500 test cases written by novice testers [7]. They examined whether the tests
matched the IEEE test case template, and also compared the mistakes made by
the novices to those made by expert testers. Some mistakes were made by both
groups, but others—such as not cleaning up after test execution—were made far
more often by novices. Beer and Ramler also investigate how testers’ experience
impacts the effectiveness of testing methods and tools [3]. They briefly examine
test design, noting that experience plays a large role in determining the effec-
tiveness of the designed tests. Although all three studies examine aspects of test
design, they—and other past studies—do not closely examine the influence of
different goals on test design. Our study contributes to filling this gap.



4 D. Istanbuly et al.

Table 1: Demographic information on interview participants.
ID Role Development Experience

P1 Software Developer 7.0 Years
P2 Senior Consultant, DevOps Architect 13.0 Years
P3 Software Developer 0.5 Years
P4 Software Developer 9.0 Years
P5 Software Developer 4.0 Years
P6 Software Developer 3.0 Years
P7 Test Manager, Scrum Master 10.5 Years
P8 Quality Manager 6.0 Years
P9 Software Developer 2.0 Years

19
12

4
2Support

5.4%
Researcher
10.8%
Tester
32.4%

Developer
51.4%

Role

4
8

65

14
9+
37.8%
6-9
13.5%

1-3
21.6%

3-6
16.2%

Dev. Experience
2

7

7
8

13
9+
35.1%

6-9
21.6%

1-3
18.9%

3-6
18.9%

Test Experience

Fig. 1: Demographic information on survey participants.

4 Methodology

We hypothesize that developers follow distinct patterns when designing tests in
relation to specific types of testing goals. To examine this hypothesis, we address
the following research questions:

– RQ1: What types of goals do developers attempt to achieve when designing
test cases, and how do they perceive the importance of these goal types?

– RQ2: What approaches are taken to design tests for these goal types?
• RQ2.1: How many test cases are generally required to achieve a goal of

a specific type?
• RQ2.2: How many goals of each type are generally targeted by a test?
• RQ2.3: Are there patterns that explain the relationship between the

selected goal type and the resulting test design process?

To address these questions, we performed semi-structured interviews to gain
insight into the test design process. We then performed a thematic analysis of
the interview findings, and designed a follow-up survey for wide distribution to
provide further evidence for the findings from the interview study, as well as ad-
ditional quantitative and qualitative data to help answer our research questions.

4.1 Population and Sampling

We performed a series of nine interviews—selected through convenience sampling—
with software developers in Gothenburg, Sweden. 37 unique respondents, from
around the world, filled out the survey2. Table 1 outlines demographic informa-
tion on the interview participants, including their role and development experi-
ence. Figure 1 summarizes the same information for the survey participants, with

2 One survey response was discarded, as a respondent answered twice. We retained
the first response from this participant.



How Do Different Types of Testing Goals Affect Test Case Design? 5

Table 2: Interview questions, linked to research questions
RQ Interview Question

N/A

1. What is your professional role?
2. How much experience do you have in software development?
3. Do you write test cases for code?
4. How much experience do you have in software testing?

RQ1 5. Can you describe the goals that you target through the creation of test cases?
6. What are you trying to achieve, avoid, or discover when creating test cases?

RQ2

7. What methods do you use to test your code?
8. Describe the process you follow to design test cases.
9. What tools do you use to create test cases?
10. Do you design test cases by yourself or in a group?
11. How do you perform test design in order to achieve your goals?
12. How have your testing methods changed over time?

RQ2.1 13. How many test cases do you tend to design for each goal you want to achieve?

RQ2.2 14. Do you design test cases to achieve one or multiple goals at once?
15. How many goals do you target with each test case?

RQ2.3

16. Do you have any recurring test case design habits?
17. Do you tend to design test cases in the same way as long as it works, or do you
regularly search for new tools and approaches when designing test cases?
18. How do you assess success or failure at achieving a goal?
19. In case of failure to achieve a goal, what do you do to address problems?
20. If you have achieved a goal, how do you proceed?

Table 3: Survey questions, linked to research questions. MC = multiple choice.
RQ Survey Question Format

N/A
1. What is your profession? Free Text
2. How many years of experience do you have with development? MC
3. How many years of experience do you have with software testing? MC

RQ1 4. Do you have specific goals or types of goals when designing tests? MC
5. Please rank the following types of goals by ascending importance. MC (Grid)

(Q6–12 repeated for two goal types indicated as most important)

RQ2

6. What testing techniques do you use for this goal? MC, Free Text
7. Please outline your typical design process when designing a test
case to achieve the selected goal type.

Free Text

8. What tools do you use to design tests for the selected goal type? MC, Free Text
9. What type of system do you design tests of this goal type for? MC, Free Text

RQ2.1 10. How many tests do you typically design for a goal of this type? MC

RQ2.2 11. How many goals of this type do you try to cover with a single test? MC

RQ2.3
12. When designing test cases for this goal type, how often do you
tend to re-use a particular test case design pattern?

MC, Free Text

13. Do you design test cases by yourself or in a team? MC
14.Are there standards or pre-defined methods used within your orga-
nization when designing test cases or goals?

MC, Free Text

15. How do development and process methodologies (e.g. Scrum/De-
vOps) influence the way you write tests to achieve different goal types?

Free Text

the addition of testing experience3. The interview and survey participants work
in many domains—e.g., automotive, data analytics, and telecommunications.

3 Job titles have been merged when similar, e.g., “software tester” and “test engineer”.
The survey asked for both development and testing experience, while the interview
only asked about years of development experience.



6 D. Istanbuly et al.

4.2 Data Collection

Interviews: Interviews were conducted electronically between January–February
2022. At the start of an interview, we gave a brief overview of the research topic.
Interview responses were recorded, with permission, for analysis and observer tri-
angulation. The interviews were semi-structured, following the interview guide
in Table 2. However, follow-up questions were asked if further discussion was
needed. The interviews were transcribed using speech-to-text software, then
manually corrected through consultation with the original audio.
Survey: The survey consisted of mostly quantitative questions, with a small
number of open-ended questions, and was designed according to the guidelines
of Linåker et al. [15]. The questions are listed in Table 3. We focused on quan-
titative questions to decrease the time burden [16]. To complete the survey, the
participants were required to answer all multiple-choice questions, but open-
ended questions were optional. The survey was pre-tested with two participants,
and the feedback was used to clarify wording and question order. The survey
was conducted using Google Forms4. Links for the survey were then distributed
via email, as well as on social media platforms.

4.3 Data Analysis

Thematic Analysis: The interview transcripts were analyzed using thematic
analysis, following the guidelines of Cruzes et al. [6] and Braun et al. [5]. To
conduct this process, we independently examined transcripts, highlighting as-
pects relevant to the research questions (“codes”). The codes were subsequently
organized and aggregated into sub-themes, which were clustered into themes.

After individual coding was completed for the first interview, we compared
the codes. After the first iteration, our codes did not achieve an 80% similar-
ity threshold. Therefore, we came to an agreement on sub-theme identification
and code classification. After a second iteration, a similarity of over 80% was
achieved. This process was conducted iteratively, and was paused for discussion.

An overview of the themes and sub-themes is shown in Table 4. These themes
and sub-themes, as well as the underlying codes, were used both to directly assist
in addressing the research questions as well as to design the survey instrument.
Survey Analysis: The survey consisted of both quantitative and open-ended
qualitative questions. To analyze quantitative data, we used summary statistics
(e.g., mean and variance of responses, separated by goal type) [23]. Responses
to open-ended questions were assessed using thematic coding. As the survey was
designed using the interview codes and themes, no additional themes or sub-
themes were identified. Instead, survey responses enriched the existing codes.

5 Results and Discussion
5.1 Goals and Goal Importance

Test design can not take place without some reason to design tests in the first
place. During the interviews, we identified nine specific types of goals that testers

4 https://forms.gle/bhzpUCX9PdXbebiH8

https://forms.gle/bhzpUCX9PdXbebiH8


How Do Different Types of Testing Goals Affect Test Case Design? 7

Table 4: Themes (bold) and sub-themes from interviews.
Theme Explanation

Experience Interviewees’ experiences in development and testing.

Profession Interviewees’ job titles and responsibilities.

Test Case Design Encompasses sub-themes related to test design planning and execution.
Design Process Steps that interviewees take when designing tests to achieve their goals.
Alone/In Group Whether interviewees work individually or in a group during test design.
Design Plan Specific practices interviewees apply while test design.
Design-Goal Relation Factors that relate goals to test design (e.g., the number of tests to achieve

a specific type of goal).
Recurring Habits Common practices performed while designing test cases, (e.g., basing new

tests on earlier tests).

Testing Goals Specific goal types that interviewees design tests to achieve (e.g., func-
tional correctness or performance).

Measuring Success How interviewees determine whether goals are achieved (e.g., code cover-
age, customer satisfaction).

In Case of Failure Steps taken when goals are not met (e.g., fault analysis).
In Case of Success Steps taken when tests show goals are achieved (e.g. performing a demo

to the client).

Testing Tools Tools and technologies used to plan, design and execute tests (e.g., JUnit).

Testing Methods Testing methods or practices (e.g., Test Driven Development) used by the
interviewees to achieve their goals.

Change Over Time How interviewees evolved their testing practices following experiences,
mistakes, and new technologies or practices.

System Type The type of system tested (e.g., API end-points, embedded).

Table 5: Goal types identified in interviews.
Goal Type Definition

Correctness Tests assess SUT behavioral consistency with specifications.
Reliability Tests assess the ability of the SUT to remain available and failure-free in

a specified environment over a period of time.
Performance Tests assess the ability of the SUT to meet performance goals (e.g., re-

sponse time).
Quality Tests assess whether the SUT meets specified quality goals (e.g., usability).
Security Tests assess whether the SUT can protect data and services from unau-

thorized access.
Customer Satisfaction Tests assess whether the SUT meets the needs of a customer.
Risk Management Tests are used to forecast and evaluate threats and their possible impact

on the SUT.
Maintenance Cost Tests are used to make SUT maintenance more efficient.
Process Improvement Tests are created as part of an attempt to improve the testing process

(e.g., writing automated test code to replace manual testing).

pursue. These types are defined in Table 5. 76% of survey respondents confirmed
that they have specified, pre-determined goals when designing test cases.

RQ1 (Goals): The goal types identified include correctness, reliability,
performance, quality, security, customer satisfaction, risk management,
improving maintenance cost, and process improvement.

Survey participants were asked to rank these goal types in importance. The
results of this ranking are shown in Figure 2, along with their average ranking.
As might be expected, correctness was ranked as the most important goal (59%).



8 D. Istanbuly et al.

0 5 10 15 20 25 30 35

Maint. Cost (5.86)
Process Imp. (5.76)

Cust. Sat. (5.59)
Performance (5.30)

Risk (5.40)
Quality (5.00)

Security (4.84)
Reliability (4.00)

Correctness (3.24)

1 2 3 4 5 6 7 8 9

Fig. 2: Ranking of goal importance (1 = most important, 9 = least important).
Average ranking indicated in parentheses.

Interestingly, seven participants indicated correctness as their least important
goal. At least three of these work with machine learning, where non-determinism
often makes assessing correctness difficult. This could be a reason for the low
ranking. Among the seven, risk management, performance, customer satisfac-
tion, and maintenance cost reduction ranked highly.

Correctness was followed by reliability. These are followed by assessment
of non-functional qualities—security, quality, and performance—and risk man-
agement. These goals are important, but are often secondary considerations. In
some cases, the participants were highly split in their rankings—e.g., for security,
quality, and risk—with a near-even split between high and low importance.

Customer satisfaction and improving process or maintenance are seen, gener-
ally, as the least important goals. However, all goal types were highly important
among a subset of participants. Some differences could be explained by the na-
ture of the organization that the tester works for. If products are created for
clients, then pleasing those clients is—naturally—a high priority. If the organi-
zation sells the product widely, then individuals do not have to give approval.

RQ1 (Goals): Correctness was ranked most important, followed by re-
liability. Customer satisfaction and maintenance cost were seen as the
least important. However, all goal types are important for some.

In the survey, we asked participants to answer a set of questions for two
chosen goal types. To avoid drawing biased conclusions, we primarily focus in
the following subsections on goal types that we received at least five responses
for—correctness (33 responses), reliability (12 responses), and quality (8
responses)—or on observations not dependent on specific goal types.

5.2 Quantitative Relationship Between Goal Types and Tests

Test Cases Per Goal: Figure 3(a) shows the average number of tests needed
to achieve a goal. Correctness requires the most tests per goal, on average (6.42).
Advice on test design often advocates for creating multiple tests for functions
that, individually, are simple and focused on a single outcome or facet of the



How Do Different Types of Testing Goals Affect Test Case Design? 9

0.00

4.00

8.00

Correctness Reliability Quality

(a) Avg. num. tests to achieve a goal.

0.00
1.00
2.00

Correctness Reliability Quality

(b) Avg. num. goals targeted in a test.

Fig. 3: Quantitative relationship between tests and goals of correctness,
reliability, and quality types.

tested function. For example, a common (and highly debated5) recommendation
is to use a single assertion per test case. Multiple interviewees echoed this advice.
Figure 3(a) indicates that this advice is followed, and that multiple tests are
needed to demonstrate that a complex function fulfills its specification.

Reliability goals, which typically take different measurements (e.g., failure
rate or availability) and compare them to thresholds, require fewer test cases to
assess. However, multiple tests are still required to assess a single goal.

RQ2.1 (Tests Per Goal): Several tests are needed to assess whether a
single correctness, reliability, or quality goal is met. Correctness requires
the most, an average of 6.42 tests per goal.

Goals Per Test Case: Figure 3(b) shows the average number of goals targeted
in a single test—on average, approximately two correctness or quality goals, or
one reliability goal. This offers further indication that testers tend to focus on
creating focused tests over large tests that target many goals at once.

RQ2.2 (Goals Per Test): A single test case tends to focus on 1–2
correctness, reliability, or quality goals.

5.3 Influence of Goals on Test Design

In this subsection, we will explore multiple factors that affect and illustrate the
relationship between testing goals and test design practices.
“Typical” Design Process: Survey participants were asked to outline their
typical test design process for their selected goal types. Test design for cor-
rectness often starts with examination of documentation and discussion with
stakeholders. The gathered knowledge is then processed during brainstorming:

“Identify basic tests to use as foundation..., discussions with others ..., questioning,
setting up environments with test data, reviewing tests” - SP10
“I design a simulation of that components usage, and compare with the hand-written
solution (done in my head).” - SP3
“I clarify requirements, do mindmaps and discuss with different oracles...” - SP12

5 E.g., https://softwareengineering.stackexchange.com/questions/394557/
should-tests-perform-a-single-assertion-or-are-multiple-related-assertions-acce

https://softwareengineering.stackexchange.com/questions/394557/should-tests-perform-a-single-assertion-or-are-multiple-related-assertions-acce
https://softwareengineering.stackexchange.com/questions/394557/should-tests-perform-a-single-assertion-or-are-multiple-related-assertions-acce


10 D. Istanbuly et al.

Interview Experts, Prioritize 
Needs (Risk Mgmt.)

Reliability Over Time
Non-Functional/Quality Goals

Consider Environment, Dependencies, Repeat 
Execution (Reliability, Performance)

Consider Sensitivity to Code Change, 
Documentation of Code (Maintenance Cost)

Consider Recent Code Changes (Risk Mgmt.)

Examine 
Functional 

Specifications

Discuss With 
Stakeholders

Formulate 
Specific Goal(s)

Formulate 
Acceptance 

Criteria

Design “Sunny 
Day” Test Cases

Identify 
Untested 
Aspects

Design 
Additional Test 

Cases

Perform Addt. 
Research (Risk Mgmt.)

Fig. 4: Typical design process for correctness, with modifications for other goals.

Many respondents start by designing basic “happy path” tests for a function
showing that the standard outcomes of the function are met. Then—often iteratively—
tests are designed to cover additional scenarios:

“Write tests, write minimal code to make tests pass, examine if there are features
or corner cases that don’t have tests yet, go to step one.” - SP13

Respondents stressed the importance of simplicity:
“I try to isolate requirements and design as simple a test case as possible ... I focus
on making the test easy to understand, partly by making it small and independent
... I may write multiple test cases for one requirement because there may be multiple
modes of failure.” - SP4

There was emphasis on considering perspectives, tools, and environments:
“... cover all aspects of the test, such as—bare minimum—up to maximum range of
values, different user types if they exist, positive/negative aspects, etc.” - SP30
“1. try to understand the functionality specification 2. try to understand the test
environment needed 3. trying to understand what tools are needed 4. trying to
understand acceptance criteria 5. create test steps” - SP19

We asked interviewees to describe their typical test design process. Although
specific goal types were not considered at that time, their comments largely echo
the process outlined above for correctness and illustrated in Figure 4. Testers col-
lect information, brainstorm, then iteratively create test cases until all functional
outcomes are covered—focusing on individually simple and understandable tests.

Enoiu et al. proposed that testers follow a seven stage process—identification
and definition of testing goals, knowledge analysis, strategy planning, informa-
tion and resource organization, progress monitoring, and evaluation [9]. Our
observations suggest that this model is largely followed when testers pursue cor-
rectness goals. Some aspects of this process may be given more or less weight
at times—or even skipped entirely—depending on the form of testing or due to
personal experience and preferences. For example, during unit testing, there may
not be active discussions with stakeholders. However, this basic process offers a
basic outline for discussions on test design.

The responses written about other goal types suggest that the process in
Figure 4 is followed—in a modified form—when pursuing the other goals. For
example, the core differences for reliability-demonstrating tests are that (a) re-
liability must be measured over a period of time, and (b), the SUT should be
tested in a realistic environment—which may contain unreliable dependencies.
For both reliability and performance, it was also suggested that tests must exe-
cute operations multiple times:



How Do Different Types of Testing Goals Affect Test Case Design? 11

“... stress test both that failing dependencies are correctly handled and that failures
don’t happen too often over a longer time of nominal operation.” - SP4

For quality goals, tests examine both functional correctness and attainment of
non-functional properties:

“... to improve the quality, there could be some overlap of functional and non func-
tional requirements testing here.” - SP7

To reduce maintenance costs, testers should design tests that are sensitive to
inadvertent code change and use tests to document the code:

“... ensure that the changes to the interface are documented through tests, with the
goal of making tests that would be sensitive to inadvertent changes ...” - SP21

Risk management often requires interviews and research, prioritization, and un-
derstanding of recent code changes:

“I ask subject matter experts about the software under test, do some research, then
try to write tests that will help mitigate risk.” - SP33
“I take input from all stakeholders to assess what is most important ... Also talk to
developers to assess complexity of code that might have been mostly impacted by
the change ...” - SP12

RQ2.3 (Relationship Factors): Test design for correctness goals starts
with knowledge gathering and brainstorming, then design of “happy path”
tests, then design of tests covering alternative outcomes. When assessing
reliability or performance, tests should utilize a realistic environment, as-
sess behavior over time, and be executed multiple times. Tests for quality
blend functional and non-functional aspects. Tests can reduce mainte-
nance costs by documenting and detecting changes. Risk management
requires research, discussion, and awareness of change.

Use of Recurring Design Patterns: Survey participants were asked if they
follow recurring patterns when designing tests for different types of goals. This
could include, for example, using past test cases as templates or following specific
structures for writing test cases for that goal. Figure 5 indicates that the majority
of respondents use such patterns as a starting point:

“... I overwhelmingly look for similar tests that I can adapt ... initially, then use it
to get to the happy path. Following that I’ll typically duplicate the test and ensure
that some critical conditionals are covered. If it feels like there isn’t a test case I
can steal, or that setup is too onerous, then I will manually repeat the happy path
process until it works before considering adding a test case or two.” - SP21

RQ2.3 (Relationship Factors): Testers often start test design follow-
ing patterns. For quality goals, testers often deviate from these patterns.

System Type: The type of system may influence the goal types pursued and
their importance. In Figure 6, we indicate the percentage of respondents who



12 D. Istanbuly et al.

0.00

40.00

Use Patterns Use, but Deviate No Patterns

Correctness Reliability Quality

Fig. 5: % of participants re-using patterns when designing tests for correctness,
reliability, and quality goals.

0.00
20.00
40.00
60.00
80.00

Web Mobile Database Desktop Embedded Other (Custom)

Correctness Reliability Quality

Fig. 6: % of respondents designing tests for correctness, reliability, and quality
goals for different system types.

target various system types. We observe a potential relationship between relia-
bility’s importance and the level of required trust in a SUT.

Embedded systems make up the largest proportion of reliability responses.
Such systems have high safety demands, and testers may need to show evidence of
correctness, reliability, and quality. No respondents indicated that they develop
reliability tests for mobile applications. This may be due to the lack of criticality
in such programs. This observation should be further explored in future work.

RQ2.3 (Relationship Factors): Demonstrating reliability is a focus for
embedded systems. Reliability may not be important for mobile apps.

Practices and Tools: The testing practices employed—as well as the tools—
may differ between goal types. Figure 7 indicates the percentage of respondents
who employed different approaches, including levels of granularity (e.g., unit test-
ing), focuses (e.g., functional versus non-functional testing), and other practices
(e.g., mocking, test-driven development). Figure 8 does the same for different
types of tools. For both, the initial set of options were derived from interviews.
However, some respondents suggested additional options. “Automated Testing
Framework” includes frameworks where tests are written as code. The most
common responses included JUnit, PyTest, and Google Test.

All three goal types are pursued at all major levels of granularity. However,
reliability is relatively uncommon when using human-driven practices—i.e., ac-
ceptance, exploratory, and manual testing. Reliability is often demonstrated by
executing tests repeatedly or over a period of time [19]. This typically requires
automation. In addition, reliability is often attained before presenting the SUT
to a client, reducing the importance of acceptance testing. Test design for reli-
ability also typically does not seem to use mocking or test-driven development,
perhaps because reliability is most meaningful for a near-final product.

In contrast, quality is often a focus of GUI and human-driven practices. Some
typical quality types, such as usability, rely on replicating the typical user expe-
rience. This may lead to prominent use of human-driven practices. Correctness,



How Do Different Types of Testing Goals Affect Test Case Design? 13

0.00

25.00

50.00

75.00

100.00

Unit Testing

Integration Testing

System Testing
GUI Testing

Acceptance Testing

Exploratory Testing

Manual Testing

Functional Testing

Non-Functional Testing

Test-Driven Dev.
Mocking

Correctness Reliability Quality

Fig. 7: % of respondents performing testing practices when designing tests for
correctness, reliability, and quality goals.

0.00

25.00

50.00

75.00

100.00

Command Line
API Testing 

Automated Testing 

Jupyter Notebooks

CI/CD Pipelines

Property-Based Testing

Analysis Tools

BDD frameworks

Browser-Based Testing
Jira/XRay

SILK test

Brainstorming Tools

Correctness Reliabilility Quality

Fig. 8: % of respondents using different tools when designing tests for
correctness, reliability, and quality goals.

as the “default” goal of testing, necessitates use of almost all practices, with the
exception of acceptance testing. Acceptance testing is generally conducted at a
late stage of development—when developers have a product to demonstrate [22].
At this stage, correctness testing may have largely concluded.

Automated testing frameworks, CI/CD pipelines, API frameworks, and command-
line scripting are used for all three goal types. Property-based testing tools, which
generate random input to violate properties, are used to assess correctness or
reliability, but not quality goals. Test management tools, such as Jira and its
Xray plug-in, are used for correctness and quality. However, they are less useful
for reliability, which depends primarily on executing tests on demand.

RQ2.3 (Relationship Factors): Reliability is often pursued using
code-focused, automated practices on a near-final product. Quality is of-
ten pursued using human and GUI-focused practices. Acceptance testing
is rare for correctness and reliability, but more common for quality. Auto-
mated and API testing frameworks, CI/CD pipelines, and command-line
scripting are common for all goal types.

Organizational Factors: Organizational policies, process, and team compo-
sition could also influence test design, regardless of the goal type. We asked



14 D. Istanbuly et al.

18
13

6
N/A or Unknown
16.2%

No
35.1%

Yes
48.6%

(a) Whether participants must follow
company or legal policies during test design.

15

8

14
Both
37.8%
With a Team
21.6%

By Myself
40.5%

(b) Whether participants design tests
alone or in teams.

Fig. 9: Organizational factors that may affect test design.

survey participants whether there are test design constraints enforced by their
organization or legal regulations. Figure 9(a) indicates that constraints affect
the majority (48.60%) percent of respondents.

We also asked respondents whether they design tests alone, in a team, or
both, as collaborative design may lead to different tests than design by a single
tester. Figure 9(b) indicates that a slight plurality (40.50%) work along, but that
many work in team settings at all (21.60%) or some (37.80%) times. Interviewees
suggested that the need for teamwork increases with project complexity:

“If design strategies are needed, teamwork is mandatory.” - P4

In a group setting, test design is also often led by test leads with assistance from
others working under them:

“Test leads can do a pretty good job there. So, trust your test leads.” - P2

Survey participants were also asked about the influence of development processes
on test design. Many felt that there was no influence—other than the positive
increase in the use of CI tools and DevOps—or even that testers are the ones
that influence development practices:

“Most often we influence them... We are also the gateway that demands documen-
tation.” - SP19

Others discussed positive and negative aspects of short development cycles:

“Short cycle times encouraged by an agile-like methodology do make it difficult
sometimes to add test cases, but some of our PRs tend to be quite self contained
(i.e. the change is proposed with several test cases).” - SP21

Multiple respondents indicated that agile processes can be beneficial for getting
feedback and offering structure:

“It helps me to be structured. Keep track of things, like if all the functionalities are
covered by the test suits are not.” - SP7

Respondents also warned that rigid enforcement of practices can waste testing
resources that could otherwise be devoted to more productive goals:

“large suite that must pass ... makes the teams ‘waste’ time when making sure that
as many as possible checks will pass when pushing to master.” - SP23



How Do Different Types of Testing Goals Affect Test Case Design? 15

RQ2.3 (Relationship Factors): Test design can be influenced by pro-
cess, organization, and team structure. Many testers are constrained by
organization or regulatory policies. Testers perform design individually
somewhat more often, but also often work in teams. Testers feel they
can influence development methodologies, and that agile processes offer
feedback and structure. However, there are positive and negative aspects
of short release cycles, and rigid practice enforcement can waste time.

6 Threats to Validity
Conclusion Validity: The number of responses may affect conclusion reliabil-
ity. However, our thematic findings reached saturation within nine interviews,
and the qualitative survey results fell within the same themes and sub-themes.
Further interviews or survey results could enrich our findings, but may not pro-
duce significant additions.
Construct Validity: The interviews or survey could have missing or confusing
questions, and there was opportunity for misinterpretation. There is also a risk
that participants may not be familiar with particular terminology. However, as
all participants had prior experience in testing, this risk is minimized. We also
provided a brief introduction before the interviews and the survey to further
reduce this risk. The use of semi-structured interviews allowed us to ask follow-
up questions. We also conducted pre-testing of the survey.
External Validity: The generalizability of our findings is influenced by the
number and background of participants. Our participants represent a variety of
development roles, experience levels, and product domains. Therefore, we believe
that our results are relatively applicable to the software development industry.
Internal Validity: We applied thematic coding, a qualitative practice that
suffers from known bias threats. We mitigated these threats by performing in-
dependent coding and comparing results, finding sufficient agreement. We make
our results available for further analysis, increasing transparency.

7 Conclusion
Our interviews with testers suggest nine common types of goals pursued when
designing test cases, as well as an indication of the relative importance of each
goal type. Our findings also shed light on the process of test design for different
goals, as well as the factors that can influence this design process.

This research provides a basis for understanding how test design is influenced
by particular types of testing goals. Our observations should be confirmed and
expanded in future work with further, focused data collection. In particular,
we plan to further explore the collective impact of organization factors, team-
versus-individual design, and testing goals on the design process. We would also
like to explore situations where multiple types of goals are targeted simultane-
ously during test design. We additionally plan to expand our model of the test
design process, with a focus on how knowledge of tester practices can enhance
automated test generation.



References

[1] M. Aniche, C. Treude, and A. Zaidman. How developers engineer test
cases: An observational study. IEEE Transactions on Software Engineering,
48(12):4925–4946, 2022.

[2] E. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo. The oracle
problem in software testing: A survey. IEEE Transactions on Software
Engineering, 41(5):507–525, May 2015.

[3] A. Beer and R. Ramler. The role of experience in software testing practice.
In 2008 34th Euromicro Conference Software Engineering and Advanced
Applications, pages 258–265, 2008.

[4] J. E. Bentley, W. Bank, and N. Charlotte. Software testing fundamen-
tals—concepts, roles, and terminology. In Proceedings of SAS Conference,
pages 1–12, 2005.

[5] V. Braun and V. Clarke. Using thematic analysis in psychology. Qualitative
Research in Psychology, 3(2):77–101, 2006.

[6] D. S. Cruzes and T. Dyba. Recommended steps for thematic synthesis
in software engineering. In 2011 International Symposium on Empirical
Software Engineering and Measurement, pages 275–284, 2011.

[7] S. Eldh, H. Hansson, and S. Punnekkat. Analysis of mistakes as a method
to improve test case design. In 2011 Fourth IEEE International Conference
on Software Testing, Verification and Validation, pages 70–79, 2011.

[8] E. Enoiu and R. Feldt. Towards human-like automated test generation:
Perspectives from cognition and problem solving. In 2021 IEEE/ACM 13th
International Workshop on Cooperative and Human Aspects of Software
Engineering (CHASE), pages 123–124, 2021.

[9] E. Enoiu, G. Tukseferi, and R. Feldt. Towards a model of testers’ cognitive
processes: Software testing as a problem solving approach. In 2020 IEEE
20th International Conference on Software Quality, Reliability and Security
Companion (QRS-C), pages 272–279, 2020.

[10] V. Garousi and J. Zhi. A survey of software testing practices in canada.
Journal of Systems and Software, 86(5):1354–1376, 2013.

[11] G. Gay. One-size-fits-none? improving test generation using context-
optimized fitness functions. In 2019 IEEE/ACM 12th International Work-
shop on Search-Based Software Testing (SBST), pages 3–4, 2019.

[12] D. P. Hale and D. A. Haworth. Towards a model of programmers’ cognitive
processes in software maintenance: A structural learning theory approach
for debugging. Journal of Software Maintenance: Research and Practice,
3(2):85–106, 1991.

[13] J. E. Hale, S. Sharpe, and D. P. Hale. An evaluation of the cognitive pro-
cesses of programmers engaged in software debugging. Journal of Software
Maintenance: Research and Practice, 11(2):73–91, 1999.

[14] I. Karac and B. Turhan. What do we (really) know about test-driven de-
velopment? IEEE Software, 35(4):81–85, 2018.



How Do Different Types of Testing Goals Affect Test Case Design? 17

[15] J. Linaker, S. M. Sulaman, M. Höst, and R. M. de Mello. Guidelines for
conducting surveys in software engineering v. 1.1. Lund University, 2015.

[16] M. S. Litwin and A. Fink. How to measure survey reliability and validity,
volume 7. Sage, 1995.

[17] R. McLeod Jr and G. D. Everett. Software Testing: Testing Across the
Entire Software Development Life Cycle. John Wiley & Sons, 2007.

[18] A. Newell, H. A. Simon, et al. Human problem solving, volume 104. Prentice-
hall Englewood Cliffs, NJ, 1972.

[19] M. Pezze and M. Young. Software Test and Analysis: Process, Principles,
and Techniques. John Wiley and Sons, October 2006.

[20] S. Quadri and S. U. Farooq. Software testing–goals, principles, and limita-
tions. International Journal of Computer Applications, 6(9):1, 2010.

[21] P. Runeson. A survey of unit testing practices. IEEE Software, 23(4):22–29,
July 2006.

[22] I. Sommerville. Software Engineering. Addison-Wesley Publishing Com-
pany, USA, 9th edition, 2010.

[23] G. Upton and I. Cook. A dictionary of statistics 3e. Oxford university
press, 2014.

[24] J. A. Whittaker. Exploratory software testing: tips, tricks, tours, and tech-
niques to guide test design. Pearson Education, 2009.


	How Do Different Types of Testing Goals Affect Test Case Design? 
	References

