
Technical Report:
Unresolved Challenges and Potential Features in EATXT

Contributed by:
Dr. Jörg Holtmann

Independent Researcher
Weixing Zhang
PhD student

Chalmers | University of Gothenburg

Edited by:
Weixing Zhang

weixing@chalmers.se

Computer Science and Engineering
Chalmers | University of Gothenburg

Sweden
2023

ar
X

iv
:2

31
2.

10
25

0v
1 

 [
cs

.S
E

] 
 1

5 
D

ec
 2

02
3



1 INTRODUCTION
The BUMBLE project1 was launched to provide an innovative system and software development framework based
on blended modeling notations (or languages, such as textual and graphical). In this project, the team from the
University of Gothenburg (“We” or “GU” in short) conducted technical experiments/implementation on blended
modeling2 using EAST-ADL as a case language to explore and improve blended modeling technology. EAST-ADL3
is a language used to describe the architecture of automotive embedded systems. EATOP4 is a specialized tool
that supports EAST-ADL modeling. Like some of the tools we reported in [1], it supports blended modeling by
supporting part of the common notations but does not support the textual notation. As a start of the work, we used
Xtext technology5 to develop a textual syntax (and a textual editor that supports it) for EAST-ADL based on the
EAST-ADL metamodel. We named this textual syntax and the textual editor EATXT.
We have implemented multiple features in EATXT and have identified some potential features that may be added

to EATXT in the future and the challenges involved in implementing them. This document focuses on describing
potential advanced features and challenges that have not yet been implemented that can be added to EATXT. This
paper does not discuss in detail the features that have been implemented, the use of the software, and the research
involved.

2 SOFTWARE DEVELOPMENT OVERVIEW
As mentioned before, the software we developed is a textual syntax and a textual editor that supports it, we named
it EATXT. It supports building, editing, and viewing EAST-ADL models in the form of text, thus filling the gap in
textual notation among existing modeling tools that support EAST-ADL.
Figure 1 depicts an overview of our solution to developing EATXT. We first used Xtext to generate the grammar

from the EAST-ADL metamodel. We then designed and developed the grammar by adapting the generated grammar,
including completing the definition of missing grammar rules, adjusting the grammar style, etc. When the grammar
is ready, we run the MWE2 workflow 6 to generate the Xtext artifacts, which contains the Xtext’s generator used to
generate the textual editor that supports the grammar. To customize and enhance the features of the textual editor,
we extended this Xtext generator.

3 SOLVED TECHNICAL ISSUES
We have implemented EATXT’s grammar by directly adapting the text of the grammar definition, including 1)
completing the incomplete grammar rules, 2) creating primitive types, 3) repositioning the attribute shortName,
4) removing redundant elements (such as curly braces), 5) adding symbol “;”, and 6) supporting empty elements.
This adaptation also makes the grammar style tend to be Python style. This style change refers to the work of [3],
but retains the use of curly braces to separate code blocks. For information on how to convert a language with a
generated grammar into a Python-style language, please refer to [3]. We automated this adaptation using the tool
GrammarOptimizer [4].
Moreover, we have added or enhanced some advanced features of the textual editor, including 1) supporting

code templates, 2) supporting automatic formatting, 3) supporting content-assist for a new model element with a
unique name, and 4) supporting more accurate cross-references. We implemented those features by customizing
and extending Xtext’s generator capabilities and its implementation which we have introduced in [2]. We also
implemented conversion (i.e., serialization and deserialization) between textual models (.eatxt model file) and
tree-based models (.eaxml model files) on small model instances.

1https://itea4.org/project/bumble.html
2https://blended-modeling.github.io/
3https://www.east-adl.info/Specification.html
4https://projects.eclipse.org/projects/modeling.eatop
5https://eclipse.dev/Xtext/index.html
6https://wiki.eclipse.org/Modeling_Workflow_Engine_(MWE)

1

https://itea4.org/project/bumble.html
https://blended-modeling.github.io/
https://www.east-adl.info/Specification.html
https://projects.eclipse.org/projects/modeling.eatop
https://eclipse.dev/Xtext/index.html
https://wiki.eclipse.org/Modeling_Workflow_Engine_(MWE)


Meta-model

Grammar

Xtext generator
(Default)

output

Xtext generator
(Extended)

Textual editor

Generate
grammar from

the meta-model

Design and
Adapt grammar

Run MWE2
workflow

input

Grammar
(Adapted)

output input

Extend Xtext's
generator

output output

Generate the
textual editor

output

EATXT

supports

input input input

Figure 1: Overview of solution to developing EATXT.

4 UNSOLVED TECHNICAL ISSUES
Unresolved technical issues in EATXT hinder the realization of potential advanced features. Below we will describe
the unresolved technical issues by describing these unimplemented advanced features.

4.1 Blended Modeling of EAST-ADL
Figure 2 depicts how EATXT will work with EATOP to implement blended modeling of EAST-ADL. The current
EATXT we implemented can serialize .eatxt model files into .eaxml model files and vice versa, thus achieving
blended modeling. The unsolved challenges here are two: 1) This blended modeling feature only works with smaller
models, but not larger ones. 2) The current EATXT and EATOP are two independent software, so when performing
model conversion, users have to manually import the model file into the software.

4.2 Flexible Schema Version
In the second line of the .eaxml file, the field “xmlns" contains the version of the EAST-ADL metamodel that this file
complies with. The version of the metamodel is derived from the EAST-ADL specification it adheres to. Since the
initial release of the EAST-ADL specification in 2001, the EAST-ADL metamodel has been evolving. In practice,
there are differences between the schemas of consecutive versions, while containing similar essential information.
EATOP can tolerate these differences and support multiple versions. However, Xtext is more stringent in this regard.
As a result, a textual editor for EAST-ADL developed using Xtext (i.e., EATXT) may not support models adhering to
schemas of other EAST-ADL versions. This affects the efficiency of blended modeling in EAST-ADL.
For instance, our industrial partner extended EATOP by developing a graphical view plugin to support the

graphical view of models. Although EATOP can accommodate different versions, the graphical view plugin is
specific to schema version 2.1.12, and therefore, they model EAST-ADL based on version 2.1.12. Yet, we developed
the EATXT based on the latest metamodel version (i.e., 2.2), which does not support loading and resolving models
obtained from EATOP due to version mismatch. Consequently, users must manually adapt the models in the .eaxml
files before importing them into EATXT. This manual effort adds extra steps in switching between tree-based and
textual notation, thereby burdening the efficiency of blended modeling.

2



textual model
(.eatxt)

tree-based model
(.eaxml)

abstract syntax
(metamodel)

conforms to conforms to

Serialize to

DeSerialize to

EATXT EATOP

integrate

resolves resolves

Figure 2: Schematic diagram of EAST-ADL’s blended modeling, including serialization and ensemble..

To address this issue, EATXT needs to tolerate differences between different versions, enabling users to seamlessly
and freely load models from various versions. One possible solution is to have EATXT assess the version of the
.eaxml file upon loading. If the version is inconsistent with the EAST-ADL version EATXT is based on, the file
should undergo an XSLT transformation to convert it to a format compliant with the version supported by EATXT.
By doing so, EATXT ensures compatibility between different EAST-ADL versions and facilitates efficient modeling
for users.

4.3 Error Reporting
EATXT was built by automatically generating Xtext artifacts from the grammar. It already includes basic error
reporting functionality, with error messages displayed in the "Problems" window. However, these error reports are
generic and may not provide specific details in certain cases. For example, when a user inputs content that does not
match the expected text of the editor, such as typing shortName instead of the required keyword EAPackage, the
error message only informs the user of the mismatch without providing further context.
Currently, when EATXT attempts to load an incompatible version of an .eaxml file, it rejects the model without

providing helpful error messages. We envision that the EATXT in the future will point out the exact issue in such
scenarios. For instance, before EATXT loads the .eaxml model file, it could automatically check the version of the
EAST-ADL schema that the .eaxml and the EATXT are based on respectively. If there is a version mismatch, EATXT
will clearly indicate this in the "Problems" window.
It is important to note that different schema versions may have different elements. For example, in version

2.1.12 of EAST-ADL metamodel, there is an attribute in the class HardwareFunctionType that references to class
HardwareComponent, while in version 2.2, such an attribute does not exist. Consequently, a model file (.eaxml) that
conforms to version 2.1.12 and contains this attribute would not be loadable by EATXT based on version 2.2. In the
envisioned future of EATXT, it would be capable of loading such a file, as described in the previous section, while
also providing an accurate error message that the attribute is not necessary for the current version.

4.4 Precise Outline
The editor, composed of automatically generated Xtext artifacts, also includes an outline feature, which provides a
tree-based representation of model instances, as shown in Figure 3. The current version of EATXT includes this

3



Figure 3: An example of outline in EATXT: pFDA stops expanding downwards.

default and generic outline view. However, this outline lacks important details, hindering users’ basic understanding
of the model structure. For example, Figure 4 is a screenshot from EATOP and it illustrates an instance of type
DesignFunctionProtoType named pFDA, which contains several sub-instances that are cross-referenced to other
types. In EATOP’s tree-based view, these contents are displayed. However, in the default outline view of the textual
editor, the contents below pFDA are hidden, and shown hierarchy stops at pFDA.

4.5 Integration of EATOP and EATXT
EATXT facilitates textual modeling of EAST-ADL, with its models capable of being transformed into ".eaxml" model
files that can be edited within EATOP, and vice versa. This is the way to implement blended modeling for EAST-ADL.
Yet, EATXT is an independent software application separate from EATOP. This signifies that during the blended
modeling of EAST-ADL, users are required to run both software applications, necessitating toggling between the
two. The challenge here is the integration of one of these applications into the other, with the transformation
between ".eatxt" and ".eaxml" files being executed in the background without user intervention. Text-based modeling
and tree-based modeling would manifest as two distinct windows within the same software. When a user modifies

4



Figure 4: An example of outline in EATOP: pFDA continues to expand downwards.

and saves a model in one window, the software automatically converts the model file, enabling the user to directly
open the model in the other window and continue editing in an alternative notation.

5 TECHNICAL CHALLENGES AND FUTUREWORK
The challenges we need to address include: realizing schema version identification and tolerance of element
differences between different versions of EAST-ADL, customizing error reporting features, rendering deeper
hierarchies in outline view, and implementing automatically synchronizing model files of different formats within
EATOP. And these will be our future work.

6 CONCLUSION
We report in this document potential and unimplemented advanced features/challenges that could be added to
EATXT. Peers working on improving the blended modeling capabilities of the EATOP and those working on
developing textual editors with Xtext may benefit from this document.

REFERENCES
[1] Istvan David, Malvina Latifaj, Jakob Pietron, Weixing Zhang, Federico Ciccozzi, Ivano Malavolta, Alexander Raschke, Jan-Philipp

Steghöfer, and Regina Hebig. 2023. Blended modeling in commercial and open-source model-driven software engineering tools: A
systematic study. Software and Systems Modeling 22, 1 (2023), 415–447.

[2] Jörg Holtmann, Jan-Philipp Steghöfer, and Weixing Zhang. 2023. Exploiting Meta-Model Structures in the Generation of Xtext Editors. In
11th Intl. Conf. on Model-Based Software and Systems Engineering (MODELSWARD). 218–225. https://doi.org/10.5220/0011745900003402

[3] Weixing Zhang, Regina Hebig, Jan-Philipp Steghöfer, and Jörg Holtmann. 2023. Creating Python-style Domain Specific Languages: A
Semi-automated Approach and Intermediate Results. In 11th Intl. Conf. on Model-Based Software and Systems Engineering (MODELSWARD).
210–217. https://doi.org/10.5220/0011744900003402 (in press).

5

https://doi.org/10.5220/0011745900003402
https://doi.org/10.5220/0011744900003402


[4] Weixing Zhang, Jörg Holtmann, Daniel Strüber, Regina Hebig, and Jan-Philipp Steghöfer. 2023. Meta-model-based Language Evolution
and Rapid Prototyping with Automate Grammar Optimization.

6


	1 Introduction
	2 Software Development Overview
	3 Solved Technical Issues
	4 Unsolved Technical Issues
	4.1 Blended Modeling of EAST-ADL
	4.2 Flexible Schema Version
	4.3 Error Reporting
	4.4 Precise Outline
	4.5 Integration of EATOP and EATXT

	5 Technical Challenges and Future Work
	6 Conclusion
	References

