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magnetohydrodynamics on the sphere

Michael Roop
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Abstract

Many physical processes are modelled by partial differential equations (PDE),
and their efficient discretization is still a challenging problem and an actively
developing field. An important class of models arising in mathematical physics
represents PDEs formulated in terms of a Lie–Poisson structure on the dual of
infinite-dimensional Lie algebras, such as the Lie algebra of vector fields. They are
usually referred to as Euler–Arnold systems. A natural approach to discretizing
such PDEs is to develop numerical schemes that preserve the underlying Lie–
Poisson structure. In the present thesis, an important class of such equations is
addressed, namely equations of incompressible magnetohydrodynamics (MHD) on
the sphere. The thesis comprises two papers.

In the first paper, a spatio-temporal discretization of MHD on the sphere is de-
veloped. This numerical scheme fully preserves the underlying Lie–Poisson struc-
ture. The discretization is performed into two steps. First, space discretization
based on geometric quantization provides a finite-dimensional Lie–Poisson system
on the dual of a semidirect product Lie algebra. Second, structure preserving time
integrator is developed. It exactly preserves all the Casimirs and nearly preserves
the Hamiltonian function in the sense of backward error analysis.

In the second paper, the developed structure preserving integrator is applied
to Hazeltine’s model of 2D turbulence in magnetized plasma. Simulations reveal
formation of large-scale coherent structures in the long time behaviour, which
indicates the presence of an inverse energy cascade.

Keywords: magnetohydrodynamics, Lie–Poisson structure, magnetic exten-
sion, Casimirs, Hamiltonian dynamics, symplectic Runge-Kutta integrators.
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1 Introduction

The incompressible Euler equations is one of the most important mathematical
model used to investigate the motion of fluids on different domains (with or with-
out a boundary). It consists of two conservation laws, the momentum and mass
conservation laws, accompanied with the incompressibility condition, which is con-
stancy of the density of the fluid. The latter results in vanishing divergence of the
velocity field of the fluid.

Numerous works have been devoted to understanding the properties of solu-
tions to the Euler equations, both by analytical and numerical methods. Perhaps
one of the most fundamental observations was made by V.I. Arnold in 1960s,
who discovered their geodesic nature [2, 4]. Namely, the incompressible Euler
equations constitute a geodesic flow on the group of volume preserving diffeomor-
phisms of the underlying manifold (for instance, the sphere), with respect to the
right-invariant L2 metric. Later, the same formalism has been shown to cover
a large variety of equations of mathematical physics. Among them are inviscid
Burger’s equation, barotropic and fully compressible Euler’s equations, magneto-
hydrodynamics equations, linear and non-linear Schrödinger equations, and many
other [17]. Arnold’s discovery gave rise to a new field in mathematics, geometric
fluid mechanics, that opened up new insights in such fundamental problems as
stability criteria for solutions to the Euler equations, global existence of solutions,
turbulence of the Earth’s atmosphere.

In the present thesis, we address one example of Euler–Arnold systems, the
system of self-consistent magnetohydrodynamics equations. This model has im-
portant applications in astrophysics, physics of plasma, and geophysics [13, 10, 24,
11, 12]. The model describes charged incompressible fluids that, on the one hand,
transport the magnetic field, and on the other hand experience influence from the
magnetic field. This leads to an extension of the incompressible Euler model by
adding the dynamics of the magnetic field and by including the Lorentz force in
the momentum conservation law. Geometrically, the MHD system is a Lie–Poisson
flow on the dual of the magnetic extension of the Lie algebra of volume preserving
diffeomorphisms group.

The long time behaviour of solutions to the Euler equations is a prominent
problem in mathematical fluid dynamics. Such applied questions as understanding
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2 Chapter 1. Introduction

the weather patterns on planets, formation of large scale coherent structures in
atmospheric motions, are directly related to this problem. As there is no possibility
to create a laboratory for experiments with the atmosphere, the way is to utilize
computational facilities. The natural step then is to develop efficient numerical
algorithms to simulate the equations of hydrodynamics.

Spatio-temporal discretization of hydrodynamic equations has always been a
challenging problem, especially when it comes to long time simulations. The in-
terpretation of the Euler equations as geodesic equations on the group of volume
preserving diffeomorphisms gave significant contribution not only to the develop-
ment of theoretical tools for investigating fluids’ motion, but also paved a way
for constructing efficient numerical methods allowing for long time simulation of
fluids. Indeed, the Hamiltonian interpretation of Arnold’s observation suggests
that the Euler equations constitute a Lie–Poisson flow on the dual of the Lie al-
gebra consisting of divergence-free vector fields, which is a Poisson reduction of
Hamilton’s equations on the cotangent bundle of the group of volume preserving
diffeomorphisms. This means that the system admits a lot of (in fact, infinitely
many) conservation laws, Casimirs. Preservation of Casimirs is known to be vital
in long time simulations [1]. Indeed, conservation of Casimirs restricts the set of
possible states that can be reached from a given initial state, thus determining the
qualitative long time behaviour. Therefore, in order to capture that behaviour,
one should use methods that preserve the underlying Lie–Poisson geometry, and,
in particular, Casimirs.

The goal is achieved in two steps. First, one needs to discretize the equations in
space. The main tool here is the theory of Berezin–Toeplitz quantization developed
in the works [5, 6, 14, 15, 16]. The main idea is that the infinite-dimensional Pois-
son algebra of smooth functions is replaced with its finite-dimensional analogue,
the Lie algebra of skew-hermitian matrices with the Lie bracket given by the matrix
commutator. This makes it possible to introduce a finite dimensional approxima-
tion of the Euler equations — the flow on skew-hermitian matrices, known as the
Euler–Zeitlin model [26]. Later, Zeitlin extended this approach to incompressible
magnetohydrodynamics on the flat torus [27]. One crucial benefit of this approach
is that the spatially quantized Euler’s equations constitute a Lie–Poisson flow on
su(N)∗, exactly as the continuous equations represent a Lie–Poisson flow on the
dual of divergence-free vector fields.

In the present thesis, we extend this approach to incompressible magnetohy-
drodynamics on the sphere. The resulting quantized MHD system constitutes a
finite-dimensional Lie–Poisson flow on the dual of the semidirect product Lie alge-
bra f = su(N)� su(N)∗, which is usually referred to as the magnetic extension of
su(N), and is a quantized counterpart of the magnetic extension of the Lie algebra
of divergence-free vector fields.

The second step is to discretize the matrix flow in time in such a way that
the quantized analogues of Casimirs are exactly preserved. Such an integrator,
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the isospectral symplectic Runge-Kutta method, has been developed in the works
[22, 25] for a large class of isospectral flows, including the Euler-Zeitlin model
for incompressible Euler’s equations. The main mechanism that allows for con-
structing such methods is the discrete Poisson reduction, motivated by the above
mentioned observation that Lie–Poisson flows on g∗ can be treated as Poisson re-
duced Hamiltonian flows on T ∗G. Under certain conditions, symplectic integrators
for Hamilton’s equations on T ∗G descend to a Lie–Poisson integrator on g∗.

In the present thesis, we use a similar approach to develop structure preserving
Lie–Poisson integrators for Lie–Poisson systems on the dual of the Lie algebra of
the form f = g�g∗, where g is a J-quadratic Lie algebra. Such Lie algebras include
all the classical Lie algebras. This extends the isospectral symplectic Runge-Kutta
integrators (IsoSRK) developed by Modin and Viviani [22, 25].

Further, the developed structure preserving discretization is used to investigate
the long time behaviour of magnetized fluids. It is worth mentioning that for the
Euler equations there are a lot of results known, in particular those obtained in
the works [22, 21, 8]. Namely, the long time behaviour of the incompressible Euler
equations typically settles on a quasi-periodic motion of 2, 3, or 4 blobs for generic
initial conditions. The amount of blobs is determined by the value of the total
angular momentum normalized by the square root of the enstrophy Casimir, while
their motion is closely related to point vortex dynamics.

However, much less is known about the long time behaviour of MHD. In par-
ticular, there are no systematic studies of the long time behaviour for Hazeltine’s
model of turbulence, which generalizes conventional models, such as reduced MHD
and Charney-Hasegawa-Mima (CHM) equation. In the present thesis, we attempt
to fill in this gap, and we reveal large scale coherent structures formation for Hazel-
tine’s model of turbulence in magnetic fluids. These numerical results indicate the
presence of an inverse energy cascade. Two regimes are considered: weak and
generic magnetic field. In the case of weak magnetic field, the behaviour is close
to the incompressible Euler dynamics. In the case of generic magnetic field, the
fluid vorticity develops into formation of vortex condensates, and the magnetic
field reaches the state of a magnetic dipole through intermediate mixing. At the
same time, the MHD model does not behave similarly, and, in particular, there
is no evidence of an inverse energy cascade. A theoretical explanation of this
difference is one of the future directions for investigation.
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2 Hamiltonian and Lie–Poisson systems

Classical mechanics is one of the first attempts to formulate empirical observations
of the macroscopic world in terms of mathematical equations, and goes back to
Newton, Lagrange, Euler, and Hamilton. Later, with the development of differen-
tial geometry, this classical field got a new breath. Indeed, the modern language of
differential geometry formulates classical mechanics in an invariant and coordinate-
free way, thus deepening the understanding of underlying fundamental structures
and transforming this field into a beautiful and elegant science. The exposition
here mainly follows [3, 4, 18].

2.1 Preliminaries from differential geometry

We start with some preliminary notions from Riemannian and symplectic geome-
try, and Hamiltonian mechanics. As the MHD equations will be the main subject
of the present thesis, we shall provide (in a concise manner) background material
that will be used to show the Hamiltonian structure of magnetohydrodynamics,
which is the main goal of this chapter.

2.1.1 Riemannian structures and connections

Let M be a real smooth manifold of dimension dim(M) = n, C∞(M) be the space
of smooth functions on M , D(M) be the module of vector fields on M , and Ω1(M)

be the module of differential 1-forms on M .

Definition 1. A smooth manifold M is called Riemannian, if it is equipped with
a smoothly varying field of scalar products:

gx : TxM × TxM → R, (X,Y ) �→ gx(X,Y ), x ∈ M.

A smooth manifold M with a given Riemannian structure g is denoted by
(M, g).

The next important construction that we need is a connection. The notion
of a connection on a smooth manifold M naturally appears when it comes to
the definition of an acceleration in mechanics. Let Y ∈ D(M) be a vector field
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6 Chapter 2. Hamiltonian and Lie–Poisson systems

on M that can be thought of as a velocity of a particle, and x(t) be a path on
M . Then, to find an acceleration of a particle, one needs to compare vectors at
different points of the curve x(t), which is problematic, since they are elements
of different vector spaces. To this end, let us equip the manifold M with linear
isomorphisms λ(t) : Tx(t)M → Tx(0)M between the tangent spaces. This way
of identification of tangent spaces is called a connection. Then, taking images
Y (t) = λ(t)

(
Yx(t)

) ∈ Tx(0)M of vectors Y (t) ∈ Tx(t)M , we get the velocity of
variation of the vector field Y along the path x(t):

lim
t→0

Y (t)− Y (0)

t
=

dY (t)

dt

∣∣∣∣
t=0

∈ Tx(0)M. (2.1)

Let x(t) be the trajectory of another vector field X on the manifold M . Then,
the derivatives (2.1) at various points of M give us a vector field ∇XY on M , and
thus come to the notion of a covariant derivative.

Definition 2. A covariant derivative is a map

∇X : D(M) → D(M), X ∈ D(M),

that satisfies the conditions

1. ∇X1+X2
= ∇X1

+∇X2

2. ∇fX = f∇X , f ∈ C∞(M),

3. ∇X(Y1 + Y2) = ∇X(Y1) +∇X(Y2)

4. ∇X(fY ) = X(f)Y + f∇X(Y ),

where Xi, Yi, X, Y ∈ D(M), f ∈ C∞(M).

In other words, the operator ∇ is C∞(M)-linear with respect to its first ar-
gument and is a derivation with respect to the second one. Any connection is
determined by its covariant derivative.

The action of the covariant derivative on differential 1-forms is given by the
following expression:

〈∇Xα, Y 〉 = X〈α, Y 〉 − 〈α,∇XY 〉,

where α ∈ Ω1(M), X,Y ∈ D(M), and brackets 〈·, ·〉 stand for the natural pairing
between 1-forms and vector fields.

By means of the Leibniz rule one can expand the action of the covariant deriva-
tive ∇X to tensor fields of higher ranks. In particular, if g is a metric tensor on
a smooth manifold M , then the action of the covariant derivative ∇X(g) is given
by the formula:

(∇Zg)(X,Y ) = Z(g(X,Y ))− g(∇ZX,Y )− g(X,∇ZY ),



§2.1. Preliminaries from differential geometry 7

where X,Y, Z ∈ D(M).
For a connection on a tangent bundle one can define a vector field

T (X,Y ) = ∇XY −∇Y X − [X,Y ],

where X,Y ∈ D(M). The map

T : D(M)×D(M) → D(M)

is called the torsion tensor of a given connection.

Definition 3. A connection on a tangent bundle is called symmetric, if its torsion
tensor is trivial.

It is well known that there is a unique symmetric connection on a Riemannian
manifold, which is also metric, that is ∇Xg = 0 for any X ∈ D(M), and it is called
the Levi–Civita connection.

Further on, for the scalar product g(X,Y ) of vector fields X,Y in terms of the
metric g we will use the notation 〈X,Y 〉g, as well as X · Y . For the Lie derivative
along some vector field X, we will use the notation LX . The Lie derivative LX

shows an infinitesimal change of a tensor field along the flow generated by the
vector field X. Also, we will need some properties of the Levi–Civita connection.

Lemma 1. Let ∇ be the Levi–Civita connection, associated with the metric g, and
let u, v, w ∈ D(M). Then,

〈w,∇(v · u)〉g = 〈∇wv, u〉g + 〈v,∇wu〉g. (2.2)

Proof. Since ∇ is the Levi-Civita connection, ∇wg = 0:

w(g(v, u)) = g(∇wv, u) + g(v,∇wu) = 〈∇wv, u〉g + 〈v,∇wu〉g.

Using the definition of the gradient (df)(w) = 〈w,∇f〉g and putting f = g(v, u) =

v · u, one can write down the left hand side as

w(g(v, u)) = (d(v · u))(w) = 〈w,∇(v · u)〉g.

Corollary 1. Putting w = v in (2.2), we get

〈v,∇vu〉g = 〈v,∇(v · u)〉g − 〈∇vv, u〉g. (2.3)

Corollary 2. Putting u = v in (2.2), we get

〈w,∇|v|2〉g = 〈∇wv, v〉g + 〈v,∇wv〉g ⇔ 〈v,∇wv〉g =
1

2
〈w,∇|v|2〉g. (2.4)
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Using the metric g one can define the flat operator, � : D(M) → Ω1(M), X�(·) =
g(X, ·), and its inverse � : Ω1(M) → D(M), called sharp operator.

Lemma 2. Let ∇ be the Levi-Civita connection, and v ∈ D(M). Then,

(∇vv)
� = Lvv

� − 1

2
d|v|2.

Proof. Let Y ∈ D(M) is an arbitrary vector field on M . We need to prove that

J = (∇vv)
�(Y )− (Lvv

�)(Y ) +
1

2
(d|v|2)(Y ) = 0.

Let us use the formula of the action of the Lie derivative on 1-forms:

(Lvv
�)(Y ) = v(v�(Y ))− v�([v, Y ]) = v(g(v, Y ))− g(v, [v, Y ]).

Therefore,

J = g(∇vv, Y )− v(g(v, Y )) + g(v, [v, Y ]) +
1

2
(d|v|2)(Y ) (2.5)

Taking into account that the torsion of ∇ is trivial, that is

∇vY −∇Y v = [v, Y ],

we reduce (2.5) to the form

J = g(∇vv, Y )− v(g(v, Y )) + g(v,∇vY )− g(v,∇Y v) +
1

2
Y (g(v, v)).

Since ∇g = 0, then v(g(v, Y )) = g(∇vv, Y ) + g(v,∇vY ), and

J = −g(v,∇Y v) +
1

2
Y (g(v, v)).

Finally, using the property of the Levi-Civita connection (2.4), J = 0.

2.1.2 Hamiltonian mechanics

Let M again be a real smooth manifold of even dimension dim(M) = 2n, and
let Ω be a non-degenerate closed 2-form on M . Then, the pair (M,Ω) is called a
symplectic manifold.

Theorem 1 (Darboux). Let (M,Ω) be a symplectic manifold. Then, in the
neighborhood of z ∈ M , there exist local coordinates (q1, . . . , qn, p1, . . . , pn), called
canonical coordinates, such that

Ω =

n∑
i=1

dpi ∧ dqi.
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This means that all symplectic manifolds locally look similar (there are no local
invariants).

Let (M1,Ω1) and (M2,Ω2) be two symplectic manifolds, and let ϕ : M1 → M2

be a C∞-map. Then ϕ is called a symplectic map, or a symplectomorphism, if ϕ
is a diffeomorphism, if ϕ∗(Ω2) = Ω1.

Definition 4. Let (M,Ω) be a symplectic manifold. A vector field X ∈ D(M) is
called Hamiltonian, if there is a function H : M → R, such that

ιXΩ = dH,

where ι : D(M) × Ωk(M) → Ωk−1(M) is the contraction of a vector field and a
differential form, that is (for k = 2) (ιXΩ) (Y ) = Ω(X,Y ) for any Y ∈ D(M).

A Hamiltonian vector field with Hamiltonian H is denoted by XH .
To compute the flow generated by the vector field XH , one needs to solve the

system
ż = XH(z),

that in canonical coordinates (q1, . . . , qn, p1, . . . , pn) can be written as

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
. (2.6)

The equations (2.6) are called canonical, or Hamiltonian.

Proposition 1. Let XH be a Hamiltonian vector field with the Hamiltonian H.
Then,

LXH
Ω = 0.

Proof. Using the Cartan’s formula LX = ιX ◦ d + d ◦ ιX , we get

LXH
Ω = ιXH

dΩ + d (ιXH
Ω) = d (dH) = 0.

This property of Hamiltonian vector fields means that Hamiltonian flows are
symplectic.

In canonical coordinates, a Hamiltonian vector field can be written as

XH =

n∑
i=1

(
∂H

∂pi

∂

∂qi
− ∂H

∂qi

∂

∂pi

)
.

Let F,G be two smooth functions on a symplectic manifold (M,Ω). Then, one
can define a Poisson bracket of functions F and G by

{F,G} (z) = Ω(XF (z), XG(z)), z ∈ M.
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Proposition 2. Let ϕt be the flow of a Hamiltonian vector field XH . Then,

ϕ∗
t {F,G} = {ϕ∗

tF,ϕ
∗
tG} (2.7)

for all F,G ∈ C∞(M).

Differentiating the expression (2.7) by t at t = 0, we get

XH({F,G}) = {XH(F ), G}+ {F,XH(G)} . (2.8)

Further, from the definition of the Poisson bracket, we have

{F,G} = (ιXF
Ω) (XG) = (dF )(XG) = XG(F ),

which implies that
{{F,G} , H} = XH ({F,G}) .

Using (2.8), we get

{{F,G} , H} = {XH(F ), G}+ {F,XH(G)} = {{F,H} , G}+ {F, {G,H}} ,

which is the Jacobi identity.

Theorem 2. The Poisson bracket {·, ·} has the following properties:

• skew-symmetry
{F,G} = −{G,F} ,

• Leibniz rule
{F,GH} = {F,G}H +G {F,H} ,

• Jacobi identity

{{F,G} , H}+ {{G,H} , F}+ {{H,F} , G} = 0.

Remark 1. The properties in Theorem 2 can serve as a definition of the Poisson
bracket. Indeed, a set of smooth functions C∞(M) can be endowed with a bilinear,
skew-symmetric operation {·, ·} satisfying the Jacobi identity. The pair (M, {·, ·})
then becomes a Poisson manifold.

Remark 2. A Poisson manifold is a more general object than a symplectic manifold.
Indeed, any smooth manifold, not necessarily even-dimensional, can be endowed
with a Poisson bracket. At the same time, any symplectic manifold is also a
Poisson manifold, where the Poisson structure is induced by the symplectic form.
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In canonical coordinates, a Poisson bracket can be written as

{F,H} =
n∑

i=1

(
∂H

∂pi

∂F

∂qi
− ∂H

∂qi

∂F

∂pi

)
.

Finally, in terms of the Poisson bracket, the canonical equations (2.6) take the
form

Ḟ = {F,H} ,

where F is any canonical coordinate function.
Among all Hamiltonian systems, a special place is occupied by integrable Hamil-

tonian systems, i.e., such Hamiltonian systems that can be solved explicitly. The
following important theorem gives the integrability conditions for Hamiltonian
systems, as well as provides a constructive method of integrating them:

Theorem 3 (Liouville, Arnold). Let H = F1, F2 . . . , Fn be independent functions
on a symplectic manifold (M,Ω) in involution, i.e.

{Fi, Fj} = 0, i, j = 1, . . . , n,

then the trajectories of the Hamiltonian system (2.6) lie on an invariant n-dimensional
manifold

MI = {F1(p, q) = I1, . . . , Fn(p, q) = In} ⊂ (M,Ω),

where Ii ∈ R.
There exist canonical coordinates (I1, . . . , In, ϕ1, . . . , ϕn), such that the sym-

plectic form Ω has its canonical form

Ω =

n∑
i=1

dIi ∧ dϕi,

and Hamilton’s equations take their simplest form

İ = 0, ϕ̇ = ω(I).

If, in addition, MI is compact and connected, then it is diffeomorphic to the
n-torus Tn.

The canonical coordinates (I1, . . . , In, ϕ1, . . . , ϕn) are called action-angle vari-
ables. Note that for Hamiltonian systems it is enough to have only n independent
integrals in involution to find a solution, contrary to general type system of ODEs,
for which 2n integrals would be needed.
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2.2 Lie–Poisson systems

One of the most fundamental examples of a Poisson structure is the Lie–Poisson
bracket on the dual g∗ of the Lie algebra g. Hamilton’s equations written in
terms of a Lie–Poisson structure are called Lie–Poisson systems. Through the
momentum map, they are closely related to the Hamiltonian equations on T ∗G,
where G is a Lie group (not necessarily finite-dimensional) for the corresponding
Lie algebra g. The process of passing from Hamilton’s equations on T ∗G to the Lie–
Poisson equations on g∗ is called Lie–Poisson reduction, and the inverse process is
called Lie–Poisson reconstruction. In this section, we address the main properties
of such systems.

2.2.1 Adjoint and coadjoint representation

Let G be a Lie group, and g be its Lie algebra.

Definition 5. The map

Ag : G → G, Ag : h �→ ghg−1

for g, h ∈ G is called an inner automorphism.

From now on, we will use the notation F∗|x : TxG → TF (x)G for the derivative
of a map F : G → G.

Definition 6. The differential of the inner automorphism at the unit element e

of the group G

Adg : g → g, Adg(u) = ((Ag)∗|e)u, u ∈ g,

is called the group adjoint operator.

The property Adgh = AdgAdh implies that adjoint operators form a represen-
tation of the group G in its Lie algebra g, called the adjoint representation.

By differentiating Adg at the group unit element e, on gets the adjoint repre-
sentation of the Lie algebra g:

ad = Ad∗e : g → End(g), adv =
d

dt

∣∣∣∣
t=0

Adg(t),

where g(t) is a curve on G passing through the unit element e ∈ G with the tangent
vector v ∈ TeG = g.

The following formula allows to express the ad operator in terms of the Lie
bracket [·, ·] on g:

adv(w) = [v, w], v, w ∈ g.
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Using the pairing 〈·, ·〉 between g and g∗, one can define the coadjoint operator :

Ad∗g : g
∗ → g∗, Ad∗g : α �→ Ad∗g(α), 〈Ad∗g(α), v〉 = 〈α,Adgv〉,

for any v ∈ g, α ∈ g∗, g ∈ G.
As Ad∗gh = Ad∗hAd∗g, operators Ad∗g form an antirepresentation of the group G

in its coalgebra g∗.

Definition 7. The set of all points Ad∗gα, g ∈ G, is called the coadjoint orbit of
α:

Oα =
{
Ad∗gα | g ∈ G

}
.

The dual operator for ad, the operator of the coadjoint representation is

ad∗v : g
∗ → g∗, 〈ad∗vα,w〉 = 〈α, advw〉,

for any v, w ∈ g, α ∈ g∗.

Example 1. Now we will illustrate the constructions introduced above for the
group F = G � g∗, which is called the magnetic extension of G. This group will
be central in the context of incompressible magnetohydrodynamics.

We define the group F = G� g∗ as a set of pairs

F = {(φ, a) | φ ∈ G, a ∈ g∗}

with the group multiplication

(φ, a) · (ψ, b) = (φψ,Ad∗ψa+ b),

and (e, 0) being the unit element.
It can easily be verified that the inverse element is (φ, a)−1 = (φ−1,−Ad∗φ−1a).

Then, the formula for the inner automorphism is

A(φ,a)(ψ, b) = (φ, a) · (ψ, b) · (φ, a)−1 = (φ, a) · (ψ, b) · (φ−1,−Ad∗φ−1a) =

= (φψφ−1,Ad∗ψφ−1a+Ad∗φ−1b−Ad∗φ−1a).
(2.9)

The Lie algebra of the group F is f = g � g∗. Let us look for the adjoint
operator on f in the form ad(v,ã)(w, b̃) = (ξ, η), where v, w, ξ ∈ g, ã, b̃, η ∈ g∗.
Then, if the group elements (φ, a) and (ψ, b) are generated in the neighborhood of
the unit element as

ψ = e+ tw + o(t), b = tb̃+ o(t), w ∈ g, b̃ ∈ g∗,

φ = e+ sv + o(s), a = sã+ o(s), v ∈ g, ã ∈ g∗,

differentiating the first component in (2.9), we get

ξ =
d

dt

∣∣∣∣
t=0

d

ds

∣∣∣∣
s=0

(φψφ−1) = vw − wv = [v, w].
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Further, for the second component we get

Ad∗ψφ−1a+Ad∗φ−1b−Ad∗φ−1a = sAd∗e−sv+twã+ tAd∗e−sv b̃− sAd∗e−svã.

Differentiating above expression, we get

η =
d

dt

∣∣∣∣
t=0

d

ds

∣∣∣∣
s=0

(
Ad∗ψφ−1a+Ad∗φ−1b−Ad∗φ−1a

)
= ad∗wã− ad∗v b̃.

Finally, we can write (we remove tildes, as it is not essential):

ad(v,a)(w, b) = ([v, w], ad∗wa− ad∗vb) .

Let us now obtain the expression for the coadjoint operator. To that end, we
need to specify what the dual f∗ is. We will identify the dual f∗ with f itself,

f∗ = {(ξ, a) | ξ ∈ g, a ∈ g∗} ,

with the pairing 〈〈·, ·〉〉 defined as

〈〈(ξ, a), (η, b)〉〉 = 〈b, ξ〉+ 〈a, η〉, (ξ, a) ∈ f∗, (η, b) ∈ f,

where 〈·, ·〉 is the standard pairing between g and g∗.
Using the definition of the coadjoint operator, we get

〈〈ad∗(v,a)(ξ, η), (w, b)〉〉 = 〈〈(ξ, η), ad(v,a)(w, b)〉〉 = 〈〈(ξ, η), ([v, w], ad∗wa− ad∗vb)〉〉 =
= 〈η, [v, w]〉+ 〈ad∗wa− ad∗vb, ξ〉 = 〈η, advw〉+ 〈a, adwξ〉 − 〈b, advξ〉 =
= 〈ad∗vη − ad∗ξa, w〉+ 〈b, adξv〉 = 〈ad∗vη − ad∗ξa, w〉+ 〈b, adξv〉 =
= 〈〈(adξv, ad∗vη − ad∗ξa

)
, (w, b)〉〉.

Finally, we arrive at the following formula for the coadjoint operator:

ad∗(v,a)(w, b) = ([w, v], ad∗vb− ad∗wa) .

2.2.2 Momentum maps and Lie–Poisson reduction

It is well known that the dynamics of a mechanical system with symmetries can
be reduced to the dynamics on a manifold of smaller dimension, obtained as a
quotient manifold by the symmetry group action. In the context of geometric
mechanics, this observation can be formalized via the notion of a momentum map.

Definition of the momentum map

Let (M, {·, ·}) be a Poisson manifold and let G be a Lie group acting on it:

Φ: G×M → M, (g, z) �→ Φg(z) ∈ M (2.10)
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for any z ∈ M and g ∈ G.
Let us also assume that the action Φ is canonical, i.e.

Φ∗
g {F1, F2} =

{
Φ∗

gF1,Φ
∗
gF2

}
(2.11)

for any F1, F2 ∈ C∞(M).
Let g be the Lie algebra of the Lie group G. Then, the action (2.10) is in-

finitesimally generated by the vector field ξM ∈ D(M) induced by an element
ξ ∈ g:

TzM � ξM (z) =
d

dt

∣∣∣∣
t=0

exp(tξ)(z). (2.12)

We observe that
Φ∗

g−1(ξM ) = (Adgξ)M . (2.13)

Differentiating (2.13) at the neighborhood of the unit element, g(t) = e+tη+o(t2),
we get an infinitesimal formulation of (2.13):

[ξM , ηM ] = −[ξ, η]M , (2.14)

which implies that the map ξ �→ ξM is a Lie algebra antihomomorphism.
Condition (2.11) implies that

ξM ({F1, F2}) = {ξM (F1), F2}+ {F1, ξM (F2)} , (2.15)

that, however, does not mean that ξM is necessarily Hamiltonian. We will require
that ξM is globally Hamiltonian, i.e.

ξM = XJ(ξ)

for some J(ξ) ∈ C∞(M).
Infinitesimal formulation of a canonical action (2.11) yields that we have a

canonical Lie algebra action g � ξ �→ ξM ∈ D(M), where ξM satisfies (2.15).

Definition 8. Let a Lie algebra g act canonically on a Poisson manifold M .
Suppose there is a linear map J : g → C∞(M), such that

XJ(ξ) = ξM

for all ξ ∈ g. The map μ : M → g∗ defined by

〈μ(z), ξ〉 = J(ξ)(z)

for all ξ ∈ g and z ∈ M , is called a momentum map.

It is important to specify the construction of a momentum map for a subalge-
bra. Let h ⊂ g be a subalgebra, and assume that the action of g is canonical on
M . Then, h also acts canonically on M . Assume also that μg be the momentum
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map associated to the action of g. Then, action of h also admits a momentum
map μh : M → h∗ defined by

μh(z) = μg(z)|h , z ∈ M. (2.16)

To show that, let us take η ∈ h. Then, since the g action admits a momentum
map, and since also η ∈ g, we have ηM = XJg(η). Therefore, putting Jh(η) = Jg(η)

for all η ∈ h we define the induced h-momentum map. This is equivalent to

〈μh(z), η〉 = 〈μg(z), η〉
for all z ∈ M , η ∈ g, which proves (2.16).

Thus in order to get a momentum map for a subalgebra action, one should
compute the momentum map for an ambient algebra, and then project to the
subalgebra.

Example 2. We will illustrate the concept of a momentum map and how to
compute it again on the semidirect product group example, but at this time we
will take the magnetic extension of one of the matrix Lie groups SU(N), so that
the group (previously denoted by G) is F = SU(N) � su(N)∗. This group plays
an important role in quantized MHD dynamics (see Paper I for more details).

Following the previous notation, we will specify the manifold M to be the total
space of the cotangent bundle of F , i.e. M = T ∗F = T ∗ (SU(N)� su(N)∗). First,
we clarify what T ∗F is:

T ∗F =
{
(Q,m,P, α) | Q ∈ SU(N), P ∈ T ∗

Q(SU(N)),m ∈ su(N)∗, α ∈ su(N)
}
.

Consider the left action of F on T ∗F :

(G, u) · (Q,m,P, α) = (GQ,Ad∗Qu+m, (G−1)†P, α) (2.17)

for (G, u) ∈ F .
In order to find the corresponding momentum map (associated in this case to

the left action) μ : T ∗F → f∗, let us consider the infinitesimal action of F on T ∗F .
To that end, let (G, u) be close to the unit element:

G = I + tξ + o(t2), ξ ∈ su(N),

u = 0 + tη + o(t2), η ∈ su(N)∗,

thus, an infinitesimal generator is (ξ, η) ∈ su(N)�su(N)∗. Then, the infinitesimal
left action will be

(G, u) · (Q,m,P, α) =
(
Q+ tξQ+ o(t2), tAd∗Qη +m+ o(t2), P − tξ†P + o(t2), α

)
.

Differentiating above expression by t at t = 0, we get a vector field on M = T ∗F :

ξT∗F =
(
ξQ,Ad∗Qη,−ξ†P, 0

)
=

(
∂J

∂P
,
∂J

∂α
,− ∂J

∂Q
,− ∂J

∂m

)
.
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Solving this system of equations for the Hamiltonian J , we find

J = tr
(
P †ξQ

)
+ tr

(
α†Q†η(Q−1)†

)
= 〈μ, (ξ, η)〉,

and finally
μ : T ∗F → f∗, μ(Q,m,P, α) =

(
PQ†, QαQ−1

)
,

where we also used the pairing between su(N) and su(N)∗ via the Frobenius inner
product:

〈A,B〉 = tr(A†B), A ∈ su(N)∗, B ∈ su(N). (2.18)

Note that we have not used so far that we work on a subalgebra su(N) ⊂
gl(N,C). In particular, formula (2.18) does not guarantee that PQ† ∈ su(N). As
was discussed above, to get the final formula for the momentum map, we need
to use an appropriate projector for (2.18) for the first component. That is not
necessary for the second component, as it is an element of su(N) already. The
only simplification me can make is to put Q−1 = Q†. Finally, the formula for the
momentum map takes the form:

μ(Q,m,P, α) =

(
PQ† −QP †

2
, QαQ†

)
. (2.19)

Lie–Poisson structure on g∗ and Lie–Poisson reduction

Especially important is the case when the manifold M coincides with the total
space of the cotangent bundle of the group G acting on it (exactly as in the
previous example), M = T ∗G.

First, one can consider the two natural actions of G on T ∗G, left and right,
that are the cotangent lifts of left or right action of G on itself. Then, identifying
the set of smooth functions C∞(g∗) with the set of left (right) invariant functions
on T ∗G, one can obtain the Lie–Poisson bracket on g∗:

{F,G}± (m) = ±
〈
m,

[
δF

δm
,
δG

δm

]〉
, (2.20)

where m ∈ g∗, F,G ∈ C∞(g∗), and the variational derivative δF/δm ∈ g is defined
as

d

dε

∣∣∣∣
ε=0

F (m+ εw) =

〈
w,

δF

δm

〉
, w ∈ g∗.

The sign ± in (2.20) is chosen to be + for right-invariant functions, and − for
left-invariant.

The system of equations

Ḟ (m(t)) = {H,F}± (m(t)) (2.21)

is called a Lie–Poisson system. The Hamiltonian function H ∈ C∞(g∗) is the
conserved quantity, along with Casimir functions, i.e. functions C ∈ C∞(g∗),
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such that {C, ·}± = 0. Casimir functions are conserved quantities of (2.21) for
any choice of the Hamiltonian function H and play an important role in structure
preserving numerical integration of (2.21), as their preservation by the numerical
method is crucial for the long time dynamics.

Let us obtain a coadjoint representation of (2.21). For simplicity, we will choose
the sign + and omit it. One the one hand, using the chain rule, we get

Ḟ (m(t)) =

〈
ṁ,

δF

δm

〉
.

On the other hand,

{H,F} =

〈
m,

[
δH

δm
,
δF

δm

]〉
=

〈
m, ad δH

δm

δF

δm

〉
=

〈
ad∗δH

δm
m,

δF

δm

〉
,

which implies that
ṁ = ad∗δH

δm
m. (2.22)

Integrating (2.22) in time, we get

ṁ(t) = Ad∗
exp(

∫ t
0

δH
δm (m(s))ds)m(0),

which drives us to a conclusion that the Lie–Poisson system (2.22) evolves on
the coadjoint G-orbit of m(0) ∈ g∗, where the Casimir functions are constant.
However, it is not always that Casimir functions completely define the coadjoint
orbit.

A remarkable observation is that codajoint orbits can be endowed with the
symplectic structure.

Theorem 4. Let G be a Lie group and let O ⊂ g∗ be a coadjoint orbit. Let also
X,Y ∈ g. Then, there exist a symplectic form ω on O defined as

ω(ad∗Xm, ad∗Y m)(m) = 〈m, [X,Y ]〉 (2.23)

for all m ∈ g∗.

The symplectic form (2.23) is called Kirillov-Kostant-Souriau form. It is worth
noting that (2.23) uses the identification Tmg∗  g∗ for all m ∈ g∗.

Finally, we conclude that the dual g∗ is foliated by coadjoint orbits, each of
which is a symplectic manifold, symplectic leaf.

Let us now establish relations between the Hamiltonian dynamics on T ∗G and
Lie–Poisson dynamics on g∗. To this end, we will assume that the Hamiltonian
function H on T ∗G is left (right) invariant. Let also μR and μL be the momentum
maps for the right and left action of G on T ∗G respectively. Then, the Lie–Poisson
reduction theorem says that the momentum map μR (μL) reduces the Hamiltonian
dynamics with the left (right) invariant Hamiltonian on T ∗G to the Lie–Poisson
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dynamics (2.21) with the Hamiltonian H− (H+) satisfying H = H− ◦ μR (H =

H+ ◦μL). If Ft is a flow of XH on T ∗G, then the corresponding flows F±
t of XH±

are related to Ft as

μR (Ft (αg)) = F−
t (μR (αg))

μL (Ft (αg)) = F+
t (μL (αg)) ,

where αg ∈ T ∗
gG.

Inversely, having a Lie–Poisson system (2.22), one can lift the Hamiltonian
H by means of left (right) momentum map, thus obtaining right (left) invariant
Hamiltonian H̃ = H ◦ μR (or H̃ = H ◦ μR). Then, equations (2.22) become
canonical equations on T ∗G with respect to H. This process is called Lie–Poisson
reconstruction.

Poisson property of the momentum map

Now we approach perhaps one of the most important property of the momentum
map, which is the Poisson property.

Let us return to (2.14). Using that both maps ξ �→ ξM and H �→ XH are Lie
algebra antihomomorphisms, we obtain

XJ([ξ,η]) = [ξ, η]P = −[ξP , ηP ] = −[XJ(ξ), XJ(η)] = X{J(ξ),J(η)}, (2.24)

for all ξ, η ∈ g.
Note that (2.24) does not necessarily imply that

J([ξ, η]) = {J(ξ), J(η)} (2.25)

Momentum maps that satisfy (2.25) are called infinitesimally equivariant.

Theorem 5. Let μ : M → g∗ be an infinitesimally equivariant momentum map
for a left Hamiltonian action on a Poisson manifold M , then, μ is a Poisson map:

μ∗ {F1, F2}+ = {μ∗F1, μ
∗F2} ,

that is
{F1, F2}+ ◦ μ = {F1 ◦ μ, F2 ◦ μ} ,

for all F1, F2 ∈ C∞(g∗).

To prove the Poisson property, we will need the following

Lemma 3. Let μ : M → g∗ be an infinitesimally equivariant momentum map.
Then,

XF◦μ = XJ(δF/δm) =

(
δF

δm

)
M

,

for any F ∈ C∞(g∗).
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Proof. Let us take any H ∈ C∞(g∗), and let C∞(M) � μ∗(F ) = F ◦ μ be the
pullback of F . Then,

Xμ∗(F )(H) = −XH(μ∗(F )) = −〈d(μ∗(F )), XH〉 = −〈μ∗(dF ), XH〉 =

= −〈dF, μ∗(XH)〉 = −
〈
μ∗(XH),

δF

δm

〉
,

where in the last equality we used that μ∗(XH) ∈ D(g∗) can be identified with g∗

element. Further,

Xμ∗(F )(H) = −
〈
μ∗(XH),

δF

δm

〉
= −

〈
d

(
J

(
δF

δm

))
, XH

〉
=

= −XH

(
J

(
δF

δm

))
= XJ(δF/δm)(H).

Now we have all necessary ingredients to prove the Poisson property.

Proof of Theorem 5. Let z ∈ M , and m = μ(z) ∈ g∗. Then,

μ∗ {F,H}+ = {F,H}+ (μ(z)) =

〈
μ(z),

[
δF

δm
,
δH

δm

]〉
= J

([
δF

δm
,
δH

δm

])
(z) =

=

{
J

(
δF

δm

)
, J

(
δH

δm

)}
(z) = XJ(δH/δm)

(
J

(
δF

δm

))
(z) = XH◦μ

(
J

(
δF

δm

))
=

= −XJ(δF/δm)(H ◦ μ)(z) = −XF◦μ(H ◦ μ)(z) = {F ◦ μ,H ◦ μ} ,
which finalizes the proof.

2.2.3 Incompressible MHD as a Lie–Poisson system

Here, we use the abstract constructions introduced previously to show the Hamil-
tonian structure of incompressible magnetohydrodynamics. Namely, we show
that the system of self-consistent incompressible magnetohydrodynamics is a Lie–
Poisson system on the dual imh∗ of the semidirect product Lie algebra imh =

Dμ(M)�
(
Ω1(M)/dΩ0(M)

)
. Informally speaking, the first component is respon-

sible for the velocity field, and the second one stands for the magnetic field.
The system reads ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

v̇ +∇vv = −∇p+ curlB ×B,

Ḃ = LvB,

divB = 0,

div v = 0.

(2.26)

Here, B(t, x) is the divergence-free magnetic field, v(t, x) is the divergence-free
velocity field, p(t, x) is a pressure function, Lv denotes the Lie derivative along the
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vector field v(t, x), and ∇vv is the covariant derivative of the vector field v along
itself, x ∈ M .

We start with the configuration space for MHD, which is the magnetic extension
of the Lie group of volume-preserving diffeomorphisms Diffμ(M):

IMH = Diffμ(M)�
(
Ω1(M)/dΩ0(M)

)
,

where the subscript μ stands for the Riemannian volume form on M for the given
Riemannian metric g on M .

The corresponding Lie algebra of the Lie group IMH is

imh = Dμ(M)�
(
Ω1(M)/dΩ0(M)

)
,

and its dual is

imh∗ = D∗
μ(M)�Dμ(M)  D∗

μ(M)� Ω2
cl(M).

Magnetic fields B ∈ Dμ(M) can be identified with closed differential 2-forms β ∈
Ω2

cl(M) by the following way:
ιBμ = β.

In other words,

imh∗ =
{
(m,B) | m = v� ⊗ μ, B ∈ Dμ(M)

}
.

The pairing between imh and imh∗ is given as follows:

〈(v, α), (m,B)〉 =
∫
M

(ιvv
�)μ+

∫
M

(ιBα)μ = 〈B,α〉+ 〈m, v〉.

The energy of a charged fluid is a sum of its kinetic energy and the energy of a
magnetic field, and therefore the Hamiltonian of an incompressible charged fluid
has the following form:

H =
1

2

∫
M

(|m|2 + |B|2)μ.
The Lie–Poisson equations on imh∗ are

Ḟ = {H,F} ,
where the expression for the Lie–Poisson bracket {·, ·} is given by (2.20) interpreted
accordingly. Indeed, for any (m,B) ∈ imh∗

{F,G} (m,B) =

〈
m,L δF

δm

δG

δm

〉
+

〈
B,L δG

δm

δF

δB
− L δF

δm

δG

δB

〉
.

Taking F (m,B) = 〈m,u〉 + 〈B, θ〉 for some u ∈ Dμ(M) and θ ∈ D∗
μ(M) 

Ω1(M)/dΩ0(M), we get

Ḟ = 〈ṁ, u〉+ 〈Ḃ, θ〉 = {H,F} = 〈m,Lvu〉+ 〈B,LuB〉 − 〈B,Lvθ〉, (2.27)

where B = B� ⊗ μ. We will need a number of lemmas.
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Lemma 4. 〈m,Lvu〉 = −〈Lvm,u〉.
Proof.

−〈Lvm,u〉 = −
∫
M

ιu(Lvm) = −
∫
M

ιu

(
(Lvv

�)⊗ μ+ v� ⊗ Lvμ
)

Since Lvμ = (divv)μ = 0, we get

−〈Lvm,u〉 = −
∫
M

(
Lvv

�
)
(u)μ = −

∫
M

(v(g(v, u))− g(v, [v, u]))μ =

=

∫
M

g(v, Lvu)μ−
∫
M

v(g(v, u))μ = 〈m,Lvu〉 −
∫
M

v(g(u, v))μ.

Let us consider the last integral in more details.∫
M

v(g(u, v))μ =

∫
M

Lv(g(v, u))μ =

∫
M

Lv(g(v, u)μ)−
∫
M

g(v, u)Lvμ =

=

∫
M

div(vg(v, u))μ =

∫
∂M

(v · n)g(v, u)μ = 0,

since v is tangent to the boundary.

Lemma 5. 〈B,LuB〉 = 〈LBB, u〉.
Proof.

〈B,LuB〉 =
∫
M

ιB(LuB
�)μ =

∫
M

(B(g(B, u))− g(B, [B, u]))μ = −〈B, LBu〉

(2.28)
by the same reasons as in the previous lemma.

〈LBB, u〉 =
∫
M

(LBB)(u)μ =

∫
M

B(B�(u))μ−
∫
M

B�([B, u])μ = −〈B, LBu〉, (2.29)

where we used the same ideas as in the previous lemma. Finally, from (2.28) and
(2.29), we get 〈B,LuB〉 = 〈LBB, u〉.
Lemma 6. 〈B,Lvθ〉 = −〈LvB, θ〉.
Proof.

〈B,Lvθ〉 =
∫
M

ιB(Lvθ)μ =

∫
M

(Lvθ)(B)μ =

∫
M

(v(θ(B))− θ([v,B]))μ = −〈LvB, θ〉.



§2.2. Lie–Poisson systems 23

Using results of these three lemmas, we can write down (2.27) as follows:

〈ṁ, u〉+ 〈Ḃ, θ〉 = −〈Lvm,u〉+ 〈LBB, u〉+ 〈LvB, θ〉,

and we conclude that incompressible MHD equations are⎧⎪⎨
⎪⎩
ṁ = −Lvm+ LBB,
Ḃ = LvB,

divB = 0, divv = 0.

(2.30)

It is important to get the first equation in terms of the velocity field v. To this
end, let us take the first equation in (2.30) and apply the sharp operator �:

(ṁ+ Lvm− LBB)� =
(
v̇� + Lvv

� − LBB
�
)�

⊗ μ.

Using the result of Lemma 2, we get

(
Lvv

�
)�

= ∇vv +∇P1

for some function P1(t, x).
One can verify in local coordinates that

(
LBB

�
)�

= curlB ×B +∇|B|2,

and finally we end up with

v̇ +∇vv +∇P = curlB ×B, (2.31)

for some function P (t, x), and (2.31) now coincides with the first equation in (2.26).
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3 Numerical methods for Hamiltonian and
Lie–Poisson systems

The basic idea that stands behind geometric numerical integration is to preserve
the properties of an exact equation by a numerical method. For example, if
some equation (or system of equations) has conservation laws, then the numer-
ical method that is used to solve this equation approximately, must preserve those
conservation laws. More generally, if there are geometric structures underlying a
(system of) PDE, then the method must preserve these structures. The impor-
tance of preserving the geometrical properties is outlined in the first chapter of
the book [9], where numerous examples that demonstrate a better reliability of
geometric integrators are provided.

Here, we discuss some approaches to construction of geometric integrators for
Hamiltonian and Lie–Poisson systems.

3.1 Symplectic integration of Hamiltonian systems

As was outlined previously, one of the main properties of Hamiltonian systems

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
, i = 1, . . . , n, (3.1)

is symplecticity.

Let (p(k), q(k)) be the values of unknowns p(t), q(t) at the discrete time moment
tk. If Φh : (p

(k), q(k)) �→ (p(k+1), q(k+1)), is a numerical scheme for (3.1) with h

being the time stepping, then the condition for it to be symplectic can be expressed
as

dp(k) ∧ dq(k) = dp(k+1) ∧ dq(k+1),

so the canonical symplectic form Ω = dp ∧ dq is invariant under Φh.
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Given a Butcher tableau

c1 a11 a12 · · · a1s
c2 a21 a22 · · · a2s
...

...
...

. . .
...

cs as1 as2 · · · ass
b1 b2 · · · bs

with ci =
∑s

j=1 aij , the corresponding s-stage Runge-Kutta method for an ODE
(system of ODEs) ẏ = f(t, y) is defined as

yn+1 = yn + h
s∑

i=1

biki, ki = f

⎛
⎝tn + cih, yn + h

s∑
j=1

aijkj

⎞
⎠ , i = 1, . . . , s.

(3.2)

Theorem 6 ([23]). If biaij+bjaji = bibj for all j = 1, . . . , s, then the Runge-Kutta
method (3.2) is symplectic.

The simplest example of a symplectic Runge-Kutta method is the implicit
midpoint method :⎧⎪⎪⎪⎨

⎪⎪⎪⎩
q(k) = q̃ − h

2
Hp(p̃, q̃),

p(k) = p̃+
h

2
Hq(p̃, q̃),

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
q(k+1) = q̃ +

h

2
Hp(p̃, q̃),

p(k+1) = p̃− h

2
Hq(p̃, q̃).

(3.3)

3.2 Lie–Poisson integration of Lie–Poisson systems

For Lie–Poisson systems the problem of finding an integrator that respects the
Lie–Poisson geometry (this means to be a symplectic map on coadjoint orbits) is
more complicated. In particular, a symplectic Runge-Kutta scheme, in general,
does not yield a Lie–Poisson integrator when directly applied to a Lie–Poisson
system.

Existing approaches to constructing Lie–Poisson integrators include, for in-
stance, splitting methods [19, 20]. They are used if the Hamiltonian can be de-
composed into a sum of integrable Hamiltonians. The other approach is to use
the constrained integrator RATTLE [7]. One lifts the equations on g∗ to T ∗G
and then solves a constrained Hamiltonian system. Most of the methods result in
computationally expensive and complicated schemes, involving exponential maps
and group to algebra maps.

In the framework of Lie–Poisson reduction described in the previous chapter,
it is natural to develop a discrete Lie–Poisson reduction. The idea is to utilize
the properties of the momentum map μ : T ∗G → g∗, such as the Poisson property,
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and symplecticity of the Runge-Kutta scheme [22]. Indeed, having a discrete
symplectic map provided by the symplectic Runge-Kutta integrator, that is also
left (right) invariant, one reduces it to a Lie–Poisson integrator on g∗. As shown
in [22], for the case when g is reductive, and as shown in Paper I of this thesis, if
g has a semidirect product structure, the corresponding integrator on g∗ is

• formulated explicitly on g∗;

• does not require computation of expensive maps (matrix multiplication is
the most expensive operation);

• applicable for any Hamiltonian function;

• has the Lie–Poisson properties intrinsically encoded.
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4 Summary of included papers

4.1 Paper I

In Paper I, we develop a spatio-temporal discretization for MHD on the sphere
that fully preserves the underlying Lie–Poisson geometry. This includes extension
of the Euler–Zeitlin model to MHD resulting in a finite-dimensional Lie–Poisson
system, and further discretization in time leading to a Lie–Poisson integrator for
semidirect product Lie algebras.

First, we use the vorticity formulation of MHD (2.26) on the sphere S2 in terms
of four scalar fields, two vorticity fields ω and β for the velocity and magnetic fields
respectively, and two stream functions ψ and θ:

Proposition 3. The vorticity formulation for incompressible MHD equations
(2.26) is {

ω̇ = {ω, ψ}+ {θ, β} , ω = Δψ,

θ̇ = {θ, ψ} , β = Δθ,
(4.1)

where {·, ·} is a Poisson bracket on S2.

Then, based on Berezin-Toeplitz quantization, we provide a spatially discrete
analogue of (4.1), which is a Lie–Poisson system on the dual of the semidirect
product Lie algebra f∗ = su(N)� su(N)∗:{

Ẇ = [W,M1] + [Θ,M2],

Θ̇ = [Θ,M1],
(4.2)

where W,Θ ∈ su(N), M1 = Δ−1
N W , M2 = ΔNΘ, and ΔN : su(N) → su(N) is the

Hoppe–Yau Laplacian.

Proposition 4. System (4.2) is a Lie–Poisson flow on the dual f∗ of the Lie
algebra f = su(N)� su(N)∗:

J̇ = ad∗MJ,

where J = (Θ,W †) ∈ f∗, M = (M1,M
†
2 ) ∈ f, with the Hamiltonian

H(W,Θ) =
1

2

(
tr(W †M1) + tr(Θ†M2)

)
. (4.3)
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The functions
Cf = tr (f(Θ)) , Ig = tr(Wg(Θ)), (4.4)

for arbitrary smooth functions f and g, are Casimirs for (4.2).

Further, we develop discrete Lie–Poisson reduction for semidirect products that
can be summarized in the diagram Fig. 4.1.

φh

a
Φh(a)

f(a)
(Φh ◦ f)(a)

f

Φh

O

Φh

μ μ

f∗ = T ∗F/F

T ∗F

μ

Fig. 4.1. Equivariance of a symplectic method Φh : T ∗F → T ∗F with respect to
the right action f : T ∗F → T ∗F . Symplectic equivariant method Φh : T ∗F → T ∗F
descends to a Lie–Poisson method φh : f∗ → f∗ on the coadjoint orbit O ⊂ f∗.

Proposition 5. The canonical equations on T ∗F⎧⎪⎪⎨
⎪⎪⎩
Q̇ = −M1Q,

Ṗ = M†
1P + 2M†

2Qα†,

α̇ = 0,

(4.5)

with right-invariant Hamiltonian H̃ = H ◦ μ, where

M1 = Δ−1
N W, M2 = ΔNΘ, H(W,Θ) =

1

2

(
tr(W †M1) + tr(Θ†M2)

)
,

are reduced to the Lie–Poisson system on f∗

Ẇ = [W,M1] + [Θ,M2], Θ̇ = [Θ,M1], (4.6)

by means of the momentum map (2.19).

We use the implicit midpoint method (3.3) as a symplectic scheme on T ∗F and
prove that it descends to a Lie-Poisson integrator on g∗, and arrive at the main
result.
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Theorem 7. The implicit midpoint method (3.3) for the Hamiltonian system (4.5)
descends to a Lie–Poisson integrator φh : f

∗ → f∗, φh : (Wn,Θn) �→ (Wn+1,Θn+1)

for the Lie–Poisson flow (4.2). The method is given explicitly by the following
formulas:

Θn = Θ̃− h

2
[Θ̃, M̃1]− h2

4
M̃1Θ̃M̃1,

Θn+1 = Θn + h[Θ̃, M̃1],

Wn = W̃ − h

2
[W̃ , M̃1]− h

2
[Θ̃, M̃2]− h2

4

(
M̃1W̃M̃1 + M̃2Θ̃M̃1 + M̃1Θ̃M̃2

)
,

Wn+1 = Wn + h[W̃ , M̃1] + h[Θ̃, M̃2],
(4.7)

where M̃1 = Δ−1
N (W̃ ), M̃2 = ΔN (Θ̃).

The integrator (4.7) preserves the Casimirs (4.4):

tr(f(Θn)) = tr(f(Θn+1)),

tr(Wng(Θn)) = tr(Wn+1g(Θn+1)).

Numerical simulations confirm that the method has all the properties indicated
in Theorem 7. Variations of the Casimir functions shown in Fig. 4.2 indicate their
exact preservation, as the magnitude 10−16 is the tolerance of the fixed point
iterations. Also, we observe near preservation of the Hamiltonian function in
Fig. 4.3.

0 1000 2000 3000 4000 5000 6000 7000

t

−2

−1

0

1

2

3
1e−16 Spectrum of Θ variation

0 1000 2000 3000 4000 5000 6000 7000

t

0.0

0.5

1.0

1e−16 Cross-helicity variation

Fig. 4.2. Variation of the smallest eigenvalue of Θ (left), and cross-helicity tr(WΘ)

(right) for incompressible MHD equations. The order 10−16 of the magnitude of the
variation indicates the exact preservation of the Casimirs.

4.2 Paper II

In Paper II, we apply the structure preserving discretization for MHD developed
in Paper I to study the dynamics of magnetized fluids given by Hazeltine’s model
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0 1000 2000 3000 4000 5000 6000 7000

t

−0.00010

−0.00005

0.00000

0.00005

Hamiltonian variation

Fig. 4.3. Variation of the Hamiltonian for incompressible MHD equations. Absence
of drift indicates nearly preservation of the Hamiltonian.

[13, 10, 11, 12]. Hazeltine’s equations generalize the MHD system (4.1):⎧⎪⎪⎨
⎪⎪⎩
ω̇ =

{
ω,Δ−1ω

}
+ {θ,Δθ} ,

θ̇ =
{
θ,Δ−1ω

}− α {θ, χ} ,
χ̇ =

{
χ,Δ−1ω

}
+ {θ,Δθ} ,

(4.8)

where ω and θ have the same meaning as before, χ is the normalized deviation of
particle density from a constant equilibrium value, and α is a constant parameter.

The discretized analogue for (4.8) is
⎧⎪⎨
⎪⎩
Ψ̇ = [Ψ,M1],

Θ̇ = [Θ,M3],

χ̇ = [χ,M3] + [Θ,M2],

(4.9)

where M3 = M1 − αχ, Ψ = W − χ.

Proposition 6. System (4.9) is a Lie–Poisson flow on the dual f∗ of the Lie
algebra

f = su(N)⊕ (su(N)� su(N)∗)

with Casimirs

• Spectrum of Ψ = W − χ

EK = tr(K(W − χ)) (4.10)

for any function K,

• Spectrum of Θ
CF = tr(F (Θ)) (4.11)

for any function F ,
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• Cross-helicity
J = tr(χG(Θ)), (4.12)

for any function G,

and the Hamiltonian

H =
1

2
tr
(
WM1 +ΘM2 − αχ2

)
. (4.13)

A structure preserving integrator for (4.9) is given by

Θn = Θ̃− h

2
[Θ̃, M̃3]− h2

4
M̃3Θ̃M̃3,

Θn+1 = Θn + h[Θ̃, M̃3],

Ψn = Ψ̃− h

2
[Ψ̃, M̃1]− h2

4
M̃1Ψ̃M̃1,

Ψn+1 = Ψn + h[Ψ̃, M̃1],

χn = χ̃− h

2
[χ̃, M̃3]− h

2
[Θ̃, M̃2]− h2

4

(
M̃3χ̃M̃3 + M̃2Θ̃M̃3 + M̃3Θ̃M̃2

)
,

χn+1 = χn + h[χ̃, M̃3] + h[Θ̃, M̃2],

(4.14)

where M̃1 = Δ−1
N (W̃ ) = Δ−1

N (Ψ̃ + χ̃), M̃2 = ΔN (Θ̃), M̃3 = M̃1 − αχ̃.

Theorem 8. The numerical scheme given by (4.14) is a Lie–Poisson integrator
for (4.9). It preserves the Casimirs exactly,

tr(K(Wn − χn)) = tr(K(Wn+1 − χn+1)),

tr(F (Θn)) = tr(F (Θn+1)),

tr(χnG(Θn)) = tr(χn+1G(Θn+1)),

and nearly preserves the Hamiltonian (4.13) in the sense of backward error anal-
ysis.

Simulations reveal the formation of large scale vortex condensates, see Fig. 4.4
and Fig 4.5, as well as the presence of an inverse energy cascade, which is shown
in energy spectrum figures, see Fig. 4.6.
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Fig. 4.4. Dynamics of Θ-field. Initial state and final state.
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Fig. 4.5. Dynamics of Ψ-field. Initial state and final state.
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Fig. 4.6. Kinetic and magnetic energy spectrum in the intermediate time (a) and final
time (b).



Bibliography

[1] Abramov, R., Majda, A.: Discrete approximations with additional conserved
quantities: deterministic and statistical behavior. Methods Appl. Anal. 10(2),
151–189 (2003)

[2] Arnold, V.: Sur la géometrié différentielle des groupes de lie de dimension
infnie et ses applications á l’hydrodynamique des fluides parfaits. Ann. Inst.
Fourier (Grenoble) 16, 319–361 (1966)

[3] Arnold, V.: Mathematical Methods of Classical Mechanics. Springer-Verlag
(1989)

[4] Arnold, V., Khesin, B.: Topological Methods in Hydrodynamics. Springer
Nature Switzerland AG, Cham (2021)

[5] Bordemann, M., Hoppe, J., Schaller, P., Schlichenmaier, M.: gl(∞) and geo-
metric quantization. Commun. Math. Phys. 138(2), 209–244 (1991)

[6] Bordemann, M., Meinrenken, E., Schlichenmaier, M.: Toepliz quantization of
Kähler manifolds and gl(n), n → ∞ limits. Commun. Math. Phys. 165(2),
281–296 (1994)

[7] Channell, P., Scovel, J.: Equivariant constrained symplectic integration. J.
Nonlinear Sci. 5, 233–256 (1995)

[8] Cifani, P., Viviani, M., Modin, K.: An efficient geometric method for in-
compressible hydrodynamics on the sphere. J. Comput. Phys. 473, 111772
(2023)

[9] Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integra-
tion. Structure-Preserving Algorithms for Ordinary Differential Equations.
Springer-Verlag Berlin Heidelberg (2006)

[10] Hazeltine, R.: Reduced magnetohydrodynamics and the Hasegawa–Mima
equation. Phys. Fluids 26, 3242–3245 (1983)

[11] Hazeltine, R., Holm, D., Morrison, P.: Electromagnetic solitary waves in
magnetized plasmas. J. Plasma Phys. 34(1), 103–114 (1985)

35



36 Bibliography

[12] Hazeltine, R., Meiss, J.: Shear-Alfvén dynamics of toroidally confined plas-
mas. Phys. Rep. 121(1-2), 1–164 (1985)

[13] Holm, D.: Hamiltonian structure for Alfvén wave turbulence equations. Phys.
Lett. A 108A, 445–447 (1985)

[14] Hoppe, J.: Quantum theory of a massless relativistic surface and a two-
dimensional bound state problem. PhD thesis. MIT (1982)

[15] Hoppe, J.: Diffeomorphism groups, quantization, and SU(∞). Int. J. Mod.
Phys. A 4(19) (1989). DOI 10.1142/S0217751X89002235

[16] Hoppe, J., Yau, S.T.: Some Properties of Matrix Harmonics on S2. Commun.
Math. Phys. 195, 67–77 (1998)

[17] Khesin, B., Misiolek, G., Modin, K.: Geometric Hydrodynamics and Infinite-
Dimensional Newton’s Equations. Bull. Amer. Math. Soc. 58, 377–442 (2021)

[18] Marsden, J., Ratiu, T.: Introduction to Mechanics and Symmetry. Springer-
Verlag, New-York (1999)

[19] McLachlan, R., Quispel, G.: Splitting Methods. Acta Numer. 11, 341–434
(2002)

[20] McLachlan, R., Quispel, G.: Explicit geometric integration of polynomial
vector fields. BIT 44, 515–538 (2004)

[21] Modin, K., Viviani, M.: A Casimir preserving scheme for long-time simulation
of spherical ideal hydrodynamics. J. Fluid Mech. 884, A22 (2020)

[22] Modin, K., Viviani, M.: Lie–Poisson Methods for Isospectral Flows. Found.
Comput. Math. 20, 889–921 (2020)

[23] Sanz-Serna, J.M.: Runge-Kutta schemes for Hamiltonian systems. BIT Nu-
merical Mathematics 28(4), 877–883 (1988)

[24] Shukla, P., Yu, M., Rahman, H., Spatschek, K.: Nonlinear convective motion
in plasmas. Phys. Rep. 105(4-5), 227–328 (1984)

[25] Viviani, M.: A minimal-variable symplectic method for isospectral flows. BIT
Num. Math. 60, 741–758 (2020)

[26] Zeitlin, V.: Self-consistent-mode approximation for the hydrodynamics of an
incompressible fluid on non rotating and rotating spheres. Phys. Rev. Lett.
93(26), 264501 (2004)

[27] Zeitlin, V.: On self-consistent finite-mode approximations in (quasi-) two-
dimensional hydrodynamics and magnetohydrodynamics. Phys. Lett. A
339(3-5), 316–324 (2005)


