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Resource-efficient QoS-Aware Video Streaming
using UAV-Assisted Networks

Chayan Bhar, Member, IEEE, Debayani Ghosh, Erik Agrell, Fellow, IEEE

Abstract—Emerging video services are associated with strin-
gent quality-of-service (QoS) and high data-rate requirements.
Moreover, the presence of data-rate-hungry mobile users in
future networks necessitate sophisticated design strategies. The
deployment of unmanned aerial vehicle access point (UAP)-
assisted networks (UANs) has been proposed to ensure high
data-rates to mobile users. Moreover, UAPs can be equipped
with energy-efficient caches to facilitate video delivery with
stringent QoS. However, the mobility of users and UAPs may
cause temporal variations in the QoS experienced by users. This
paper conducts an extensive performance evaluation of a UAN, by
studying the effect of user behavior, mobility of users and UAPs,
and a temporal variation of video popularity on the QoS. The
QoS is measured in terms of the delay experienced by the users.
To that end, a time-dependent queueing model and its associated
fluid approximation models are derived, which are illustrated to
be reasonably accurate in an appropriate asymptotic regime. A
detailed analysis of these models reveals that low delay, i.e., high
QoS, can be ensured in UANs. Finally, a reinforcement-learning
(RL) approach based on these models is utilized to minimize
the number of deployed UAPs and the playout buffer size while
guaranteeing a certain QoS.

Index Terms—UAV-assisted networks, QoS-aware video deliv-
ery, time-dependent queueing model.

I. INTRODUCTION

There has been a rapid increase in data traffic generated by
mobile video streaming services in recent years. Internet video
is expected to contribute up to 82% of all Internet traffic in
2022 [1]. Video traffic is also expected to increase with the
increasing use of high resolution video formats. However, such
traffic can congest existing networks in the near future due to
their bandwidth-intensive nature. Network congestion will in
turn affect the quality-of-service (QoS) [2]. However, over-
provisioning the network infrastructure to accommodate the
growing video traffic can result in high energy consumption
and an expensive transport network. Furthermore, existing
and future networks comprise highly mobile users that can
cause a spatio-temporal variation in the user density and video
request patterns. This necessitates migration to new networks,
like Unmanned aerial vehicle access point-assisted networks
(UANs) that can offer stringent QoS [1] with efficient usage of
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the access points and the playout buffers, which in this paper
are called “resource efficiency” for short.

UANs employing mobile unmanned aerial vehicle access
points (UAPs) have been proposed to provide consistent
communication links to mobile end users in next generation
networks [3]. The UAPs can be co-deployed with the existing
base stations, whenever there is a sudden increase in the
number of mobile users. Moreover, UAPs can be strategically
deployed to follow mobile users on a need basis in geographic
regions with high user density or data requirements [4]–[6].
This makes UAPs more effective and cost-efficient compared
to deploying static ultra-dense small cells [7]. Therefore, UAPs
provide the flexibility of managing a time-varying density of
users [3], [8].

On the other hand, edge caching is proposed as a potential
solution to the bandwidth congestion problem in core and
metro networks [9]. Edge caching can be implemented in
UANs by equipping UAPs with light and energy-efficient
small fog caches that can cache popular bandwidth-intensive
on-demand videos [10]. Such UAPs can stream popular videos
to mobile users with extremely high data rates [11], [12].
Therefore, such a scheme can ensure stringent QoS and net-
work bandwidth efficiency, while simultaneously decreasing
the bandwidth consumption of the transport network, as videos
are streamed from network locations near the end users.

A. Literature Survey

We divide the related literature in three categories: (i) UAP
placement and trajectory optimization for its power efficiency,
(ii) user-dependent UAP deployment strategies, and (iii) cache
placement and video caching strategies in UANs. Trajectory
optimization of a unmanned aerial vehicle (UAV) using various
algorithms is illustrated to maximize the throughput and
power efficiency of an individual UAP in [5], [6], [13], [14].
Power-efficient allocation of a UAP from a set of deployed
UAPs that have fixed locations for a particular coverage area
using optimal transport theory and user behavior prediction
is discussed in [8] and [12], respectively. Semi-definite re-
laxation and coordinate descent methods are used to design
a bandwidth- and power-efficient scheme in which UAPs
equipped with caches serve users having heterogeneous data-
rate requirements [10]. Placement of a UAP to maximize its
coverage in a scenario with QoS bounds using the exhaustive
search method is discussed in [15].

The deployment and placement of a UAP as a function
of the users’ parameters like (i) user density and mobility
[3]–[5], [11], [16], (ii) end user throughput [6], (iii) video



requests [12], and (iv) QoS [15], [17]–[19] requirements have
also been studied in the literature. It is illustrated that mobile
users experience poor QoS, i.e., high delay if the time to
deploy a UAP is too high [5]. High data-rates resulting in
good QoS can be achieved by increasing the number of
deployed caches in small-cell stationary access points using
a greedy method [20]. Optimal cache placement, power al-
location, and trajectory optimization subject to the mobility
constraints of a UAP is illustrated to maximize user throughput
using the block-coordinate descent and successive convex
approximation methods [21]. UAP deployment as a function
of the time-averaged request arrival and download rates is
illustrated to minimize the video streaming delay in [18], [22].
User mobility and energy-efficiency-aware UAP movement are
illustrated to limit delay [17] and the average transmit power
[19]. Finally, caching of contents in a high-altitude platform
using federated learning is implemented for estimating content
popularity in [23]. Optimal cache placement using the entropy
weight method is illustrated to minimize the content access
delay in a scenario with multiple access points (APs) and cache
units [24]. The delay experienced by users at concurrent time
intervals is used for designing the transmission power of UAVs
in [12]. Delay can be experienced by a user due to (i) content
retrieval from the caches [21]–[24], (ii) request queueing at
UAPs, and (iii) video streaming from a UAP [5], [12], [20],
[22].

Reinforcement-learning (RL)-based strategies for energy
minimization in UAV-assisted wireless powered sensor net-
works and for learning the optimal control policy to minimize
delay in queueing networks have been proposed in [25],
[26], respectively. However, such methods have not been
implemented for designing UAN deployment as a function of
QoS and user mobility parameters.

B. Motivation

The deployment of UANs has been proposed for edge
caching and last mile content delivery using UAVs thereby
reducing backhaul traffic and improving QoS [12], [27], [28].
Even a modest cache size of 100 Mbits can reduce the
backhaul traffic by more than 50% in favorable cases [29,
Fig. 4]. Mobile UAPs can be deployed in or traverse through
different geographical locations in which they can experience
a spatio-temporal variation in the video popularity [12], [30].
Similarly, the simultaneous mobility of UAPs and users can
cause loss of connectivity and a variation in the download
times observed by users [16]. Inconsistent download rates
while streaming videos from the UAPs can result in poor
QoS. Moreover, UAPs suffer from energy, space, and size
limitations, which limit the hardware capability and equipment
complexity of UAPs [3], [5], [8], [9], [13]. Therefore, the
maximum user density and frequency of video requests that
can be served by a UAP is limited and affected by its energy
[15]. For example, if a UAP is low on charge, it can stream to a
small number of users [8] or stream videos with low popularity
[31], [7]. The number of users that can be served by UAPs
in a UAN depends on the deployment of UAPs and is time-
dependent. Thus, the deployment of UAPs must be managed
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Fig. 1. Architecture of the proposed drone-assisted network

Fig. 1: Architecture for the proposed UAN.

in real time as a function of the videos’ popularity and size,
user mobility pattern [7], and the constraints related to UAP
deployment [12]. Otherwise, the efficiency and effectiveness
of UANs and the real-time QoS experienced by users can be
affected. Thus, QoS is an important parameter to decide the
optimal number of UAPs required.

UAPs can be deployed to serve users assuming that the
QoS bounds allow some waiting time to the network provider
before starting to stream a video. However, the user parameters
required for UAP deployment in a geographical region are
not available to individual UAPs. Furthermore, the energy
limitation in UAPs discourages on-board implementation of
computationally complex deployment strategies. However, ex-
isting literature does not discuss QoS-aware deployment of
UAPs as functions of the time varying request pattern, user
arrival, and channel conditions. Furthermore, minimizing the
resources, i.e., number of UAPs deployed and the playout
buffer size is also absent in existing literature.

C. Our contributions

Whereas previous literature on cache-enabled UANs has
considered system parameters such as video popularity, user
mobility, and channel conditions to be constant, this paper
takes one step further and investigates how the experienced
QoS (queueing delay) is affected under the more realistic
scenario of time-varying system parameters. Using an analytic
model and extensive simulations, it is shown that the temporal
variations of these parameters, not only their averages, signifi-
cantly affect the experienced QoS. This allows real-time UAP
deployment for a resource-efficient UAN design.

The rest of the paper is arranged as follows. In the next
section we describe the considered UAN and provide a detailed
description of the system model. This is followed by an
analysis of the derived model, results on QoS performance of
the proposed UAN, and design of UAP deployment strategies
using RL in Section III. Finally the paper concludes in Section
IV with a discussion and conclusion.

II. SYSTEM MODEL

The considered UAN architecture is illustrated in Fig. 1. It
is similar to the architecture in [9], [24] but with coordinated
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UAPs. It is also similar to the architecture in [3], [31],
which we extend by considering a time-varying deployment
of UAPs. In this section, we formulate an analytical model
for the system of Fig. 1. The symbols used for developing the
queueing model are described in Table I while those used for
developing the user mobility, channel, and video popularity
models are described in Table II.

A. Functions of the central processing unit (CPU) and UAPs

The proposed UAN simultaneously employs traditional base
stations and UAPs to provide consistent network throughput to
all users. Each UAP connects to the CPU C via base stations
using fronthaul links. The CPU C is centrally located and
performs processing of the payload data from UAPs and base
stations, and video popularity estimation. This allows UAPs
and base stations to carry minimal processing elements for
energy efficiency. Thus, in our proposed scheme, the UAPs
are used only for content delivery. All baseband functionalities
are executed in C, which also connects UAPs and base
stations to the core network. For this purpose, at any given
time, each UAP is connected to C through a base station
using wireless fronthaul links. UAPs forward the channel state
information and video requests from users to the CPU over
fronthaul links using the scheme discussed in [32]. Thus, at
any given point of time, the CPU has knowledge of the channel
state information and video request arrival from all UAPs.
The CPU informs UAPs about video streaming requirements.
UAPs position themselves in the two-dimensional space with
a fixed height to serve the users mandated by C while
conforming to their energy limitations. The UAPs prevent
high interference to users in their respective coverage area
by using the reinforcement learning-based mobility strategy
of [33]. UAPs are shown to cause minimum interference to
users when they hover below 10 m [34]. Thus, in most of our
simulated scenarios we fix the UAP height to 10 m. Moreover,
the UAPs utilize the interference-minimization techniques
described in [35] to maximize end-user data rates. The CPU
C utilizes an estimated streaming rate for all users throughout
the UAN. It also utilizes UAPs to facilitate fast streaming
of bandwidth-intensive videos, thereby providing high QoS at
spatio-temporal locations that have a high intensity of video

TABLE I: List of symbols used for the queueing model. All
time-varying functions are defined for time t > −T , unless
otherwise stated.

Symbol Description
I Number of UAPs deployed
Di ith UAP consisting of FC Fi

C CPU
v Considered video
κ Size of v
ζ(t) The maximum number of simultaneous v streams

supported by C, i.e., UAPs deployed at t, upper
and lower limits ζh, ζl, period of deployment Tζ

λ(t) Ensemble mean of v request inter-arrival time to
C at t

r(t) Ensemble mean of the rate of download at t
ϕ Probability of users to disconnect from C without

downloading v
γ Mean time after which requests from Q(t) retry v

download, desired γM
α Mean time after which requests are abandoned

while waiting for v in W (t)
τ, s Running variables of t. The “test” request arrives

at t = τ
W (t) Number of requests enqueued in the service queue

at C for requests of v, scaled queue W η(t), fluid
limit W f(t), diffusion limit W d(t)

Ŵ f(t),
Ŵ d(t)

Fluid and diffusion limits of W (t) for t > τ

Q(t) Number of requests enqueued in the retrial queue
for users that left W (t) and can request v from
C, scaled queue Qη(t), fluid limit Qf(t), diffusion
limit Qd(t)

Ω(t) The system of queues consisting of W (t) and Q(t)
considered for analysis, scaled system Ωη(t), fluid
limit Ωf(0), diffusion limit Ωd(t)

A(t) Request arrival process for v at C, scaled process
Aη(t), fluid limit Af(t), diffusion limit Ad(t)

∆(t) Departure process due to completion of v stream-
ing from C, scaled process ∆η(t), fluid limit
∆f(t), diffusion limit ∆d(t)

Ef(t) Fluid limit of service initiation process at UAPs
with derivative ef(t), diffusion limit Ed(t), and
scaled process Eη(t)

P f(t) Fluid limit of attainment process, scaled process
P η(t)̂ Operator for processes observed at t ≥ τ

−T Lower limit of time for observing all processes at
C to calculate delay

δf(t) Fluid limit of delay in downloading v, scaled delay
δη(t), diffusion limit δd(t), desired δM

Xi(t) Intensity for a time-inhomogeneous Poisson pro-
cess Πi()

requests [31]. The UAPs operate as cache helpers in a femto-
caching environment [20]. For this purpose, each UAP Di,
i ∈ {1, . . . , I} is equipped with a small, energy-, weight-, and
space-efficient femto cache (FC) Fi [5], [31], while the CPU C
is equipped with a cloud unit. The FCs are significantly light-
weight compared to the cloud unit. The decision to stream a
video v from the FC of a UAP to a requesting user is taken
by C on a per-request basis.



TABLE II: List of symbols used for the user mobility, channel,
and video popularity models and the resource optimization
problem.

Symbol Description
⟨∆r⟩ User displacement from initial position
α1, α2 Parameters of distribution for ∆t, ∆r
S(t) number of distinct locations visited by a user till t
ρ, ν parameter of user mobility, predicting a user’s

tendency to explore a new location
α3 Path loss exponent
fc, c, B Carrier frequency, speed of light, and bandwidth

available to a UAP-user link
h, d(t) height of UAP, distance of user from UAP on

ground plane
δ1, δ2 Excessive path loss exponent for line-of-sight and

non-line-of-sight links between UAP and user
pLoS,
pNLoS

probability of line-of-sight and non-line-of-sight
links

σ2 AWGN noise power
ψ, ψ1 Environment-dependent constant for modeling the

wireless channel
p(t),
P (t)

UAP-to-user transmit power, path loss between
UAP and user

Pi(t) Path loss experienced by interefering signals from
UAP i to a particular user

α4, α5 Parameters for direct and word-of-mouth recom-
mendation of v

q Intrinsic popularity of the video
N(t) Number of users in a geographical region, lower

limit Nl, upper limit Nh, period of variation TN

β1,
a1, · · · , a5

Constants of the optimization problem in Section
III-B

Ξ Total interference experienced by a user from all
UAPs

B. Network model

The model formulated in this paper is with respect to a
particular video v, CPU C, and UAPs Di, i ∈ {1, . . . , I}.
It is assumed that physical resources of UAPs like storage
capacity, battery, energy efficiency, cache placement, etc., are
managed according to [5]. The interplay between different
videos due to the size limitation of FCs is not considered for
simplicity of analysis. Since video popularity varies spatio-
temporally, a CPU can experience a temporal variation in its
observed video popularity [30]. The popularity is modeled by
the inter-arrival time between requests for a video v. Empirical
evidence suggests that video popularity is modeled by a Zipf
distribution. However, for a single video on a short timescale,
the request arrival process can be modelled by a pseudo-
stationary Poisson point process [36]. Thus, the request inter-
arrival time, a measure of video popularity, is exponentially
distributed with ensemble mean λ(t) at time t [30], [36], [37].
When a user requests v, the request is transferred to C, which
employs UAPs to deliver v to requesting users. A network
operator owns the terrestrial network and C and pays the
mobile network operators owning Di for streaming videos.
The business model for the UAN can be similar to [38], [39].
For deciding the payment for streaming videos, the network
operator considers the ensemble mean of inter-arrival time
λ(t) and the QoS experienced by end users. Poor channel
conditions, low battery charge, or low λ(t) can require a high

payment.
A UAP Di caches v depending on its popularity [30],

[36] and the payment available from C [40]. Therefore, a
measure of video popularity is required both at the CPU and
by mobile network operators owning Di. The CPU shares the
estimated λ(t) with the mobile network operators to decide
video caching in Di. When a user requests a video v, C
coordinates its delivery from the FC of a UAP connected to C
and having v [40]. The v streaming rate r(t) depends on the
propagation channel between the UAP and user and the battery
state of the concerned UAP [16], [41]. The download time
for v with size κ is assumed to be exponentially distributed
with mean κ/r(t) for all users. As UAPs can be mobile, the
users downloading v can experience a temporal variation in
the streaming rates and hence in the download data-rates. The
ensemble mean of the download time is assumed to be equal
for all users for simplicity of analysis. The total number of
users that can simultaneously stream v from UAPs associated
with C is limited to ζ(t). The CPU controls ζ(t) and I by
varying the payments provided to UAPs.

At any point in time, if ζ(t) UAPs simultaneously stream
v to an equal number of users, then further requests for v
wait in a buffer located at C for completion of the ongoing
streams. A user with a queued request may lose interest in
v, resulting in deletion of the queued request. Moreover, the
link quality between a user with a queued request and the
CPU may momentarily deteriorate due to network outage
resulting from high interference, airflow disturbances, beam
steering errors, etc. [42]. Such events result in deletion of
the queued requests after an exponentially distributed interval
with mean α [43]. Therefore, high α can arise from frequent
channel disruptions or high user mobility. If the link with a
user deteriorates, then the request is dropped with probability
ϕ and reenqueued otherwise. If it is reenqueued, it happens
after an exponentially distributed interval with mean γ [16],
[44]–[46]. If v corresponds to a video segment in a fractional
caching scheme [47], [48], γ can be proportional to the time
for emptying the playout buffer [11]. Therefore, if users are
equipped with small playout buffers, then γ must be small.

C. Queueing model

Below we formulate a queueing model for the CPU C using
the assumptions of Section II-A and the queue illustration of
Fig. 2. The model consists of a service queue and a retrial
queue. The service queue W (t) comprises the users download-
ing v from UAPs and the users for which the corresponding
requests are queued at C. The retrial queue Q(t) consists of
users that requested v but their requests were removed from
W (t) due to channel deterioration. Thus, W (t) and Q(t) are
positive integers that represent lengths of the service and retrial
queues, respectively. Requests from Q(t) are again placed in
W (t) after γ s. We assume that W (t) is a first-in-first-out
type of queue. If there is an exogenous request for v at time
t and the number of users streaming v at t is less than ζ(t),
then W (t) < ζ(t). In this case, v is streamed immediately
by a UAP to the requesting user. In contrast, if ζ(t) users are
simultaneously streaming v at time t then W (t) = ζ(t) and



the exogenous request is placed in W (t). γ and ζ(t) are upper
limited to γM and ζh, respectively. Deletion of queued requests
from W (t) is with rate α due to the reasons mentioned in
Section II-A. The network resource optimization performed
in this paper is with respect to γ and ζ(t) as described in
Section III-B using (34) and (35).

In the context of the proposed UAN, the arrival and service
processes in the queueing system of Fig. 2 are time-dependent
Markovian processes. Moreover, the number of simultaneous
v streams from C is also time-dependent. Therefore, the
queueing model for C is an M(t)/M(t)/ζ(t) queue, in which
W (t) allows abandonment, while Q(t) facilitates retrial [49].
In general, such a queueing model is analytically intractable
[49]. However, to make this model amenable to analysis, a
fluid approximation is often adopted in the queuing literature.
In the asymptotic regime wherein the arrival rate and the
number of simultaneous streams from the service queue are
large, the fluid approximation has been shown to be accurate.
Motivated by this, the proposed system in this work is modeled
along similar lines as in [49].

We denote with Πi(Xi(t)) independent, inhomogeneous
Poisson point processes with time-varying intensity functions
Xi(t) [50, Sec. 5.1]. The length of the service queue at time
t increases with the number of v requests (i) present initially,
W (0), (ii) arriving from the retrial queue, (1/γ)Π1(Q(t)), and
(iii) arriving exogenously, Π2(1/λ(t)). On the other hand,
the service queue decreases with the number of v requests
(i) leaving the service queue, (1/α)Π3((W (t)− ζ(t))

+
)

where x+ = max(x, 0) and (ii) completing v streaming
(1/κ)Π4(min (W (t), ζ(t)))r(t).

The length of the retrial queue at time t increases with
the number of v requests present initially at Q(0) and the
requests routed to Q(t) from W (t). It decreases with the
enqueueing of (1/γ)

∫ t

0
Π1(Q(s)) ds requests, from Q(t) to

W (t). Therefore, the sample paths [51, Sec. 5.2] for W (t) and
Q(t) are the unique solutions of the equations

W (t)

=W (0) +
1

γ

∫ t

0

Π1 (Q(s)) ds+

∫ t

0

Π2

(
1

λ(s)

)
ds

− 1

α

∫ t

0

Π3

(
(W (s)− ζ(s))

+
)
ds

− 1

κ

∫ t

0

Π4 (min (W (s), ζ(s))) r(s) ds, (1)

Q(t) = Q(0) +
(1− ϕ)

α

∫ t

0

Π3

(
(W (s)− ζ(s))

+
)
ds

− 1

γ

∫ t

0

Π1 (Q(s)) ds (2)

where 1/λ(t), r(t), and ζ(t) are locally integrable. We define
Ω(t) = (W (t), Q(t)). Using the theory of strong approxi-
mations for Poisson processes [49], a random sample path
construction of C is performed to do an asymptotic sample
path analysis and obtain the fluid limit theorems. In the asymp-
totic regime, ζ(t) is scaled up in response to a similar scaling
up of the arrival rate by customers. The asymptotic regime

in C denoted by η corresponds to Ωη(t) = (W η(t), Qη(t)),
where Ωη(t) is the fluid approximation of Ω(t). The scaled
parameters are the initial conditions Ωη(0) = ⌈ηΩf(0) +√
ηΩd(0)⌉ + o(

√
η) for constants Ωf(0) = (W f(0), Qf(0))

and Ωd(0) = (W d(0), Qd(0)), η/λ(t), and ηζ(t) [49]. The
scaled processes are

W η(t)

=W η(0) +
1

γ

∫ t

0

Π1 (Q
η(s)) ds+

∫ t

0

ηΠ2

(
1

λ(s)

)
ds

− 1

α

∫ t

0

Π3

(
(W η(s)− ηζ(s))

+
)
ds

− 1

κ

∫ t

0

Π4 (min (W η(s), ηζ(s))) r(s) ds, (3)

Qη(t)

= Qη(0) +
(1− ϕ)

α

∫ t

0

Π3

(
(W η(s)− ηζ(s))

+
)
ds

− 1

γ

∫ t

0

Π1 (Q
η(s)) ds. (4)

To obtain the fluid approximation, an asymptotic regime
is considered wherein the arrival rate 1/λ(t) and ζ(t) are
scaled up by a factor η > 0. Hence, in this new system
(W η(t), Qη(t)), the arrival and service rates are η/λ(t) and
ηr(t)/, respectively [52, Chapter 6]. Using the strong law of
large numbers [51, App. A.2], the fluid limits are obtained for
all t > 0 as

lim
η→∞

1

η
W η(t) =W f(t), lim

η→∞

1

η
Qη(t) = Qf(t) (5)

with the initial conditions

lim
η→∞

1

η
W η(0) =W f(0), lim

η→∞

1

η
Qη(0) = Qf(0). (6)

The convergences of (5) are uniform on any compact subset
of t ≥ 0 [49], while the convergences at time t = 0 follow
from the strong law of large numbers [51, App. A.2] [53]. The
validity of this assumption is illustrated in Section III.

The asymptotic assumptions made in (5) and (6) allow us
to derive W f(t) and Qf(t) by dividing (3) and (4) by η on
both sides and taking the limits as η → ∞

W f(t)

=W f(0) +
1

γ

∫ t

0

Π1

(
Qf(s)

)
ds+

∫ t

0

Π2

(
1

λ(s)

)
ds

− 1

α

∫ t

0

Π3

((
W f(s)− ζ(s)

)+)
ds

− 1

κ

∫ t

0

Π4

(∫ t

0

min
(
W f(s), ζ(s)

))
r(s) ds, (7)

Qf(t)

= Qf(0) +
(1− ϕ)

α

∫ t

0

Π3

((
W f(s)− ζ(s)

)+)
ds

− 1

γ

∫ t

0

Π1

(
Qf(s)

)
ds. (8)



Finally, differentiating (7) and (8) with respect to t, we obtain
the rate of change in the two fluid limits W f(t) and Qf(t),
which are given by the solutions of

d

dt
W f(t) =

1

λ(t)
+
Qf(t)

γ
−
r(t)min

(
W f(t), ζ(t)

)
κ

−
(
W f(t)− ζ(t)

)+
α

, (9)

d

dt
Qf(t) =

(1− ϕ)
(
W f(t)− ζ(t)

)+
α

− Qf(t)

γ
. (10)

The queue length W f(t) increases due to the arrival of
exogeneous and retrial requests for v with rates 1/λ(t) and
Qf(t)/γ, respectively. On the other hand, W f(t) decreases with
the completion of v streams and with requests leaving W f(t)
to enter Qf(t) or leave the system permanently with rates
r(t)/κ and 1/α, respectively. The queue length Qf(t) increases
with retrial requests coming from W f(t) and decreases when
requests leave Qf(t) to enter W f(t) with rates (1− ϕ)/α and
1/γ, respectively. The queue lengths W f(t) and Qf(t) are used
for deriving the delay as discussed in Section II-G.

D. User mobility model

The user mobility model discussed below is adopted from
[54]. It is assumed that at t1 = 0, the user is at a given
location. After waiting for a random time ∆t, the user moves
to a new location with probability ρt−α1ν/(1+ν) and otherwise
remains in the same location. Thereafter, the process repeats
with another random time ∆t. The time interval ∆t is chosen
from a heavy-tailed distribution ∝ |∆t|−1−α1 . When the user
moves, the distance ∆r is chosen from another heavy-tailed
distribution ∝ |∆r|−1−α2 and the direction is uniform in
[ 0, 2π ). The mean-square user displacement with respect to
their initial position is

E[∆r2] ∼
[
log

(
1− S(t1)

1−ν

ν − 1

)]2/α2

+ constant. (11)

Moreover, the number of users in a particular geographical
region is assumed to have a periodic variation [3]. Thus we
assume

N(t) =
Nh −Nl

2
sin

(
2πt

TN

)
+
Nh +Nl

2
. (12)

E. Video popularity model

The request inter-arrival time of a video is measured in
real time by measuring the time elapsed from arrival of
the previous request from all users at the CPU [36]. Video
popularity is modeled by λ(t) assuming direct and word
of mouth recommendations α4 and α5, respectively, videos’
intrinsic popularity q, and total number of users at time t N(t),
resulting in [55]

λ(t) =
qN(t) α4

α5qN(t)e
(α4+α5qN(t))t − α4

α5

α4

α5qN(t)e
(α4+α5qN(t))t + 1

. (13)

Equations (4.1)–(4.7) of [56] can be used to derive λ(t) at the
CPU from real-time video request inter-arrival time data.

F. Channel model

The channel between the UAP and a user consists of line-of-
sight and non-line-of-sight links. Assuming elevation of a UAP
h, carrier frequency f , speed of light c, path loss exponent α3,
excessive path loss co-efficient for line-of-sight links δ1 and
non-line-of-sight links δ2, horizontal distance of the user from
the UAP d(t), bandwidth B, environment-dependent constants
ψ1 and ψ2, additive white Gaussian noise power σ2, and UAP-
to-user transmit power p(t), the probabilities of the line-of-
sight and non-line-of-sight links are

pLoS(t) =
1

1 + ψ exp
(
−ψ1

[
180
π arctan( h

d(t) )− ψ
]) (14)

and pNLoS(t) = 1− pLoS(t), respectively [57]–[60]. The path
loss between a UAP and user is given by

P (t) =

[
4πfh

c

]α3

(δ1pLoS(t) + δ2pNLoS(t)) . (15)

The CPU C uses the worst-case interference Ξ to estimate
the download rate r(t). For this purpose, C assumes that a
user receives interference from all UAPs except its serving
UAP. Moreover, other users are assumed to be present within
∆r of a user while the UAPs are positioned to serve these
users. Assuming signal power used by UAPs p(t) and path
loss between an interfering UAP i and the considered user
Pi(t), Ξ is derived similar to equation (5) of [35] as

Ξ =

ζ(t)−1∑
i=1

p(t)

Pi(t)
. (16)

The path losses Pi(t) in (16) are derived similarly to P (t) in
(15) for real-time positions of UAPs and users. For simplicity
of analysis, C is assumed to estimate the same interference
for all users. On the other hand, each UAP maximizes the
signal-to-interference-plus-noise ratio in real time using the
interference-management equations (6)–(28) of [35]. This re-
sults in higher streaming rates compared to that estimated by
C. The Doppler shift effect due to mobility of the UAPs and
users is assumed to be perfectly compensated. As an optimistic
estimate of the time-varying download rate, we use

r(t) = B log2

(
1 +

p(t)

P (t)(σ2 + Ξ)

)
, (17)

at C which equals the channel capacity if p(t) and P (t) vary
slowly enough.

G. Performance parameter: Delay δf(t)

Delay is experienced by users when the number of requests
for v arriving from users is greater than the number of requests
being currently streamed by UAPs. In this paper, the delay is
defined in terms of the virtual delay, which is the waiting
time experienced by a “test” user that requests v exogenously
at any instant t, assuming that the channel conditions do not
deteriorate before a UAP starts to stream v to it [51, Sec. 3.3].



In this section, we derive an expression for the delay. We
first define the diffusion processes corresponding to the length
of the service and retrial queues and thereafter assume that
Ω(t) is observed in the absence of exogenous arrivals. Delay
is defined as an attainment process, i.e., the first instant at
which a waiting request begins to stream v. For this purpose
we make the following assumptions.

1) ζ(t) is continuously differentiable at all t ≥ 0.
2) r(t) is continuous at all t ≥ 0.
3) No new exogenous requests arrive after the arrival of a

request from a “test” user at time τ ≥ 0.
Furthermore, we assume that the limit limη→∞

√
η(Ωη(0)/η−

Ωf(0)) exists and converges in distribution to Ωd(0) =
(W d(0), Qd(0)) for η → ∞. The fluid approximation Ωf(t)
can be refined using the functional central limit theorem [53].
Thus, for t > 0 and the diffusion process Ωd(t) [61, Sec. 3.1],
[49]

lim
η→∞

√
η

(
1

η
Ωη(t)−Ωf(t)

)
d→ Ωd(t), (18)

is a convergence in distribution d→ of the stochastic processes
in an appropriate functional space [53]. Moreover, if the set
of time points {t ≥ 0 | W f(t) = ζ(t)} has measure zero for
the given queueing system, then Ωd(t) is a Gaussian process
[49] for t ≥ 0.

The arrival process of v requests to C and the departure
process associated with the streaming of v from W (t) are
denoted by A(t) and ∆(t) with scaled processes Aη(t) and
∆η(t), respectively, for t ≥ 0. In order to calculate the delay,
Ω(t) is observed after time t = τ for which the queues are
denoted by the operator ̂. Since there are no exogenous future
arrivals, Aη(0) = Ŵ η(0), ∆η(0) = 0, Aη(t)−∆η(t) = Ŵ η(t)
for t ≥ 0 [62, Chapter 2], and Af(t) = Af(τ) for t ≥ τ . The
fluid limit results of (5) and (6) are written for t ≥ τ as

lim
η→∞

1

η

(
Ω̂

η
(t), Aη(t),∆η(t)

)
d→
(
Ω̂

f
(t), Af(t),∆f(t)

)
.

(19)
∆f(t) is a continuously differentiable nondecreasing func-

tion of t for t ≥ 0. For 0 ≤ t ≤ τ , Ŵ f(t) satisfies (9)
while for t ≥ τ , it is assumed that C does not have any
new arrivals (exogenous or retrial) after time τ . Removing the
terms corresponding to the arrivals after time τ from (9) results
in

d

dt
Ŵ f(t) = −

min
(
Ŵ f(t), ζ(t)

)
r(t)

κ
−

(
Ŵ f(t)− ζ(t)

)+

α
.

(20)

The diffusion limits, which are obtained from the convergence
in distribution similarly to (18), [61, Sec. 3.1], are

lim
η→∞

√
η
(1
η
Ω̂

η
(t)− Ω̂

f
(t),

1

η
Aη(t)−Af(t),

1

η
∆η(t)−∆f(t)

)
d→
(
Ω̂

d
(t), Ad(t),∆d(t)

)
. (21)

From (18), (21), and [62, Chapter 2], the diffusion limit Ŵ d(t)
can be written as

Ŵ d(t) = Ad(t)−∆d(t). (22)

We define the η-scaled process Eη(t) as the sum of the
processes corresponding to the completion of streaming and
ongoing v streams as

Eη(t) = ∆η(t) + ηζ(t), t ≥ 0. (23)

It follows that (1/η)Eη(t) converges to Ef(t) almost surely
for η → ∞ where the convergence is uniform on compact sets
of t and Ef(t) = ∆f(t) + ζ(t), t ≥ 0. Since ζ(t) and ∆f(t)
are continuously differentiable by earlier assumptions, Ef(t)
is also continuously differentiable with derivative ef(t). It is
assumed that ef(t) is strictly positive and limt→∞Ef(t) >
Af(τ). According to previous definitions, Aη(t) and Af(t) are
constant for t ≥ τ assuming that the processes considered
above are defined for t ≥ −T with

T =
ζ(0)

ef(0)
. (24)

This extension is made by assuming that nothing is happening
in −T ≤ t < 0 (no arrivals or departures) except that the
number of users simultaneously streaming v increases linearly
from 0 to ηζ(0). Therefore, (19) and (21) are retained without
modification with all the functions being defined for t ≥ −T .

The processes Af(t), Ef(t), Ad(t), and Ed(t) are continuous
and Ef(−T ) = Ed(−T ) = 0, where ∆d(t) = Ed(t). There-
fore, the processes discussed next are finite with probability 1
for all sufficiently large η. The first attainment processes are
defined by the first instant s at which the number of times v
is streamed exceeds the number of times it is requested after
the arrival of request from the “test” user, i.e., the first instant
when this request can start to stream v and are defined for all
t ≥ −T as [49]

P η(t) = min {s ≥ −T : Eη(s) > Aη(t)} , (25)

P f(t) = min
{
s ≥ −T : Ef(s) > Af(t)

}
. (26)

The first attainment processes correspond to the first hitting
time in a normal queuing process without a virtual queue [63,
Sec. 6.2]. Thus, P f(t), is the smallest instant τ ≥ t such that
Ŵ f(τ) = ζ(τ), i.e., the test user starts streaming v at time τ
[49]. The delay experienced by the test user is given by the
attainment waiting time processes as [51, Sec. 3.3]

δη(t) = P η(t)− t, (27)

δf(t) = P f(t)− t. (28)

Moreover, δ̂η(τ) denotes the virtual waiting time at τ , i.e.,
the delay experienced by the test user arriving to the service
node at time τ , until it starts streaming v, assuming that this
user does not quit or enter Q(t) while waiting. Then the
relation between the virtual waiting time and the attainment
waiting time is δ̂η(t) = δη(t)+ for all t ≥ 0. Furthermore, the
following convergences in distribution follow from (19), (21),
[61, Sec. 3.1], [49]

lim
η→∞

(
1

η
Ω̂

η
(t),

1

η
Aη(t),

1

η
Eη(t),

1

η
δη(t)

)
d→
(
Ω̂

f
(t), Af(t), Ef(t), δf(t)

)
, (29)



lim
η→∞

√
η

(
1

η
Ω̂

η
(t)− Ω̂

f
(t),

1

η
Aη(t)−Af(t),

1

η
Eη(t)− Ef(t), δη(t)− δf(t)

)
d→
(
Ω̂

d
(t), Ad(t), Ed(t), δd(t)

)
, (30)

where

δd(t) =
Ad(t)− Ed

(
P f(t)

)
ef (P f(t))

(31)

is derived in [49]. Since the processes Ad(t), Ed(t), Q̂d(t), and
δd(t) are continuous, the finite-dimensional distributions con-
verge. In particular, considering the nontrivial case P f(τ) ≥ τ

(i.e., Ŵ f(τ) ≥ ζ(τ)), if 0 ≤ t ≤ τ , then the set of points
{t | Ŵ f(t) = ζ(t)} has measure zero, and δη(t) converges
to δf(t) almost surely for η → ∞. Thus, from (22), (31), the
definition of ∆d(t), and assumption 3 above that results in
A1(t) = A1(P f(t)) for all t > −T ,

δd(t)
d→
Ŵ d

(
P f(t)

)
ef (P f(t))

. (32)

Also, ef
(
P f(t)

)
= ζ(P f(t))r(P f(t))/κ when P f(t) ≥ t.

Since a delay is experienced by users when the number of v
requests arriving from the request arrival process and waiting
to stream v, Ŵ f(τ) is larger than the requests being streamed
ζ(τ). P f(t) from (26) can be written as the first instant when
the above occurs, i.e.,

P f(t) = min
{
τ ≥ t | Ŵ f(τ) = ζ(τ)

}
. (33)

To compute P f(t), (9) is used for t < τ and (20) for t ≥ τ .
A delay is experienced by the users if the UAPs simulta-

neously stream to ζ(t) users only, i.e., Ŵ f(t) ≥ ζ(t). In such
a scenario, the fluid limit of the delay δf(t) is the difference
between the instants when the request from the test user arrived
and when a UAP started to stream it, P f(t). Therefore, the
delay is given by δf(t) = P f(t)− t in analogy with (27).

III. RESULTS

In this section, we conduct simulations using the queueing
model derived in Section II for the scenarios depicted in
Table III, and compare them with simulations carried out
in OMNET++. Our simulations illustrate that the analytical
models are fairly accurate in the asymptotic regime consid-
ered in this work. Further, using an RL approach, we also
provide guidelines for resource-efficient deployment strategies
of UAPs and CPU design.

A maximum of I =144 UAPs are assumed to serve up to
50000 users in [16]. The period of simulation is limited to 50 s.
The variation in the number of video requests arriving as a
function of time is illustrated in [65]. The values of parameters
for user mobility, channel model, and video popularity model
are taken from [64], [57]–[60], and [55], respectively. The
UAP-to-user transmit power p(t) is assumed to be a constant
10 mW [58]. The values of the parameters that are common
in all simulations are grouped under the scenario S and listed
in Table III. The performance results for S are a benchmark
in the calculations of the delay. In scenario S1, κ is increased

TABLE III: Values assumed for the parameters [55], [57]–[60],
[64]

Sc. Parameter Value Sc. Parameter Value

S

κ 106 bits

S

TN 50
Nh 50000 Nl 1
ϕ 0.5 c 3·108m/s
ρ 0.6 h 10 m
α1, α2 0.55, 0.8 ν 1.21
α3 4 q 0.05
α4, α5 0.1, 10−7 ψ 4.88
ψ1 0.43 δ1 0.01
δ2 21 fc 2 GHz
B 1 MHz σ2 10−13

a3, a4,
a5

0.5, 0.45, 0.05 δM
q

20 s
0.5

S1 κ↗ 109 bits S2 h↗ 100 m
S3 a3 ↗

a4 ↘
a5

0.9, 0.05, 0.05 S4 B ↗ 50 MHz

S5 TN ↗ 100 S6 Nh ↘ 1000
S7 ν ↗ 2 S8 I ↗ 200
S9 q ↘ 5·10−5

to observe the effect if a more bandwidth-intensive video is
requested. The height h of UAPs is increased in S2 to observe
the effect of interference while UAPs implement interference
management. The effect of a different deployment strategy is
illustrated in S3. In S4, the effect of increased link bandwidth
B is explored. The user arrival pattern is changed by increasing
the period of variation, decreasing the maximum number
of users in a geographical area, and decreasing the users’
tendency to explore a new region in S5–S7, respectively. The
maximum number of UAPs deployable is increased in S8

while the effect of a video with low intrinsic popularity is
explored in S9.

The delay experienced in S–S9 is reported in Figs. 4(a)–
4(j). The analytical model is first solved numerically using
MATLAB assuming a periodic deployment of UAPs of the
form ζ(t) =

ζh−ζl
2 sin( 2πtTζ

) +
ζh+ζl

2 with Tζ = 50s. The
delay obtained from the analytical model proposed in Section
II-C is validated using network simulations in OMNET++,
assuming that the user base of C is limited to at most 50000
users. In the network simulations, the delay is measured as
the difference in the time instants when a user requests v
and some UAP starts to stream it. We observe from Fig.
4 that the qualitative nature of the delay obtained from
network simulations and the analytical model match well. This
validates the fluid approximation models derived in Section
II. Thus, our proposed analytical framework is fairly accurate
in the asymptotic regime considered in this work, and can
aid analysis of the real-time QoS in UANs. However, a UAN
should employ resource-efficient strategies to achieve a desired
QoS, which requires involvement of the underlying model
dynamics. We implement an RL agent that utilizes our fluid
approximation model to achieve the above objectives.

The following subsections discuss the effect of varying the
parameters listed in Table III on the delay δf(t) experienced
by a user while downloading v from the UAN associated
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Fig. 3: Convergence of rewards in S.

with C and the UAP deployment strategies implemented. The
discussion proceeds by comparing δf(t) observed in S1–S9

with that of S.

A. Delay

The requests wait in the service or retrial queue at C before
being streamed when Ŵ f(t) > ζ(t), resulting in a delay in
S–S9. The delay increases with N(t), k, h, Nh, ν, and q
as observed from the delay plots of S–S2, S6, S7, and S9,
respectively, while it decreases on increasing B and TN in
S4 and S5, respectively, as observed from Fig. 4. In S–S9,
λ(t)κ/ζ(t)r(t) > 1 for certain time intervals, resulting in
a very high delay in Fig. 4. Therefore, the request queuing
delay is high in many scenarios. Furthermore, a variation in
ζ(t) affects the delay more than N(t). Thus, an efficient UAN
design involves jointly optimizing the available resources and
the real-time QoS experienced by the users. However, δf(t)
is a non-convex function. An optimization problem involving
δf(t), γ, and ζ(t) is difficult to solve. In the next subsection,
we employ an RL agent in the CPU to solve the optimization
problem and decide UAP deployment that can yield a high
QoS.

B. Design of UAP deployment strategies

The CPU can change UAP deployment as a function of user
mobility and the popularity of v for improving the QoS experi-
enced by users while maximizing resource efficiency. Varying
ζ(t) and γ, resulting in changes in the UAP deployment and
CPU design, respectively, affects resource utilization. The goal
is to maximize resource efficiency by minimizing ζ(t) and γ
while minimizing delay which is also upper-bounded. Thus,
the optimization problem is formulated as

P0 : min a1ζ(t) + a2γ
s.t. 0 ≥ δf(t) < δM,

ζl ≤ ζ(t) ≤ ζh
0 ≤ γ ≤ γM

(34)

for positive constants a1, a2. The problem P0 is a non-convex
problem. We propose a deep Q network (DQN)-based solution
method for (34). The state spaces S(t), action spaces A(t),
and reward of the proposed DQN R(t) are designed by [25]
for positive constant β1, a3, a4, a5, 0 ≤ γ, and ζ(t) ≥ ζl
such that

S(t) = δf(t)

A(t) = γ, ζ(t)

R(t) =

 β1(1− ζ(t)/ζh), if δf(t) < δM
−β1(a3ζ(t)/ζh − a4δ

f(t)/δM − a5γ/γM),
otherwise.

(35)

The constants a1 and a2 refer to the weights given to
the number of UAPs deployed and the mean retrial time,
respectively, in the optimization problem of (34). The problem
P0 is translated to derive the reward function R(t) of an RL
algorithm in (35). In R(t), the constants a3, a4, and a5 can be
used to minimize the number of UAPs deployed, the maximum
delay, and the mean retrial time, respectively, as done in S3.
The RL simulations were performed in TensorFlow using
Python 3.9. The RL agent is made to explore for 30000
episodes followed by the exploitation phase. The RL agent
runs after each episode of duration 0.05 s. It is observed from
Fig. 4 and Table IV that the RL agent can jointly minimize the
delay and the number of UAPs required in different scenarios.
Convergence of the proposed algorithm is tested numerically
by running the RL agent for 200 consecutive epochs. Each
epoch is assumed to be of 200 s. The average reward obtained
by the RL agent in each epoch is plotted in Fig. 3. The average
reward obtained in an epoch is observed to increase initially
followed by saturation around -62. Thus, we conclude that
the proposed algorithm converges in S. The RL agent is also
observed to converge in other scenarios for which the average
reward is not plotted due to space restrictions. High k and h
in S1 and S2, respectively, result in the requirement for high
ζ(t). In such scenarios, the RL agent prevents a high delay
by adjusting ζ(t) and γ, as observed from Figs. 4(b), 4(c),
and Table IV, respectively. A stringent policy for reducing the
UAPs deployed ζ(t), causes a marginally higher delay in S3

and Fig. 4(d) compared to S. A high bandwidth availability
allows the RL agent to ensure lower resource consumption and
delay in S4 compared to S. A high period of variation in user
arrival TN , i.e., a less bursty nature of user arrival and less
number of users Nh, results in lower delay and low ζ(t) and γ
requirements in S5 and S6 compared to S. This is illustrated
in Figs. 4(f), 4(g) and in table IV. A high tendency of users to
come back to their original locations ν results in marginally
higher delay in Fig. 4(h) for S7 with higher ζ(t) requirement
compared to S. Availability of a higher number of deployable
UAPs in S8 compared to S does not cause any changes in
delay, γ or ζ(t), since ζ(t) < I in S. A low video popularity
also causes low delay, γ and ζ(t) in S9. Fig. 4 illustrates the
importance of employing the RL agent in maintaining a good
QoS in different network scenarios. Fig. 4 also compares the
delay achieved with that in [18], [66]. Delay has been derived
as a closed-form expression of the time-averaged parameters
in [18] and is observed to be higher compared to that achieved
by our RL agent from Fig. 4. In fact, the delay achieved
by this scheme in scenarios S1 and S2 are in the order of
100s of seconds and could not fit into the plots of Figs. 4(b)
and 4(c). On the other hand, the scenario of [66] is a system
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Fig. 4: Evolution of delay. Dashed black line: δf(t) from MATLAB. Dotted black line with marker: Delay from network
simulations. Black line: Delay from RL. Dashed red line with marker: Queueing delay of [66]. Red line: Queueing delay of
[18].

TABLE IV: Values obtained from RL for γ and ζ(t)

S S1 S2 S3 S4 S5 S6 S7 S8 S9

ζ(t) 93 94 127 98 59 97 78 112 92 62
γ (s) 10 10 10 2.5 5 5 2.5 1.42 5 5

with time-averaged Markovian arrival and service processes
with finite servers and calling population. Thus, according
to the analysis of [66], the queueing delay experienced by
users before starting to stream the video is significantly lower
and has an almost constant value. However, the time-averaged
delay obtained by [18], [66] does not provide a true picture
of the real-time QoS experienced by users, as observed from
the delay obtained from MATLAB and network simulations in
Fig. 4. This affects the UAP deployment. In contrast, our work
captures the real-time queuing delay, i.e., QoS, and provides
deployment strategies to ensure a desired QoS with resource
efficiency.

IV. CONCLUSIONS

Present-day networks often face a challenge to deliver
data-intensive multimedia video to highly mobile users with
high QoS. Although UANs can offer high QoS, they can
result in high deployment cost and impose logistic challenges
due to the limitations imposed by UAPs. The correct UAN
parameters must be varied to enable high QoS and cost-
efficient deployment of UAPs simultaneously. This highlights
the importance of the analytical model derived in this paper.
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