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Detecting Abnormality of Battery Lifetime from First-Cycle
Data Using Few-Shot Learning

Xiaopeng Tang, Xin Lai, Changfu Zou,* Yuanqiang Zhou, Jiajun Zhu, Yuejiu Zheng,
and Furong Gao*

The service life of large battery packs can be significantly influenced by only
one or two abnormal cells with faster aging rates. However, the early-stage
identification of lifetime abnormality is challenging due to the low abnormal
rate and imperceptible initial performance deviations. This work proposes a
lifetime abnormality detection method for batteries based on few-shot
learning and using only the first-cycle aging data. Verified with the largest
known dataset with 215 commercial lithium-ion batteries, the method can
identify all abnormal batteries, with a false alarm rate of only 3.8%. It is also
found that any capacity and resistance-based approach can easily fail to
screen out a large proportion of the abnormal batteries, which should be
given enough attention. This work highlights the opportunities to diagnose
lifetime abnormalities via “big data” analysis, without requiring additional
experimental effort or battery sensors, thereby leading to extended battery life,
increased cost-benefit, and improved environmental friendliness.
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1. Introduction

The lithium-ion battery is widely regarded
as a promising device for achieving a sus-
tainable society.[1,2] Nevertheless, its man-
ufacturing process is always accompanied
by high consumption of energy and raw
materials.[3,4] Therefore, a long enough ser-
vice life is critical to achieve net-zero carbon
emissions and make positive environmen-
tal impacts,[5,6] especially noting that the
electricity for battery manufacturing and
charging is mostly (70−−80% for the globe)
generated from fossil fuels today.[7,8]

The long service life of individual bat-
teries may not necessarily guarantee the
satisfactory life-cycle performance of a bat-
tery pack, in which hundreds of bat-
tery cells are connected in series and
parallel to meet the power and energy

requirements of applications such as electric vehicles and renew-
able energy storage.[9] Without proper maintenance, the service
life of a large battery pack can be significantly reduced by only
one or two abnormal cells with faster aging rates,[10–12] even if
the majority of the candidates in the pack have normal aging be-
haviors. Screening out these few batteries with abnormal lifetime
performances prior to battery grouping and pack assembly can
improve the capacity, lifetime, and cost-benefit of a battery pack
with immediate effect.[13]

Many previous studies have emphasized battery screening and
their core idea is to group batteries with similar key parameters
into a pack. To date, the most widely used screening method in
the industry is the capacity-resistance (CR) method,[14] in which
batteries with similar capacity and resistance values are assumed
to have similar performance. In addition to these two indexes, in-
cremental capacity peaks,[15] pulse charging responses,[16] voltage
trajectories,[17] and electrochemical impedance spectroscopy[18]

have also been applied for battery screening. These tests are fast,
requiring no more than 12 h in general. In addition, they can
effectively screen out the abnormalities that are immediately ob-
servable, e.g., high resistance. However, the lifetime abnormality,
involving the long-term decay of the battery’s future capacity, is
not considered.

Identifying the batteries’ lifetime abnormality is challenging,
especially at the beginning of their service life.[19] First, abnormal
aging behaviors are more likely to be perceived in the latter part of
the battery life, compared to much less information to be possibly
extracted in the first few cycles.[20] As a result, even the best exist-
ing algorithms still need to use the data collected from the first
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Figure 1. Illustration of our battery aging data. a) Initial resistance versus capacity of 215 batteries. b) Capacity degradation trajectories of 215 batteries.
Here, the batteries aging at an average rate of lower than 10 mAh/cycle after the 90th cycle are labeled with “normal”, while the others are labeled with
“abnormal”.

3–5 cycles of the aging process for abnormality detection.[21,22]

In addition to the increased testing time, their prediction errors
are also as large as 10 to 15%. Second, the low abnormal rate
itself poses challenges to dataset establishment.[23,24] To collect
sufficient abnormal samples, we have to carry out long-term ag-
ing tests on a large number of batteries, making the experiments
costly and time-consuming. Finally, the correctness of a classifi-
cation (made at the beginning stage of the battery life) can only
be experimentally verified after long-term battery usage. The de-
layed feedback hinders the algorithm’s development. With these
issues in mind, the early-stage identification of the battery life-
time abnormality remains an unsolved problem in the field of
battery manufacturing and management.

In this work, we make the first attempt to identify the lifetime
abnormality of lithium-ion batteries using only the first-cycle
aging data. A few-shot learning network is developed to detect
the lifetime abnormality, without requiring prior knowledge of
degradation mechanisms. We generate the largest known dataset
for lifetime-abnormality detection, which contains 215 commer-
cial lithium-ion batteries with an abnormal rate of 3.25%. Our
method can accurately identify all abnormal batteries in the
dataset, with a false alarm rate of only 3.8%. The overall accuracy
achieves 96.4%. In addition, we find that the widely used capacity-
resistance-based methods are not suitable for identifying lifetime
abnormality, which must draw enough attention from the battery
community. Our proposed identification algorithm offers a reli-
able and cost-effective way to immediately improve the lifetime of
multi-cell battery packs, without requiring additional experimen-
tal effort, battery sensors, or knowledge of aging mechanisms,
thereby leading to extended battery life, increased cost-benefit,
and improved environmental friendliness.

2. Results and Discussion

2.1. Data Generation

A group of 215 commercial batteries have been tested in this work
(type: 18650, chemistry: LiNi0.8Co0.1Mn0.1O2/graphite). These
batteries underwent sequentially an initial resistance test, an

initial capacity test, and an accelerated aging test with the cur-
rent rate increased to 3C. During accelerated aging, seven out of
215 batteries exhibited abnormal aging behaviors. The generated
dataset is shared publicly for further battery research and devel-
opment, as described in Data Availability Statement Section. The
full experimental details are provided in Supporting Information.

2.2. Limitations of the Capacity-Resistance Method

We first check the initial capacity and resistance of all the batter-
ies, with the results shown in Figure 1. All the 215 batteries share
a similar initial capacity (2.53± 0.05 Ah) and resistance (13.7±0.5
mΩ). However, their aging trajectories, as shown in Figure 1b,
can be highly different even if these batteries underwent the same
aging test. To be specific, in the last 25% of the aging test (90th to
120th cycle), seven out of the 215 batteries exhibit a significantly
faster local aging rate (>10 mAh/cycle on average) than the oth-
ers (<5 mAh/cycle). These seven batteries are, therefore, defined
as “abnormal”. From the data monitoring point of view, these ab-
normal samples are also defined as “positive samples”, while the
normal batteries are termed as “negative samples” in the follow-
ing discussions.

In the CR method, the classification relies on two parameters
- capacity (C) and resistance (R). A battery is classified as normal
if these two parameters fall into a certain tolerance range. For in-
stance, when the allowable parameter ranges are selected as C ∈

[2.48, 2.58] Ah and R ∈ [13.2, 14.2] mΩ, the CR method will report
all batteries as “normal”. In other words, all the abnormal individ-
uals shown in Figure 1a cannot be identified, and both the true
positive rate (TPR, rate of successfully identifying the abnormal
batteries) and the false negative rate (FNR, rate of reporting nor-
mal batteries as abnormal) are 0%. By further narrowing down
the parameter ranges, the TPR could improve at the cost of an
increase in FNR. As shown in Figures 2 and 3, when the ranges
are tuned so that the CR method can identify all abnormal batter-
ies (TPR = 100%), the minimum FNR is 68.27%, implying that at
least 68.27% of the normal batteries are predicted to be abnormal.
On the other hand, when the FNR is controlled to be lower than
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Figure 2. True positive rate (in %) of the predictions with different capacity and resistance ranges. For instance, the value in the 2nd row 8th column is
85.71, which means when i = 2 and j = 8, the true positive rate of the prediction is 85.71%.

10%, the highest TPR is only 28.57%, implying that more than
70% of the abnormal batteries cannot be identified. From these
results, even with the fine-tuned parameters, the performance of
the CR method may still not be satisfactory.

2.3. Identifying Lifetime Abnormality via Few-Shot Learning
Network

The overall performance of our few-shot learning network is
summarized in Figure 4a, in which 7 abnormal and 104 normal
batteries are utilized for testing (See Section 4.1 for details). We
can accurately screen out all seven abnormal batteries. In addi-
tion, 100 out of 104 normal batteries could be identified. The over-
all prediction accuracy achieves 96.4%, and the false alarm rate is
only 3.8%. As an effective statistical index considering both the
precision and recall of a model, the F2-score (see Section 4.1 for
details) of our prediction achieves 89.74%.

More specifically, the prediction scores (see Section 4 for de-
tails) of all abnormal batteries are given in Figure 4b. The scores
of all batteries are lower than a predefined threshold, i.e., 50%
in this work, implying that all abnormal batteries are accurately
predicted to be “abnormal”. In our test, the first abnormal battery
has the highest score (44.6%), and its aging trajectory is given in

Figure 4c. Compared with other abnormal batteries, its average
aging rate between the 90th and 120th cycle is indeed the lowest.

For the normal batteries, their prediction scores are given in
Figure 4e. 100 out of 104 batteries receive a score >50%, imply-
ing that these batteries could be classified as “normal”. Further,
the scores of 93 batteries are higher than 99%, indicating that our
predictions are highly confident. For the false-alarmed batteries
with a score <50%, their aging trajectories are given in Figure 4d,
and their resistance versus capacity plot is given in Figure 5. The
resistance of 5 out of 7 abnormal batteries lies between 13.45
and 13.57 mΩ, while 3 out of 4 false-alarmed batteries also have
this resistance range. In addition, the capacity of 3 out of 4 false-
alarmed batteries lies in the range of 2.551 to 2.553 Ah. In short,
these false-alarmed batteries are somehow similar to the abnor-
mal ones, posing challenges to our few-shot learning-based clas-
sifier.

2.4. Discussion

2.4.1. Results of Other Commonly Seen Algorithms

To further illustrate the superiority of the proposed method,
we test the classification performance of six commonly used
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Figure 3. False negative rate (in %) of the predictions with different capacity and resistance ranges. For instance, the value in the 2nd row 8th column is
60.1, which means when i = 2 and j = 8, the false negative rate of the prediction is 60.1%.

abnormal detection algorithms, including the one-class support-
ing vector machine, auto-encoder, density-based spatial cluster-
ing of applications with noise (DBSCAN), isolation forest, K-
nearest neighbor, and local outlier factor model. The detailed re-
sults of these algorithms are given in Sections S.2.1–S.2.6, (Sup-
porting Information). In our tests, the best conventional algo-
rithm could only achieve an F2-score of 37.8%, with an accuracy
of 83.7% and a false alarm rate of 15.9%. Such a performance is
significantly lower than the proposed method and cannot meet
the general engineering requirements.

As detailed in Section 4, the proposed few-shot learning is a
supervised learning algorithm. The benefit of supervised learn-
ing is that it has a clear training target, resulting in more ef-
fective training processes. However, in an abnormality detection
problem, we are unlikely to cover all possible abnormal cases in
the training set, posing challenges to the generalization of our
method. In our solution, we design networks that tell if any two
batteries in the pool come from the same group, rather than di-
rectly telling if a battery is normal or not. In this way, we stand a
chance to produce an effective classifier. From the posterior point
of view, our method outperforms six main-stream unsupervised
abnormality detection algorithms. We use the minimum possi-
ble input requirement (the first cycle data only) and achieve the

top-class lifetime abnormal detection performance on the largest
known dataset.

2.4.2. Results of Different Cell Systems

The battery’s behavior changes significantly with chemistry and
load profiles.[25] To examine the effectiveness of the proposed
framework for various cell systems with different testing proce-
dures, an additional dataset from Ref. [26] was used. First, ten bat-
teries with the highest life cycle and another ten with the lowest
life cycle were first selected and then filled into two classes. The
aging trajectories of these 20 batteries are shown in Figure 6a.
Then, our algorithm is carried out to implement the classifica-
tion, with the results given in Figure 6b. In this dataset, the over-
all accuracy achieves 100%. Such a high accuracy indicates that
the proposed framework can be easily used for different battery
types and duty cycles. At the same time, conventional unsuper-
vised methods listed in Section 2.4.1 can achieve only limited
accuracy. The best result has an F2-score of 86.5% and an ac-
curacy of 71.4% only. The full details about the data and val-
idation results can be found in the Section S.2.7 (Supporting
Information).
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Figure 4. Classification results of the proposed method. a) Confusion matrix; b) Prediction scores of the abnormal batteries (the lower, the better); c)
Aging trajectories of the abnormal batteries, where the one with the highest prediction score is highlighted with dark green; d) Aging trajectories of the
normal batteries, in which the four batteries with the prediction score <50% are highlighted with yellow; e) Prediction scores of the normal batteries
(the higher, the better).

It is worth noting that there is no well-established theory
that can accurately and physically explain how the battery’s ag-
ing behavior over its lifetime is related to attributes measured
at the beginning of life. However, the aging-related attributes
can be statistically calculated. According to Ref. [27], the top ten

attributes are mostly associated with the battery’s pulse resis-
tance or electrochemical impedance spectroscopy (EIS) for bat-
teries in Ref. [26]. As confirmed by Ref. [28] and our recent
work,[29] neural networks are capable of extracting EIS and gen-
eral resistance information from the battery’s operating data
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Figure 5. Comparison between the abnormal batteries and the normal
batteries with prediction score <50%.

(e.g., constant-current-constant-voltage charging data, see Sec-
tion 4 for details). Therefore, it can be inferred that a powerful
data-driven machine can build a pathway from the first-cycle test-
ing data to the battery lifespan in-explicitly.

3. Conclusion

Early-stage lifetime abnormality prediction is critical to prolong-
ing the service life of a battery pack, but technically challenging
due to not only the limited information to be possibly extracted
in the first few cycles but also the inherently low rate of battery
abnormality. In this paper, we use the few-shot learning method
to predict the lifetime abnormality of the batteries with only first-
cycle aging data. Verified with the largest known dataset gener-
ated in this work, the proposed method successfully identifies
all abnormal batteries, with a false alarm rate of only 3.8%. Our
method cannot only be used on new batteries but also unlock ex-
citing future research opportunities to assist in the screening of

retired batteries to facilitate their second-life usage, further ex-
tending the battery’s service life. Given the limited experimen-
tal resources, the dataset used in this work was generated with
accelerated aging tests for only one battery type (although it is
the largest known dataset). When using the results in this work
for highly diverse usage scenarios associated with different ag-
ing mechanisms or even different batteries, model migration or
transfer learning techniques could be a solution to maintain high
accuracy and robustness. The first-cycle data used in this work
will also be extended to the formation data so that the proposed
method can be used by battery manufacturers without carrying
out additional tests.

4. Experimental Section
Overview: The proposed battery lifetime abnormality detection

method was a supervised data-driven algorithm based on few-shot learn-
ing, and it basically had two steps – training and testing. The overall
scheme of the algorithm is given in Figure 7. In the training phase, a
group of 1000 neural networks was first trained with known data collected
through the experiment. In the testing phase, these well-trained networks
could be utilized to predict whether the lifetime of an unknown battery was
normal. Technical details are provided in the following subsections.

Training Phase: In the training phase, it trained such networks that
tell if any two randomly selected batteries belong to the same group. As
described in Table 1, when any battery i and battery j are both normal or
abnormal, the network was expected to provide a “true” response. At the
same time, if one battery was normal while the other was abnormal, the
network was expected to provide a “false” response.

To implement the above-mentioned functions, the input of the network
should consist of the data collected from two batteries:

IN =
[
Γi,Γj]T

(1)

where Γi and Γj are column vectors containing the key features of the ith

and jth battery, respectively.
To maximize the data mining capability of the neural network, the bat-

tery feature here was directly obtained from the raw data of the exper-
iments. Specifically, the voltage data measured in the constant current
charging phase and the current data measured in the constant voltage
charging phase were combined as a column vector to serve as the input:

Γk =
[
Vk

1 , Vk
2 ,… , Vk

L1
, Ik

L1+1, Ik
L1+2,… , IL

k
2

]T
(2)
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Figure 6. Additional results. a) Aging trajectories of different batteries; b) Confusion matrix of the prediction.
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Figure 7. The framework of the proposed method.

where L1 is the duration for the constant current phase, and L2 is the dura-
tion of the entire charging process. For the considered batteries and charg-
ing profile, we have L1 = 65 and L2 = 100.

Finally, a three-layer neural network was employed to map the input to
the output. The hidden layer of the network was activated by the radbas()
function:

radbas(x) = e−x2
(3)

and the output layer was activated by the softmax() function:

yk = softmax(zk) = ezk

∑N
j=1 ezj

(4)

where Z = [z1, z2, ⋅⋅⋅, zN]T is the input of the softmax function, N is the
number of output neurons, zj ∈ Z, zk ∈ Z, j ∈ [1, N], and k ∈ [1, N]. Fol-
lowing Table 1, N = 2 is selected in this work. The network’s output is
binarized with the following rule: we have [y] = 1 if 0.5 ⩽ y ⩽ 1, and [y] = 0
if 0 ⩽ y < 0.5.

Our network was trained by a conjugate gradient backpropagation al-
gorithm with Fletcher-Reeves updates,[30] and full details are provided
in the uploaded code. To minimize the influence of the random network
initialization,[31] we trained 1000 networks in the training phase and used
their averaged output to compensate for the random errors in the testing
phase (as detailed in the Section 4).

Testing Phase: In the testing phase, we basically use the well-trained
networks to tell if an unknown battery from the testing dataset and a known
battery (also named the “supporting battery” here) are in the same group.
In other words, we test if the network’s output corresponding to IN = [Γu,
Γs]

T is “true”, where Γu is the feature vector extracted from the unknown

Table 1. Desired output of the few-shot network.

Battery i: normal Battery i: abnormal

Battery j: normal [1;0] (true) [0;1] (false)

Battery j: abnormal [0;1] (false) [1;0] (true)

battery, while Γs is the feature extracted from the supporting battery. As
detailed in Table 2, an unknown battery can be classified as “normal” if
it is in the same class as a normal battery or in a different class with an
abnormal battery.

When we have a well-trained network, we may be willing to use M sup-
porting batteries (with M1 known normal samples and M2 known abnor-
mal samples, M = M1 + M2, M1 > 0, M2 > 0, M ⩾ 2) to improve the
reliability and robustness of our prediction. In this case, we can carry out
M predictions with all the supporting batteries. For each time the unknown
battery is predicted to be normal by a normal supporting battery, we add
1/M1*50% score to its rate; for each time the unknown battery is predicted
to be normal by an abnormal supporting battery, we add 1/M2*50% score
to it. After carrying out all predictions, the unknown battery is believed to
be normal if its final score is greater than 50%.

We may also use the averaged prediction results of more networks to
further minimize the random prediction error. When we have H (H ⩾ 1)
well-trained networks, the abnormality detection for an unknown battery
can then be carried out for H times. For each time the unknown battery is
predicted to be normal, we add 1/H*100% score to this battery’s rate.
Again, the unknown battery is predicted to be normal if the prediction
score is greater than 50%. As pointed out in Section 4, we select H = 1000
in this work.

4.0.0.1. Data Preparation for Network Training: As a common issue for
most abnormality detection problems, the percentage of abnormal sam-
ples was usually significantly lower than the normal ones. Therefore, a del-
icate data preparation method for network training was required. The data
preparation method contains three parts, namely, data segmentation, nor-
mal data drop-out, and abnormal data creation.

Table 2. Prediction result for the unknown battery when the network’s input
is IN = [Γu, Γs]

T.

Network’s output:
[0;1] (false)

Network’s output:
[1;0] (true)

(Known) Supporting battery: abnormal Normal Abnormal

(Known) Supporting battery: normal Abnormal Normal

Adv. Sci. 2023, 2305315 © 2023 The Authors. Advanced Science published by Wiley-VCH GmbH2305315 (7 of 9)
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Data-Segmentation
Given that it had only seven abnormal batteries in the dataset, the leave-

one-out method[32] was adopted for these batteries. Specifically, when
training the network, it selected data from six abnormal batteries for train-
ing and leave only one for testing. This process was repeated seven times
so that all abnormal batteries could be tested one time, and the seven
sub-tests were combined to provide the final results. For the 208 normal
batteries, it simply used the first half for training and the remaining half
for testing.

Drop-Out of Normal Samples
With the above configurations, it had more than a hundred normal

batteries but only six abnormal ones in the training set. Consequently,
the training set was heavily unbalanced, posing challenges to accurate
predictions.[33] In this case, the drop-out technique was employed to re-
move some normal batteries from the training set. To be specific, for each
abnormal battery in the training set, we check its aging trajectory and find
the N1 normal batteries whose aging trajectories were closest to it. Here
the distance between two aging trajectories is defined by:

Di,j =
1
L

√√√√ L∑
k=1

(
Ci,k − Cj,k

)2
(5)

where Di, j is the distance between the trajectories of the ith battery and
the jth battery, Ci, k is the capacity of cell i measured at kth cycle, and L is
the total number of the cycles evaluated. By selecting a suitable N1 (N1
= 3 is selected in this work), a large number of normal batteries could be
removed from the training set. In addition, the remaining normal samples
could be regarded as the “boundary” to classify the normal and abnormal
batteries, which could improve the generalization of the network.[34]

Creation of Abnormal Samples
In addition to the unbalanced proportion, the low absolute number of

abnormal batteries was also an important issue to handle. Here, we pro-
posed to solve this issue by “creating” more abnormal data. The aim of
this work was to use the data collected from the first cycle of the aging test
to identify the lifetime abnormality. However, as shown in Figure 1 and
many other battery aging datasets,[22,35,36] the battery’s behaviors in the
first few cycles were highly similar. Therefore, we proposed to use the data
collected in the first N2 cycles to enrich the training set. In other words,
when we had actually collected one abnormal battery, we could pretend
that we had collected N2 abnormal (fake) batteries. The “first cycle data”
for these N2 fake batteries were obtained from the data of the abnormal
battery collected from cycle 1 to cycle N2. In short, for each abnormal bat-
tery collected, it generated N2 feature vectors (Γ) in the training phase.

There were some issues worth pointing out. First, the strategy here was
to “create” data from the experimental facts. It was different from the con-
ventional resampling- or oversampling-based “data-creating” approaches,
where rule-based methods were basically used to draw random particles
around the known positive samples.[33] Second, the data-creating method
here was also applied to the selected normal batteries, to minimize the in-
fluence of slight battery aging during the period between cycle 1 and cycle
N2. Third, the data creation was only applied in the training phase. In the
testing phase, our method only compares the first cycle data of an un-
known battery with the known data in the supporting set to implement
the classification. Finally, for the specific dataset generated in this work,
N2 = 4 is selected.

Performance Indicators: Some terminologies and key performance in-
dicators used in this work were introduced. First, the definitions of true
positive, true negative, false positive, and false negative are given in
Table 3. Then, the accuracy of the prediction can be calculated by:

Accuracy = TP + TN
TP + TN + FP + FN

× 100% (6)

The Precision and Recall can be defined respectively as:

Precision = TP
TP + FP

× 100% (7)

Table 3. Definition of the terminologies.

Actual class: abnormal Actual class: normal

Predicted class: abnormal True Negative (TN) False Negative (FN)

Predicted class: normal False Positive (FP) True Positive (TP)

Recall = TP
TP + FN

× 100% (8)

The F𝛽 score of the prediction is defined as:

F𝛽 =
(
1 + 𝛽2) ⋅ Precision ⋅ Recall

𝛽2 ⋅ Precision + Recall
× 100% (9)

When 𝛽 = 1 is selected, Precision and Recall are given the same weight.
When 𝛽 < 1, Precision is more important. When 𝛽 > 1, Recall becomes
more important. 𝛽 = 2 is utilized in this work since the consequences of
missing alarms were more severe than that of the false alarm in battery
lifetime abnormality detection.
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